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CONCENTRATION ESTIMATES FOR ENTROPY MEASURES

CAMILLO DE LELLIS, TRISTAN RIVIÈRE

Abstract. We show that entropy solutions to 1 dimensional scalar conservation laws for
totally nonlinear fluxes and for arbitrary measurable bounded data have a structure similar
to the one of BV maps without being always BV. The singular set -shock waves- of such
solutions is contained in a countable union of C1 curves and H1 almost everywhere along
these curves the solution has left and right approximate limits. The entropy production is
concentrated on the shock waves and can be explicitly computed in terms of the approximate
limits. The solution is approximately continuous H1 almost everywhere outside this union
of curves.

1. Introduction

Let u : R+
t × Rx be a bounded entropy solution of ∂tu + ∂x[f(u)] = 0 and assume f is

strictly convex. Since the classical results of Lax and Oleinik, it is known that u is locally a
BV function, even when the initial data u(0, ·) are very irregular. We recall that a bounded
distributional solution of ∂tu+ ∂x[f(u)] = 0 is an entropy solution if and only if

• ∂t[q(u)] + ∂x[η(u)] is a nonpositive measure for every convex entropy–entropy flux pair
(q, η), i.e. for every (q, η) such that q is convex and q′(t) = η′(t)f ′(t) L 1–a.e..

When f is not convex the solution of the Cauchy problem⎧⎨
⎩

∂tu+ ∂x[f(u)] = 0

u(0, ·) = u0(·)
(1)

is BVloc if u0 ∈ BVloc(R). But for less regular u0, u is not, in general, a BV function. In
[LPT] the authors have introduced a kinetic formulation for (1) and, using velocity averaging
lemmas, they have proved that u belongs always to some fractional Sobolev space W α,q, even
if u0 is not better than L∞ (the exponents α and q depending on the nonlinearity of the flux
f). We refer to the book [P] for an account of the rich literature on kinetic formulations for
conservation laws. See also [DW] for some examples concerning the optimal regularity of u.

However, the fractional Sobolev spaces W α,q with α < 1 do not provide good information
on the “structure” of the singularities of the function u. The meaning of structure is explained
by the following examples. First, let u be a C1 solution of (1) and (η, q) a C1 entropy–entropy
flux pair. Then

T := ∂t[η(u)] + ∂x[q(u)] = η′(u)ut + (q′(u))ux = q′(u)[ut + f ′(u)ux] = 0 . (2)

Instead, let u be discontinuous but piecewise C1. In particular assume the existence of a
smooth 1–dimensional set Ju such that u is C1 on R2 \ Ju and has left and right traces
(denoted by u±) on Ju. Then the distribution T does not vanish any more, but it is a
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measure concentrated on Ju. Indeed, if (1, s)/
√

1 + s2 denotes the tangent to Ju and H1

denotes the 1–d Hausdorff measure, then

〈T, ϕ〉 =

∫
Ju

[
s
[
η(u+) − η(u−)

] − [
q(u+) − q(u−)

]
√

1 + s2

]
ϕdH1 . (3)

For BV solutions, the BV structure theorem and Vol’pert chain rule (see [AFP]) give a fairly
good understanding of what happens. Indeed they imply the existence of a rectifiable set Ju

such that

(i) u is approximately continuous outside Ju and has left and right traces on Ju;
(ii) for every entropy–entropy flux pair (η, q) the distribution T is still given by (3).

In this note we prove that, under some regularity assumptions on the flux f , the same
structure holds for every entropy solution u

Theorem 1.1. Let f ∈ C2(R,R) and {x|f ′′(x) = 0} be locally finite. If u is an entropy
solution of (1), then there is a rectifiable 1–d. set J ⊂ R2 s.t.

(a) Every y �∈ J is a Lebesgue point for u.
(b) u has right and left traces H1–a.e. on J .
(c) For any smooth entropy–entropy flux pair (η, q), the entropy production is concentrated

on J and can be computed “classically” as

∂t[η(u(t, x))] + ∂x[q(u(t, x))] =
s
[
η(u+) − η(u−)

] − [
q(u+) − q(u−)

]
√

1 + s2
H1 J . (4)

Remark 1.2. We stress on the fact that such solutions u are not, in general, in BV . Indeed,
let f(v) = |v|p, with p > 2. Clearly, f satisfies all the assumptions above. Then, there are
entropy solutions to ∂tu + ∂x|u|p = 0 such that u �∈ W α,q

loc for any α > 1
p−1

(and any q); cp.

Proposition 3.4. of [DW].

Remark 1.3. In view of the fact that u is an entropy solution we actually expect that u is
continuous outside Ju. Indeed this is known to be true for strictly convex fluxes (see Chapter
XI of [Da]).

Much is known about the regularity of solutions to scalar conservation laws in one–
dimension and, after all, if the initial data are BV, the solution is BV. Indeed our interest
comes from a more general question in measure theory, which arises naturally in different
areas of PDE.

1.1. The general measure–theoretic question.

Problem 1.4. Let E ⊂ C1(Rk,Rn) and u ∈ L∞(Rn,Rk). Assume that µΦ := div[Φ(u)] is
a Radon measure for every Φ ∈ E .

(i)’ Does there exist a codimension 1 rectifiable set Ju such that u is approximately contin-
uous outside Ju and has left and right traces on Ju?

(ii)’ If the answer to (i) is yes and Φ,Ψ ∈ E , can we relate the measures µΨ, µΦ, and the
pointwise information on u by “chain–rule” formulas?
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We can give more specific versions of this quite general problem by simply assuming more
information on the µΦ’s (i.e. that some are nonnegative measures, or that some vanish):
Indeed in many concrete examples we know more about µΦ.

Note that the classical structure theorem of BV functions is a positive answer to (i)’ when
E is the class of linear mappings L : Rk → Rn. In this case the information of (i)’ are
summarized in the so called precise representative of u. Vol’pert chain–rule is a positive
answer to (ii)’ when E contains the linear maps L. In this case, for any Φ ∈ C1, Vol’pert
chain–rule provides an explicit formula for div[Φ(u)] in terms of the measures ∂ju

i and of
the precise representative of u.

Thus, Problem 1.4 can be considered as a non–linear version of the theory of fine properties
of BV functions. Recently, some papers (see [AKLR], [DO], [DOW], [LR]) have given a
positive answer to (i)’ for many examples of classes E related to PDE problems. To our
knowledge this note provides the first positive answer to (ii)’ in a case where there is no BV
regularity. Moreover the answer to (i)’ given in the papers cited above is not complete: their
results do not prove that outside Ju the function is approximate continuous, but they yield
a milder property (cp. (a’) in subsection 2.1 and (a) in Theorem 1.1). In the particular case
considered here we are also able to fill this gap.

