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Abstract

The goal of this paper is the construction of a data-sparse approximation to the Schur complement
on the interface corresponding to FEM and BEM approximations of an elliptic equation by domain de-
composition. Using the hierarchical (H-matrix) formats we elaborate the approximate Schur complement
inverse in an explicit form. The required cost O(NΓ logq NΓ) is almost linear in NΓ – the number of
degrees of freedom on the interface. As input, we require the Schur complement matrices corresponding to
subdomains and represented in the H-matrix format. In the case of piecewise constant coefficients these
matrices can be computed via the BEM representation with the cost O(NΓ logq NΓ), while in the general
case the FEM discretisation leads to the complexity O(NΩ logq NΩ), where NΩ is the number of degrees
of freedom in the domain.

AMS Subject Classification: 65F30, 65F50, 65N35, 65F10
Key words: elliptic equations, data-sparseH-matrix approximation, BEM, FEM, FETI, Schur complement,

domain decomposition

1 Introduction

In [8], a direct domain decomposition method was described for rather general elliptic equations based on a
traditional FEM. Using H-matrix techniques, almost linear1 cost in the number NΩ of degrees of freedom in
the computational domain Ω could be achieved. In this paper, we concentrate on the inversion of the Schur
complement matrix associated with the interface that defines the domain decomposition.

We distinguish three approaches to construct and approximate the Schur complement matrix:
(a) Methods based on a traditional FEM for rather general variable coefficients (cf. [8]);
(b) Approximation by boundary concentrated FEM in the case of coefficients which are smooth in the subdo-
mains (cf. [13]);
(c) BEM/FEM based methods for piecewise constant coefficients (cf. [12, 14, 16]).
Below, we focus on the cases (a) and (c). In the latter case, which is not covered by [8], we make use of the
standard advantages of BEM compared to FEM. Furthermore, besides the approximation theory (cf. Theorem
3.1), in the 2D case, we can show the approximability of the Schur complement in the H-matrix format based
on the weak admissibility criteria (cf. [11]). In both cases we give numerical results.

Notice that our approach can be viewed as an approximate direct parallel solver based on the data-sparse
approximation to the Schur complement matrix in the domain decomposition method.

1By “almost linear” we mean O(N logq N) for a fixed q.
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2 FEM-Galerkin Approximation

In a polygonal domain Ω ⊂ R
2, we consider the elliptic operator L : V → V ′ for V = H1

0 (Ω) and V ′ = H−1(Ω),
with the corresponding V -elliptic bilinear form aΩ : V × V → R,

aΩ(u, v) =
∫

Ω

(
d∑

i,j=1

aij∂ju∂iv + a0uv)dx, a0 > 0. (2.1)

The corresponding variational equation is: Find u ∈ V such that

aΩ(u, v) = 〈f, v〉 for all v ∈ V, (2.2)

where f ∈ H−1(Ω). We suppose the domain Ω to be composed of M ≥ 1 possibly matching, but non-
overlapping polygonal subdomains Ωi, Ω = ∪M

i=1Ωi. We denote the interface (skeleton) of the decomposition
of Ω by Γ = ∪Γi with Γi := ∂Ωi.

We may write the bilinear form aΩ(·, ·) in (2.1) as a sum of local bilinear forms,

aΩ(u, v) =
M∑
i=1

aΩi(Riu,Riv), where Ri : V → Vi := H1(Ωi)

is the restriction of functions onto Ωi and the integration in aΩi : Vi×Vi → R is restricted to Ωi. Furthermore,
we suppose that there exist 0 < C1 ≤ C2 such that (for suitable constants µi > 0)

C1µi|u|2H1(Ωi)
≤ aΩi(u, u) ≤ C2µi|u|2H1(Ωi)

for all u ∈ H1(Ωi). (2.3)

We introduce the space VΓ ⊂ V of piecewise L-harmonic functions by

VΓ := {v ∈ V : aΩ(v, z) = 0 for all z ∈ V0}

with V0 := {v ∈ V : v(x) = 0 for all x ∈ Γ}. Note that V = V0 + VΓ is an orthogonal splitting with respect to
scalar product aΩ(·, ·).

Because we focus on the solution of an interface equation, we suppose that the right-hand side f is supported
only by the interface, i.e., with given ψi ∈ H−1/2(Γi), i = 1, . . . ,M ,

〈f, v〉 =
M∑
i=1

〈ψi, v〉Γi . (2.4)

An equation with general f can be reduced to the case (2.4) by subtracting particular solutions in the sub-
domains which can be performed in parallel. Specifically, let u0,i ∈ H1

0 (Ωi) be the solution of equation (2.2)
reduced to a subdomain Ωi,

aΩi(u0,i, v) =
∫

Ωi

f(x)vdx for all v ∈ Vi. (2.5)

We split the solution of (2.2) into u = u0 + uH with u0 ∈ V0, uH ∈ VH , where u0 solves the problem

aΩ(u0, v) = 〈f, v〉 for all v ∈ V0, (2.6)

and thus satisfies Riu0 = u0,i with u0,i being the solution of (2.5). For the remaining piecewise L-harmonic
component uH = u− u0 ∈ VH , we obtain the global equation

aΩ(uH , v) = 〈f, v〉 − aΩ(u0, v) for all v ∈ VH , (2.7)

where the right-hand side takes the form (2.4) with ψi := γ1,iu0,i. Here γ1,i : H1/2(Γi) → H−1/2(Γi) is
the operator of conormal derivative. The bilinear form aΩ(·, ·) in (2.7) is defined via the space of piecewise
L-harmonic functions which are uniquely determined by their traces on the skeleton Γ.

