Max-Planck-Institut
für Mathematik
in den Naturwissenschaften
Leipzig

On maximization of the information divergence from an exponential family

by

František Matuš and Nihat Ay

Preprint no.: 46 2003
On maximization of the information divergence from an exponential family

František Matuš* and Nihat Ay†

Abstract. The information divergence of a probability measure P from an exponential family \mathcal{E} over a finite set is defined as infimum of the divergences of P from Q subject to Q in \mathcal{E}. For convex exponential families the local maximizers of this function of P are found. General exponential family \mathcal{E} of dimension d is enlarged to an exponential family \mathcal{E}^* of the dimension at most $3d + 2$ such that the local maximizers are of zero divergence from \mathcal{E}^*.

1. Introduction

Let ν be a measure on a finite set Z, identified with the vector $(\nu(z))_{z \in Z}$ from \mathbb{R}^Z, such that the support of ν, $\text{supp}(\nu) = \{z \in Z : \nu(z) > 0\}$, equals Z. The information divergence $D(P\|\nu)$ (I-divergence, relative entropy, Kullback-Leibler divergence) of a probability measure (pm) P from ν is defined by the sum of $P(z) \ln [P(z)/\nu(z)]$ over z in the support of P.

For a vector u from \mathbb{R}^Z let $Q_{\nu,u}$ be the pm proportional to $(\nu(z)e^{u(z)})_{z \in Z}$. Given a subspace H of \mathbb{R}^Z, the exponential family $\mathcal{E}_{\nu,H}$ based on ν and H is the set of all $Q_{\nu,u}$ with $u \in H$. It is assumed that the space H always contains the constant vector $1 = (1)_{z \in Z}$; this assumption does not restrict generality in the definition of $\mathcal{E}_{\nu,H}$ and reduces technicalities. Thus, the dimension of $\mathcal{E}_{\nu,H}$ is one less than the dimension of H.

The information divergence $D(P\|\mathcal{E}_{\nu,H})$ of a pm P from $\mathcal{E}_{\nu,H}$ is defined as infimum of the information divergences $D(P\|Q_{\nu,u})$ subject to $u \in H$. More general minimizations of this kind have been recently revisited in [4].

Interest in the local maximizers of the function $D(\cdot\|\mathcal{E}_{\nu,H})$ have emerged in probabilistic models of neural networks. These models, based on infomax principles for a variational characterization of adaptation and learning, see [6, 5, 8], involve optimization of the mutual information and related quantities. Such quantities often correspond to the very I-divergence of a pm from an exponential family. For example, the I-divergence of a pm P from an exponential family generated by first-order marginals is nothing but the mutual information (multi-information) in P. Previous works on this problem include [1, 2, 3].

This work was supported by Grant Agency of Academy of Sciences of the Czech Republic under the grant A1075104, by GA ČR under the grant 402/01/0081, and by the MPI MIS in Leipzig.

AMS 2000 Mathematics Subject Classification. Primary 94A17; secondary 62B10, 60A10.

Key words and phrases. Kullback-Leibler divergence, information projection, exponential family, infomax principle.

*F. Matuš is with Institute of Information Theory and Automation, Academy of Sciences of the Czech Republic, Pod vodárenskou věží 4, 182 08 Prague, Czech Republic; matus@utia.cas.cz

†N. Ay is with Institute of Mathematics, Friedrich Alexander University Erlangen-Nürnberg, Bismarckstr. 1, D-91054 Erlangen, Germany; ay@mi.uni-erlangen.de
In this contribution, the local and global maximizers of $D(\cdot | \mathcal{E}_{\nu,H})$ are described if the exponential family is convex. These exponential families are characterized in Section 2 as sets of mixtures of singular pm's. In the general case, an enlargement \mathcal{E}^* of \mathcal{E} exists such that any local maximizer of $D(\cdot | \mathcal{E})$ is of zero information distance from \mathcal{E}^*, see [1, Theorem 3.5] for an enlargement of the dimension quadratic in the dimension of \mathcal{E}. This is improved in Proposition 3 of Section 3 to an enlargement of the dimension linear in the dimension of \mathcal{E}.