1.2. Applications to PDEs. The link with the theory of scalar conservation laws is trans-
parent. In this case u is an L∞ entropy solution of (1) and E is the set of convex entropy–
entropy flux pairs (η, q). This framework is available also for multi–d scalar equations, where
Kruzkov’s theory provides existence and uniqueness of entropy solutions to the Cauchy prob-
lem. Even for 2 × 2 systems in 1 spatial dimension one can show, via compensated com-
pactness, the existence of global L∞ entropy solutions for any bounded initial data (this
approach was pioneered in [DP] in the system of isentropic gas dynamics; we refer to [Se]
for the general treatment of 2 × 2 systems). However, except for some isolated examples,
nothing is known about the regularity and the structure of these solutions. In this case an
answer to Problem 1.4 would be much more relevant, since even when the initial data are
BV, there are no global–in–time BV estimates when starting from large data. For small data,
the recent remarkable work [BB] give BV estimates when the entropy solution achieved by
compensated compactness is generated by the vanishing viscosity limit.

Besides the area of conservation laws, there is another active field in which Problem 1.4 has
interesting applications. In recent years, models arising from different areas of physics (such
as micromagnetism, liquid crystals, film–blistering) have raised the issues of understanding
the asymptotic behavior of certain second–order functionals of Ginzburg–Landau type (see
for example [AG], [DKMO1] and [GO]). It turns out that the Γ–limit of these functionals
(i.e. the appropriate limiting variational problem) can be properly understood in classes
of functions which satisfy certain PDE’s and for which the divergence of certain nonlinear
quantities are Radon measures (see [ADM], [DKMO2], [JK] and [RS1]). Indeed the total
variation of these Radon measures is controlled by the limit functional. It turns out, however,
that this control does not give BV bounds and these classes of functions are strictly larger
than BV (see [ADM] and [DW]).

In these variational problems the papers [DO] and [AKLR] provide, by giving a partial
answer to (i)’, a regularity theory for the functions in the domain of the conjectured Γ–limits.
A positive answer to (ii)’, which is still lacking, would give nice formulas for the conjectured
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Γ–limits and, potentially, could lead to complete proofs of the Γ–convergence results (see
[ADM] and [RS1]).

1.3. Links to kinetic theory. Most of the PDE problems mentioned above enjoy a kinetic
formulation (for the variational cases this formulation was introduced by [JP] and [RS2]).
We give the kinetic formulation for entropy solutions of (1) and we refer to the book [P]
for an account of the various kinetic formulations of the problems mentioned above. Let u
be an entropy solution of (1) and assume (for simplicity) that u is nonnegative. Define the
maxwellian χ : Rv ×Rt ×Rx as

χ(v, t, x) =

{
+1 if 0 < v ≤ u(t, x)
0 otherwise

Then χ satisfies, in the sense of distributions, the kinetic equation

∂tχ+ f ′(v)∂xχ = ∂vµ (5)

where µ is a Radon measure on Rv ×R2
t,x. Moreover, if we set

K(v, u) =

{
v if u ≥ v
u otherwise

(6)

we then have µ(v, t, x) = ∂t

[
K(v, u(t, x))

]
+ ∂x

[
f(K(v, u(t, x))

]
. Thus, a characterization of

the measures

µv := ∂t

[
K(v, u(t, x))

]
+ ∂x

[
f(K(v, u(t, x))

]
(7)

is equivalent to characterize the r.h.s. of (5). Indeed, in all the cases where a kinetic
formulation is available, point (ii)’ of Problem 1.4 reduces essentially to prove that the r.h.s.
of the corresponding kinetic equation is concentrated on the set Ju. We point out that the
problem of proving concentration estimates for the entropy measure µ was first mentioned
in [LPT] (cf. the first open question listed in section 1.13 of [P]).

Finally we remark that some technical lemmas proved in this note yield new results even
in the kinetic theory. Indeed:

1. Thanks to a regularity result of [Ch] we prove that for µ in (5), ∂2
vµ is a measure (see

Proposition 4.1). This information can be combined with suitable modifications of the
velocity averaging lemmas in [JP2] to improve the Sobolev regularity of u known up to
now. However we do not pursue this issue.

2. In Section 6 we derive a new averaging lemma for solutions of the transport equation
(43). To our knowledge this is the first example of an averaging lemma where no Lp

bounds in the transported values are assumed.

2. Outline of the proof

2.1. Previous results. From theorem 2.4 and remark 2.5 of [DOW] we know the existence
of a rectifiable set J such that (b) above holds and:

(a’) In every y �∈ J the mean oscillation of u vanishes.
(c’) For any smooth entropy–entropy flux pair (η, q), the entropy production is given by

ζ + α, where ζ is the right hand–side of (4) and α satisfies the following condition:

α(K) = 0 for every Borel set K with H1(K) <∞ . (8)
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Hence, our tasks are to improve (a’) and (c’) to (a) and (c). A crucial role will be played by
the following theorem of [Ch]:

Theorem 2.1. There is a constant C (depending on ‖u‖∞ and f) such that∥∥∥∂x

[
f ′(u(T, ·))]∥∥∥(

[a, b]
) ≤ C

(
1 +

b− a

T

)
. (9)

Actually, the author in [Ch] gives an explicit proof of Theorem 2.1 when |{f ′′ = 0}| ≤ 2
and at the end of the paper remarks that this proof can be generalized to the case when the
set {f ′′ = 0} is locally finite (cp. section 6 of [Ch]).

2.2. Strategy of the proof. We first establish some notation which will be used throughout
the paper. If ν is a Radon measure on Ω, then ν+ and ν− denote its positive and negative
part (ν = ν+−ν−). ‖ν‖ denotes the measure ν++ν− and ‖ν‖M(Ω) denotes the total variation
of ν on Ω (that is, ‖ν‖(Ω)). Br(y) denotes the ball of radius r centered at y.

Proof of (a) This is based on the following remark. Assume that at point (t0, x0) the
mean oscillation of u vanishes, but u is not approximate continuous. This implies that the
averages of u on the balls of radius r oscillates between two values a < b as r ↓ 0. By a
Fubini–Tonelli argument, this oscillation will take place in most of the lines passing through
(t0, x0). A linear change of variables and Theorem 2.1 give that this oscillation cannot take
place if the lines are space–like. The detailed proof is given in Section 3.

Proof of (c) Everything boils down to show that the measure µ on the r.h.s of (5) is
concentrated on J .

