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Abstract

We generalize the asymptotic analysis of Bethuel-Brezis—-Hélein [4] for
Ginzburg-Landau functionals to a model for thin films of ferromagnetic
materials.

1 Introduction

In this paper, we consider ferromagnetic bodies, represented by a bounded,
open domain  C R3. The magnetization of  is described by a vector field
m :  — R? which satisfies the saturation constraint |m| = 1 almost everywhere.
In the absence of an external magnetic field, and with the contribution of a
crystalline anisotropy neglected, the energy of this configuration, as derived in
the theory of micromagnetics, is given by the expression

2 1
E(m):%/ |Vm|2dx+§/ IVl dz, (1)
Q R3

where u € H'(R?) is determined by the static Maxwell equations, written in
the form
Au =divim in R3 (2)

for the extension of m by 0 outside of (2.

The first term on the right hand side of (1), called the exchange energy,
penalizes spatial variations of m. It models the tendency for parallel alignment
of the magnetization vectors of the underlying atomic structure. The parameter
€ is a material constant. The second term is the so-called magnetostatic energy.
It corresponds to the energy of the magnetic field induced by m. For more
details, see e. g. Hubert—Schéfer [16].

Our aim is to study minimizers of £ for ferromagnetic samples in the shape
of very thin films. That is, we assume that € is of the form Q = Q' x (0, §) for a
small number § > 0. We want to find the limiting behaviour for this variational
problem in a special asymptotic regime, defined by certain relations between
the thickness § of the film, the length scale L of the cross section €', and the
parameter e. Namely, we study the limit § — 0 under the condition z—:; = 1.
With respect to polynomial order, this is the border case of the situation studied



by DeSimone-Kohn—Miiller—Otto [8]. In this paper, the limiting behaviour for
d/L — 0 and 2—26 log(L/d) — 0 was established.

For simplicity, we set L = 1 in the rest of the paper. Thus the condition above
yields 6 = €2. We assume that Q' C R? is a bounded, open, simply connected
domain with smooth boundary. For 0 < € < 1, we define Q. = Q' x (0, €?). For
a vector field m € L2?(2.,R3), we denote by u.(m) the unique distributional
solution of the equation (2) for = Q. in the space H'(R3). That is, u.(m) €
H(R3) is to satisfy

Vue(m) - Voda = / m-Vodr (3)
R3 Q.

for all ¢ € C§°(R3). For k > 1, let S* denote the unit sphere in R¥*!. Divide £
by €*, to obtain the functionals

B = 5 ([ (VmPdrs g [ Vu(m)l e ) (1)

on the space
H'(Q,8*) = {m € H'(Q,R*): |m| =1 almost everywhere} .

Note that one of the properties of the magnetostatic energy is that it favours
a magnetization which is tangential on the boundary 0. Thus for minimizers
of E., the third component of m tends to be small on the surfaces ' x {0, €2}
(cf. Sect. 2).

Let us now consider the limit € \, 0. The first difficulty that we encounter
for this problem is that we have necessarily

g{% Ec(me) = o0 (5)

for any choice of m. € H'(Q.,S?). Indeed, suppose this weren’t true. Then one
could find a sequence € \, 0, such that the maps

2
1 [
mi(z') = 6—2/0 me, (z/,8)ds, o' €, (6)
k

would converge weakly in H*(Q/,R?). For the limit map m € H'(Q',S?), write
m = (m/,m?), where m’ € H'(€,R?) and m3 € H*(€'). Then it must satisfy
|m’| = 1 and m? = 0 almost everywhere in €', and m’-v’ = 0 almost everywhere
on 9, where v/ is the outer normal vector to 9. (The arguments to prove
this are given in the proof of Proposition 4.1 below.) But there is no map
in H'(,R?) with these properties, hence (5) holds true. This rules out the
“naive” approach of trying to establish weak H'-convergence for minimizers of
FE., or even I'-convergence of the functionals.

What kind of limiting behaviour can one expect instead for € \, 07 Consider
for the moment a simplification of F.. Assume that the magnetization m =
(m/,m3) is independent of the third argument, and model the penalization of m?
by the L?-norm (instead of the magnetostatic energy). Owing to the constraint
|m| = 1 almost everywhere, this leads to the functionals

r _1 V/ 2 1—|m/|2 d/ _ / 3 Hl Q’ S2
€(m)—2 / | m|—|—762 ', m=(m',m’) e H (,S%),



where V' = (%, %) This on the other hand is reminiscent of the Ginzburg-
Landau functionals

=3 [ (1974 P - 1?) ao's fe @R
2 Jor 2¢2

The limiting problem for € \, 0 for minimizers of I. was first studied by Bethuel-
Brezis—Hélein [3, 4], and by numerous other authors since then. One of the
main results (which was proven in [4] for star-shaped domains, and extended
by Struwe [26, 27] to arbitrary bounded domains with smooth boundaries) can
be summarized as follows. Suppose that for 0 < e < 1, certain maps f. €
HY(QY,R?) are given, which minimize I. for fixed Dirichlet boundary data g :
0Q' — S!. Then there exist finitely many points z, ...,z € Q' (their number
depending on the topological degree of g) and a sequence €, \, 0, such that
the sequence {f.,} converges in C2(\{z],...2y},R?) to a harmonic map
[ O\{z},..., 2%y} — S'. Identifying R? with the complex plane C, we can
write f in the form

N
fe) = ([T ) @,
j=1

|z — 2]
or the complex conjugate of this, where z; = xj + ix3 for «j = (], 3). The
function 6 satisfies A’6 = 0 in €, where A’ is the Laplace operator in R2.
This (and more) has been generalized to the corresponding problem for the
functionals F, by André-Shafrir [1] and Hang-Lin [12].

Our aim is to prove a similar result for minimizers of E.. For technical reasons,
we impose Dirichlet boundary data on 9§’ x (0, €2). It turns out (cf. Proposition
4.1) that only two choices for the boundary data are reasonable, namely

m = (—v*,vH,0) on 9 x (0,€?) (7)

(where we write v/ = (v1,1?) for the normal vector to 9'), and the same with

v’ replaced by —1/. Moreover, the second case is reduced to the first one by
reflection. Thus we define H' (€2, S?) to be the space of all maps m € H* (., S?)
satisfying (7), and consider only maps therein. For every e € (0, 1], we fix a map
me which minimizes E, in H(Q,,S?).

