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Abstract

H-matrices, as they were introduced in previous papers, allow the usage of the common matrix
arithmetic in an efficient, almost optimal way. This article is concerned with the parallelisation of
this arithmetics, in particular matrix building, matrix-vector multiplication, matrix multiplication
and matrix inversion.

Of special interest is the design of algorithms, which reuse as much as possible of the corre-
sponding sequential methods, thereby keeping the effort to update an existing implementation at
a minimum. This could be achieved by making use of the properties of shared memory systems as
they are widely available in the form of workstations or compute servers. These systems provide
a simple and commonly supported programming interface in the form of POSIX-Threads.

The theoretical results for the parallel algorithms are tested with numerical examples from
BEM and FEM applications.

AMS Subject Classification: 65F05, 65F30, 65Y05, 65Y10, 68W10
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1 Introduction

Working with matrices of size n × n often involves a complexity of O (n2
)

or even O (n3
)

which
restricts the applicability of these algorithms. However, for some problems defined by boundary
element methods or elliptic partial differential equations, this complexity can be reduced to an
almost linear behaviour. For this, in [13] a special matrix format was introduced, the so-called
hierarchical matrices or H-matrices, for short.

Unfortunately, the complexity estimates of H-matrix algorithms often include large constants (see
[11]), thereby often reducing the competitiveness of H-matrices. Hence, the wish arises to increase
the efficiency of these methods, for which one way is in the form of parallelisation.

In this paper parallel algorithms for some of the most frequent tasks in the context of H-matrices
are presented, namely matrix building, matrix-vector multiplication, matrix multiplication and ma-
trix inversion.

Since often a sequential implementation of the H-matrix arithmetic is available, the presented
algorithms are designed with a minimal effort of changing these programs in mind. For this, the
properties of shared memory systems, i.e. computers with a global memory concurrently accessibly
by all processors, play a crucial role, for they allow the usage of simple, but efficient load balancing
algorithms. Together with the complexity of the H-matrix arithmetics, this leads to almost optimal
parallel algorithms.
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2 HIERARCHICAL MATRICES 2

The remainder of this paper is organised as follows. In the next section, H-matrices and the
corresponding basic concepts are defined. It also contains the model problems which are used for
the numerical experiments. Section 3 describes shared memory systems and how to program these
computers. The load balancing methods used in this article are introduced in Section 4. Finally, in
Section 5 the parallel H-matrix algorithms are discussed.

2 Hierarchical Matrices

In this section the basic definitions and notions in the context of H-matrices are recalled. For a
more, in-depth introduction please refer to [4] or [11]. Furthermore two model problems are defined,
which are used in the numerical examples in the next sections.

Definition 2.1 (Cluster tree) Let I = {0, . . . , n − 1} be an index set and T (I) = (V,E) a tree
with vertices (nodes) V and edges E ⊆ V × V . For a vertex v ∈ V the set S(v) = {w | (v,w) ∈ E}
defines all sons of v. T (I) is called a cluster tree over I if

1. I is the root of T (I) and

2. a vertex v ∈ V is either a leaf, i.e., S(v) = ∅, or v = ∪̇w∈S(v)w.

Starting with the root of T = T (I), level sets T (�) can be recursively defined by

T (0) = {I} and T (�) = {v | ∃w ∈ T (�−1) : v ∈ S(w)}.

All nodes v ∈ T (�) are said to be on level �. The depth of the cluster tree is define by the maximal
level max�∈� T (�) �= ∅. The set of leaves of a cluster tree is denoted by L(T ).

In practice the number of sons is usually restricted to 2 resulting in a binary tree. For simplicity,
this case is also assumed in this article. Such a tree is also the output of a typical algorithm used
to construct a cluster tree: binary space partitioning or BSP (see [3]). In a (cardinality balanced)
BSP algorithm geometrical data corresponding to a cluster τ is divided along an adaptively chosen
hyperplane into two subsets τ ′, τ ′′, such that ||τ ′| − |τ || ≤ 1. The BSP method is afterwards applied
recursively to the sons τ ′ and τ ′′ until a minimal cluster size nmin ≥ 1 is reached. Here, a value of
about 30 − 60 proved efficient in most practical computations.