Using Theorem 2.1, in Section 4 we prove that ∂2
vµ is a measure. Denote by ν the non-

negative measure on R2 which is the (x, t)–marginal of the total variation of ∂2
vµ. Then the

estimate on ∂2
vµ allows to write µ as g(v, t, x)ν, where ∂2

vg(·, t, x) is a measure in v for ν–a.e.
(t, x) (see Lemma 5.1). Thus our claim is equivalent to show that ν is concentrated on J .
We argue by contradiction and assume that ν(R2 \ J) > 0. Take a “typical” point which
lies outside J but which “sees” the measure ν (for the precise meaning compare with the set
A defined in Proposition 5.3). In what follows, this point will be called base point and for
simplicity we assume that it is the origin.

We look at the rescaled kinetic equations satisfied by the rescaled functions χr(v, t, x) :=
χ(v, rt, rx), that is

∂tχr + f ′(v)∂xχr = ∂v
µ̃r

r
. (10)

Here the µ̃r are the appropriate rescalings of the measure µ. We divide (10) by the quantity
αr = ν(Br)/r, thus getting

∂t
χr

αr
+ f ′(v)∂x

χr

αr
= ∂v

µ̃r

ν(Br)
=: ∂vµ

r . (11)

By (c’) it follows that J coincides (up to ν–negligible sets) with the set of points y where

lim sup
r↓0

ν(Br(y))

r
> 0 .

Thus, “typically” αr ↓ 0, since our base point is out of J .
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By an infinite version of Radon–Nykodim Theorem (see Proposition 5.3), the convergent
subsequences µrn are converging to a measure of the form g(v)L 1 × ν∞, where ν∞ is a
nonnegative measure on R2. This product structure is a consequence of a very general fact
and similar remarks have already been used in [DO], [DOW] and [AKLR]. Note that, since
the base point is “typical” and sees the measure ν, we have that g(v)L 1 × ν∞ is not the
trivial measure.

Take an arbitrary T ∈ [−1, 1] and consider the solution χf
n of the free transport equation⎧⎨

⎩
∂tχ

f
n + f ′(v)∂xχ

f
n = 0

χf
n(v, T, x) = χrn(v, T, x) .

(12)

Define

Fn(v, t, x) :=
χrn(v, t, x) − χf

n(v, t, x)

αrn

and note that they solve the transport equation⎧⎨
⎩

∂tFn + f ′(v)∂xFn = ∂vµ
rn

Fn(v, T, x) = 0 .
(13)

Formally, in the limit we get a distribution L which solves⎧⎨
⎩

∂tL+ f ′(v)∂xL = g′(v)ν∞

L(v, T, x) = 0 .
(14)

The χrn(v, ·) are rescalings of the χ(v, ·), which are the characteristic functions of the v–
sublevel sets of u. Since our base point does not belong to J , (a) applies and hence the
rescalings of u around the base point are converging to a constant (recall that the base point
is the origin and thus this constant is u(0)). Thus χrn(v, ·) is converging to the constant 1
if 0 < v < u(0) and to the constant 0 otherwise. The χf

n, being solutions of a free transport
equation, take value in {0, 1}. Thus one could hope that the distribution L satisfies the sign
condition:

L ≤ 0 on ]u(0),+∞[×R2 and L ≥ 0 on ]0, u(0)[×R2. (15)

This may not be the case, since L is the limit Fn = χrn−χf
n

αrn
and αrn ↓ 0. However, recall the

estimate on ∂2
vµ. In a “typical point” this estimate translates into a uniform estimate for

the measures ∂2
vµ

rn. This is used in section 6 to prove an averaging lemma (see Lemma 6.1)
for the functions Fn. This lemma is, to our knowledge, new and provides sufficiently strong
information in order to derive (15). Then, playing with the arbitrariness of T in (14), with
(15) and with the condition ν∞ ≥ 0, we can prove that L and ν∞ must vanish identically.
This gives a contradiction since we have fixed a typical point which “sees” the measure ν
(that is, ν∞ cannot vanish identically).
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3. From VMO to Lebesgue points

In this section we use Theorem 2.1 to show (a). Let us fix y �∈ J and assume y ∈ {t > 0}.
For simplicity, assume that y = (T, 0) and recall that u is an entropy solution in {t > 0}.
Set

ur =
1

πr2

∫
Br(y)

u(t, x) dtdx .

From (a’) we get that

lim
r↓0

1

πr2

∫
Br(y)

∣∣u(t, x) − ur
∣∣ dtdx = 0 . (16)

Thus we have to prove that a := lim infr↓0 ur = lim supr↓0 ur =: b.

Step 1 Assume, by contradiction, that a < b and fix the following convention:

- If 	 is a half–line starting at y and y1 �= y2 ∈ 	, then we say that y1 > y2 if |y1| > |y2|.
- We parameterize the family of all half–lines 	’s using vectors of S1 in the usual way.

Applying Fubini–Tonelli Theorem in polar coordinates, we get the following:

(Co) Let δ > 0 be given, N > 0 be any given natural number and I1, I2 ⊂]a, b[ two given
intervals. Then for H1–a.e. 	, there exist 2N points y1, . . . , y2N ∈ 	 ∩ Bδ(y) with
(i) y1 > y2 > . . . > y2N ;
(ii) All yi’s are Lebesgue points for u and u(y2i) ∈ I2, u(y2i+1) ∈ I1.

Fix now two intervals I1, I2 ⊂ [a, b] such that f ′(I1) ≤ c < d ≤ f ′(I2) (this is certainly
possible since f ′′ vanishes only in finitely many points). Note that, if for N large enough
one of the 	’s above were the x axis, we would have a contradiction. Indeed we would have
TV (f ′(u(T, ·))) ≥ N(d− c) and for large N ’s this would contradict (9). In the next step we
will modify this idea using half–lines 	 which are close to the horizontal one.

Step 2 Let us make a linear change of coordinates by putting ξ = x − εt. In these new
coordinates the conservation law becomes

∂t[u+ εf(u)] + ∂ξ[f(u)] = 0 .

