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1. Introduction

In a recent paper [3] Bressan has shown that the Cauchy problem for the system of
conservation laws ⎧⎪⎪⎨

⎪⎪⎩
∂tui +

n∑
α=1

∂xα(fα(|u|)ui) = 0

ui(0, ·) = ui(·)
(1)

can be ill posed for suitable Lipschitz flux functions f and L∞ initial data u which are
bounded away from 0. His analysis is based on the scalar conservation law associated to (1)
(formally giving the absolute value ρ of the solution u), namely⎧⎪⎪⎨

⎪⎪⎩
∂tρ +

n∑
α=1

∂xα

(
fα(ρ)ρ

)
= 0

ρ(0, ·) = ρ(·)
(2)

and on the analysis of the ODE ẋ(t) = f(ρ(t, x(t))), which formally gives, via the method
of characteristics, the angular part θ = u/ρ of the solution. In the final part of his paper
Bressan points out that the Cauchy problem could be well posed for BV initial data, looking
for suitable compactness properties of the Cauchy fluxes associated to BV vector fields, on
the same line of the theory developed for Sobolev spaces by DiPerna and Lions in [5].

In a recent paper [1] the first author extended the Di Perna–Lions theory to BV vector
fields satisfying natural L∞ bounds, as in [5], on the distributional divergence. The theory
developed in [1] is not directly applicable to the vector field f(ρ(t, x)) appearing in the
Cauchy problem (1) because its (spatial) divergence is formally given by

−1

ρ

[
ρt +

n∑
α=1

fα(ρ) · ∂xαρ

]
,

neither bounded nor absolutely continuous with respect to the Lebesgue measure in general.
Lifting the ODE considered by Bressan to an higher dimensional one and using the special

structure of the Cauchy problem (1), we are able however to reduce ourselves to the case
of divergence-free vectorfields, where the theory of [1] is fully applicable. Our approach is
indeed based on the analysis of the autonomous ODE(

ω̇(s), Φ̇(s)
)

=
(
ρ
(
ω(s), Φ(s)

)
, f
(
ρ
(
ω(s), Φ(s)

))
ρ
(
ω(s), Φ(s)

))
(3)

1
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that we use, through a reparameterization, to recover solutions of the ODE ẋ(t) = f (ρ(t, x(t)))
(here ρ is extended to negative times considering the backward Cauchy problem (11) asso-
ciated to (2)).

In particular we give a positive anwer to Bressan’s conjecture, obtaining in Theorem 2.6 a
general existence result for bounded weak solutions of (1) assuming that f ∈ W 1,∞

loc and that
u ∈ L∞ with |u| ≥ c > 0 L n-a.e. and |u| ∈ BVloc. By bounded weak solution we mean, as
usual, a map u ∈ L∞(Rt ×Rn

x,Rk) such that for every test function ϕ ∈ C∞
c (Rt ×Rn

x) and
any i = 1, . . . , k we have∫ ∞

0

∫
Rn

x

(
∂tϕ +

n∑
α=1

fα(|u|)∂xαϕ

)
ui dx dt +

∫
Rn

x

ϕ(0, x)ui(x) dx = 0 .

The solution is built as follows: denote by (Φx,t(s), ωx,t(s)) the solution of the ODE (3)
having (x, t) ∈ Rn × R as initial data, provided by [1], and set

Ψ(t, x) := Φx,t

(
ω−1

x,t (0)
)
.

Our solution of (1) is defined by

u(t, x) := ρ(t, x)θ (Ψ(t, x)) .

This construction also provides entropy conditions for a quite rich family of entropy-entropy
flux pairs, therefore it is natural to investigate whether these entropy conditions are suffi-
ciently strong to enforce uniqueness of solutions.

We are not able to give here a definite answer to this problem, but a careful analysis of
our construction shows some necessary conditions for uniqueness which play also a role in
the stability problem with respect to approximation of the initial data (see Theorem 4.5).
These conditions involve a family of measures µN built from the transport map Ψ as follows:

µN(A) := L n+1
(
([0, N ] × Rn) ∩ Ψ−1(A)

)
for any Borel set A ⊂ Rn.

We show in Proposition 4.4 that the absolute continuity with respect to L n of all measures
µN is a necessary condition for uniqueness of entropy solutions. However, we are not presently
able to show that this condition is sufficient, or to exhibit examples where this absolute
continuity property fails.