The Euler-Lagrange equation for this variational problem is

E(Ame + |Vme|?me) — Vuec(me) + (me - Vue(me))me =0 inQ, (8)
and we have the homogeneous Neumann boundary conditions

ome.
ox3
There exists another form of (8) which will prove useful. Namely, denoting by

A the exterior product A : R™ x R™ — A3R"™, it is easily checked that (8) is
equivalent to

=0 onQ x {0,¢*}.

e div(me A Vme) = me A Vue(me) in Q.. 9)

Both (8) and (9) are to be understood in the distribution sense.
Before we state our first main result, let us define the operator which is to
play the role of a limit of e~ 2u, for € \, 0. Suppose m’ € Wh*/3(Q/,R?) is a



map with the property m’ -/ = 0 almost everywhere on 9. Then for any
¢ € C5°(R3), we have

m/(z') - V'¢(z',0) da’
Q/

[ a @) (¢<x’, 0~ o/.0) dy') !

< Clldiv' m/|| pars @) VPl L2 (ms)

for a constant C = C(§)'), owing to the continuity of the trace operator T :
HY(Q1) — L*(Q), which is given by Tv(2’) = v(z’,0). (Here div’ denotes the
divergence in R?.) Hence there exists a unique function u(m’) € H}_(R?) with
[Vu(m')||L2msy + [|u(m')||Lsms) < oo, such that

m/(z") - V'¢(2',0) da’ = / Vu(m') -V dx
944 R3

for every ¢ € C§°(R?). We define furthermore u'(m’) = Tu(m’). By standard
results from the theory of singular integrals (see [25]), it follows that u'(m’) €

w43 ).

loc
We have the following version of results of [4, 26, 27, 12].

Theorem 1.1 (i) There exist a sequence €, \, 0 and a point xj, € ', such
that the maps my,, defined as in (6), converge weakly in HL (V\{z{}, R?),
and weakly in WHP(Q' | R3) for any p < 2, to a map of the form m =
(m/,0) with |/m’| = 1 almost everywhere.

(ii) The limit map m’ satisfies the equations
div'(m' AV'm')y =m/ AV'Y/ (m)  in (10)
and
A'm/ + |V'm/ Pm — V' (m) + (m' -V (m)))m' =0 in Q\{z}} (11)
in the distribution sense.

(iii) If R? is identified with C, then m’ is of the form

m'(z) = 2R i) e 2"\ {20}, (12)
|z — 20|

where 29 = xp + ixd for xf = (x},22), and 6 : Q' — R is a solution of

ANO=m' AV (m') inQ. (13)

The proof of Theorem 1.1 will follow roughly the outline of the arguments in [4],
and it will also use some arguments from [12]. The problem considered here has a
few additional difficulties however. For instance, the nonlinear constraint |m| =
1 almost everywhere generates nonlinearities in the Euler-Lagrange equation
which involve first derivatives. It has been shown in [12], how this problem by
itself may be overcome; but in conjunction with the fact that the Q.’s are three-
dimensional domains, the situation is even more difficult. We cannot expect



that minimizers of E. are smooth here (cf. Brezis—-Coron-Lieb [6], Lin [18]),
and in particular we do not have certain pointwise estimates for the gradient,
as we have in two dimensions. For variational problems of this kind, regularity
can usually be obtained only if the energy is small. But we have seen in (5),
that this is not the case if € becomes small. What we will prove instead is that
suitable estimates for the gradients hold except in small, controllable sets.

Another difference to the situation of [12] is the fact that the functionals E,
contain the non-local operator u.. However, it turns out that this only causes
minor difficulties for this problem.

The result of Theorem 1.1 has the disadvantage that it requires Dirichlet
boundary data on 9§’ x (0, €2). It would be more natural to consider minimizers
of E. among all maps in H'(Q,,S?). However, we need the boundary conditions
for technical reasons. To obtain an idea of the thin film limiting behaviour
for free boundary data nevertheless, we consider a model problem, based on a
generalization of the Ginzburg-Landau functionals I, in Sect. 5. We will find
a similar result as Theorem 1.1, but instead of one vortex in the interior of the
domain ', we will rather have two “half-vortices” at the boundary.

Vortices at the boundary have also been studied by Kurzke [17] for a slightly
different model (with the Ginzburg-Landau penalizing term replaced by a con-
straint). Similar results as those presented in Sect. 5 are proven in Kurzke’s
work, among other things.

Notation. As we have already done above, we will systematically mark objects
belonging to R? with a prime to distinguish them clearly from their three-
dimensional equivalents.

For zj, € R? and r > 0, we write B.(x}) for the open ball in R? with centre
x; and radius 7. Moreover, we define D). (z) = Q' N Bl.(xp), and D, (z() =
Dl.(zf) x (0,€?) for € € (0,1].

2 Preliminaries

In this section, we will prove certain estimates that will be needed later. In
particular, we will find an upper bound for the terms in E.(m.) of the type as
expected from the theory of [3, 4]. Moreover, we will obtain certain relations
between the magnetostatic energy and the L?-norm of the third component of
the magnetization.

Lemma 2.1 Suppose that ¢ is the smallest constant satisfying the inequality
[0(,0)l[zs(er) < el VollL2(re)

for all v € H'(R?). (Such a constant exists by the trace theorem for Sobolev

spaces.) Then for any e € (0,1], any map m = (m',m3) € H*(Q,S?) satisfies

the inequality

IVue(m)l z2geey < e (4VellVmll s,y + 2[m° (0l s an) -

Proof. Note that

/|Vu6(m)|2d:c:/ m - Vue(m) dx
R3 Q.



/ m? uc(m) dx’ — / m3 uc(m) da’
Q' x{e2} Q' x{0}

- / divmuc(m) dx
Qe

IN

[T (m) |2 e <|m3<-7o>|L4/3<9/> 1 A essqary

+3/O ||vm('a3)|L4/3(Q/)d8>.

We have P
| Ivm sy ds < VEITmlLs,
and
€2 3 3
o) = O ey = [ | Gl ods| o
< PVl s,
by the Holder inequality. The claim now follows immediately. O

Lemma 2.2 There exists a constant C, depending only on ', such that
E.(m¢) <C —mloge
for any € € (0,1].

Proof. Since m. is Fe-minimizing, it suffices to construct any map which satisfies
the inequality. We assume for simplicity that the closed unit ball B{(0) is
contained in 2. (Otherwise we scale and translate everything.)