Next we reduce the variational equation (2.2) with f satisfying (2.4), to an interface equation (in fact, in
this case the solution satisfies u ∈ VΓ). To this end, let us introduce the following trace space on Γ,

YΓ := {u = z|Γ : z ∈ V }, ||u||YΓ = inf
z∈V :z|Γ=u

||z||V ,
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with the energy norm ||z||V =
√
aΩ(z, z). We define the local Poincaré-Steklov operator (Dirichlet-Neumann

map) on Γi = ∂Ωi,
Ti : H1/2(Γi) → H−1/2(Γi)

by
λ ∈ H1/2(Γi), Ti(λ) := γ1,iu.

Here γ1,iu is the conormal derivative of u on Γi and u solves (2.2) in Ωi such that u|Γi = λ. The interface
problem which is equivalent to (2.2) reads as: Find z = u|Γ ∈ YΓ such that

bΓ(z, v) :=
M∑
i=1

〈Tizi, vi〉Γi = 〈ΨΓ, v〉 :=
M∑
i=1

〈ψi, v〉Γi for all v ∈ YΓ, (2.8)

where bΓ(·, ·) : YΓ × YΓ → R is a continuous bilinear form, ΨΓ ∈ Y ′Γ and zi = z|Γi
, vi = v|Γi

.
To apply H-matrix approximations to the discrete version of (2.8), we represent the inverse operator L−1

using the interface map BΓ defined by

〈BΓu, v〉Γ = bΓ(u, v) for all u, v ∈ YΓ. (2.9)

The following statement describes the structure of the inverse L−1 : Y ′Γ → V .

Lemma 2.1 The representation L−1 = Eharm
Ω←ΓB−1

Γ holds, where Eharm
Ω←Γ : YΓ → VΓ is the L-harmonic extension

from YΓ to VΓ.

Proof. The bilinear form bΓ(·, ·) : YΓ × YΓ → R is symmetric, continuous and positive definite and thus the
same holds for BΓ and B−1

Γ : Y ′Γ → YΓ. Therefore the operator L−1 = Eharm
Ω←ΓB−1

Γ is well-defined. Next, we
check that u = L−1ΨΓ solves (2.2). Green’s formula yields

aΩ(u, v) =
M∑
i=1

aΩi(Riu,Riv) =
M∑
i=1

〈Tiu, vi〉Γi =
M∑
i=1

〈ψi, v〉Γi for all v ∈ V. (2.10)

This provides B−1
Γ ΨΓ = u|Γ completing the proof.

In the general case, we consider a conventional FEM approximation of (2.2) by piecewise linear elements
on a regular triangulation that aligns with Γ. Let AΩ ∈ R

IΩ×IΩ be the Galerkin-FEM stiffness matrix

AΩ =
(

AII AIIΓ

AIΓI AIΓIΓ

)
≡

⎛
⎜⎜⎜⎝

A1 . . . 0 A1,Γ

...
. . .

...
...

0 . . . AM AM,Γ

AΓ,1 . . . AΓ,M AΓ,Γ

⎞
⎟⎟⎟⎠ , (2.11)

corresponding to the chosen FE space Vh ⊂ V . Here IΓ is the index set corresponding to the interface degrees

of freedom and I = IΩ \ IΓ =
M⋃
i=1

Ii is the (disjoint) union of subdomain index sets. Eliminating all interior

degrees of freedom corresponding to I, we obtain the so-called FEM Schur complement matrix

BΓ,FEM := AIΓIΓ − AIΓIA−1
II AIIΓ ∈ R

IΓ×IΓ ,

where AII = blockdiag{A1, . . . ,AM} is the stiffness matrix for L subject to zero Dirichlet conditions on
Γ, hence A−1

II = blockdiag{A−1
1 , . . . ,A−1

M } can be computed in parallel. In a standard way, each of the
“substructure” matrices A−1

i , i = 1, . . . ,M , can be represented by the H-matrix format (cf. [8]).
Using BΓ,FEM , the original FEM system

AΩU = F, U, F ∈ R
IΩ , (2.12)

is reduced to the interface equation

BΓ,FEMUΓ = FΓ, UΓ, FΓ ∈ R
IΓ , where UΓ = U |IΓ . (2.13)

We construct the approximate direct solver for the Schur complement system (2.13) focusing on the cases of
general and of piecewise constant coefficients. In the latter case, the matrix BΓ,FEM can be computed by
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BEM with cost O(NΓ logq NΓ), where NΓ = card(IΓ), while for general coefficients the cost is O(NΩ logq NΩ)
(cf. [8]). Furthermore, BΓ,FEM is proved to be of almost linear cost in NΓ concerning operations for storage
and for the matrix-by-vector multiplication. Due to the H-matrix arithmetic, our approximate inverse Schur
complement matrix B−1

Γ,FEM again needs almost linear complexity O(NΓ logq NΓ).
Introduce the FE trace space YN := Vh|Γ ⊂ YΓ with N = NΓ = dimYN . Based on the representation in

Lemma 2.1 and using the H-matrix approximation to the operators involved, we can construct an approximate
direct solver of almost linear complexity in NΓ that realises the action B−1

Γ ΨΓ. For this purpose we split the
numerical realisation of L−1 = Eharm

Ω←ΓB−1
Γ into three independent steps:

(i) Computation of a functional ΨΓ,h ∈ Y ′Γ approximating ΨΓ;
(ii) An H-matrix approximation to the discrete interface operator B−1

Γ ;
(iii) Implementation of a discrete L-harmonic extension operator Eharm

Ω←Γ .

In Step (i), we define ΨΓ,h ∈ Y ′N by 〈ΨΓ,h, v〉Γ :=
M∑
i=1

〈ψih, v〉Γi for all v ∈ YN .