Acknowledgments Camillo De Lellis acknowledges partial support by the EU Network
Hyperbolic and kinetic equations HPRN-CT-2002-00282.

2. Preliminaries and statement of the result

Before stating the main theorem, we recall the notion of entropy solution of a scalar
conservation law and the classical theorem of Kruzhkov, which provides existence, stability
and uniqueness of entropy solutions to the Cauchy problem for scalar laws.

Definition 2.1. Let g ∈ W 1,∞
loc (R,Rn). A pair (η, q) of functions η ∈ W 1,∞

loc (R,R), q ∈
W 1,∞

loc (R,Rn) is called an entropy–entropy flux pair relative to g if

q′ = η′g′ L 1–almost everywhere on R. (4)
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If, in addition, η is a convex function, then we say that (η, q) is a convex entropy–entropy
flux pair. A weak solution u ∈ L∞(R+

t × Rn
x) of⎧⎨

⎩
∂tu + divx[g(u)] = 0

u(0, ·) = u
(5)

is called an entropy solution if ∂t[η(u)]+divx[q(u)] ≤ 0 in the sense of distributions for every
convex entropy–entropy flux pair (η, q).

Theorem 2.2 ([6] Kruzhkov). Let g ∈ W 1,∞
loc (R,Rn) and u ∈ L∞. Then there exists a

unique entropy solution u of (5). If in addition u ∈ BVloc(R
n), then, for every open set

A ⊂⊂ Rn and for every T ∈ ]0,∞[, there exists an open set A′ ⊂⊂ Rn (whose diameter
depends only on A, T , g and ‖u‖∞) such that

‖u‖BV (]0,T [×A) ≤ ‖u‖BV (A′) . (6)

We recall now the notion of entropy–entropy flux pair for systems.

Definition 2.3. A pair of Lipschitz functions η : Rk → R, q : Rk → Rn is called an
entropy–entropy flux pair for the system (1) if for every open set Ω ⊂ Rt×Rn

x and for every
u ∈ C1(Ω,Rk) which solves the system ∂tui +

∑
α ∂xα(fα(|u|)ui) = 0 pointwise, we have

∂t[η(u)] + divx[q(u)] = 0 on Ω in the sense of distributions. (7)

We denote by R the set of all entropy–entropy flux pairs (η, q) such that η is convex and both
η and q are radially symmetric (that is η(x) = η(y) and q(x) = q(y) whenever |x| = |y|).
Remark 2.4. It is easy to check that the couple η(y) := |y|, qα(y) := fα(|y|)|y| is an
entropy–entropy flux pair for the system (1). Moreover, if (E, Q) is an entropy–entropy flux
pair for the scalar law ∂tρ+divx[f(ρ)ρ] = 0, then

(
E(|y|), Q(|y|)) is an entropy–entropy flux

pair for (1). We remark that all couples (η, q) ∈ R can be generated with the procedure
above.

In addition to the notion of entropy, we introduce that of companion radial system.

Definition 2.5. Assume that a map S ∈ W 1,∞
loc (Rk,Rk) satisfies:

• |S(y)| = |y| for every y ∈ Rk;

• S(y) = |y|S
(

y

|y|
)

for every y 	= 0.

Then we say that the system of equations⎧⎪⎪⎨
⎪⎪⎩

∂t[S(u)]i +
n∑

α=1

∂xα

(
fα(|u|)[S(u)]i

)
= 0

[
S(u(0, ·))]

i
= [S(u(·))]i

(8)

is a companion radial system of (1).

We are now in the position of stating the main theorem of this paper:

Theorem 2.6. Let f ∈ W 1,∞
loc (R,Rk) and u ∈ L∞. Assume that |u| ∈ BVloc(R

n) and
|u| ≥ c > 0 L n-a.e. Then there exists a bounded weak solution u of (1) such that



4 LUIGI AMBROSIO, CAMILLO DE LELLIS

• u solves in the sense of distributions every companion radial system;
• For any (η, q) ∈ R the distribution ∂t[η(u)] + divx[q(u)] is a nonpositive measure.

The main tool for proving this theorem is the following consequence of the theory devel-
oped by the first author in [1] for ODEs ẋ = b(x) with BV coefficients b having absolutely
continuous and bounded divergence (extending the theory developed for Sobolev spaces in
[5]). The theorem stated below is a particular case of this theory (as the conditions on the
divergence could be relaxed and also the non-autonomous case could be considered), but it
is sufficient to our purposes.