Note that for ε sufficiently small the function gε(v) = v + εf(v) is invertible in the range of
u (the range of u is bounded). We define

fε : ] − C1, C1[ → R as fε(v) = f(g−1
ε (v)) ,

and wε = u+εf(u), where C1 is a suitable constant. Note that wε is a distributional solution
of ∂twε + ∂ξ[fε(wε)] = 0. Actually it is not difficult to see that wε is an entropy solution.
Moreover the following straightforward computations show that the numbers of zeros of fε

and f are the same (cf. (17) below). From fε(gε(v)) = f(v) and g′ε(v) = 1 + εf ′(v), we get

f ′
ε(gε(v)) =

f ′(v)
1 + εf ′(v)

=
1

ε

[
1 − 1

1 + εf ′(v)

]

f ′′
ε (gε(v)) =

1

g′ε(v)

[
f ′′(v)

(1 + εf ′(v))2

]
=

f ′′(v)
(1 + εf ′(v))3

(17)

We are in the conditions of applying Theorem 2.1 with wε in place of w and fε in place of
f . In order to simplify the notation, we will use the following convention: If S ⊂ R2 is any
segment and g : R2 → R, then TV (g, S) is the total variation of the restriction of g to S.
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Define Sε
δ as the segment joining y = (T, 0) and the point y + δ(1, ε)/

√
1 + ε2. Denote by

hε the function hε(v) = f ′
ε(gε(v)). Apply Theorem 2.1 to wε and fε in place of w and f and

translate the BV estimate in the old coordinates (t, x). It is immediate to check that we get
the following: There exists a constant K such that, if δ and ε are small enough, then

TV
(
hε(u), S

ε
δ

) ≤ K . (18)

Recall c, d, I1 and I2 defined in Step 1. Clearly, for ε sufficiently small we have

hε(I1) ≤ κ1 < κ2 ≤ hε(I2) . (19)

Now choose N large enough so that 2N(κ2 − κ1) > K and select ε so that Sδ
ε contains 2N

points y1, . . . , y2N satisfying (i) and (ii) of (Co) in the previous step. Then we would have
TV (hε(u(t, x)), S

δ
ε) ≥ 2N(κ1 − κ2) > K, which contradicts (18).

4. Estimate for ∂2
vµ

Proposition 4.1. Let u and f be as in Theorem 1.1 and let y = (T, z) ∈ R+ × R. There
is a constant C1 (depending on ‖u‖∞, f and T ) s.t.

‖∂2
vµ‖

(
Rv × BT/2(y)

) ≤ C1 . (20)

Proof. It is sufficient to prove (20) when u ∈ BVloc. Indeed, assume that (20) holds for BV
solutions and fix an entropy solution u. Choose a sequence {vn} ⊂ BVloc(R) s.t.

vn(·) → u(0, ·) in L1
loc and ‖vn‖∞ ≤ ‖u‖∞ .

Let un be the entropy solution of⎧⎨
⎩

∂tun + ∂x[f(un)] = 0

un(0, ·) = vn(·)
By the maximum principle, ‖un‖∞ ≤ ‖vn‖∞ ≤ ‖u‖∞. By the L1 contraction principle (see
Theorems 6.2.2 and 6.2.3 of [Da]), un ∈ BVloc(R

2) and un → u in L1
loc(R

+ × R). Thus

∂2
vµn = ∂v(∂tχn + f ′(u)∂xχn) → ∂2

vµ in the sense of distributions .

Since ‖∂2
vµn‖

(
Rv ×BT/2(y)

) ≤ C1, by semicontinuity of the total variation we get (20).

The case u ∈ BVloc

For u ∈ BVloc, we prove (20) using Vol’pert chain rule. Denote by J the jump set of u
and by ξ = (1, s)/

√
1 + s2 the tangent to J . Then Vol’pert chain rule implies

‖∂xf
′(u)‖ ≥ |f ′(u+) − f ′(u−)|√

1 + s2
H1 J . (21)

We calculate µ using (7). Vol’pert chain rule gives µ = g(v, u+, u−, s)H1 J , with

g(v, u+, u−, s) =
1√

1 + s2

{[
f(K(u+, v)) − f(K(u−, v))

] − s
[
K(u+, v) −K(u−, v)

]}
.

Assume, for the sake of simplicity, that u+ > u−. Then

h(s, u+, u−, v) := [f(K(u+, v)) − f(K(u−, v))] − s[K(u+, v) −K(u−, v)]

= [f(u+) − f(v) − s(u+ − v)]1[u+,u−](v) .
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For each t, x, consider the function

ht,x(v) = h(s(t, x), u+(t, x), u−(t, x), v) .

Clearly ht,x ∈ C2([u−, u+]). The Rankine–Hugoniot condition gives

s =
f(u+) − f(u−)

u+ − u−
.

Hence ht,x(u
+) = ht,x(u

−) = 0. Note that

∂2
vµ =

[
h′′t,x(v) + h′t,x(u

+)δu+(v) − h′t,x(u
−)δu−(v)

]
H1 J .

Thus, set B = BT/2(y) and compute

‖∂2
vµ‖(Rv × B) =

∫
J∩BT/2(y)

[∫ u+

u−
|h′′t,x(v)| dv + |h′t,x(u+)| + |h′t,x(u−)|

]
dH1(t, x) . (22)

To estimate (22), we split J ∩B into two parts. Fix ε so small that{
v1 �= v2, f

′′(v1) = f ′′(v2) = 0 and |vi| ≤ ‖u‖∞
}

=⇒ |v1 − v2| > ε (23)

and define the sets

J l :=
{
(t, x) ∈ J ∩ B : |u+(t, x) − u−(t, x)| > ε

}
Js :=

{
(t, x) ∈ J ∩ B : |u+(t, x) − u−(t, x)| ≤ ε

}
.

Clearly there is a C(ε) such that, if |u+ − u−| > ε, then∫ u+

u−
|h′′t,x(v)| dv + |h′t,x(u+)| + |h′t,x(u−)| ≤ C(ε)

∫ u+

u−
|ht,x|(v) dv . (24)

Thus

‖∂2
vµ‖ (Rv × J l) ≤ C(ε) ‖µ‖ (Rv × J l) ≤ C(ε) ‖µ‖ (Rv × B) . (25)

Fix (t, x) ∈ Js. Since h′′t,x(v) = −f ′′(v)/
√

1 + s2, (23) implies that h′′t,x changes sign at most
once in [u−, u+]. Recall that

ht,x(u
−) = ht,x(u

+) = 0

and that, since µ ≥ 0, we have ht,x ≥ 0 on [u−, u+]. All these conditions imply that h′′t,x ≤ 0
on [u−, u+] (which in turn implies f ′′ ≥ 0). Moreover there exists a v ∈ [u−, u+] such that
h′t,x(v) = 0. Thus∫ u+

u−
|h′′t,x(v)| dv + |h′t,x(u+)| + |h′t,x(u−)| ≤ 3

∫ u+

u−
|h′′t,x(v)| dv

=
3√

1 + s2

∫ u+

u−
f ′′(v) dv =

3(f ′(u+) − f ′(u−))√
1 + s2

. (26)

(21) implies that∥∥∂2
vµ

∥∥ (Rv × Js) ≤ 3
∥∥∂x[f

′(u)]
∥∥ (Js) ≤ 3

∥∥∂x[f
′(u)]

∥∥ (B) . (27)

Adding (25) and (27) we get

‖∂2
vµ‖ (Rv ×B) ≤ C(ε)

∥∥µ∥∥ (Rv × B) + 3 ‖∂x[f
′(u)]‖ (B) .
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The first part of the right hand side is bounded by a constant depending only on ‖u‖∞ and
f . The second part can be bounded using Theorem 2.1. This concludes the proof.