Definition 2.2 (Block cluster tree) Let T (I) be a cluster tree over the index set I and T (I × I)
a cluster tree over the product index set I × I. If for all v ∈ T (�)(I × I) vertices w, u ∈ T (I)(�) exist,
such that v = (w × u) then T (I × I) is called a block cluster tree based on T (I).

Since the cluster tree T (I) is assumed to be a binary tree, a corresponding block cluster tree
T (I × I) is a quad-tree.

To restrict the theoretical limit of n2 for the number of leaves in a block cluster tree T (I × I) =
(V,E) an admissibility condition z : V → � is introduced, which determines whether a block cluster
is a leaf or not. By a recursive algorithm (see [3]), a minimal block cluster tree w.r.t. to z, i.e., one
with a minimal number of nodes, can then be constructed.

A crucial part in most complexity estimates in the context of H-matrices is played by the sparsity
of the block cluster tree, which can be expressed by:
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Definition 2.3 (Sparsity constant) For a block cluster tree T = T (I × I) based on T (I) the
sparsity constant csp = csp(T ) is defined as:

csp := max
τ∈T (I)

|{σ | (τ, σ) ∈ L(T )}|. (2.1)

The transition from a (minimal) block cluster tree to an H-matrix can be done by creating
low-rank matrices for all admissible block clusters and dense matrices for all inadmissible blocks.

Definition 2.4 (H-matrices) Let T = T (I × I) be a (minimal) block cluster w.r.t. to an admis-
sibility condition z. The matrix A ∈ �I×I is called an H-matrix with local rank k > 0, if for all
admissible leaves v ∈ L(T ) the matrix block A|v has at most rank k, i.e., rank(A|v) ≤ k. The set of
all H-matrices induced by T, z and k is denoted by H(T, k, z).

The low rank of all matrices A ∈ �τ×σ corresponding to admissible blocks (τ, σ) ∈ L(T ) allows
a representation as an R-matrix:

A =
k−1∑
i=0

aib
T
i with ai ∈ �τ and bi ∈ �σ.

In the following this representation is used for all low-rank matrix blocks of an H-matrix.
Instead of choosing a fixed rank in the definition of H-matrices, a fixed precision ε ≥ 0 is also

usable. In this case the rank of all R-matrices M ′ is defined by controlling the relative error w.r.t.
to the exact matrix M : ‖M − M ′‖ ≤ ε‖M‖.

2.1 Examples

The first example is based on the Fredholm integral equation

λu(y) +
∫

Γ
κ(x, y)u(x) dsx = f(y), y ∈ Γ, (2.2)

with a given right-hand side f and the domain of integration Γ ⊂ �3 being a 2-dimensional manifold
(see Figure 1). This kind of problem arises for instance from the boundary element method (BEM)
and is therefore in the following referred to as the BEM-example. The kernel function considered is
defined by the single layer potential

k(x, y) =
1
4π

1
|x − y| .

In order to solve (2.2) numerically, the domain Γ is divided into triangles: Γ = ∪i∈Iπi, I =
{0, . . . , n − 1}. Since the Galerkin method is applied in this example, this triangulation is used to
define a finite dimensional trial space Vh with piecewise constant basis functions {ϕi}i∈I in which
the solution u is approximated, e.g., uh =

∑
i∈I uiϕi is looked for. The modified equation leads to a

linear equation system (see [12]).
Due to the asymptotic smoothness of k (see [6]) the matrix blocks M ∈ �τ×σ can be approxi-

mated, if
min{diam(Xτ ),diam(Xσ)} ≤ η dist(Xτ ,Xσ), (2.3)

with Xτ = ∪i∈τ suppϕi and η ≥ 0. Equation (2.3) can therefore be used as the admissibility condition
in this example. Applying adaptive cross approximation (ACA) (see [1] or [2]), a low-rank matrix
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Figure 1: Integration domain and block cluster tree of the BEM-example

M ′ ∈ �τ×σ with a sufficient approximation for these admissible matrix blocks can be computed in
time O (k2(|τ | + |σ|)). ACA is also used in this example to build all R-matrices. The final rank of
M ′ is either fixed or variable with a fixed precision.

Since the construction of the BEM matrix can be quite time consuming, the BEM-example is
used to demonstrate matrix building. Furthermore, since Krylov methods are often applied to solve
these kind of problems, numerical experiments for the matrix-vector multiplication are also done with
the BEM-example. The computer system which was used to run both experiments was a HP9000
Superdome with 875 MHz PA-RISC 8700 processors.