Theorem 2.7 ([1], Theorem 6.5). Assume b ∈ BVloc ∩ L∞(Rm,Rm) and div b = 0 in the
sense of distributions. Then there exists a unique locally bounded map Φ : R × Rm → Rm

such that:

(i) Φ(·, x) ∈ W 1,∞(R,Rm) and Φ(0, x) = x for L m–a.e. x ∈ Rm.
(ii) d

ds
Φ(s, x) = b(Φ(s, x)) for L m+1–a.e. (s, x) ∈ R × Rm.

(iii) Let {bj} ⊂ W 1,∞
loc ∩ L∞(Rm,Rm) with div bj = 0 and denote by Φj the unique solutions

of ⎧⎨
⎩

Φ̇j(t, x) = b(Φj(t, x))

Φj(0, x) = x .

If {‖bj‖∞} is bounded and bj → b in L1
loc, then

lim
j→∞

∫
BR

sup
t∈[−T,T ]

|Φj(t, x) − Φ(t, x)| dx = 0 ∀R, T > 0.

Using the terminology of [1], we say that this Φ is the regular lagrangian flow generated
by b. The regular Lagrangian flow Φ can also be characterized, as in [5], by conditions (a),
(b) and replacing the stability property (c) by the following one: for any T > 0 and any
bounded open set A ⊂ Rn there exists a constant C such that the measures∫

Rn

ϕ µt :=

∫
A

ϕ (Φ(t, x)) dx ϕ ∈ Cc(R
n), t ∈ [−T, T ]

satisfy

µt ≤ CL n.

Remark 2.8. An easy consequence of the previous theorem and of a diagonal argument
is the following stability property: assume that {bj} ⊂ BVloc, div bj = 0 in the sense of
distributions, {‖bj‖∞} is bounded and bj → b in L1

loc. Let Φj be the regular lagrangian flows
generated by bj and let Φ be the regular lagrangian flow generated by b. Then

lim
j→∞

∫
BR

sup
t∈[−T,T ]

|Φj(t, x) − Φ(t, x)| dx = 0 ∀R, T > 0.

A further diagonal argument also provides a subsequence j(r) such that Φj(r)(·, x) converge
to Φ(·, x) locally uniformly in R for L m-a.e. x ∈ Rm.
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3. Proof of Theorem 2.6

Before coming to the proof of Theorem 2.6 we need the following elementary lemma.

Lemma 3.1. Let µ be a finite measure on Rn and let θ : Rn → Sk. Then there exists a
sequence of continuous maps θj : Rn → Sk such that θj → θ in L1(µ).

Proof. Note that for some y ∈ Sk, we have µ(θ−1(y)) = 0. Fix such a y and take a smooth
diffemorphism ϕ : Sk \ {y} → Rk. Moreover, for every ε > 0, denote by Rε the map
Rε : Sk → Sk such that

• Rε is the identity on Sk \ Bε(y), where Bε(y) is the geodesic ball of Sk centered on y.
• Rε maps radially Bε(y) on the geodesic sphere ∂Bε(y) (thus Rε is not defined and

discontinuous on y).

The maps θε = Rε ◦ θ are well defined because µ(θ−1(y)) = 0. Moreover θε → θ in L1(µ).
For every ε we can find a sequence of continuous maps {θε,j}j such that θε,j → θε in L1(µ).
Indeed, consider the map ϕ ◦ θε. This map takes values in Rk, is bounded and in L1. Set a
system of standard coordinates x1, . . . xk. For each [ϕ(θε)]i, i ∈ {1, . . . , k}, standard measure

theory gives a sequence of continuous maps θ̃ε,j
i which converges to [ϕ(θε)]i in L1(µ) and

such that the sequence {‖θ̃ε,j
i ‖∞}j is bounded. Thus θ̃ε,j → ϕ(θε) in L1(µ) and the sequence

{‖θ̃ε,j‖∞} is bounded. Since ϕ−1 is bounded and continuous, the maps θε,j = ϕ−1(θ̃ε,j) are all
continuous and converge to θε in L1(µ). A standard diagonal argument gives two sequences
εr ↓ 0, j(εr) ↑ ∞ such that θεr ,j(εr) → θ in L1(µ).

Proof of Theorem 2.6. Throughout this proof, for every map u : Ω → Rk we set ρ := |u| and
θ := u/|u|. Since we will consider only functions u which are bounded away from the origin,
θ is well defined. Moreover, we set ρ = |u| and θ = u/|u|. In the first three steps we prove
the theorem under the assumption that θ is continuous. In the fourth step we pass to the
general case.