Given ΨΓ,h ∈ Y ′N , we consider the Schur complement system approximating the interface equation (2.8).
Let us define the local Schur complement operator Ti,N corresponding to the discrete Li-harmonic extension
based on the FEM Galerkin space Vih := Vh|Ωi , by

λ, v ∈ YN |Γi : 〈Ti,Nλ, v〉Γi = AΩi(ui, v), (2.14)

where
ui ∈ Vih, AΩi(ui, z) = 0 for all z ∈ Vih ∩H1

0 (Ωi)

and with an arbitrary v ∈ Vih such that v|Γi = v. With the aid of the local FEM-Galerkin discretisations
Ti,N of the Poincaré-Steklov maps Ti, the discrete operator BΓ,N and the corresponding interface equation are
given by

z ∈ YN : 〈BΓ,Nz, v〉Γ :=
M∑
i=1

〈Ti,Nzi, vi〉Γi = 〈ΨΓ,h, v〉Γ for all v ∈ YN ,

where vi := v|Γi and z is a desired approximation to the trace u|Γ.
Let AΩi be the local stiffness matrix corresponding to aΩi(·, ·),

AΩi =
(

Aii AiΓi

AΓii AΓiΓi

)
,

where i and Γi correspond to the interior and boundary index sets in Ωi, respectively. Then we obtain the
FEM Schur complement matrix

Ti,FEM := AΓiΓi − AΓiiA
−1
ii AiΓi , (2.15)

where Aii is the stiffness matrix for Li subject to zero Dirichlet conditions on Γi. Thus, A−1
ii can be represented

in the H-matrix format (cf. [8]). Now, the corresponding matrix representation to the interface operator BΓ,N

reads as

〈BΓ,FEMU,Z〉IΓ =
M∑
i=1

〈Ti,FEMUi, Zi〉IΓi
:= 〈BΓ,NJU,JZ〉Γ, BΓ,FEM ∈ R

IΓ×IΓ , (2.16)

where J : R
IΓ → YN is the natural bijection from the coefficient vectors into the FE functions. Here

Ui, Zi ∈ R
IΓi , i = 1, . . . ,M , are the local vector components defined by Ui = RΓiU, Zi = RΓiZ, where the

connectivity matrix RΓi ∈ R
IΓi
×IΓ provides the restriction of the vector Z ∈ R

IΓ onto the index set IΓi .
Finally, we obtain the interface matrix in the following explicit form

BΓ,FEM =
M∑
i=1

R�Γi
Ti,FEMRΓi . (2.17)

Note that using the block Gauss elimination applied to the matrix (2.11), we obtain the following representation
to A−1

Ω ,

A−1
Ω =

(
A−1

II 0
0 0

)
+
[

A−1
II AIIΓ

−I

]
B−1

Γ,FEM

[
AIΓIA−1

II − I
]
,
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or in explicit form

A−1
Ω =

⎛
⎜⎜⎜⎝

A−1
1 . . . 0 0
...

. . .
...

...
0 . . . A−1

M 0
0 . . . 0 0

⎞
⎟⎟⎟⎠+

⎡
⎢⎢⎢⎣

A−1
1 A1,Γ

...
A−1

M AM,Γ

−I

⎤
⎥⎥⎥⎦B−1

Γ,FEM

[
AΓ,1A−1

1 . . . AΓ,MA−1
M − I

]
. (2.18)

If we solve the class of equations (2.12) with the right-hand side supported only by the interface index set,
i.e., F = (0, . . . , 0, FΓ)�, then the first term in (2.18) is omitted and we arrive at the representation

A−1
Ω = −

⎡
⎢⎢⎢⎣

A−1
1 A1,Γ

...
A−1

M AM,Γ

−I

⎤
⎥⎥⎥⎦B−1

Γ,FEM . (2.19)

In this case we shall focus on the H-matrix approximation to the Schur complement inverse B−1
Γ,FEM .

3 Discrete Interface Equation by the Galerkin BEM

Next we focus on the explicit matrix representation BΓ,BEM to the interface map BΓ in (2.9) using the
BEM-Galerkin approximation with Lagrange multipliers (cf. [12, 14]).

Consider the classical boundary integral representations involving weakly singular, hypersingular and dou-
ble layer potential operators Vi, Di and Ki, respectively, defined by

(Viu)(x) =
∫

Γi

g(x, y)u(y)dy, (Kiu)(x) =
∫

Γi

∂

∂ny
g(x, y)u(y)dy,

(K′iu)(x) =
∫

Γi

∂

∂nx
g(x, y)u(y)dy, (Diu)(x) = − ∂

∂nx

∫
Γi

∂

∂ny
g(x, y)u(y)dy ,

(3.1)

where g(x, y) is the corresponding singularity function (cf. [6]). In the following, we consider the model case

aΩi(u, v) := µi

∫
Ωi

∇u∇vdx, µi > 0. (3.2)

In particular, the singularity function of the Laplace operator L = −∆ in R
d is given by g(x, y) = − 1

2π log |x−y|
for d = 2 and by g(x, y) = 1

4π |x− y|−1 for d = 3, where |x− y| is the Euclidean distance.
We start from the familiar identity for the Calderon projection applied to the Cauchy data on Γi, which

is a consequence of classical representation formulae in BEM (see, e.g., [2, 6, 19]),(
1
2I −Ki Vi

Di
1
2I +K ′i

)(
ui

δi

)
=
(
ui

δi

)
, (3.3)

where δi = ∂u/∂n is the conormal derivative of the harmonic function u satisfying −∆u = 0 in Ωi and
u|Γi

= ui.
First, we introduce the modified Calderon projection CΓi defined by

CΓi

(
ui

δi

)
:=
(

µiD 1
2I + K′i

− 1
2I −Ki µ−1

i Vi

)(
ui

δi

)
=
(
δi
0

)
(3.4)

(cf. [14]), applied to the Li-harmonic function with δi = µi∂u/∂n and u as above. The relation (3.4) provides
a base for the explicit construction of saddle-point boundary variational equations for the Dirichlet, Neumann
and mixed boundary conditions as well. The key point is that the Schur complement equation corresponding
to (3.4) reads as