For the second example the Poisson equation is chosen, defined by

−∆u = f in Ω = [0, 1]2 and u = 0 on ∂Ω. (2.4)

Again the Galerkin method with a finite dimensional ansatz space is used to compute an approxi-
mated solution, which leads to the finite element method or FEM (see [5]). Therefore, this example
is afterwards referred to as the FEM-example. In contrast to the previous ansatz, the basis functions
are piecewise linear. For the construction of the block cluster tree, the same admissibility condition
is used as in the BEM case. An example of the resulting block cluster tree is shown in Figure 2.
The linear equation system defined by this ansatz is represented as an H-matrix. Due to the local
support of the basis functions and the separation of clusters in admissible blocks all R-matrices have a
zero rank. Therefore, no approximation is necessary to represent the system matrix in the H-matrix
format.

Figure 2: Block cluster tree of the FEM-example

The FEM-example is used to demonstrate the multiplication and inversion of an H-matrix, as it
occurs in solving problem (2.4) or in the computation of matrix equations. All numerical experiments
for the FEM-example were computed on a SUN Sunfire 6800 with 900 MHz UltrasparcIII processors.
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3 Shared Memory Systems

Necessary for the design and implementation of parallel algorithms is a model of the underlying
computer system. For sequential computers the von Neumann model, which can be generalised in
the random access machine or RAM (see [8]), proved successful and allowed to design algorithms
with predictable execution times on nearly all computers.

For parallel systems many models exist which try to approximate the different aspects of real
computer systems. One of the simplest model is the parallel RAM or PRAM (see [9]) which is
the analog to the RAM with more than one processor. The PRAM consists of p processors and a
global memory which can be accessed by all processors simultaneously as is shown in Figure 3. All
data transfers between different processors are handled by this memory system. This avoids com-
munication which is therefore neglected in the analysis of parallel algorithms. Hence, all complexity
estimates contain only terms related to computation.

CPU CPU CPU CPU

Memory

. . .

Figure 3: Parallel Random Access Machine

Although not suited to describe all parallel systems, there exists a class of computers which
follow the principles of the PRAM, namely shared memory systems. As the name indicates, the
main property of such computers is a global memory, accessible by all processors as in the PRAM.
The concurrent access of this memory is usually implemented by a very fast communication network
between the processors (see [15]). Unfortunately such a fast memory interconnect can only be build
with justifiable costs for a small number of processors, typically in the range of 2 up to 64 processors.
Therefore, the algorithms presented in this paper are restricted to these values of p.

Since most computer languages lack the support for parallel programming, a special interface
is needed to use the shared memory with more than one processor. On many systems this can be
accomplished by using threads. Threads are parallel execution paths in a single process, thereby
sharing all resources of this process, e.g., the address space or memory. A common interface for
threads is defined by the POSIX threads or Pthreads (see [7]).

Unfortunately the Pthread interface can be quite complex and often distracts from the actual
problem to solve. Therefore a different approach in the form of a thread pool, which consists of a
set of p fixed threads, is used. Any job, which is supplied to the thread pool is assigned to an idle
thread and afterwards executed. After finishing the job, the thread is set free and can be reused by
the thread pool. The interface for such a thread pool can be restricted to the following functions:

• init(p): initialises the thread pool with p threads,

• run(j): associate job j with an idle thread and execute it; if no unused thread is available, the
function blocks, i.e., halts further execution, until a thread finishes,

• sync all(): synchronise with the termination of all jobs handled by the thread pool.
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Another function which allows the synchronisation with a specific job could be added to the list
but since it is not used in this paper, it is neglected. A complete implementation of such a thread
pool in the C++ computer language can be found in [16].

Beside the obvious advantage of having a shared memory, this also leads to problems, if two or
more processors want to change the same data. Since the result is not predictable, it has to be
avoided. Hence, some kind of protection has to be introduced, which is supplied in the PThread
interface in the form of mutices. A mutex is a variable which is either locked or unlocked. Locking an
already locked mutex blocks the computation until another processor unlocks the mutex. By this,
one can ensure that only one processor at a time is inside a critical section of an algorithm.