First Step. Scalar equation.
We define the function ρ as the unique entropy solution of the Cauchy problem for the

scalar conservation law ⎧⎪⎪⎨
⎪⎪⎩

∂tρ +
n∑

α=1

∂xα

(
fα(ρ)ρ

)
= 0

ρ(0, ·) = ρ(·) .

(9)

Thanks to Theorem 2.2, ρ ∈ BVloc and satisfies the entropy inequality for every convex
entropy–entropy flux pair (η, q) related to the scalar law (9). Moreover, by Remark 2.4, we
have

If (E(|x|), Q(|x|)) ∈ R, then (E, Q) is a convex entropy–entropy flux pair for (9). (10)

For technical reasons, it will be convenient to extend ρ to a function defined on the whole
Rt × Rn

x (that is to define ρ even for negative times). In order to do this we adopt the
following elementary procedure: we define ρ− as the unique entropy solution of the Cauchy
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problem ⎧⎪⎪⎨
⎪⎪⎩

∂tρ
− −

n∑
α=1

∂xα

(
fα(ρ−)ρ−) = 0

ρ−(0, ·) = ρ(·) .

(11)

Then, we extend ρ to R−
t × Rn

x setting ρ(t, x) = ρ−(−t, x). Theorem 2.2 implies that
ρ ∈ BVloc(Rt ×Rn

x). Moreover, it is immediate to check that

∂tρ +

n∑
α=1

∂xα(fα(ρ)ρ) = 0 on Rt ×Rn
x (12)

and that ρ|R+
t ×Rn

x
is the unique entropy solution of the Cauchy problem (9).

Second Step. Smooth approximation of the transport equation.
Let ξε be a standard convolution kernel and define ρε := ρ ∗ ξε and gε := (f(ρ)ρ) ∗ ξε.

Since ρ ≥ c > 0 L n-a.e. the same inequality is true everywhere for ρε. Then, let θε be the
unique solution of the Cauchy problem for the transport equation⎧⎨

⎩ ∂tθ
ε +

gε

ρε
· ∇xθ

ε = 0

θε(0, ·) = θ(·) .
(13)

Thus we have that ρε∂tθ
ε + gε · ∇xθ

ε = 0. Since ∂tρ
ε + divxg

ε = [∂tρ + divx(f(ρ)ρ)] ∗ ξε = 0,
we have

∂t(ρ
εθε) + divx(g

εθε) = 0 . (14)

Clearly ‖θε‖∞ is uniformly bounded. Thus, there is subsequence {θεj} which converges
weakly∗ in L∞ to a function θ. Since (ρε, gε) → (ρ, f(ρ)ρ) strongly in L1

loc, we have that
ρεjθεj → ρθ and gεjθεj → f(ρ)ρθ in the sense of distributions. Hence, setting u = ρθ, the
function u satisfies ⎧⎪⎪⎨

⎪⎪⎩
∂tu +

n∑
α=1

∂xα(fα(ρ)u) = 0

u(0, ·) = ρ(·)θ(·)
(15)

in the sense of distributions. Thus, if we could prove that |θ| = 1 L n+1–a.e. on R+
t × Rn

x,
the function u would be a solution of (1) in the sense of distributions. Moreover, in view of
(10), it would satisfy the entropy inequality ∂t[η(u)] + divx[q(u)] ≤ 0 for every (η, q) ∈ R.

Now, let S be as in Definition 2.5. Since ρε, θε and gε are smooth, we have⎧⎨
⎩

∂t[ρ
εS(θε)] + divx

[
g(ρε)S(θε)

]
= 0

ρεS
(
θε(0, ·)) = ρ(·)S(θ(·)) .
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If |θ| = 1 L n+1–a.e., we would have that θεj → θ strongly in L1
loc and hence ρεjS(θεj) →

ρS(θ) in L1
loc. By definition, ρS(θ) = S(ρθ) = S(u). Thus u would satisfy⎧⎨

⎩
∂t[S(u)] + divx

[
f(|u|)S(u)

]
= 0

S
(
u(0, ·)) = S(u(·))

Summarizing, the theorem would follow if we could prove that |θ| = 1 L n+1–a.e. .