5. Blow–up of measures

Let µ, u and χ be as in Subsection (1.3). We denote by ν the x, t–marginal of ‖∂2
vµ‖, i.e.

the measure of M(R2) defined as

ν(A) := ‖∂2
vµ‖(Rv × A) for all Borel sets A ⊂ R2 . (28)

Note that we can give a “pointwise”–in v meaning to the measure µ. More precisely, thanks
to equation (7), the distribution

µv := ∂tK(v, u(t, x)) + ∂x

[
f
(
K(v, u(t, x))

)]
(29)

is a measure for each v and∫
ϕ(v, t, x) dµ(v, t, x) =

∫
R

[∫
R2

ϕ(v, t, x) dµv(t, x)

]
dv for all ϕ ∈ Cc(R

3) . (30)

Lemma 5.1. There exists a bounded Borel function g s.t. µ(v, t, x) = g(v, t, x)ν and

for ν–a.e. (t, x), ∂2
vg(·, t, x) is a measure on Rv with ‖∂2

vg(·, t, x)‖M(Rv) = 1 . (31)

Proof. Fix v > 0 and a ball B ⊂ R2. Take a sequence of functions {ϕn} ⊂ C∞
c (R), with

‖ϕn‖L1 = 1 and ϕn → δv in the sense of distributions .

Choose a sequence

{Φm} ⊂ C∞
c (B) with Φm ↑ 1B pointwise everywhere.

Using (30), (29) and the nonnegativity of µv, we easily get

µv(B) = lim
m↑∞

lim
n↑∞

∫
ϕn(v)Φm(t, x) dµ(v, t, x) . (32)

Recall that ‖u‖∞ < ∞ by assumption and that µv ≡ 0 for v �∈ [−‖u‖∞, ‖u‖∞]. Choose ψn

such that ψ′′
n = ϕn and ‖ψn‖L∞(I) ≤ 2‖u‖∞. Then we have∣∣∣∣

∫
ϕn(v)Φm(t, x) dµ(v, t, x)

∣∣∣∣ =

∣∣∣∣
∫
ψn(v)Φm(t, x) d[∂2

vµ](v, t, x)

∣∣∣∣ ≤ 2‖u‖∞ν(B) . (33)

Combining (32) and (33) we conclude

µv(B) ≤ 2‖u‖∞ν(B) .

By the arbitrariness of B and by Radon–Nykodim Theorem, µv = gv(t, x)ν for some gv ∈
L1(R2, ν). We set g(v, t, x) = gv(t, x), getting µ = g(v, t, x)ν. Clearly,∫

U

∫
R

|g(v, t, x)| dv dν(t, x) = ‖µ‖(R × U) < ∞ for every bounded set U .

Thus the function gt,x(v) := g(v, t, x) is in L1(R,L 1) for ν–a.e. (t, x). Hence the distribution
g′′t,x ∈ D′(Rv) is well defined (for ν–almost every (t, x)) and∫

Ψ d[∂2
vµ] =

∫
R2

〈
Ψ(·, t, x), g′′t,x(·)

〉
dν(t, x) (34)
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for every Ψ ∈ C∞
c (R3). Since ν is the t, x marginal of ‖∂2

vµ‖, standard theorems in the
disintegration of measures (see for instance [AFP]) imply the existence of a map ξ : R2 �
(t, x) → ξt,x ∈ M(R) such that:

‖ξt,x‖M(R) = 1 for ν–a.e. (t, x); (35)∫
Ψ d[∂2

vµ] =

∫
R2

∫
R

Ψ(v, t, x) dξt,x(v) dν(t, x) for every Ψ ∈ C∞
c (R3). (36)

Comparing (34) and (36) we get easily that g′′t,x = ξt,x for ν–a.e. t, x.

We now want to study a particular class of rescalings of the measure µ. We first set a bit
of notation on tangent measures

Definition 5.2. Let ν ∈ M(R2), µ ∈ M(Rv × R2) and y ∈ R2. We define the measures
νy,r, µy,r as

νy,r(A) =
ν(y + rA)

ν(Br(y))
for all bounded Borel sets A ⊂ R2

µy,r(C × A) =
µ(C × (y + rA))

µ(R × Br(y))
for all bounded Borel sets A ⊂ R2, C ⊂ Rv .

The sets of tangent measures T (y, ν) (resp. T (y, µ)) are defined as the limits of all sequences
{νy,rn}rn↓0 (resp. {µy,rn}rn↓0) which are convergent in the sense of measures.

We come to the main goal of this section.

Proposition 5.3. Let ν, µ and g be as in Lemma 5.1. For every y = (t, x) denote by ξy the
measure gy(v)L 1 of M(R). Then there is a Borel set A with ν(R2 \ G) = 0 such that for
every y ∈ A the following holds:

If ν∞ ∈ T (y, ν) then the product measure ξy × ν∞ is in T (y, µ); (37)

If µ∞ ∈ T (y, µ), then there is ν∞ ∈ T (y, ν) such that µ∞ = ξy × ν∞ . (38)

Warning 5.4. We stress on the fact that ξy × ν∞ is a product, that is∫
ϕ(v)ψ(t, x) d[ξy × ν∞](v, t, x) =

∫
ϕ(v) dξy(v)

∫
ψ(t, x) dν∞(t, x) .

Proof. First of all select a countable set {ϕn} ⊂ Cc(R) which is dense in the uniform topology
on compact subsets. We define the functions

ω(t, x) := ‖gt,x‖L1 ωk(t, x) :=

∫
ϕk(v)gt,x(v) dv .