Choose a map ng € H*(B}(0),S?) with

no(e#?) = (—a?,2,0) on OB, (0),
and another map n} € H*(Q'\B}(0),S!), such that n} = (—v%,v!) on 9Q' and

n}(zt, 2%) = (=22, 2') on B} (0). Define now

(ny (2%, 22),0), if (21, 22) € Q'\B}(0)

né(zl,mQ,mB) =

0 (1 a2) € BY()\BL(O
(xl) ( )2a ( ) )E 1( )\ e( )7

no(zt/e,x?/e),  if (z',22%) € BY(0).
It is readily checked that

/ |Vn | dr < (C; — 2nloge)e?

and

/ |Vne|*3 de < Cye?
Q€



for constants C7, Co which depend only on Q" and the choice of ng and n}. Write
ne = (n’,n?). Then Lemma 2.1 implies that

[Vue(n.,0)||r2ms) < Cse?,
where C3 = C3(Q, ng,n}). Finally, we have
[Vte(ne) — Ve (nl, 0) 2wy = V00, 78)12cs) < 110,78 20y < Ve,

because n? is supported in D, .(0). Combine these inequalities, and the lemma

is proven. O

Lemma 2.3 For e € (0,1], suppose that m = (m/,m3) € H*(Q,R?) is a map
which satisfies m® = 0 almost everywhere on 9Q' x (0,¢2). Then

/ (m?)? da < (1+62)€2/ |Vm3|2dx+2/ |Vue(m)|? do + €],
Q. Q. RS

Proof. The basic idea for the following arguments is due to Gioia—James [11].
Define the function ¢ € H'(R?) by ¢ = 0 in (R?\') x R, and

0 if 23 <0,
.3
o(z’ x3) _ fol m3(xl752 ds if 0 < 23 < €2,
(2*%5) 06 m3(a',s)ds if €2 < a3 < 262,
0 if 2% > 2¢%,

for ' € . Then we have

2

V(! 2% g/ V'm(!, )| ds
0
in ' x (0,2¢2), and V'¢ = 0 elsewhere. Thus

/ |V’q§|2dm§e4/ [Vm*? de.
Q. Qe
9¢

Furthermore, since 5% =m? in Q' x (0, €?),
xr

) ,
ai( ) =3

and % = 0 elsewhere, we have

/ Vol de < 2/ (Vm?[2 + (m?)?) da.
R3 Q.

Testing (3) with ¢ yields

/Qg(m3)2d:c/95m~v¢dx/ m' - V'¢dx

= Vue( ) - ch)dac—/ m' - V'¢dx
/|qu )2 da + /(4|Vm3|2+(m3)2)dx

—Ql - 32d'
+2| |+2/Q€|Vm| i



The term with the integrand (m?)? on the right hand side can be absorbed, and
the inequality follows. O

Lemma 2.4 There exists a constant C, depending only on Q', such that for
0 < e <1, the inequality

2
= <|Vm?’|2 + ‘6m€

(m?)?

1
+— ) da:+—4/ |Vue(me)|? de < C
€ € R3

€2 Oz

is satisfied.

Proof. We combine an argument from [12] with Lemma 2.2 and Lemma 2.3.
For almost every x2 € (0, €?), we have

1 . .
L (9mie e + )2 ao
1
- / (|V'm'€($',$3)|2 + F(l — |m'€($',x3)|2)) dx’

’ €
1

> / (|V'm'6(ac',$3)|2 + F(l — |m'6(ac',x3)|2)2) dr' > —2mloge — C4
QO €

for a constant C; = C1(€). For the last step, we have used results from [26, 27].

Together with Lemma 2.2, this yields
1 IVm3[? + Ome[*_ (md dx+i/ Ve (me)|? do

Q. € x 4e2 et Jgs e
1

1 .
€ Q. €

(m?)®

Finally, we use Lemma 2.3 to finish the proof. O

3 Regularity and a gradient estimate

We now want to find a pointwise estimate for Vm, of the form |Vm.| < C/e
for an appropriate constant C, similarly as in [3] or [12]. As pointed out in the
introduction, this can only be expected to be true under additional assumptions
however.

First we observe that regularity and a gradient estimate are implied by a
small energy condition.

Lemma 3.1 There exist constants eg, \g > 0, depending only on Q, such that
for any € € (0, €] and for any zf, € Q' and r > €% with the property

1 2
= (|v7m|2 + T—4|Vu€(m€)|2) dz < Mo,
€ JD, (x}) €

the map me is smooth in D, 3 (x(), and Vme is continuous in D, s (x().



Proof. In the case Bj.(xy) C €, Hélder continuity of m in D, 5 () was
proven in [20, Proposition 2.1]. Higher regularity then follows by well-known
arguments (cf. Borchers—Garber [5], Simon [24]). If Bl(xp) ¢ €, it is not
difficult to modify the arguments such that they prove the claim also in this
situation (combining them e. g. with methods from Schoen—Uhlenbeck [23]).
Different arguments to prove regularity for minima of functionals of the form
of E. can be found in papers of Hardt—Kinderlehrer [13] and Carbou [7]. (If they
are to be applied here, they first have to be adapted to the situation of thin films
however.) All of these arguments use well-known methods from the regularity
theory for harmonic maps (cf. Schoen-Uhlenbeck [22, 23], Hélein [14, 15], Evans
[10], Bethuel [2]). O

Lemma 3.2 There exist numbers €1, A1, c1 > 0, depending only on Q' , with the
following property. Suppose that for e € (0,¢€1], we have a point x, € Q' and a
radius v € [€2, €], such that

1

€2

r2
(|Vmg|2 + —4|Vu€(m€)|2) dr < Ap.
Dar,e(2p) €
Then .
sup  |Vm| < —.
Diya,e(xp) r
Proof. We use a modified version of an argument due to Schoen [21].

Assume the lemma is false. Then there exist a sequence €; ™\, 0 and mini-
mizers my, € H'(Q,,,S?) of E,,, such that

my € Cl(D7'k7€k (x;c)v SQ)

(cf. Lemma 3.1) for certain points x}, € Q' and certain numbers i, € [e2, €],

and
1

2
—2/ (|mG|2 + —Z|Vu€k(mk)|2) dr =: pp — 0,
€k I Doy ey (2}) €k

but p
sup  |Vmy| > Ly

Dy 2,6, (%) Tk
where dj, — oo for k — oo.
For each k, set
Di(o) = (7’1970)2 sup |mG|2, 0<o<rg,

Do ey, (z})

and
Op(0) =77 sup |Vmy(z),s)*
0<s<e?

Choose pi € [0, 7), such that

Dr(pr) = max Py(o).