2. Convex exponential families

For a partition ϱ of Z and a block A of ϱ, let R_A be a pm on Z with the support equal to A. The set $\mathcal{F}_{\{R_A: A \in \varrho \}}$ of all pm's $\sum_{A \in \varrho} t_A R_A$ with $t_A > 0$ summing to one coincides with the exponential family based on the measure $\sum_{A \in \varrho} R_A$ and the space spanned by the vectors $I_A, A \in \varrho$, where $I_A(z)$ equals 1 if $z \in A$ and 0 otherwise. This exponential family is obviously convex.

Proposition 1. Every convex exponential family $\mathcal{E}_{\nu,H}$ based on a measure ν with the support equal to Z coincides with $\mathcal{F}_{\{R_A: A \in \varrho \}}$ for a partition ϱ of Z and pm's R_A.

A proof of Proposition 1 is based on the following lemma.

Lemma 1. The smallest convex exponential family containing two pm's P and Q with the supports equal to Z coincides with $\mathcal{F}_{\{R_A: A \in \varrho_{P,Q} \}}$ where $\varrho_{P,Q}$ is the partition of Z having $x, y \in Z$ in the same block if and only if $P(x)Q(y) = P(y)Q(x)$ and R_A equals the conditioning $P(\cdot | A)$ of P to A.

Proof. Let $\varrho_{P,Q}$ have n blocks and an element z_A of A be fixed for each $A \in \varrho_{P,Q}$. The numbers $P(z_A)^k Q(z_A)^{-k}, A \in \varrho_{P,Q}, 0 \leq k < n$, are elements of a Vandermonde matrix which has nonzero determinant because $P(z_A)/Q(z_A), A \in \varrho_{P,Q}$, are pairwise different. Therefore, for $0 \leq k < n$ the vectors $(P(z_A)^k Q(z_A)^{-k})_{A \in \varrho_{P,Q}}$ are linearly independent, and so are the vectors $(P(z)^k Q(z)^{-k})_{z \in Z}$. Then the pm's proportional to $(P(z)^k Q(z)^{-k})_{z \in Z}$ are independent. These pm's belong to any exponential family containing P and Q and, in turn, their convex hull is contained in any convex exponential family containing P and Q. In particular, it is contained in $\mathcal{F} = \mathcal{F}_{\{R_A: A \in \varrho_{P,Q} \}}$ because P and Q, equal to $\sum_{A \in \varrho} Q(A) R_A$, belong to \mathcal{F} by construction. Since the convex hull has the same dimension as \mathcal{F} any convex exponential family containing P and Q includes \mathcal{F}.

Proof of Proposition 1. Let ϱ be a partition of Z with the maximal number of blocks such that $\mathcal{E} = \mathcal{E}_{\nu,H}$ contains $\mathcal{F} = \mathcal{F}_{\{R_A: A \in \varrho \}}$ for some pm's R_A. For any pm P with the support equal to Z and $x \in A, y \in B$ belonging to different blocks A, B of ϱ, denote by $H_{P,x,y}$ the hyperplane of vectors $(t_C)_{C \in \varrho}$ satisfying

$$t_A \cdot P(x) R_A(y) - t_B \cdot P(y) R_B(x) = 0.$$

Since no such $H_{P,x,y}$ contains the hyperplane given by $\sum_{A \in \varrho} t_A = 1$ a pm $Q = \sum_{A \in \varrho} t_A R_A$ in \mathcal{F} exists such that all equations $P(x)Q(y) = P(y)Q(x)$ with x, y in different blocks of ϱ are simultaneously violated. This implies that each block of ϱ is union of blocks of $\varrho_{P,Q}$. If, additionally, $P \in \mathcal{E}$ then $\mathcal{F}_{\{P(\cdot | A): A \in \varrho_{P,Q} \}}$ is contained in \mathcal{E} on account of Lemma 1. By maximality of the number of blocks, $\varrho_{P,Q} = \varrho$. Hence, $P = \sum_{A \in \varrho} P(A) P(\cdot | A)$ belongs to \mathcal{F}, and thus $\mathcal{E} = \mathcal{F}$.