Tiui := µi

(
Di +

(
1
2I + K′i

)
V−1

i

(
1
2I + Ki

))
ui = δi, (3.5)

providing an explicit symmetric representation to the Poincaré-Steklov map in terms of boundary integral
operators. As a by-product, we shall obtain a symmetric positive definite discretisation of the Poincaré-
Steklov operator Ti using the corresponding BEM-Galerkin approximations to the classical boundary integral
operators Ki, Vi and Di.
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As a simple example, consider the Neumann boundary value problem in Ωi, i.e., given δi ∈ Li := H−1/2(Γi),
we search for ui ∈ Xi := H1/2(Γi) being the trace of the corresponding Li-harmonic function. Then the pair
(ui, δi) ∈ Σi := Xi × Li satisfies the skew-symmetric system of equations

CΓi

(
u

λ

)
=
(
δi
0

)
,

where λ plays the role of a Lagrange multiplier (in fact, λ = δi). Introducing the associated bilinear form
cΓi : Σi × Σi → R, the above system can be transformed to the uniquely solvable variational formulation (cf.
[12])

cΓi(u, λ; v, η) := µi(Diu, v) + ((1
2I + K′i)λ, v) − ((1

2I + Ki)u, η) + µ−1
i (Viλ, η)

= (δi, v) for all (v, η) ∈ Xi × Li.
(3.6)

In fact, it is easy to show that cΓi(·, ·) is Xi × Li-elliptic on the subspace Xi,1 := {u ∈ Xi : 〈u, 1〉 = 0} ⊂ Xi,
which implies the unique solvability of (3.6) due to the Lax-Milgram Lemma.

Let Xih × Lih ⊂ Xi × Li be the FE space of piecewise linear functions with respect to a quasi-uniform
mesh on Γ that aligns with the skeleton Γ = ∪Γi. The variational Galerkin equation corresponding to (3.6)
reads as:
Find (u, λ) ∈ Xih × Lih such that

cΓi(u, λ; v, η) = (δi, v) for all (v, η) ∈ Xih × Lih. (3.7)

Transforming (3.7) to the matrix form and taking the Schur complement with respect to the Lagrange multi-
plier λ,, we are led to the symmetric representation

Ti,BEM := µi

(
Dih +

(
1
2I

T
ih + KT

ih

)
V−1

ih

(
1
2Iih + Kih

))
, (3.8)

where Dih, Kih and Vih are the Galerkin stiffness matrices of the boundary integral operators and Iih is the
corresponding mass matrix.

Similar to the single-domain equation (3.6), we consider a skew-symmetric interface problem for M > 1

(see equation (3.9) below). Let us introduce the trace space ΣΓ := YΓ × ΛΓ with ΛΓ :=
M∏
i=1

H−1/2(Γi) and

equipped with the weighted norm

‖P‖2
ΣΓ

= ‖u‖2
YΓ

+
M∑

j=1

µ−1
j ‖λj‖2

H−1/2(Γj)
, where P = (u, λ) ∈ ΣΓ, λ = (λ1, . . . , λM ).

We define the interface bilinear form cΓ : ΣΓ × ΣΓ → R by

cΓ(P,Q) :=
M∑
i=1

〈CΓiPi, Qi〉Γi ≡
M∑
i=1

cΓi(Pi, Qi) for all P = (u, λ), Q = (v, η) ∈ ΣΓ

with CΓi given by (3.4). Here Pi = (Riu, λi) is the corresponding restriction of P onto Γi. Using the
representation (3.6) in each subdomain, the original interface problem (cf. (2.8)) will be reduced to the
following skew-symmetric variational interface equation:

Given ΨΓ ∈ Y ′Γ, find P = (u, λ) ∈ ΣΓ such that

cΓ(P,Q) = 〈ΨΓ, v〉Γ for all Q = (v, η) ∈ ΣΓ. (3.9)

Introducing the FE Galerkin ansatz space Σh := YN×Λh with Λh :=
M∏
i=1

Lih, we arrive at the corresponding

BEM-Galerkin saddle-point system of equations:

Given ΨΓ ∈ Y ′Γ, find Ph = (uh, λh) ∈ YN × Λh such that

cΓ(Ph, Q) = 〈ΨΓ, v〉Γ for all Q = (v, η) ∈ YN × Λh. (3.10)
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We further assume Vi, i = 1, . . . ,M , to be positive definite. For d = 3 this is no restriction, while for d = 2
it will be satisfied in the case diamΩi < 1 (in practice the above condition can be achieved by scaling the
computational domain Ω).

Items (i), (ii) in the next statement are the refined version of Theorems 2, 3 in [12].

Theorem 3.1 (i) The bilinear form cΓ : ΣΓ × ΣΓ → R is continuous and ΣΓ-elliptic uniformly in h and µi,
i = 1, . . . ,M .

(ii) The optimal error estimate

‖Ph − P‖2
ΣΓ

≤ C inf
(w,µ)∈Σh

M∑
i=1

[
µi|ui − wi|2H1/2(Γi)

+ µ−1
i ‖λi − µi‖2

H−1/2(Γi)

]
(3.11)

holds, where Ph solves (3.10) and C does not depend on h and µi.
(iii) Let Ti,BEM be the local BEM Schur complement given by (3.8). Then the BEM Schur complement

matrix (representing BΓ by making use of (3.10)) takes the form

〈BΓ,BEMZ, V 〉IΓ =
M∑
i=1

〈Ti,BEMZi, Vi〉IΓi
=

M∑
i=1

〈R�Γi
Ti,BEMRΓiZ, V 〉IΓ , (3.12)

which implies the explicit representation BΓ,BEM =
M∑
i=1

R�Γi
Ti,BEMRΓi with BΓ,BEM ∈ R

IΓ×IΓ .