0<o<ry
Moreover, choose yi = (Y4, ys) € Dy, e, (x;) with the property

|Vmg(yr)l = sup  [Vmy]

e (@)



if pr > 0, and y, = (v, y3) € {z},} x [0, €7] with

IVmg(ye)l =  sup  |[Vmy]
{z},} x(0,€2)

if p, = 0. Set e, = |Vmy(yx)|- Note that
d}, < 40(ry/2) < 4Pk(pr) = 4(rx — pi)’ef,
i. e. e,;l < 2%. The rescaled maps
() = my(z/ex + yr)
are thus defined and smooth at least in the set
Dy = (B}, 14(0) N $2) x (—exyi, ex(e — ui)),

where Q) = e (' — y},). Moreover, they have the properties

(Vg (0)] = 1 (14)
and
sup | Vg |* < 6;2 sup |V |?
Dy, Dry+pp) /2.0, (T)
< o ("5%) < oo = 09
We have

/ |V |* de < Oy (g + ) min{s, €2}
skf‘lBs(l‘l)

for all z1 € D, , (z},) and s < ry, for a constant C; = C1(2’). This is proven in
[20, Lemma 2.2] for the case Ba,, (x},) C €. If Ba,, () intersects the boundary
of €V, then one can use the same arguments, combined with methods from [23],
to prove the inequality. In particular, we have

/ |V7hk|2d:c < Cl(ﬂk +ek)min{1,ekei}. (16)
DyrNB;1(0)

Remember that my, satisfies the equation
e2(Amy, + | Vmi|?mi) = Vue, (mg) — (mg - Ve, (my)) ms, in Q, .
Let 9, € H'(R?) be the unique solutions of
Ay, = div iy,
Then it follows that my satisfies
ezed(Amy + |Ving[*1ny) = Vg — (g, - Vog) 1y, in Dy,

Note that efe; > d2 /4 — oo for k — oo.

10



By standard estimates, we have || Vi || L (B, (0)) < C2 = Ca(p) for any p < oo.
We conclude that there exist C3 = C3(€2') and v = (') > 0, such that

Vel ooy (0)npy) < Cs. (17)

But this is clearly a contradiction to (14) and (16). O

Lemma 3.2 is not yet good enough for our purpose. The next lemma will give
an improvement.

Lemma 3.3 For every Cy > 0, there exist numbers ez, Ao, co > 0, depending
only on Cy and ', with the following property. Suppose that for e € (0, €a],
there is a point x, € ', such that Vme is continuous in D, (x(), and satisfies

C
sup |Vme| < —20 (18)
De.e(zg) €
and )
€ JDc c(zf)
Then v
sup  |Vm| < =,
Dey2,e(xp) €

Proof. We use similar arguments as in the proof of Lemma 3.2, and we combine
them with arguments due to Hang—Lin [12].

Assume that the lemma is false. Then we construct the sequence {1} as
in the proof of Lemma 3.2. In this case, 7y, has the properties (14), (15), (17),
and

1 / 9
Vm;|*dx = ui — 0. 19
o | (19)
Furthermore, the condition (18) guarantees that exez < Cp.
We choose a subsequence (without changing notation), such that both ekyi’
and ey, (eify;z) converge to a number in [0, Cy]. Assume first that limy_, ekyi’ =
limy,_o0 ex (€3 — y3) = 0. Define the maps

. 1 rer(en—vi) R , . ,
mk(x):e—Q/ . mi (', s)ds, ' € Q.
k J—eryy
We may assume that ) converges to a set ¥’ C R? of the form
Y ={a'eR?® d 2 <a}, (20)

for some a’ = (a',a?) € St and 0 < a < co. Moreover, by (17), we may assume
that my, converges to a map m : ¥’ — S? in the C''-sense.

We want to show that m is a locally energy minimizing map for the Dirichlet
energy, i. e. for any ball B (2/) C ¥’ and any map 11 € H. (¥/,S?) with 72 = m
outside of Bj(z’), we have

/ V7| do’ > / V' dz’. (21)
Bl (z) Bl (z')

11




To this end, suppose there existed such a map n which didn’t satisfy (21), i. e.

/ |V'a|de' < / |V'm|ds' — o
Bl (a") Bl (2)

for a positive number o. Then clearly for any sufficiently large k, one could

construct a map ny, € H'(Q,, S?) with ny = my, outside of D, (2" /ex+yj,),
such that
2
/ |Vng|? dz S/ |mG|2dac—ﬂ
e e @5 L) esenen @ /et u)
Moreover,
1 1
6_2 ||Vu5,C (mk) — Vuek (nk)||L2(R3) = 6_2 ||Vu5,C (mk — nk)||L2(]R3)
3 k

< 6_2||mk — k2.,

k
V2rR  V8mR
< —

< <
CLEL dk

0.

This would give a contradiction to the minimality of E., (my).

Hence m : ¥/ — S? is a locally energy minimizing map. It satisfies Vim3 = 0
and |Vm| < 2in ¥/, and |Vm(0)] = 1. If a < oo in the representation (20) of
3, then m = (—a?,a',0) on 9%'. All this follows easily from the construction
of m and the inequalities (14), (15), and (19). It is readily concluded that m is
of the form

m(z') = (40 ), o e,
for some b’ € S! and 3 € R. But Hang-Lin [12] proved that this is not a locally
energy minimizing map. Thus in this case, we have a contradiction.

If either limg_, o ekyi > 0 or limy_. ex(ef — y,%) > 0, we use similar ar-
guments. In this case, a subsequence of {my} converges to a locally energy
minimizing map m : X' x (s,t) — S?, where ¥’ is as before, and s < t. More-
over, 9% =0 on X' x {s,t}. We conclude that

m(x, %) = (ei(b/'”/+6),0), ey, s<ad<t,

as before. Again we can use the arguments of [12] to obtain a contradiction and
thus conclude the proof. O

4 Proof of Theorem 1.1

The following is the key lemma for the proof of Theorem 1.1. It will enable us
to apply certain arguments from [4] and from [26, 27].

Lemma 4.1 There exist €3,3,c3 > 0, depending only on €, such that the
following holds true. For e € (0,€3], suppose there exists x(, € ' with the
property

312 2 3\2 2
Dac.c(a}) € e?loge €

12



Then m, is smooth in D,/ () with

1
sup |m§| <= (23)
Deja..(ah) 2
and
cs
sup  |[Vm | < —. (24)
De/2,e(956) €

Proof. Choose a number « € (1,2). We can find a radius r € (€2, ¢7), such that

2)\
7"/ |Vme|? do < =—— 3¢
(0B!(z)NQ) % (0,€2)
(Otherwise we would have

2. dr
/ IVme|? de > 3¢” / "= —oxetloge,
55(930) 2 — Yy €2 T

in contradiction to (22).) Moreover, there exists a number s € (0, €2), such that

4\
r/ |Vme|?do’ < =22,
(OB (z)NQ) x {s} 2—v

where do’ indicates the arc length measure.
If ¢ < e3 < rg for a certain number ry which depends only on €', then
OB/ (x) N €Y is connected. Hence for a’,y’ € 0B].(z() N, we have in this case

A
Ime(2’,8) —me(y', s)| < / |Vme|do' < 8mAs.
(0D (x))N)x {s} 2—y

If A3 < 32 , then the right hand side is at most . If €3 (and thus r) is also
small enough, then m. (9D, (z() x {s}) is contamed in a ball of radius 1. Then
it is easy to construct a map n. € H'(D.L(x}) x {s},S?) with n, = m. on
OD!.(x(,) x {s}, and

/ IV'ne(z,8) > de’ < C1 (A3 + e3)
Dy ()
for a constant C7 = C1 (v, ). If Bl.(x) C &, we extend n. to D, (z() by
ne((1—|a® —s|/r)~ 12, s), if |23 —s| <r — |2/,
ne(a’,a%) = me(ra’ /2’|, 2® —r + |2']), if 2% >7r—|2/|+ s,
me(ra’/|2'], 2% +r — |2']), if2® <s—r+|2],

and to Q. by n. = m, outside of D,. .(x). If By.(z5) ¢ €, we construct a similar
extension. In both cases, we find thus a map n. € H*(Q,S?) with n. = m, in
QA\D, (z), and

|Vne|? de < Co(A3 + €3)€

Dr,e(xp)
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for a constant Cy = Ca(7, ).
Note that

Hvué(me) - vue(ne)HL2(R3) = ||vue(me - n6)||L2(]R3)

[lme — nEHLz(DT,e(:C())) < V2rel .