We define the set

G = {y| y is a ν–Lebesgue point for ω and ωk, and ω(y) �= 0} .
Thanks to Lemma 5.1 we have ν(R2 \G) = 0. We prove only (37), the proof of (38) being
analogous. Fix y ∈ G and ν∞ ∈ T (y, ν). Thus there exists a sequence νy,rn of rescaled
measures converging to ν∞. Let Φ ∈ Cc(R

2). Note that∫
ϕk(v)Φ(t, x) dµy,rn(v, t, x) =

∫
ωk(t, x)Φ(t, x) dνy,rn(t, x) (39)
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and that, since y is ν–Lebesgue point for ωk,

lim
rn↓0

∫ ∣∣(ωk(t, x) − ωk(y))Φ(t, x)
∣∣ dνy,rn(t, x) = 0 ,

lim
rn↓0

∫
ωk(t, x)Φ(t, x) dνy,rn(t, x)(t, x) = lim

rn↓0

∫
ωk(y)Φ(t, x) dνy,rn(t, x)

=

∫
ωk(y)Φ(t, x) dν∞(t, x) . (40)

Choose a subsequence of {rn} such that µy,rn has a limit µ∞. Being y a ν–Lebesgue point
for ω, we have that that

lim
rn↓0

µ(R × Brn(y))

ν∞(Brn(y))
= ω(y) �= 0 . (41)

Then (40) and (41) imply∫
ϕk(v)Φ(t, x) dµ∞(v, t, x) =

∫
ϕk(v)dξy(v)

∫
Φ(t, x) dν∞(t, x) . (42)

Recall that {ϕk} is dense in Cc(R). Hence, (42) holds for every ϕ ∈ Cc(R) in place of ϕk.
The arbitrariness of ϕ and Φ gives (37).

6. An averaging lemma

In this section we prove an averaging lemma which will be used in the proof of point (c)
of Theorem 1.1.

Lemma 6.1. Let Fn : Rv ×Rt ×Rx → R be L1 solutions of the transport equations⎧⎨
⎩

∂tFn + f ′(v)∂xFn = ∂vµ
n

F (v, 0, x) = 0 .
(43)

Assume that

• Fn, µ
n ≡ 0 on (R \ L) ×R2

t,x for some bounded interval L;

• ∂2
vµ

n are all Radon measures;
• ‖∂2

vµ
n‖(R × U) is a bounded sequence for every bounded open set U ⊂⊂ R2.

Let I be an interval such that infI |f ′′| > 0 and let ψ ∈ C∞
c (I). Then:

‖Fn‖L1
loc(R×U) is a bounded sequence for every U ⊂⊂ R2. (44)

The functions Ξn(t, x) :=

∫
ψ(v)Fn(v, t, x) dv are weakly precompact in L1

loc (45)

Proof
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6.1. L1 bound. In this subsection we prove (44). Choose balls B ⊂ B′ ⊂ R2. Since ∂2
vµ

n

is a measure and µn ≡ 0 on (R \ L)×R2
t,x, it is immediate to check that ‖∂vµ

n‖(R ×B′) is
bounded. The ball B′ will be chosen later.

By standard arguments (e.g. using convolution kernels in t, x) for every n we can find L1

functions Gn and gn satisfying the following conditions:

• For L 1–a.e. v, the functions Gn(v, ·), gn(v, ·) ∈ C∞(R2) and satisfy the transport
equation {

∂tGn + f ′(v)∂xGn = gn

Gn(v, 0, x) = 0
(46)

• ‖Fn −Gn‖L1(R×B′) ≤ 1
n

and ‖gn‖L1R×B′) ≤ ‖∂vµ
n‖(R × B′) + 1

n
.

Since gn(v, ·) is smooth we can explicitly compute

Gn(v, t, x) =

∫ t

0

gn

(
x+ (τ − t)f ′(v), τ, v

)
dτ . (47)

Take the absolute value and integrate in t and x. Recall that f ′ ∈ C1(L) and thus is bounded
on L. Then there exists a constant C such that, if the ball B′ is large enough, then∫

B

|Gn(v, t, x)| dt dx ≤ C‖∂vµ
n(v, ·)‖L1(B′) for v ∈ L. (48)

Note also that the size of B′ depends only on the size of B and on supL |f ′|. Integrating (48)
in v and recalling that Gn ≡ 0 on R \ L, we get ‖Gn‖L1(R×B) ≤ C‖∂vµn‖L1(R×B′).

6.2. Weak L1–precompactness. It remains to show that {Ξn} is weakly precompact.
Define gn andGn as in subsection 6.1. Our claim reduces to the local weak L1 precompactness
of the functions

Ωn(t, x) :=

∫
I

ψ(v)Gn(v, t, x) dv ,

We restrict to a compact set of R2, say a ball B. To show the weak L1–precompactness of
Ωn in B, it is sufficient to show that for every ε > 0 there exists δ > 0 such that

If E ⊂ B satisfies L 2(E) < δ, then we have lim
n↑∞

∣∣∣∣
∫

E

Ωn

∣∣∣∣ ≤ ε . (49)

Recall that the gn’s are supported in L′×R2 for some bounded L′. Thus, since the velocity of
propagation of the transport equation is bounded, we can truncate gn smoothly to 0 outside
a compact set of R2, without affecting the value of Ωn in the ball B. Hence, we assume that
the gn are supported in I × [−C,C]2, for some constant C.

We split E into that E+ = E ∩ {t ≥ 0} and E− = E ∩ {t ≤ 0}. Since the estimate is
the same, we only show the one for E+ and for simplicity we drop the plus. Using (47) we
compute ∫

A

Ωn =

∫∫
R2

1E(t, x)

∫
R

ψ(v)

∫ t

0

gn

(
v, τ, x+ (τ − t)f ′(v)

)
dτ dv dx dt .

We rewrite the integral as∫∫∫∫
1E(t, x) 1[0,t](τ)ψ(v) gn

(
v, τ, x+ (τ − t)f ′(v)

)
dτ dv dx dt .
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We change variable by putting y = x+ (τ − t)f ′(v) and we get∫∫∫∫
1E

(
t, y + (τ − t)f ′(v)

)
1[0,t](τ)ψ(v) gn(v, τ, y) dτ dv dy dt

We now integrate by parts in v and get

−
∫∫∫∫ [∫ v

η

1E

(
t, y + (t− τ)w

)
dw

]
1]0,t](τ)

[
ψ′(v)gn(v, τ, y)+ψ(v)∂vgn(v, τ, y)

]
dτ dv dy dt ,

where η is the left endpoint of the interval I. The functions

Θn(v, τ, y) :=
[
ψ′(v)gn(v, τ, y) + ψ(v)∂vgn(v, τ, y)

]
.

are supported in a compact set I × [−C,C]2. Thus we rewrite the integral as∫∫∫ [∫ (∫ v

η

1E

(
t, y + (t− τ)w

)
dw

)
1]τ,C](t) dt

]
Θn(v, τ, y) dy dτ dv .