\qed
When \(Q = \sum_{A \in \varrho} t_A R_A \) belongs to \(\mathcal{F} = \mathcal{F}_{\{ R_A : A \in \varrho \}} \) then
\[
D(P\| Q) = \sum_{A \in \varrho} P(A) D(P(\cdot|A)\| R_A) + P(A) \ln \frac{P(A)}{t_A}
\]
where \(\varrho_P \) is the set of blocks from \(\varrho \) with \(P(A) > 0 \) and therefore
\[
D(P\| \mathcal{F}) = \sum_{A \in \varrho} P(A) D(P(\cdot|A)\| R_A) = D(P\sum_{A \in \varrho} P(A) R_A).
\]
By convexity of the information divergence in both coordinates, the function \(D(\cdot\| \mathcal{F}) \) is convex. Hence, the set of its local maximizers is union of simplices. They can be described explicitly as follows.

Proposition 2. For a convex exponential family \(\mathcal{F} = \mathcal{F}_{\{ R_A : A \in \varrho \}} \), a pm \(P \) is a local maximizer of \(D(\cdot\| \mathcal{F}) \) if and only if \(\text{supp}(P) \) equals \(\{ z_A : A \in \varrho_P \} \) where each \(z_A \) is an element of \(A \) such that for some \(p > 0 \)
\[
R_A(z_A) = \rho \text{ when } A \in \varrho_P, \text{ and } R_A(z) \geq \rho \text{ when } z \in A \text{ and } A \in \varrho \setminus \varrho_P.
\]

Proof. Using (1) and convexity of the information divergence, any local maximizer \(P \) can have \(P(z) \) positive for a unique element, denoted by \(z_A \), of \(A \) in \(\varrho_P \). Then
\[
D(P\| \mathcal{F}) = -\sum_{A \in \varrho} P(z_A) \ln R_A(z_A)
\]
implies that \(R_A(z_A) = \rho \) for some \(p > 0 \) and all \(A \in \varrho_P \). For \(z \in A \) and \(A \notin \varrho_P \)
\[
D(P\| \mathcal{F}) \geq D((1 - \varepsilon) P + \varepsilon I(z)\| \mathcal{F})
\]
rewrites to
\[
-\ln \rho \geq -\sum_{A \in \varrho} (1 - \varepsilon) P(z_A) \ln \rho - \varepsilon \ln R_A(z)
\]
and the inequality \(R_A(z) \geq \rho \) follows when \(\varepsilon \) is close to 0.

On the other hand, let \(P \) satisfy the condition of Proposition 2, and thus \(D(P\| \mathcal{F}) \) equals \(-\ln \rho \). Since \(P(\cdot|A) = I_{\{ z_A \}} \) and the information divergence is strictly convex in the first argument the inequalities
\[
D(Q(\cdot|A)\| R_A) \leq D(P(\cdot|A)\| R_A) = -\ln \rho, \quad A \in \varrho_P,
\]
hold for each pm \(Q \) in a neighbourhood of \(P \). On account of \(\varrho_Q \supseteq \varrho_P \) and
\[
D(Q(\cdot|A)\| R_A) \leq -\ln \min_{z \in A} R_A(z) \leq -\ln p, \quad A \in \varrho_Q \setminus \varrho_P,
\]
the identity (1) with \(P \) replaced by \(Q \) implies that \(D(Q\| \mathcal{F}) \) cannot exceed \(-\ln \rho \). Thus \(P \) is a local maximizer of \(D(\cdot\| \mathcal{F}) \). \(\square \)

Corollary 1. A pm \(P \) is a global maximizer of \(D(\cdot\| \mathcal{F}) \) if and only if the support of \(P \) is contained in the set of minimizers of \(\sum_{A \in \varrho} R_A(z) \) over \(z \in Z \) and intersects each block of \(\varrho \) in at most one element. Furthermore, the following statements are equivalent:

1. There exists an isolated global maximizer of \(D(\cdot\| \mathcal{F}) \).
2. All global maximizers of \(D(\cdot\| \mathcal{F}) \) are isolated.
3. The set of minimizers is contained in a single block of \(\varrho \).
Example 1. Let \(Z = \{1, \ldots, 9\} \) be partitioned into \(A_1 = \{1, 2, 3\}, A_2 = \{4, 5, 6, 7\} \) and \(A_3 = \{8, 9\} \), and \(R_{A_1} \) take the values \(\frac{1}{6}, \frac{1}{3}, \frac{1}{2} \), \(R_{A_2} \) take the values \(\frac{1}{6}, \frac{1}{3}, \frac{1}{3} \), and \(R_{A_3} \) take the values \(\frac{1}{3}, \frac{2}{3} \) on elements of the blocks. By Corollary 1, a pm \(P \) is a global maximizer of \(D(\cdot|F) \) if and only if \(\text{supp}(P) \subseteq \{1, 4\} \) or \(\text{supp}(P) \subseteq \{1, 5\} \) and no isolated global maximizer of \(D(\cdot|F) \) exists. There are also local maximizers \(P \) that are not global, in the cases \(\text{supp}(P) \subseteq \{2, 6, 8\} \) or \(\text{supp}(P) \subseteq \{2, 7, 8\} \) with \(p = \frac{1}{3} \).

3. Enlarging Exponential Families

The probability measures from an exponential family \(\mathcal{E}_{\nu,H} \) can be written as
\[
Q_{\nu,u}(z) = \nu(z) e^{u(z)} - \Lambda_{\nu,H}(u), \quad z \in Z,
\]
where
\[
\Lambda_{\nu,H}(u) = \ln \sum_{z \in Z} \nu(z) e^{u(z)}, \quad u \in H.
\]
Then for any pm \(P \)
\[
D(P|Q_{\nu,u}) = D(P|\nu) - \langle u, P \rangle + \Lambda_{\nu,H}(u), \quad u \in H,
\]
where \(\langle \cdot, \cdot \rangle \) is the scalar product on \(\mathbb{R}^Z \),
\[
(2) \quad D(P|\mathcal{E}_{\nu,H}) = D(P|\nu) - \sup_{u \in H} [\langle u, P \rangle - \Lambda_{\nu,H}(u)],
\]
and thus \(D(\cdot|\mathcal{E}_{\nu,H}) \) is difference of two convex functions.

Lemma 2. If \(P \) is a local maximizer of \(D(\cdot|\mathcal{E}_{\nu,H}) \) then the restriction of the coordinate projection of \(\mathbb{R}^Z \) onto \(\mathbb{R}^{\text{supp}(P)} \) to \(H \) is surjective.

Proof. Let \(w \) be a vector in \(\mathbb{R}^{\text{supp}(P)} \) orthogonal to the projection of \(H \) to \(\mathbb{R}^{\text{supp}(P)} \). The vector \(v \in \mathbb{R}^Z \) equal to \(w \) on \(\text{supp}(P) \) and 0 otherwise is obviously orthogonal to \(H \). Now, \(P + tv \) is a pm for \(t \) close to 0. Using (2) for \(P \) and \(P + tv \),
\[
D(P|\mathcal{E}_{\nu,H}) - D(P + tv|\mathcal{E}_{\nu,H}) = D(P|\nu) - D(P + tv|\nu).
\]
Since \(P \) is a local maximizer of \(D(\cdot|\mathcal{E}_{\nu,H}) \) this implies \(D(P|\nu) \geq D(P + tv|\nu) \). By convexity of the information divergence and [7, Theorem 32.1], \(D(P + tv|\nu) \) is constant for \(t \) in a neighbourhood of 0. The strict convexity of the information divergence in the first coordinate implies \(v = 0 \). Hence, \(w = 0 \) and the assertion follows. \(\square \)

Corollary 2. The cardinality of \(\text{supp}(P) \) for any local maximizer \(P \) of \(D(\cdot|\mathcal{E}_{\nu,H}) \) is bounded from above by the dimension of \(H \).