IN

By the minimizing property of m., we have

1 1

- |Vm|? dz < —2/ |

€ € JD, o (xh)
1

+ = (IVucmo sy = 1 Vucmol 7))
< CQ()\3 + 63) + Cgeg_l

Vne|? dz
Dy e(2p)

for a constant C3 = C3(€'). For the last step, we have used Lemma 2.4 and the
inequality above.

If A3 and €3 are sufficiently small, we can now apply Lemma 3.1, and find
that m. is smooth in D, /5 ((z(). Lemma 3.2 then even implies that |Vme(zg)| <
2¢y/r. Furthermore, we can apply the same arguments for any point o’ €
D, (z}) instead of zj,. Hence m, is even smooth in D (x}), and |[Vm,| < 2c/€?
in this set.

Now, according to Lemma 3.3, we have (24) for a constant cs = c3(€),
provided that A3 and e3 are chosen appropriately. With this, the inequality (23)
follows easily from the fact

/ (m2)? dx < \ze,
DQS,G(':C())

if A3 is sufficiently small. O

For the proof of Theorem 1.1, we can now proceed as in [4].
For a fixed € € (0,1}, cover {2’ with a collection of balls { B, ,(%7) }1<i<r with
the properties z; € ' and
é/s(mg) N Bé/s(m;) =0 fori#j. (25)

(For instance, a maximal collection of balls with centres in ', such that (25)
holds, will do.) Consider all balls in this collection which satisfy

312 2 3)2 §
/ (|Vm€| _ |Vme| + (me) + |vu€(m€)| ) dx > A3 (26)
D2e,e(3«';)

€2 e2loge €t

for the constant A3 from Lemma 4.1. By Lemma 2.2 and Lemma 2.4, the
number of such balls is bounded by a number J which depends only on .
Using Lemma 4.1, we conclude that there exists a constant R = R(f2), such that
for any sufficiently small ¢, we can construct a set of points y.,...,y.; €
with the properties

lyei —yl;l = 8Re or ye=ye;  for1<i,j<J,
and

J
1
Im2| < 3 and |Vm.| < C?S in Qc\ (U DRe,s(?Jéz‘))

i=1
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for the constant c3 from Lemma 4.1. Now we pick a sequence €; ~\, 0, such that
for every i = 1,...,J, we have

Yo — Y (k—o0)

for a certain point y, € /. Choose p > 0, such that any two balls B, (y;) and
By, (y;) are disjoint, unless y; = y}. If k is sufficiently large, then

J
. 1 c3 .
|m?k| < ) and  |[Vme,| < a in Qc,\ (U Dy e, (y;)> :

=1

In particular, for any sufficiently large k, the topological degree of the restriction
of me, to D), (y;) x {s} is well-defined for all i = 1,...,.J and all s € (0,¢}), and
is independent of s. Clearly it must be non-zero for at least one of the points ..
Without loss of generality, we may assume that this point is always the same;
we denote it by z(. It follows from the arguments in the proof of Theorem V.2
in [4], or Proposition 3.4 in [26] (cf. also Proposition 5.1 below), that

iQ/ |Vme, |* de > 2nlog(p/er) — Ch

€k Dy e, (w5)

for a constant C; which is independent of k and p, provided that k is sufficiently

large.
Comparing this with Lemma 2.2, we obtain uniform estimates for
1
— |Vme, |? dx
€k JQ\Dp e, (z5)
for any p > 0, and for
1
- |[Vme, |P dx
€k‘ Q/

for any p € [1,2). After passing to a subsequence once more, we find a map
m € Hipo(¥\{z0},S%)n (] Wh(@,8?),
1<p<2

which is the limit of the maps my in the sense specified in Theorem 1.1. Now
we use the following result.

Proposition 4.1 For p > % and for a sequence € \, 0, suppose that my =
(mi,m3,m3) € WHP(Qc,,S?) are distributional solutions of
€2 div(mg A Vmy) = mg A Vue, (me) in Qe,, (27)

satisfying the Neumann boundary conditions %T;; =0 on Q' x {0,e7}. Define

vy, = e;QUCk (my) and

2
1 [
my(z') = 6—2/0 my(2',s)ds, ' €.
e

1
sup <—2/
keN \ €, Ja

Suppose that

1
|Vmg|P dx + 5/ | V| d:c) < 0. (28)
R3

ck
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Then there exist a map m = (m/,0) € WHP(Q S x {0}) and subsequences
{mu,} and {vy,}, such that

Mg, —=m  weakly in WP (Q'|R?), (29)
Vo, = Vu(m')  weakly in L*(R* R?). (30)

The limit map satisfies m' - v = 0 almost everywhere on 09, and the equation
(10) holds in the distribution sense.

We postpone the proof and finish first the proof of Theorem 1.1. We now know
that /m is of the form m = (m/,0), where m/ satisfies (10). Then (11) follows
from (10). Moreover, we see that

/ |Vm/|? da’ < —27logp + Co
Q\B,(x()

for a constant Cy which is independent of p. We conclude that zf, € @, for
otherwise we would have a contradiction to Lemma VI.1 in [4]. This proves (i)
and (ii) in Theorem 1.1.