Third Step. Strong convergence of θε when θ ∈ C(Rn).
In this step we assume that θ ∈ C(Rn) and we prove that under this assumption θε(T, x) →

θ(T, x) for L n+1–a.e. (T, x) ∈ R+
t ×Rn

x. In view of the previous step, this proves the theorem
when θ is continuous.

We start by defining the following autonomous system of ODEs:⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

d

ds
Φε

x,y(s) = gε
(
ωε

x,y(s), Φ
ε
x,y(s)

)
d

ds
ωε

x,y(s) = ρε
(
ωε

x,y(s), Φ
ε
x,y(s)

)
ωε

x,y(0) = y ∈ R, Φε
x,y(0) = x ∈ Rn .

(16)

We stress on the fact that we solve this system of ODEs for all times (that is, even when s
is negative) thus finding trajectories

(
Φε

x,y, ω
ε
x,y

)
: R → Rn ×R.

Since ρε ≥ c the map ωε
x,y : R → R is invertible with Lipschitz inverse. We define ζε

x,y as
the inverse of ωε

x,y and we set

Γε
x,T (t) := Φε

x,T (ζε
x,T (t)) .

Clearly

d

dt
Γε

x,T (t) =
dΦε

x,T

ds

(
ζε
x,T (t)

)dζε
x,T

dt
(t)

= gε
[
ωε

x,T

(
ζε
x,T (t)

)
, Φε

x,T

(
ζε
x,T (t)

)]{ 1

ρε
[
ωε

x,T

(
ζε
x,T (t)

)
, Φε

x,T

(
ζε
x,T (t)

)]
}

=
gε
(
t, Γε

x,T (t)
)

ρε
(
t, Γε

x,T (t)
) .

Moreover note that ωε
x,T (0) = T and hence ζε

x,T (T ) = 0. Note also that, since d
ds

ζε
x,T > 0 and

ζε
x,T (T ) = 0, then ζε

x,T (0) < 0: this is why we solved the ODEs (16) even for negative times.
Thus Γε

x,T (T ) = Φε
x,T (ζε

x,T (T )) = Φε
x,T (0) = x. We conclude that the trajectory Γε

x,T (t) is
the unique solution of the Cauchy problem⎧⎨

⎩
d

dt
Γε

x,T (t) =
gε
(
t, Γε

x,T (t)
)

ρε
(
t, Γε

x,T (t)
)

Γε
x,T (T ) = x .

(17)
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Since θε solves the Cauchy problem (13), we have that

θε(T, x) = θε(0, Γε
x,T (0)) = θ

(
Φε

x,T (ζε
x,T (0))

)
. (18)

Set g := f(ρ)ρ and consider the ODE⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

d

ds
Φx,y(s) = g

(
ωx,y(s), Φx,y(s)

)
d

ds
ωx,y(s) = ρ

(
ωx,y(s), Φx,y(s)

)
ωx,y(0) = y, Φx,y(0) = x .

(19)

Since the flux (ρ, g) ∈ BVloc ∩ L∞ is divergence free, we can apply Theorem 2.7 to obtain
the existence of a unique regular Lagrangian flow (Φx,y, ωx,y). Theorem 2.7 and Remark 2.8
imply that possibly extracting a subsequence (not relabelled) from εj we have

• For L n+1–a.e. (x, y), the maps Φx,y : R → Rn, ωx,y : R → R solve (19);
• For L n+1–a.e. (x, y), the maps (Φ

εj
x,y, ω

εj
x,y) converge locally uniformly in R to (Φx,y, ωx,y)

as n → ∞.

Since d
ds

ωε
x,y ≥ c > 0, we conclude that

∣∣ d
ds

ζε
x,y

∣∣ ≤ 1
c
. Thus, for every (x, y), the family of

real functions {ζε
x,y}ε is precompact in the topology of locally uniform convergence. Recall

that for L n+1–a.e. (x, y) the functions ω
εj
x,y converge locally uniformly to ωx,y. Hence for

L n+1–a.e. (x, y), ζ
εj
x,y converge uniformly to a Lipschitz map ζx,y, which is the inverse of

ωx,y.
Thus, for a.e. (x, T ) we have that Φ

εj

x,T (ζ
εj

x,T (0)) converge to Φx,T (ζx,T (0)). By the continu-

ity of θ and (18), we have that θεj(T, x) → θ[Φx,T (ζx,T (0))] for L n+1–a.e. (T, x) ∈ R+
t ×Rn

x.
This yields that the θ constructed in the previous step is given by

θ(T, x) = θ
[
Φx,T

(
ζx,T (0)

)]
(20)

and hence takes its values in Sk−1 almost everywhere. This completes the proof of Theorem
2.6 when θ is continuous.