This assertion was proved in [1, Proposition 3.2] under the additional assumption that the local maximizer \(P \) can be projected to \(\mathcal{E}_{\nu,H} \), in the sense that \(D(P|\mathcal{E}_{\nu,H}) \) equals \(D(P|Q) \) for some \(Q \in \mathcal{E}_{\nu,H} \).

Corollary 3. If \(P \) is a local maximizer of \(D(\cdot|\mathcal{E}_{\nu,H}) \) then there exists \(u \in H \) such that \(P \) equals the conditioning of \(Q_{\nu,u} \) to \(\text{supp}(P) \).

Proof. By Lemma 2, there exists \(u \in H \) such that \(u(z) = \ln [P(z)/\nu(z)] \) for \(z \in \text{supp}(P) \). Then, obviously, the pm \(Q_{\nu,u} \) conditions to \(P \) given \(\text{supp}(P) \). \(\square \)

Proposition 3. To an exponential family \(\mathcal{E}_{\nu,H} \) based on a space \(H \subseteq \mathbb{R}^Z \) of dimension \(d + 1 \) there exists a subspace \(H^* \) of \(\mathbb{R}^Z \) of dimension at most \(3d + 3 \) such that \(H \subseteq H^* \) and \(D(P|\mathcal{E}_{\nu,H^*}) = 0 \) for every local maximizer \(P \) of \(D(\cdot|\mathcal{E}_{\nu,H}) \).
Proof. There is no loss of generality in assuming \(Z = \{1, 2, \ldots, n\} \) for some \(n \geq d + 1 \). Let \(H^* \) be the subspace of \(\mathbb{R}^Z \) generated by \(H \) and the vectors \(v^\ell = (1^\ell, 2^\ell, \ldots, n^\ell) \in \mathbb{R}^Z \), \(0 \leq \ell \leq 2d + 2 \). Obviously, \(H \subseteq H^* \) and, since \(H \in H \), the dimension of \(H^* \) is at most \(3d + 3 \).

For a local maximizer \(P \) of \(D(\cdot | E_{\nu,H}) \), Corollary 2 implies that \(P(y) > 0 \) for \(y \) in a set \(Y \) of cardinality at most \(d + 1 \). Expanding the nonnegative polynomial
\[
g(t) = \prod_{y \in Y} (t - y)^2 = \sum_{\ell=0}^{2d+2} a_{\ell} t^\ell
\]
one deduces that the vector \(v = \sum_{\ell=0}^{2d+2} a_{\ell} v^\ell \) from \(H^* \) has all its coordinates nonnegative and \(v(y) = 0 \) if and only if \(y \in Y \). By Corollary 3, there exists \(u \in H \) such that \(P = Q_{\nu,u}(\cdot | Y) \). Since also \(P = Q_{\nu,u+tv}(\cdot | Y) \), a straightforward calculation gives
\[
D(P|Q_{\nu,u+tv}) = -\ln Q_{\nu,u+tv}(Y) = -\ln \frac{\sum_{y \in Y} \nu(y) e^{u(y)}}{\sum_{y \in Y} \nu(y) e^{u(y)} + \sum_{z \in Z \setminus Y} \nu(z) e^{u(z)+tv(z)}}.
\]
For \(Z \setminus Y \) nonempty, this information divergence converges to 0 with \(t \) decreasing to \(-\infty\). This implies \(D(P|E_{\nu,H}) = 0 \). For \(Z = Y \) the set \(Z \) has the cardinality \(n = d+1 \) and \(E_{\nu,H} \) consists of all positive pm’s on \(Z \). Obviously \(D(P|E_{\nu,H}) = 0 \) because \(P \in E_{\nu,H} \). \(\square \)

REFERENCES