For the proof of (iii), note first that m is smooth in Q’\{z}. This is proved
by standard arguments from the regularity theory of harmonic maps (see [14,
15,9, 28, 19]. In particular, there exists a continuous function 6 : Q'\{z(} — R,
such that m’ has the representation (12), owing to the choice of the boundary
data. We compute

(x(2) _$2,$1 _I(l)) /

1.2
P , 2 = (2" 2%) e Q\{z(}.

m/ (Y AV'm/ (2') = V'0(z') +

The second term on the right hand side is divergence free in £’ in the distribution
sense. Hence, 6 is a distributional solution of (13). This completes the proof of
Theorem 1.1. O

Proof of Proposition 4.1. Is clear that there exist m = (m/,m3) € W1P (€' S?)
and v € HL_(R3), such that (29) and (30), for v instead of u(m'), hold for a

loc
certain subsequence. Since |my| = 1 almost everywhere, we may assume that

my; — m strongly in LI(Y, R3) for any ¢ < oco.
For any ¢ € C§°(R?), we have

1
Vg - Vodr = —2/ my - Vodx.
R3 €k JQe,
In the limit, this yields
Vv -Vedr = [ m(z')-V(a',0)da’
R3 o4
3, a(b / C N YW ! /
= m°(x )F(x,())d:v — | divim/(a") ¢(2',0) dz
’ X ’
+/ V') m! () o2, 0) do’ (2).
o

If the third component of m didn’t vanish, or if the trace of m on 9 weren’t
tangential to the boundary of €', it would be easy to construct a sequence of test

16



functions such that the left hand side of this equation would be bounded and
the right hand side would diverge. Thus we have m? = 0 almost everywhere
in @, and m’ - v/ = 0 almost everywhere on 99, as the proposition claims.
Moreover, we see that v = u(m’).

For ¢’ € C§° (), set Y(a’,a3) = ¢/(2'). Test (27) with ¢. An integration
by parts in the third component yields

2 1
/ Vi - (mpVmi — miVm;) de +/ Yoy (6mk %) dx (31)
Qﬁk €k

Q al’l B 81'2

oY oy

€k

We have a continuous embedding A : H'(R?) — C%2([0,1], LP/P=1(Q')) for

o= % _ % > 0, given by the mapping

(Av)(t) = v(-,t), 0<t<1.

Moreover, the trace operator H!(R?) — LP/(P=1(Q’ x {0}) is compact, and we
may hence assume that vk, (-,0) — u/(m’) strongly in LP/(P=1(Q)/). Hence (31)
implies in the limit

/ (V' - (m/ AV'mM) +'d/ (m) carl’ m’ + o' V'Y’ Am')dx’ = 0,

where curl’ is the curl operator in R2. Now we can integrate by parts again and
find that (10) holds true. O

5 Free boundary data: A model problem

We’d like to drop now the Dirichlet boundary conditions in Theorem 1.1, i. e.
to study the minimizers of E. among all maps in H'(Q,,S?). The analysis is
difficult in this situation however, therefore we consider first a simpler variational
problem which may serve as a model for the more complex one.

We have already established certain connections between the magnetostatic
energy and the L?-norm of the third component of the magnetization in the
previous sections. We may therefore regard the limiting problem for the func-
tionals F, defined in the introduction as a model for the corresponding problem
for F. under Dirichlet boundary conditions. The minimizers of F, on the other
hand show a similar behaviour as those of the Ginzburg-Landau functionals I.

For free boundary data, we need to penalize m’ - v/ on 99 x (0, €?) as well.
For this purpose, we consider a boundary integral of the form

/ (m' - )2 do.
89 % (0,€2)

Throughout the rest of this section, we work in two dimensions. Therefore, we
drop the prime marking two-dimensional objects. Hence from now on, 2 is a
bounded, open, simply connected domain in R? with smooth boundary, and

v = (v',1?) denotes the outer normal vector to its boundary. We further set

17



7= (11, 72) = (=2, v!). For zg € Q and r > 0, we denote D,.(z¢) = QN B,.(z0)
and D} (zo) = 0Q N By(zo).
For a fixed « € (0, 1], and for 0 < € < 1, we consider the functionals

50 =3 [ (1984 gl =17) ot 5z [ (72020

2 2¢* Joq
on H!(Q,R?). For any ¢ € (0,1], we fix a minimizer f. € H(Q,R?) of J,.
Our aim is to prove a result similar to those in [4] and [26, 27] for the
functionals J., in order to obtain an idea of the limiting behaviour for minimizers
of E. without restrictions on the boundary data.

Theorem 5.1 There exist a sequence €, \, 0 and a set ¥ C Q, which is either
of the form ¥ = {xo} for a point xy € Q, or¥ = {1, 22} for two points x1, x5 €
OR), such that f., — f weakly in HL_ (Q\X,R?) and weakly in WP (Q,R?) for

all p < 2, where f : Q\X — S! is a harmonic map. The case ¥ = {xo} can only
occur if a = 1.

The proof of Theorem 5.1 will follow roughly the outline of the arguments in
[26, 27]. First we need an estimate for the energy of fe.

Lemma 5.1 There exists a constant C, depending only on 2, such that
Je(fe) < C —armloge (32)
for0<e<1.

Proof. We assume for simplicity that 02 contains two points x; and z2, such
that
00N Bi(x;) ={z € Bi(z): (v — =) v(z;) =0}, i=12,

and By(z1) N Ba(xe) = (0. If this is not the case, we may map € onto a domain

which has this property by a C?-diffeomorphism. It is then easy to check that

the following construction gives rise to a map which satisfies the estimate (32).
For 0 < e <1, set wje = x; + €“v(x;), i = 1,2. Define

Tr—x .
ﬁ, ifx e Bl(l‘l),
gg(:E) — . _16
h7 if ¢ S Bl(xg).
2e —

This map satisfies

/ |Vge|? de < mlog(2/e¥)
QNB1(xi)

and

1 2c o) d
[ eraos [T [T B e
89N B; (x:) 52 e 82+

for i = 1,2. Obviously g. can be extended to € such that it satisfies (32). Hence
also f. satisfies (32). O
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Lemma 5.2 The maps fe are smooth in Q and satisfy |fo| <1 and |V f| < C/e
for a constant C which depends only on 2.

Proof. The maps f. satisfy the equations

1 .
Afe= 6_2(|f6|2 —1fe inQ, (33)
with boundary conditions
ofe 1
B = _e_a(fﬁ -v)v on 0N. (34)

The regularity thus follows from standard results in the theory of elliptic equa-
tions.

To prove |fc| < 1, we apply the maximum principle, similarly as in [3] or
[26]. More precisely, for any fixed e, we consider the function g = |f.|? in the
set QT ={z € Q: g(x) > 1}. We have

2
Ag==(g—1g+2|Vf?>0 inQt,

2

0 2

a_i = _e_o‘(fE )2 <0 on 9.
Hence g can take its maximum neither in Q7 nor on 9Q N 90T, unless it is
constant in Q1. It follows that g < 1, and thus | f| < 1.