Proof. Continuity of cΓ follows by

cΓ(u, λ; v, η) =
M∑
i=1

µi(Diui, vi) +
(
(1
2I + K′i)λi, vi

)
−
(
(1
2I + Ki)ui, ηi

)
+ µ−1

i (Viλi, ηi),

due to the continuity of the boundary integral operators involved. First, we note that due to the trace lemma
(for seminorms) applied in each subdomain

inf
z∈Vi: z|Γi

=u
aΩi(u, u) ≤ Cµi|u|2H1/2(Γi)

,

the norm equivalence

C1

M∑
i=1

µi|ui|21/2 ≤ ‖u‖2
YΓ

≤ C2

M∑
i=1

µi|ui|21/2 for all u ∈ YΓ (3.13)

holds, uniformly in h and µi. Now, for the pairs z = (u, λ) ∈ Xi × Li, let us define the quadratic form
bi(z; z) := µi|u|21/2 + 1

µi
‖λ‖2
−1/2 + 2|u|1/2‖λ‖−1/2. Then the continuity of cΓ follows by the Cauchy-Schwarz

inequality

cΓ(P ;Q) ≤ C
M∑
i=1

[
µi|ui|1/2|vi|1/2 +

1
µi

‖λi‖−1/2‖ηi‖−1/2 + ‖λi‖−1/2|vi|1/2 + ‖ηi‖−1/2|ui|1/2

]

≤ C

(
M∑
i=1

bi(ui, λi;ui, λi)

)1/2( M∑
i=1

bi(vi, ηi; vi, ηi)

)1/2

≤ 4C

(
M∑
i=1

µi|ui|21/2 +
1
µi

‖λi‖2
−1/2

)1/2( M∑
i=1

µi|vi|21/2 +
1
µi

‖ηi‖2
−1/2

)1/2

≤ C‖P‖ ‖Q‖, (P = (u, λ), Q = (v, η))

using the simple bound 2ab ≤ µia
2 + 1

µi
b2, a, b ∈ R+. Furthermore, the norm equivalence (3.13) then implies

ΣΓ-ellipticity due to the representation

cΓ(u, λ;u, λ) =
M∑
i=1

µi(Diui, ui) + µ−1
i (Viλi, λi),
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together with the positive definiteness of Di and Vi, i.e.,

(Diu, u) ≥ cD|u|2H1/2(Γi)
, (Viu, u) ≥ cV‖u‖2

H−1/2(Γi)
for some cD, cV > 0.

Now item (ii) follows by Céa’s Lemma. Assertion (iii) is due to the BEM-Galerkin structure of the discrete
saddle-point system (3.10). In fact, making use of (3.10) in the matrix form and eliminating the vector
components corresponding to λh leads to the matrix representation (3.12) of BΓ.

One can see that the accuracy of our BEM-Galerkin approximation is proved to be of optimal order with

respect to the weighted energy norm ‖ · ‖ΣΓ for a class of functions in H1/2+s(Γ) ×
M∏
i=1

H−1/2+s(Γi), s > 0,

characterised by a certain Sobolev regularity (cf. Theorem 3.1).

Remark 3.2 The results above remain valid if Lih is the space of piecewise constant finite elements.

Remark 3.3 The corresponding non-symmetric representation is given by

Ti := µiV−1
i (1

2I + Ki). (3.14)

Using the Galerkin ansatz space Xih×Lih as above, we consider the approximation Ti,BEM := µiV−1
ih (1

2I+Kih)
of Ti by substituting the corresponding BEM-Galerkin operators in (3.14). Then one obtains the non-symmetric
matrix representation

Ti,BEM := µiV−1
ih (1

2Iih + Kih),

which is simpler to implement than the symmetric one (cf. (3.8)). However, in the present paper this repre-
sentation will not be analysed.

For general discussions, we skip the subscripts FEM and BEM and just use the notation BΓ. In the
next section, we consider the H-matrix approximation to BΓ using the corresponding local approximations
to Ti,FEM and Ti,BEM , and then we construct the hierarchical data-sparse representation to the interface
matrix inverse B−1

Γ .

4 H-Matrix Approximation to BΓ and B−1
Γ

For the FEM-Galerkin approximations (cf. (2.17)), first, we represent A−1
II in the hierarchical format, then we

perform the formatted multiplications AΓiIA
−1
II AIΓi and addition with AΓiΓi . Hence, in the case of generic

variable coefficients, the computation of Ti,FEM amounts to the cost O(NΩi logq NΩi).
Using the BEM-Galerkin representation, our goal is an algorithm of almost linear complexity in NΓ :=

dimYN to compute the H-matrix representation of both BΓ and B−1
Γ . It is based on the observation that

each BEM-Galerkin matrix involved in the representation for Ti,BEM (cf. (3.8)) can be computed with
O(Ni,Γ logq Ni,Γ) complexity. Using the H-matrix arithmetics, one can then compute the corresponding H-
matrix representation of Ti,BEM .

Since the index set IΓ corresponds to a quasi-uniform grid on Γ, one can represent BΓ in the H-matrix
format with the partitioning P2(IΓ × IΓ) based on the standard admissibility condition and then compute
the approximate H-matrix inverse with almost linear cost O(NΓi logq NΓi). As an alternative, the so-called
weakly admissible partitioning (cf. [11]) can be also applied.

We compute an approximate inverse matrix in three steps as follows:
Algorithm DII (direct interface inverse)

• Evaluate all the local Schur complements (cf. (2.15), (3.8)) in the H-matrix format.

• Construct an admissible block partitioning of the product index set IΓ × IΓ and fill the corresponding
blocks of BΓ by low-rank matrices2 using the local Schur complements Ti,BEM or Ti,FEM as the input
data.

• Compute the inverse matrix B−1
Γ by using the H-matrix arithmetic.