Fourth Step. The general case θ ∈ L∞.
Now fix a general u satisfying the assumptions of the Theorem. Define the map Ψ :

R+
t ×Rn

x → Rn as

Ψ(T, x) := Φx,T

(
ζx,T (0)

)
. (21)

For every N ∈ N, consider the measure µN defined on Rn in the following way: µN is the
pushforward, via Ψ, of the Lebesgue measure L n+1 restricted to the set [0, N ] × Rn

x. Note
that for every N there exists a constant C(N) such that |Ψ(T, x) − x| ≤ C(N) for every
T ∈ [0, N ]. Thus the measure µN is locally finite.

We fix a map θ̃ in the equivalence class of θ (our construction might be sensitive to the

choice of this representative, see the next section). By applying Lemma 3.1 to the map θ̃
and to the measure

µ :=

∞∑
R=1

2−RχBR

(
L n +

∞∑
N=1

1

2NµN(BR)
µN

)
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we find a sequence of continuous maps θ̃j : Rn → Sk−1 such that θ̃j(x) → θ̃(x) in L1(µ).

Thus a subsequence (not relabeled) θ̃j converges to θ̃ µ–almost everywhere. This means that

θ̃j(x) → θ for L n+1–a.e. x and for µN–a.e. x for all N .
Using the construction of the previous steps, we can find functions ρ : R+

t ×Rn
x → R and

θj : R+
t × Rn

x → Sk−1 such that ρ is the entropy solution of (9) and θj solves, in the sense
of distributions, the Cauchy problem⎧⎪⎪⎨

⎪⎪⎩
∂t(ρθj) +

n∑
α=1

∂xα

(
fα(ρ)ρθj

)
= 0 .

ρθj(0, ·) = ρ(·)θ̃j(·) .

(22)

Up to subsequences, (θj) converge weakly∗ in L∞ to a map θ which solves⎧⎪⎪⎨
⎪⎪⎩

∂t(ρθ) +
n∑

α=1

∂xα

(
fα(ρ)ρθ

)
= 0 .

ρθ(0, ·) = ρ(·)θ(·) .

(23)

Arguing as in the second step, to complete the proof we only need to show that θ(t, x) ∈ Sk−1

for L n+1–a.e. (t, x). Let G ⊂ Rn
x be the set

G := {x : θ̃j(x) → θ̃(x)}.
Thanks to our assumptions, we have µN(Rn \ G) = 0 for every N . This means that

for L n+1–a.e. (T, x) we have Ψ(T, x) ∈ G. (24)

Since θj(T, x) = θ̃j(Ψ(T, x)), clearly

θj(T, x) → θ̃(Ψ(T, x)) for every (T, x) such that Ψ(T, x) ∈ G.

Thanks to (24) we conclude that θj(T, x) → θ̃(Ψ(T, x)) for L n+1–a.e. (T, x). Since the weak

limit has to coincide with the pointwise limit, we obtain that θ(T, x) = θ̃(Ψ(T, x)) ∈ Sk−1

for L n+1–a.e. (T, x) ∈ R+
t ×Rn

x. This completes the proof.

4. Some remarks about uniqueness and stability

In analogy with the terminology of scalar conservation laws, we say that a weak solution
u ∈ L∞(R+ × Rn

x,R
k) of (1) is an entropy solution if

• u is a weak solution of any companion radial system;
• ∂t[η(u)] + divx[q(u)] ≤ 0 for any couple (η, q) ∈ R.

The following conjecture is quite natural:

Conjecture 4.1. If u1 and u2 are two entropy solutions of the same Cauchy problem (1)
then u1 = u2 L n+1–a.e. in R+

t ×Rn
x.

Notice that the entropy condition generated by pairs (η, q) ∈ R ensures that |u1| = |u2| = ρ
L n+1–a.e. and one can guess that the fact that u is a weak solution of all companion radial
systems should imply that the u1/ρ = u2/ρ L n+1–a.e.

We will show in the next subsection how this conjecture is related to the map Ψ defined
by (21) and to the measures µN (see Definition 4.2 below and the Fourth Step of Proof of
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Theorem 2.6). In the last subsection we will discuss the relations of these measures with the
stability of entropy solutions.