Recall that the L1 norm of the Θn’s is bounded. Thus, if we define the functions

Ψ(v, τ, y) :=

∫ C

τ

∫ v

η

1E

(
t, y + (t− τ)f ′(w)

)
dw dt . (50)

we just need to prove that for any ε > 0, there exists δ s.t.:

L 2(E) ≤ δ =⇒ sup
(v,τ,y)∈I×[−C,C]2

|Ψ(v, τ, y)| ≤ ε . (51)

Since the sets E and E + (0, y) have the same area, it suffices to show (51) when y = 0. By
changing coordinates with σ = t− τ , this reduces to estimating

sup
v∈I,τ∈[−C,C]

∫ C−τ

0

∫ v

η

1E(σ + τ, σf ′(w)) dw dσ . (52)

Hence, it is sufficient to bound

sup
v∈I

∫ 2C

0

∫ v

η

1E(σ + τ, σf ′(w)) dw dσ .

Since E and E + (τ, 0) have the same area, it suffices to bound

sup
v∈I

∫ 2C

0

∫ v

η

1E(σ, σf ′(w)) dw dσ . (53)

Recall that infI |f ′′| ≥ κ > 0. Thus we can change variable by putting z = σf ′(w), getting

sup
wvinI

κ−1

∫ 2C

0

∣∣∣∣∣
∫ σf ′(v)

σf ′(η)

1E(σ, z)
dz

σ

∣∣∣∣∣ dσ .
We split E into two parts: Eλ := E ∩ {σ < λ} and E \ Eλ. Then

κ−1

∫ 2C

0

∣∣∣∣∣
∫ σf ′(v)

σf ′(η)

1Eλ
(σ, z)

dz

σ

∣∣∣∣∣ dσ ≤ κ−1

∫ 2C

0

∣∣∣∣∣
∫ σf ′(v)

σf ′(η)

1{σ<λ}(σ, z)
dz

σ

∣∣∣∣∣ dσ
≤ λ

κ
sup
v∈I

|f ′(v) − f ′(η)| = C1λ .
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Whereas,

κ−1

∫ 2C

0

∣∣∣∣∣
∫ σf ′(v)

σf ′(η)

1E\Eλ
(σ, z)

dz

σ

∣∣∣∣∣ dσ ≤ L 2(E)

κλ

Thus, for every ε > 0, we first choose λ so that C1λ ≤ ε/2 and then we choose δ such that
δ/(κλ) ≤ ε/2. Clearly, L 2(E) < δ implies

sup
v∈I

κ−1

∫ 2C

0

∫ σf ′(v)

σf ′(η)

1E(σ, z)
dz

σ
dσ ≤ ε ,

which gives (51). This completes the proof.

7. Concentration–rectifiability

We now come to the proof of (c) of Theorem 1.1. Recall the definition of the (convex)
functions K(v, ·) : R → R+ given by (6). Define the set Kr as the pairs (η, q) such that
there exist real numbers v1, . . . , vn, α1, . . . , αn such that

η(·) :=

n∑
i=1

αiK(vi, ·) q(·) =

n∑
i=1

αif
(
K(vi, ·)

)
.

It is not difficult to see that for any convex entropy–entropy flux pair (η, q) there is a sequence
{(ηi, qi)} ⊂ {Kr} such that ηi → η and qi → q uniformly on compact sets. Thus it is enough
to prove that (c) holds for the entropies of {Kr}. By linearity, it is sufficient to prove (c) for
(K(v, ·), f(K(v, ·))) for each v. Thanks to (c’), it is sufficient to show that each µv of (29)
is concentrated on J . Recall that

∂tχ+ f ′(v)∂xχ = ∂vµ .

Thanks to Lemma 5.1 (and to the continuity in v of K(v, ·)) we only need to show that ν is
concentrated in J , where ν is the x, t–marginal of µ (see Section 5).

7.1. Setting and blow–up. We argue by contradiction using a blow–up argument. Let A
be the set of Proposition 5.3. If ν is not concentrated on J , then there exists y ∈ A \ J such
that T (y, µ) �= {0}. From (a) in Theorem 1.1, we know that

y is a Lebesgue point for u. (54)

Without loss of generality, assume that

y = 0 and u(0) = 1 . (55)

So fix a ν∞ ∈ T (0, ν) which is non–trivial and a sequence rn ↓ 0 such that ν0,rn → ν∞, in
the sense of measures. Thanks to Proposition 5.3,

µ0,rn converge to g0(v)L 1 × ν∞(t, x). (56)

Moreover, since by Lemma 5.1 g′′t,x is a measure for ν–a.e. A, without loosing our generality
we can assume that g′′0 is a measure. Let us go back to the kinetic equation ∂tχ+f ′(v)∂xχ =
∂vµ. We make a radial change of coordinates (t, x) → (rnt, rnx). We denote by χn the
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function χ in the rescaled coordinates, that is, χn(v, t, x) := χ(v, rnt, rnx) and for simplicity
we put µn = µ0,rn. Then, we can rewrite the kinetic equation as

∂t
χn

αn
+ f ′(v)∂x

χn

αn
= ∂vµ

n , (57)

where αn are suitable constants.

7.2. Comparison with the free transport. Since g′′0 is a measure (and is supported on
a compact set), g′0 is BV. Hence, g′0 is continuous except for an (at most) countable set.
Moreover g0 �= 0, otherwise T (0, µ) would be the trivial set {0}. Thus we can fix an interval
I such that

g′0 �= 0 on I. (58)

For the sake of simplicity, assume

g′0 < 0 on I = [η, ξ] and 0 < η < ξ < 1 = u(0) (59)

(it is easy to see that in the other cases we can argue similarly). Since f ′′ vanishes finitely
many times, we can assume

inf
I
|f ′′| > 0 . (60)

Finally, without loosing our generality, we can impose that

ν∞ is non trivial in the ball B1(0), that is ν∞(B1(0)) > 0. (61)

Recall that the χn are the characteristic functions of sublevel sets of rescalings of the initial
function u. Thus, using Fubini–Tonelli Theorem and the monotonicity in v of χn we have:

For almost every T < −1, χn(v, ·) has a trace on the line {t = T} for each v. (62)

T will be chosen later so to fulfill appropriate requirements (see subsection 7.3). We denote
by χf

n the solution of the free transport equation⎧⎨
⎩

∂tχ
f
n + f ′(v)∂xχ

f
n = 0

χf
n(v, T, x) = χn(v, T, x) .