2We make use of the easy approach to calculate a low-rank approximation of blocks in the hierarchical partitioning P2(IΓ×IΓ).
The approach is based on a SVD recompression of blocks b ∈ P2(IΓ × IΓ) obtained as a sum of a fixed number of subblocks
extracted as rank-k submatrices in the local Schur complements Ti,BEM or Ti,F EM , represented by H-matrices.
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At the first stage of our inversion algorithm (cf. Algorithm DII), having available all the local H-matrices
Ti,BEM or Ti,FEM , we compute the H-matrix representation of BΓ. Note that we require no compatibility
between the partitioning P2(IΓ × IΓ) and the corresponding ones P2(IΓi × IΓi) used for the representation of
the local H-matrices Ti,BEM or Ti,FEM , i = 1, . . . ,M .

Now, we explain the construction of an admissible partitioning P2(IΓ × IΓ) of the “interface” index set
IΓ. First, the cluster tree TIΓ corresponding to the skeleton Γ has to be constructed. This is done by using a
cardinality balanced binary-space partitioning (BSP) algorithm (cf. [4]). The basic idea of BSP is to divide a
given part of Γ into two disjoint sets Γ0 and Γ1 by determining the vector vmax of the dimension of NΓ and
ordering all indices of IΓ with respect to vmax. The sons Γ0 and Γ1 of Γ are afterwards defined as the first and
second half of this ordered set, ensuring ||Γ0| − |Γ1|| ≤ 1. An example of this procedure is shown in Figure 1.

Figure 1: Construction of the clustertree TIΓ .

The structure of the cluster tree inherits the typical features of the corresponding constructions for 1D and
2D problems. In fact, on the first levels � = 0, . . . , L0 with L0 = O(logM), the index partitioning is similar to
those for the index set corresponding to the coarse mesh FE space associated with our domain decomposition
(geometric partitioning). Applying the standard admissibility condition, all admissible blocks contain only
zero submatrices (as in the case with the FE stiffness matrices). The corresponding sparsity constant csp (see
[5, 10]) would correspond to that one arising in FEM approximations.

On the second stage, corresponding to levels � = L0 + 1, . . . , L, the leaves of the final cluster tree are
sets of degrees of freedom corresponding to one-dimensional manifolds, therefore the further partitionings
can be simplified. Since usually logM 
 L = O(NΩ), we can see that the block structure of an admissible
partitioning is rather similar to that arising for one-dimensional surfaces. Since a lower spatial dimension
leads to a better sparsity constant, this property makes the algorithm faster. Note that nonzero blocks arise
only in the second stage of our algorithm, i.e., for levels � = L0 + 1, . . . , L.

5 Possible Application in FETI Methods

In this section we discuss the iterative version of our Schur complement method applied in the framework of
the so-called Finite Element Tearing and Interconnecting (FETI) methods (cf. [3, 1, 15, 17]). The BEM based
version of the FETI methods, the so-called BETI approach was described in [16]. The FETI/BETI method is
recognised as one of the most powerful versions of modern parallel iterative domain decomposition techniques.
The FETI system of equations to be solved is algebraically equivalent to the Schur complement equation

TΓU = F :=
M∑
i=1

RT
Γi
Fi, U, F ∈ R

IΓ , (5.1)

where Fi = {〈ψi, φj〉}j∈IΓi
, and the matrix TΓ =

M∑
i=1

RT
Γi

TiRΓi can be derived by any of the approaches

described above (it may be Ti = Ti,FEM or Ti = Ti,BEM ). In contrast to the situation with our approximate
direct solver, now the vector components are given on each subdomain boundary Γi separately. The global
continuity is then enforced by Lagrange multipliers leading to a saddle point problem that can be solved
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by a preconditioned iterative method via its dual formulation. Both fast calculation of the residual and an
implementation of the corresponding interface preconditioner, are based on the H-matrix approximation to
Ti and T−1

i .
In the traditional way, we derive the FETI/BETI formulation starting from the equivalent minimisation

problem. Due to a0 > 0 in (2.1), all local matrices Ti, i = 1, . . . ,M are invertible (otherwise, one has to apply
the corresponding pseudo-inverse T+

i ). Define a functional

Φ(V ) :=
M∑
i=1

[
1
2 〈TiVi, Vi〉IΓi

− 〈Fi, Vi〉IΓi

]
, V =

M⊕
i=1

Vi, Vi ∈ R
IΓi ,

and introduce matching matrices Bi ∈ R
IΓ×IΓi , where each row is related with a pair of matching nodes. Each

row has the entries 1 and −1 for the indices corresponding to the matching nodes and 0 otherwise.
Now equation (5.1) is equivalent to the solution of a constraint minimisation problem

Φ(U) = min
V1,...,VN :

MP

i=1
BiVi=0

Φ(V ). (5.2)

Introducing the Lagrange multiplier Λ, problem (5.2) is reduced to the saddle point problem⎛
⎜⎜⎜⎝

T1 . . . 0 BT
1

...
. . .

...
...

0 . . . TM BT
M

B1 . . . BM 0

⎞
⎟⎟⎟⎠
⎛
⎜⎜⎜⎝

U1

...
UM

Λ

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

F1

...
FM

0

⎞
⎟⎟⎟⎠ . (5.3)

With TD := blockdiag{T1, . . . ,TM}, B := {B1, . . . ,BM} and F := {F1, . . . , FM}, we obtain the dual
formulation

BT−1
D BT Λ = −T−1

D BTF

which can be solved by an iterative PCG method with a spectrally close preconditioner C of the form

C−1 = GT TDG.

Different proposals for the choice of a matrix G can be found in the literature on the FETI methods
(cf. [1, 15, 17] and references therein). The important observation is that both matrices TD and T−1

D =
blockdiag{T−1

1 , . . . ,T−1
M } can be computed in parallel and then stored in the H-matrix format with almost

linear cost in NΓ. Hence, the same is true for the corresponding matrix-by-vector multiplication with BT−1
D BT

and GT TDG, provided that a matrix G can be implemented with linear expense in NΓ. Hence, our approach
can be directly incorporated into the FETI (resp. BETI) iterative domain decomposition methods leading
to a linear-logarithmic cost in NΩ (resp. in NΓ) in the case of generic variable (resp. piecewise constant)
coefficients.