For the gradient estimate, we first estimate the Dirichlet energy of f. on balls

of radius e. For a given point = € ), choose a cut-off function n € C§°(Ba(x))
with the properties 0 < n < 1,n=1in B.(z), and |Vn| < 2/e. We have

1 In Ofe
2 2, L 201 g2 2 9. )
/QTI |vfe| dr = 2 /977 (1 |f6| )|f€| dx 2/Qnaxi fe ot dx

7i 772(f6"/)2d0

1
< ﬁ+—/n2|we|2dz
Q

2 2

for a constant C7 = C1(2). Here and in the following, we use the summation
convention, i. e. we sum over repeated indices from 1 to 2. We conclude that

/ |V fel?do < .
Be(x)

We can now use a blow-up argument similar to those in the proofs of Lemma
3.2 and Lemma 3.3. If the estimate weren’t true, then we could find solutions
fr € C(Q,R?) of (33) and (34) for certain numbers ¢, € (0,1], such that

certain points xj € {2 would exist with the property
Ck
er = |V fir(zr)| =sup |V fi| > —,
Q €k

where ¢, — oo for k — o0o. Define

fu(@) = fi (2 Cre +xk) ,

€k
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so that |V f(0)] = 2y/C1, and |V fi| < 2¢/C; wherever f; is defined. We see
that a subsequence of { fk} converges to a solution f : ¥ — R? of Laplace’s
equation Af = 0, with either ¥ = R? or ¥ = {:c eER?: a-z> a} for some
a € S' and some o > 0. In the latter case, we have homogeneous Neumann
boundary conditions for f on d%. Furthermore, we have |V f(0)| = 2/C7, but

also
A 2 A 2 s : C
V(0 g—/ Vflde < —= / ViPde | <2y/—
V70l m ZﬁBl(0)| | ﬁ( ZﬁBl(O)| | m

by the mean value theorem and the energy estimate above. Hence we have a
contradiction, and the estimate is proven. O

Lemma 5.3 There exist C > 0 and ro > 0, depending only on Q, such that for
0<e<1,z9€0, and 0 < r < rg, we have

]‘ / 2 2 1 2
— fel* —1)de + — fe-v)“do
s [, (R rars [ ey
1
< or [ [k | (|er|2+ Lnr- 1>2> do (35)
Dy (z0) QMIB, (o) 2e
1 r
fn Y G@owre )

z€INNOB,(x0)

Proof. Let 1 € C*(Q,R?) be a vector field which satisfies ¢ - v = 0 on 9.
Consider the 1-parameter family of diffeomorphisms W¥; : 2 — 2, obtained as
the solution to 5w

a—tt:wo\llt, o = id,
for t in a neighbourhood of 0. From the condition %|t=0J€(fE oWU,) =0, we

derive by an integration by parts

_ awlafcafeil 2 i 2
0= /Q {axj Oxt  Oxd 2d1V1/) <|vf6| + 262(|f6| U)} d

1 1,9

B €_a 50 |:§T 6$Z

W - 7)(fe )2+ KW T)(fe - v)(fe - T>] do, (36)

i Ov
oz
For an appropriate choice of 7, there exists a vector field ¢ = (¢!, ¢?) €

C>(D,,(w0), R?) with the properties

where Kk = 7 - 7 is the curvature of 0f).

e ¢-v=0on D; (x0),
o |¢(z) — (z — o) < Cilw — @0f?,

o |25 () — 8;;] < Cila — o,

for a constant C; = C1(€2). Choosing ¢ = n¢ as a test vector field in (36),
where n € C§°(By(x0)), we see that

L / U = 12nde+ — [ (fe-v)ndo
Q

2
4e 2ex a0
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1 1
< Car | [ (1V£8 + 50l =12 Y udo+ 5 [ (e 416 na)

1377 afe afe 1 2 1 2
| 30V (IVAP + 53172 = 1) do

Ori Oxt Oxd 2
— L (@6 D ) do,

€* Joq

where C5 = C3(€2). Approximating the characteristic function of B, (xg) by 7,

we conclude that (35) holds for a constant C' = C(f2), provided that ry < ﬁ.
O

Now, choose two numbers [,y with PQT"‘ <f<v<a.

Lemma 5.4 There exist constants €9, A\,C > 0, depending only on §, B, and
7, such that for any € € (0,¢€o] and any xo € 2, the condition

1 1
/ <|er|2+2—62(|fe|21)2) d:che—a (fe-v)?do < —Xloge (37)
D g (o) D3 (o)

implies |fe| > 1 in Dev(wo) and |fe-v] < & on DX (x0), and

€

1 1
—2/ (Ife)? = 1)? da + _/ (fe-v)2do < C(A+€*/?).  (38)
2€% JD 1~ (x0) “ JDx, (o)

Proof. For B.s(xg) C €, this is proven in [26]. In the other case, we assume for
simplicity that zq € 9. The general case can be reduced to these two special
cases.

There exists a radius r € (¢7, €”) with the property

1
r Vil +— f€2—12) do
/ o (| 24 Al - )

Y ) ) <

z€0QNIBy(x0)

4\
poyE (39)
Estimate (38) then follows from Lemma 5.3.

Recall that |V f.| < Cy/e for a constant C; = C1(2) by Lemma 5.2. Hence
if we had a point & € D¢ () with |fe(z)| < 4, then we would conclude that
|fe] <2 in De(x) for ¢ = 4—é1, and we would find thus a contradiction to (38),
provided that A and €g are sufficiently small. Hence |f| > % in Dev(x0).

We extend v and 7 to 9D, (x), such that they are normal and tangential,
respectively, to that boundary. If ¢y is small enough, then D, (zg) is strictly
star-shaped in the sense that (z — x1) - v(x) > r/4 on 0D, (z¢) for some point
x1 € Dy(x0). Using the Pohozaev identity for solutions of (33) (cf. [4, 26]), we
obtain

afe

(x —x1) v
/8DT(:CO) ov

= /BDT(%) <(:c:c1) ‘v

2
1
do+—2/ (| f* = 1) dx
€ Dr(l‘())

ofe|* ofe Ofe
or 72(1’73’21)'7’61/ or do.
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Note that we have proven (38) actually for the radius r instead of €Y. Combining
the identity above with this version of (38) and with (39), we conclude that

[ | [
D (o) Di(zo)

T v
for a constant Cy = C2(, 5,7). By the boundary conditions (34), we even have

/ dfe
Dy (x0)

or
where C3 = C3(Q, 3,7). Here we have used again the version of (38) for the
radius r. For z,y € D}(xo), it follows that

|[fe(@) = fe(y)] < Cav/lw —yle /2,

where Cy = C4(9,5,7). The estimate for |f. - v| on D¥ (xo) is now proven
similarly as the one for |fe| in Dev (o). O

2
do < Cy

2
do + \ + €*/?

2
dO<CQ

1

C
E/ (fe-v)?do+A+ev/?| < =2
€ JDz(wo)

_ea)

Choose now a number r¢ > 0, such that for each zy € Q and every r € (0, 7"0_] ,

the sets D, (o) and D}(x) are connected. For 0 < r < R < rg and zgy € {Q,
define

AryR(IL'o) =N BR(IL'())\BT(IL'()), A:’R(l‘o) =00nN BR(JJ())\BT(IL'()).