(63)

We define the functions

Fn(v, t, x) :=
χn(v, t, x) − χf

n(v, t, x)

αn

and note that they solve the transport equation⎧⎨
⎩

∂tFn + f ′(v)∂xFn = ∂vµ
n

F (v, T, x) = 0 .
(64)
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7.3. Contradiction. In the next subsection we will prove that there is a subsequence n(k)
such that

On I ×R2, the Fn(k)’s converge, in the sense of measures, to a nonnegative ω. (65)

Here we show how (65) yields a contradiction. Fix a segment a on {t = T} and a line
	 = {t = T ′}. Both T , T ′ and a will be chosen later. For each w, consider the two adjacent
segments (say bw and dw) parallel to the vector (1, f ′(w)), starting at the endpoints of a and
ending when they meet 	. Finally we denote by cw the segment of 	 which, together with
aw, bw and cw, forms a parallelogram Pw (see Fig. 1).

Denote by η < ξ the two endpoints of I and consider the three–dimensional S :=⋃
w∈]η,ξ[ Pw. The set S is bounded by the four planes {t = T}, R × 	, {v = η} and {v = ξ}

and by two ruled surfaces Γ1 and Γ2. We first choose a nonnegative function ϕ ∈ C1(S) with
the following properties:

ϕ = 0 in a neighborhood of R × 	 and is constant in a neigh. of {t = T}; (66)

(∂t + f ′(w)∂x)ϕ ≤ 0 everywhere on S; (67)

ϕ ≥ 1 on I ×B1(0). (68)

It is easy to construct ϕ “slice–by–slice”, i.e. constructing each ϕ(v, ·) ∈ C1(Pv), provided
that: {t = T} and 	 = {t = T ′} are sufficiently far from B1(0) and a is sufficiently large; see
Fig. 1. This choice can be clearly made (recall that a.e. T < −1 satisfies the trace–condition
(62)).

B1(0)

aw

ϕ = 0

{t = T}

ϕ is constant

	 = {t = T ′} dw

bw cw

Figure 1. The parallelogram Pw and the shape of (a typical) ϕ on Pw. In
the rectangular region ϕ grows from 0 to a constant and depends only on
t+ f ′(w)x

Next, we choose a nonnegative function ψ ∈ C1(S) such that

ψ = 0 on Γ1 and Γ2 and ψ = 1 on I × B1(0)

(∂t + f ′(w)∂x)ψ = 0 everywhere on S.

Moreover, we fix a smooth nonnegative bump function ζ supported on I and equal to 1 on
some interval L. Thus, the nonnegative function Φ = ζψϕ ∈ C1(S) satisfies the following
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conditions:

(∂t + f ′(w)∂x)Φ ≤ 0 on S and (∂t + f ′(w)∂x)Φ = 0 on ∂S (69)

Φ = 0 in a neighborhood of ∂S \ {t = T} and Φ = 1 on L× B1(0) (70)

Finally, we claim that T can be chosen so that

ν∞({t = T}) = 0 . (71)

Since the T ’s for which ν∞({t = T}) are countably many, this is certainly possible.
Test (29) with the function Φ. Since Φ vanishes on a neighborhood of ∂S \ {t = T} and

Fn = 0 on {t = T}, we can integrate by parts and get

−
∫

S

[(
∂t + f ′(v)∂x

)
Φ(v, t, x)

]
Fn(v, t, x) dw dt dx =

∫
S

Φ(v, t, x) d(∂vµ
n)(v, t, x) . (72)

Since (∂t + f(v)∂x)Φ vanishes in a neighborhood of ∂S, thanks to (65), we can pass to the
limit in the left hand side and we conclude that this limit is∫

S

[
− (

∂t + f ′(v)∂x

)
Φ

]
dω(v, t, x) . (73)

Since ω is a nonnegative measure and the integrand in (73) is nonnegative, the number (73)
is nonnegative.

Note that ∂vµ
n converges, in the sense of measure, to ∂vµ

∞ = g′0L
1 × ν∞. Moreover, by

(71), ν∞({t = T}) = 0, whereas Φ vanishes in a neighborhood of ∂S \ {t = T}. By classical
theorems on the weak convergence of measures, these conditions imply that the right hand
side of (72) converges to ∫

S

Φ d[∂vµ
∞] . (74)

Recall that, because of (59), ∂vµ
∞ is a nonpositive measure on S and that, by (61), we have

∂vµ
∞(L × B1(0)) < 0 for every interval L ⊂ I. For one such interval, we have Φ = 1 on

L × B1(0). Since Φ ≥ 0, this implies that (74) is a negative number. By (72), (73) should
be equal to (74), which is a contradiction.

7.4. FN converge to a nonnegative measure on I×R2. It remains to show (65). Since
(60) holds, we can apply Lemma 6.1 to get

‖Fn‖L1
loc(R×U) is a bounded sequence for every U ⊂⊂ R2. (75)

Thanks to (75) we can extract a subsequence which is converging in the sense of measures
to a measure ω. Fix a nonnegative ψ ∈ C∞

c (I). Again thanks to Lemma 6.1 we have:

Ξn(t, x) :=

∫
ψ(v)Fn(v, t, x) dv are weakly precompact in L1

loc. (76)

We will show below that this implies:

If Ξ∞ is limit of a subsequence of Ξn, then Ξ∞ ≥ 0 . (77)
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Note that (77) gives
∫
ψ(v)ϕ(t, x) dω(v, t, x) ≥ 0 for all nonnegative functions ψ ∈ C∞

c (I),
ϕ ∈ C∞

c (R2). By a standard density argument, we get
∫

Φdω ≥ 0 for every Φ ∈ Cc(I ×R2).
This gives (65). We now come to the proof of (77). Recall the following facts

Fn = (χn − χf
n)/αn (78)

χn(v, ·) is the characteristic of the v–sublevel of a suitable rescaling of u; (79)

χf
n is defined via (63); thus its range is contained in {0, 1}; (80)

0 is a Lebesgue point for u, I = [η, ξ] and 0 < η < ξ < 1 = u(0). (81)

Define the set

An := {x ∈ R2|χn(η, t, x) ≥ 1}
and fix any compact set K ⊂ R2. (79) and (81) imply that

L 2(K \ An) ↓ 0 for n ↑ ∞.

Moreover (79) implies χn(v, ·) ≤ χn(w, ·) for every 0 < v ≤ w. Hence χn(v, ·) = 1 on An for
every v ∈ I. This, together with (78) and (80), implies

Fn(v, t, x) ≥ 0 for every v ∈ I and every (t, x) ∈ An.

Hence Ξn ≥ 0 on An. Thanks to the weak L1–precompactness of {Ξn} we have

lim
n

∫
An

∣∣Ξn(t, x)
∣∣ dtdx = 0.

This implies Ξ∞ ≥ 0 for any Ξ∞ which is limit of a subsequence of {Ξn}.
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