6 Numerical Results

6.1 FEM-Galerkin Approximation

In the first numerical example, we simplify the situation and apply Algorithm DII to all blocks using the SVD
compression of the corresponding admissible matrix blocks in BΓ,FEM , considered in the full format. This
algorithm leads to a polynomial cost on the preprocessing step, however, in this calculation we only investigate
the H-matrix approximability of BΓ,FEM and its inverse. Our fast direct algorithm (of almost linear cost)
also exploits the hierarchical format of the local matrices Ti,FEM (same for Ti,BEM ).

The following tables show numerical results for the scaled Laplacian in Ωi with randomly chosen coefficients
µi ∈ (0, 1] (cf. (3.2)). Presented are the times for computing Ti,FEM , for the H-matrix inversion of B =
BΓ,FEM , B−1

Γ,FEM and for its matrix-by-vector multiplication (MV) as well as for the accuracy of this inversion
(computed on a SunFire 6800 (900 MHz)).

Here ‖I−BB−1
H ‖2 denotes the spectral norm. The results in the first table correspond to a decomposition

of a square into 6× 6 subsquares. In the second table, 8× 8 subdomains were used. Note that the computing
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times Ti,BEM for NΩ ≈ 4 · 106 and NΩ ≈ 16 · 106 are about 30 sec and 100 sec, respectively3. One can see the
almost linear complexity of the inversion algorithm. The moderate growth of the relative error is due to the
choice of a fixed k (in the theory, k should grow logarithmically in NΓi , see Fig. 2).

6 × 6 domains (k = 9)
NΩ NΓ t(Ti,FEM ) t(B−1

Γ,FEM) t(MV ) ‖I −BB−1
H ‖2

16 641 1 245 0.6 sec 10.7 sec 1.3610-2 sec 7.710-6
66 049 2 525 12.2 sec 30.3 sec 3.9810-2 sec 8.010-6

263 169 5 085 105.1 sec 94.2 sec 9.4310-2 sec 4.610-5
1 050 625 10 205 696.2 sec 218.1 sec 1.8510-1 sec 7.110-5

8 × 8 domains (k = 9)
NΩ NΓ t(Ti,FEM ) t(B−1

Γ,FEM ) t(MV ) ‖I −BB−1
H ‖2

16 641 1 729 0.1 sec 13.9 sec 2.2610-2 sec 6.910-6
66 049 3 521 3.8 sec 41.2 sec 5.3810-2 sec 2.310-5

263 169 7 105 43.3 sec 126.8 sec 1.2710-1 sec 3.910-5
1 050 625 14 273 180.7 sec 326.7 sec 2.6610-1 sec 4.410-5

If we are interested in an efficient preconditioning, the local rank k can be chosen adaptively to achieve the
required accuracy ε (see Fig. 2 showing ε depending on the rank k).

Rank
1 3 5 7 9 11 13 15 17 19

1e−11

1e−9

1e−7

1e−5

1e−3

1e−1

1e1
n=66049
n=263169
n=1050625

Figure 2: Preconditioning with low local ranks.

6.2 BEM-Galerkin Approximation

The numerical results below are based on the BEM-representation (3.8) for the local Schur complement with
piecewise constant FE for the Galerkin space Lih (cf. Remark 3.2). To compute the matrix entries of the
corresponding stiffness matrices we use the OSTBEM code (cf. [18]). In general, we construct the H-matrix
representation of all four matrices involved based on the block structure via standard admissibility criteria.
However, in this particular numerical example, we have a relatively small subdomain problem size NΓi so
that the matrix Ti,BEM can be easily computed in the full matrix format (t(Ti,BEM ) is the corresponding
computational time). For comparison, in the case ofNΩ = 1 050 625, 4 198 401 and 16 785 409 the corresponding
cost of the H-matrix arithmetics is about 10, 30 and 100 sec, respectively (compared with 6.6, 62, 7, 555.4 sec
in the following table).

3t(Ti,BEM ) includes only the dominating cost of two matrix-matrix multiplications and one matrix inversion in the H-matrix
format (cf. (3.8)).
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6 × 6 domains (k = 9)
NΩ NΓ t(Ti,BEM ) t(B−1

Γ,BEM ) t(MV ) ‖I −BB−1
H ‖2

16 641 1 245 0.04 sec 6.0 sec 5.110-3 sec 3.310-5
66 049 2 525 0.2 sec 20.9 sec 2.610-2 sec 1.410-5

263 169 5 085 1.0 sec 64.8 sec 6.710-2 sec 4.410-5
1 050 625 10 205 6.6 sec 167.3 sec 1.410-1 sec 4.410-5
4 198 401 20 445 62.7 sec 453.2 sec 3.110-1 sec 5.710-5

16 785 409 40 925 555.4 sec 1075.6 sec 6.310-1 sec 7.710-5

Extrapolating these results by making use of the H-matrix format for all matrices, problem sizes of about 250
million unknowns should be reachable.

6.3 Multilevel Evaluation of Local Schur complement

We present numerical results illustrating the potential efficiency of a direct multilevel domain-decomposition
method by the recursive Schur complement evaluation (see §5.2 in [8]). To compute the local Schur complement
matrix Ti,FEM in each subdomain Ωi, we apply the same domain decomposition algorithm as in §2, by making

use of the decomposition Ωi =
M⋃

j=1

Ωij , that now does not require to compute the local inverse A−1
Ωi

. Instead,

we have to compute M times an H-matrix inverse of the size Ni/M plus inversion of the “small” interface
matrix. We benefit from:

(a) A reduction of the computational time and relaxed requirements on the memory;

(b) good scalability of the corresponding parallel algorithm for large number of processors (cf. [8]).