Suppose that a continuous map f : @ — R? is given, such that |f| > %

in A, g(zo) and |f - v] < 1 on A7 p(wo). These conditions imply in particular
lf-7| > @ on A p(wo). Hence the sign of f - 7 is constant on each connected
component of A}, p(wo) (of which there are exactly two). In the following, when
we say that f -7 changes sign in D} (xg), we mean that it takes both signs on
A7 g(wo). If it doesn’t change sign, we may extend the map g = flonoBy(z0) t0
dDg(z0) in such a way that |g| > 3 and |g-v| < I hold also on Dj(zg). We
say that g is topologically non-trivial, if the topological degree of this extension
(which maps dDp(z0) = S to R?\Bj 2(0)) is non-zero.

The following is a generalization of Proposition 3.4’ in [27].

Proposition 5.1 For zo € Q and 0 < r < R < rg, suppose that f € C*(Q,R?)
satisfies 5 < |f| <1 in Ay r(zo) and |f -v| < 1 on A% p(x0). Suppose further-
more that

Je(f) < K(1 —loge)

and
1

1
2 |, ( )(|f|271)2dx+€—a (f -v)?do<K
B

o D:ﬁ (:Eo)

for some number K. There exists a constant C, depending only on 0, 3, and
K, such that the following is true.

(i) Suppose Br(xo) C Q and r > e. If f restricted to 0Br(xg) has not the
topological degree 0, then

/ |V f|?dx > 2rlog(R/r) — C.
Ar r(zo)
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(ii) Suppose xy € O and r > €. If f -7 changes sign in D}(xo), then

/ |V f|?dx > mlog(R/r) — C.
AT,R(”"O)

(iii) Suppose xo € O and r > €*. If f -1 does not change sign in in D} (xg),
and if flonaBr(ze) 5 topologically non-trivial, then

/ |V f|?dx > 4rlog(R/r) — C.
A r(0)

Proof. We only give a proof for (ii). Part (i) is proven in [26, 27], and the proof
of (iii) is very similar to the proof of (ii). The following arguments are for the
most part the same as in [26, 27].

We assume for simplicity that zop = 0 and v(0) = (0,—1). Using polar
coordinates x = pe’?, we can write

f(z) = o(x)e oD,

where o, ¢ € C'(A, r(0)) with 3 < ¢ < 1. We can choose ¢ such that either
[p(x)] < Ci(|f (@) - v(@)[+p) or [p(x) — 7| < Co(|f(x) - v(2)| + p) on AT z(0) for

a constant C7 = C1(£2).
Note that

v |2 2 2702 ¢ 2 2

Furthermore,

2 1 2 1
/ 0—2 dr = / — dz —|—/ g 5 dz
A r(0) P A r(0) P Anp(0) P

2

-1
wlog(R/r) — Cs +/ Z 5
Arpr(0) P

Y

dx

for a constant Cy = C2(2). Note that for every p € [r, R], we have

] 100 |
/QmaBp(o) 00 6 < C Z |f(x)-v(z)| +2p

P 2€0QNIB,(0)

Thus

2 2 _ 1 .
2/ U—Q%deZ/ 7 99 1w — 20, (M—i—l)do.
A r(0) P o A.r(0) P o Az 5(0) p

L)

We write

/ 02_1%@3/ UQ_l%d:er/ UQ_l%dx
A, r(0) p* 00 A, 600 p? 00 A r(0) p? 00
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(provided that r < €® < R; otherwise we consider only one of these terms), and
we estimate

/ —02 —1 % dx
A, 5(0) p> 00

1 : :
1 (/ (02 — 1)2 dm) (/ |V¢|2dx>
€ A, p(0) A, 8(0)

1
AK + —/ Vo[ da,
A, .5(0)

IN

IN

8

and

/ of -1 % dx
A p(0) p? 00

IN

3 3
1
- (/ (02 — 1)2dx> (/ |Vq§|2dx>
€ AEB,R(O) AEﬁ,R(O)

1
8Ke* 20(1 —loge) + = / |Vo|? dz.
8Jas .20

IN

Similarly we prove

1- 02 :
/ 2 dx+/ <M+1) do < C5(, K, B).
A.r(0) P A R (0) p

Finally,
1
/ | Ve|* dv > —/ |Vo|* d.
Ar.r(0) 4.4, 10

To complete the proof, we only need to combine these estimates. O

Proof of Theorem 5.1. For each € € (0, 1], define the set
Se={zeQ: |flx)|<i}u{zed: |f.-v]>1}.

Choose a maximal collection of balls B,,, = Bes(zm), m = 1,..., M, such that
Ty € Se and Bes 4 (21)NBes 14 (%) = 0 for I # m. Then obviously this collection
covers S.. Moreover, Lemma 5.1 and Lemma 5.4 imply that M is bounded by
a number which is independent of €. For each m, we use the arguments in the
proof of Lemma 5.4 to show that

1

1
- f62—12d:c+—/ fe-v)tdo < Cy,
5.3 (Ifel* = 1) = D;Eﬁ@m»( ) |

D, (Tm)

where Cy = C1(Q, 9).

With the arguments from [4, 26, 27] (i. e. similarly as in the proof of Theorem
1.1), combined with the arguments from the proof of Lemma 5.4, we can now
find numbers R > 0 and N € N, which are independent of ¢, and points

m
Yels - - YeN € 2N U B,,,

m=1

such that

|yei - y6j| Z 8R€a or  Yei = yej fOI' 1 S Z;] S Na
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and

N
|fe| Z % in Q\ <U BRE”‘ (yez)> )

=1

N
on aQ\ <U BRea (yez)> )

i=1

|f6'V| <

for any e € (0,1]. Again we may pick e \, 0 such that y,; — y; for certain
points y; € Q. Choose p > 0, such that B,(y;) N B,(y;) = 0, unless y; = y;, and
B,(y;) C Q, unless y; € 9Q. Now we may pick a subsequence (without changing

notation) and relabel the points y;, such that either
e y1 € Qand f |aB,(y,) is topologically non-trivial, or
e yo,y3 € ON and f., - 7 changes sign in D..(y2) and in D« (y3).

(The conditions of (iii) in Proposition 5.1 cannot be satisfied for large k’s, be-
cause there is not enough energy.) Setting either ¥ = {y1} or ¥ = {y2,y3}, we
conclude, using Proposition 5.1, that a subsequence of {f,, } converges weakly
in HL (Q\X,R?) and weakly in WP (€, R?) for all p < 2. To see that the limit
is a harmonic map from Q\¥ — S!, we use the form

div(f. AVE) =0 inQ

of (33). In order to prove that ¥ C Q can only happen for o = 1, we repeat
the arguments above with balls of radius € instead of €“, and show thus that a
vortex in the interior of Q2 needs more energy than available for o < 1. O
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