4.1. The transport map Ψ. Thanks to Theorem 2.7 and Remark 2.8 the map Ψ ∈
L∞(R+

t × Rn,Rn) defined on (21) only depends on the initial data ρ (and obviously on
f) but it does not depend on the construction of the Third Step. In particular Ψ does not
depend on the choice of the convolution kernel ξ and of the vanishing sequence {εj}. We call
Ψ the transport map generated by the initial data ρ and we introduce the following notation:

Definition 4.2. Let Ψ be as above and for every N ∈ N define the measure µN as the push–
forward, via Ψ, of the Lebesgue measure L n+1 restricted to the set [0, N ]×Rn. A Borel set
S is called a singular set for Ψ if L n(S) = 0 and µN(S) > 0 for some N .

Notice that if all measures µN are absolutely continuous with respect to L n there is no
singular set. Using the language just introduced, the construction of the proof of Theorem
2.6 can be summarized in the following

Theorem 4.3. Let ρ ∈ BVloc(R
n) with 0 < c ≤ ρ ≤ C and let θ ∈ L∞(Rn,Sk−1).

1. Define ρ as in the first step of the proof of Theorem 2.6. Denote by Ψ be the transport
map generated by ρ.

2. Let θ̃ : Rn → Sk−1 be any Borel map such that θ̃ = θ L n–a.e. on Rn.
3. Define u ∈ L∞(R+

t ×Rn
x) as u(t, x) = ρ(t, x)θ̃

(
Ψ(t, x)

)
.

Then u is an entropy solution of⎧⎪⎪⎨
⎪⎪⎩

∂tu +
n∑

α=1

∂xα(fα(|u|)u) = 0

u(0, ·) = ρ(·)θ(·) .

(25)

The following proposition shows that the absolute continuity of all measures µN is neces-
sary for the validity of Conjecture 4.1.

Proposition 4.4. If Conjecture 4.1 holds true, then for every ρ the transport map Ψ gen-
erated by ρ has no singular set. That is, the measures µN of Definition 4.2 are all absolutely
continuous with respect to L n.

Proof. Assume that for some ρ as above the transport map Ψ generated by ρ has a singular
set S. Then, for every θ ∈ L∞(Rn,Sk−1) we can find Borel maps θ̃1, θ̃2 : Rn → Sk−1 such
that

• θ̃1 = θ = θ̃2 on Rn \ S.

• θ̃1(x) 	= θ̃2(x) for every x ∈ S.

If we define uj(t, x) = ρ(t, x)θ̃j
(
Ψ(t, x)

)
, then both u1, u2 solve (25) by Theorem 4.3.

Moreover u1(t, x) 	= u2(t, x) for every (t, x) ∈ Ψ−1(S). According to the definition of S, we
have

L n+1
(
Ψ−1(S) ∩ [0, N ] ×Rn

)
> 0

for some N > 0.
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4.2. Stability. We have seen in the previous subsection that the absolute continuity of all
measures µN is necessary for uniqueness. Here we show that the natural extension of this
property to the case when the initial data are given by a sequence of maps ρj , namely the
equi-integrability of the measures µj

N associated to ρj , leads to a stability result for the
solutions built as in Theorem 2.6.

Let ρ, ρj ∈ BVloc ∩ L∞(Rn), θ, θ
j ∈ L∞(Rn,Sk−1) and assume that

• 0 < c ≤ ρj ≤ C for every j;

• θ
j → θ in L1

loc;
• ρj → ρ in L1

loc and supj ‖ρj‖BV (A) < +∞ for any bounded open set A ⊂ Rn.

Denote by Ψ, Ψj the transport maps generated by ρ, ρj . For any N, j ∈ N denote by
µj

N (resp. µN) the measures which are the pushforward via Ψj (resp. Ψ) of the Lebesgue
measure L n+1 restricted to the set [0, N ] ×Rn. Define the maps ρ, ρj ∈ BVloc

(
Rt ×Rn

x

)
as

in Theorem 4.3 (i.e. as constructed in the first Step of the proof of Theorem 2.6).
We recall that a sequence of locally integrable functions gj is said to be locally equiinte-

grable if for any R, ε > 0 there exists δ = δ(R, ε) > 0 such that
∫

A
|gj| dx < ε for any Borel

set A ⊂ BR with L n(A) < δ.