The effect in item (a) is related to the observation that we have only linear-logarithmic scaling for the
complexity of the H-matrix inverse, so that the logarithmic factor is really visible (see the table below). Hence
we can see that M ·W (A−1

Ωij
) ≤ σW (A−1

Ωi
) (with σ ≈ 1/3 observed in the table below). Here and in the following

W (·) denotes the cost of the corresponding matrix operation. If we perform L ≥ 1 levels of recursion then the
relation NL+1 = ML N1 holds, where NL+1 and N1 mean the problem size for the initial (level � = L+1) and
the smallest refined (level � = 1) domains, respectively. Now the total work on level L + 1 can be estimated
by

WL+1 = MLO(N1 logq N1) = O(NL+1 logq N1)

(we ignore the asymptotically lower cost to handle the interface matrices), which indicates that the logarithmic
factor in the complexity estimate can be relaxed since one can assume logq N1 = O(1).

Fig. 3 below represents examples of multilevel decomposition of Ω. The multilevel parallel algorithm

Figure 3: Multilevel 2 × 2 (left) and 4 × 4 decompositions.

based on 2×2 decomposition is illustrated by Fig. 4, where subdomains on different levels are associated with
different processors.
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Figure 4: Multilevel parallel algorithm based on 2 × 2 decomposition.

In the following we use a 4 × 4 decomposition. We introduce L ≥ 1 levels of recursion, � = 1, . . . , L + 1
with L = 4. We start from level � = 5 with the problem size N5 = 1 050 625. Now the degrees of freedom and
the four subdomains on level � = 4 will be further decomposed into four parts and so on until we reach level
� = 1. The problem size on level � = i is Ni = N14i−1, N1 = 4225 for i = 1, . . . , L+ 1. On each subdomain
of level � = 3, . . . , L+ 1 one has the matrix size N�−2, thus we recursively apply the algorithm on level �− 2
to compute the local inverse matrix A−1

i,� on level �. This leads to the following recursion for the complexity
bound:

W (A−1
i,� ) = 16W (A−1

i,�−2) +W (B−1
Γ,�−2).

Based on the table below, the simple calculation

WML(A−1
4,�) = 16(16 × 0.1 sec + 0.8 sec) + 16.9 sec ≈ 1 min,

shows that we gain a factor about 33 compared with 2020 sec depicted in the last line of our table. Similarly,
an extrapolation using the two smaller grids exhibits that our direct solver applied to the problems with
NΩ = 4 · 106, NΩ = 16 · 106, would take about 113 sec, 1080 sec, respectively, for each subdomain.

4 × 4 domains (k = 9)
NΩ NΓ t(Ti,FEM ) t(B−1

Γ,FEM) t(MV ) ‖I −AA−1
H ‖2

4 225 369 0.1 sec 0.8 sec 1.2010-3 sec 3.210-6
16 641 753 3.8 sec 3.7 sec 3.2010-3 sec 4.210-6
66 049 1 521 43.2 sec 16.9 sec 9.1010-3 sec 7.710-6

263 169 3 057 317.4 sec 48.3 sec 4.1810-2 sec 1.310-5
1 050 625 6 129 2 020.1 sec 118.8 sec 8.9210-1 sec 2.110-5

Concerning the parallelisation issue, suppose that we have a multiprocessor system with

p = ML,

processors with shared memory, where M is the number of subdomains on each level of decomposition. Then
distributing properly all p processors between L levels using the tree structure (we put M processors on level
L, then associate with each of them M processors on the next level and so on), we naturally enjoy the good
scalability with respect to a large number of processors.
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[7] W. Hackbusch: A sparse matrix arithmetic based on H-matrices. Part I: Introduction to H-matrices.
Computing 62 (1999), 89-108.

[8] W. Hackbusch: Direct domain decomposition using the hierarchical matrix technique. In: Domain decom-
position methods in science and engineering. Fourteenth international conference on domain decomposition
methods (I. Herrera, D.E. Keyes, O.B. Widlund, and R. Yates, eds.), pages 39–50. National Autonomous
University of Mexico, Mexico City, 2003.

[9] W. Hackbusch and B.N. Khoromskij: A sparse H-matrix arithmetic. Part II: Application to multi-
dimensional problems. Computing 64 (2000), 21-47.

[10] W. Hackbusch and B.N. Khoromskij: A sparse H-matrix arithmetic: General complexity estimates. J.
Comp. Appl. Math., 125 (2000), 479-501.

[11] W. Hackbusch, B.N. Khoromskij, and R. Kriemann: Hierarchical matrices based on a weak admissibility
criterion. To appear in Computing (2004).

[12] G.C. Hsiao, B.N. Khoromskij, and W.L. Wendland: Preconditioning for boundary element methods in
domain decomposition. Engineering Analysis with Boundary Elements 25 (2001), 323-338.

[13] B.N. Khoromskij and M. Melenk: Boundary concentrated finite element methods. SIAM J. Numer. Anal.
41 (2003), 1-36.

[14] B.N. Khoromskij and G. Wittum: Numerical solution of elliptic differential equations by reduction to the
interface. LNCSE 36, Springer-Verlag, Berlin, 2004.

[15] A. Klawonn and O.B. Widlund. FETI and Neumann-Neumann iterative substructuring methods: connec-
tions and new results. Comm. Pure Appl. Math. 54 (2001), 57-90.

[16] U. Langer and O. Steinbach: Boundary element tearing and interconnecting methods. To appear in Com-
puting (2004).

[17] J. Mandel and R. Tezaur. On the convergence of dual-primal substructuring methods. Numer. Math. 88
(2001), 543-558.

[18] O. Steinbach: Stability estimates for hybrid coupled domain decomposition methods. Lecture Notes in
Mathematics, 1809. Springer-Verlag, Berlin, 2003.

[19] W.L. Wendland: Strongly elliptic boundary integral equations, In: The state of the art in numerical
analysis (A. Iserles and M. Powell, eds.), Clarendon Press, Oxford, 1987, pp 511-561.

14