Theorem 4.5. Define

uj(t, x) := ρj(t, x)θ
j(

Ψj(t, x)
)
, u(t, x) := ρ(t, x)θ

(
Ψ(t, x)

)
and assume that

µj
N = f j

NL n and the sequence {f j
N}j is locally equiintegrable for any N . (26)

Then uj → u strongly in L1
loc.

Proof. Theorem 4.3 gives that the maps uj, u satisfy⎧⎪⎪⎨
⎪⎪⎩

∂tu
j +

n∑
α=1

∂xα(fα(|uj|)uj) = 0

uj(0, ·) = ρj(·)θj
(·)

⎧⎪⎪⎨
⎪⎪⎩

∂tu +
n∑

α=1

∂xα(fα(|u|)u) = 0

u(0, ·) = ρ(·)θ(·) .

Fix an open set Ω ⊂⊂ R+
t × Rn

x. We will prove that

(P) For every sequence {j(r)}r ⊂ N going to infinity there exists a further subsequence
{j(r(l))} such that uj(r(l)) converges to u in L1(Ω).

This implies that the whole initial sequence {uj} converges to u in L1(Ω). The arbitrariness
of Ω gives the claim. We now come to the proof of (P). Thus let us fix any subsequence
{uj(r)} and to simplify the notation let us drop the index r.

Theorem 2.2 and the compactness of the embedding of BV in L1
loc imply that ρj → ρ

in L1
loc. Using arguments similar to those of the Third Step, we can see that Theorem

2.7 and Remark 2.8 imply that (possibly passing to a subsequence) Ψj → Ψ in L1
loc and

pointwise L n+1 almost everywhere. Note that there exists a compact set K ⊂ Rn such that
Ψ(Ω), Ψj(Ω) ⊂ K (cf. Fourth Step of Proof of Theorem 2.6). Since

lim
j→∞

∫
Rn

ϕ dµj
N = lim

j→∞

∫
[0,N ]×Rn

ϕ ◦ Ψj dtdx =

∫
[0,N ]×Rn

ϕ ◦ Ψ dtdx =

∫
Rn

ϕ dµN
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for any continuous function ϕ with compact support in Rn, we have the weak convergence
as measures of µj

N to µN . As a consequence, the equiintegrability gives

µN is absolutely continuous with respect to L n for any N . (27)

By Egorov Theorem, there exists a sequence of compact sets {Ki} such that limi L
n(K \

Ki) = 0 and the sequence {θj} is equicontinuous on every Ki and converges to θ uniformly
on Ki. Condition (27) implies that limi L n+1(Ω \ Ψ−1(Ki)) = 0. For each i, consider a
sequence of compact sets {K l

i} such that

• K l
i ⊂ Ψ−1(Ki);

• liml L n+1
(
[Ψ−1(Ki)] \ K l

i

)
= 0;

• Ψj → Ψ uniformly on every K l
i .

We will prove that for each i, l there exists a subsequence {uj}, not relabeled, which converges
to u in L1(K l

i). A diagonal argument yields a subsequence {uj} (again not relabeled) which
converges strongly in L1(Ω).

Since Ψj → Ψ uniformly on K l
i and Ψ(K l

i) ⊂ Ψ
(
Ψ−1(Ki)

)
= Ki, we have that

lim
j→∞

L n
(
Ψj(K l

i) \ Ki

)
= 0 . (28)

Assumption (26) and (28) imply that

lim
j→∞

L n+1
(
K l

i \
[(

Ψj
)−1

(Ki)
])

= 0 . (29)

Fix M ∈ N and for each r let j(r) ≥ r be such that

L n+1
(
K l

i \
[(

Ψj(r)
)−1

(Ki)
]) ≤ 2−r

M
. (30)

Thus if we define the set

K ′
M := K l

i ∩
{⋂

r

[(
Ψj(r)

)−1
(Ki)

]}

we get L n+1(K l
i \K ′

M) ≤ 1
M

. We will show uj(r) → u in L1(K ′
M). Note that Ψj(r)(K ′

M) ⊂ Ki.
Since

• Ψj(r) → Ψ uniformly on K ′
M ,

• θ
j(r)

is equicontinuous on Ki,

• θ
j(r) → θ uniformly on Ki,

we conclude that uj(r) = θ
j(r) ◦ Ψj(r) converges uniformly to u = θ ◦ Ψ on K ′

M . Hence uj(r)

converges to u in L1(K ′
M). A diagonal argument yields a subsequence which converges to u

in L1(K l
i). This completes the proof of (P) and hence the proof of the theorem.
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