4 Load Balancing

In this section the algorithms for distributing the load of the H-matrix algorithms on p processors are
introduced. At this, two different types of load balancing are used: online and offline scheduling. An
online scheduling method assigns a job to a specific processor during the execution of the algorithm.
In contrast to this, an offline scheduling algorithm computes the distribution a priori, i.e., before the
computation starts.

The main advantage of online scheduling is that no knowledge about the costs of the individual
task which are executed is required. On the other hand, often offline scheduling theoretically results
in a better approximation of an optimal scheduling, i.e., one with a minimal execution time.

4.1 List-Scheduling

List-Scheduling is one of the oldest online load balancing algorithms. The basic idea behind it is
to assign the next not yet executed job to the first idle processor. For a set J = {J0, . . . , Jm−1}
of m tasks which should be scheduled to p identical processors, the scheduling algorithm can be
formulated as:

for all j ∈ J do
run( j );

sync all();

Here, the interface from the thread pool introduced in the previous section was used. Since the
function run(j) blocks until an idle thread is available, the next job is executed on the first free
processor.

In [10] a discussion of the worst case behaviour of list scheduling can be found, from which the
result is shown in the following lemma.

Lemma 4.1 For a set J of jobs let tmin(J, p) be the minimal time needed to execute all jobs on a
parallel machine with p identical processors. Furthermore, let tLS(J, p) be the time needed by list
scheduling. Then the following holds:

tLS(J, p) ≤
(

2 − 1
p

)
tmin(J, p). (4.1)

The upper limit in (4.1) is reached, if very costly jobs are executed last. By ordering the jobs
according to their costs, the factor in (4.1) can be reduced to 4

3− 1
3p . The resulting algorithm is known

as Longest Process Time scheduling or LPT scheduling. Unfortunately this requires the knowledge
of the costs and can therefore only be used in offline load balancing.
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4.2 Sequence Partitioning

In contrast to list scheduling where a set of jobs was considered, sequence partitioning aims at
distributing a sequence, i.e., an ordered set of jobs J = {j0, . . . , jm−1} with costs {c0, . . . , cm−1}, ci ≥
0. The sequence partitioning problem to solve is then defined by:

Find delimiters r0 = 0, . . . , rp = m−1 such that the costs maxp−1
q=0

(∑rq+1

i=rq
ci

)
of the most

expensive subsequence is minimal.

In [18] an algorithm is described which solves this problem in time O (mp).

Z curve Hilbert curve

Figure 4: Examples for space filling curves

Sequence partitioning is used in Section 5.2 to distribute the H-matrix. For this an order has
to be defined for the matrix blocks or leaves of the block cluster tree T . One way to define such
an ordering is by mapping T to the unit-square and applying space-filling curves (see [19]). These
curves describe a surjective mapping from the unit interval [0, 1] to the unit square [0, 1]2. In Figure 4
two examples of such curves are presented, the Z -curve and the Hilbert-curve. Space filling curves
pass through all points of [0, 1]2 and hence through all leaves of T . The order in which each node is
reached defines the sequence used in the sequence partitioning algorithm (see Figure 5).

Z curve Hilbert curve Nodes per Processor

Figure 5: Space filling curves applied to H-matrices

For quad-trees, as they are considered in this article, this ordering can be computed by using a
depth first search (see [20]) on T . The order in which the sons of a node are traversed defines the
type of the space-filling curve. For this, each node is associated with a mark. Depending on this
mark, the ordering and the corresponding marks of the sons are set. Figure 6 shows this construction
for the Z and the Hilbert curve. The root of the block cluster tree is marked with an “A” in both
cases.
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Figure 6: Construction of space filling curves: Z (left) and Hilbert (right)

An interesting property of this kind of distribution is the “compactness” of the set of leaves,
scheduled to a specific processor (see Figure 5, right). This behaviour is due to the neighbour-
hood relationship of adjacent subintervals of space-filling curves, especially the Hilbert-curve. This
property will be of importance for the complexity of the parallel matrix-vector multiplication in
Section 5.2.

4.3 Quality of the Scheduling

Let tseq be the time needed by a sequential algorithm to solve a specific problem. The quality of
the distribution computed by list scheduling is measured w.r.t. to the best possible scheduling.
Unfortunately this optimal distribution is not necessarily in the order of tseq/p, i.e., resulting in an
optimal speedup of a parallel algorithm. Consider for example a set of jobs, with m tasks of cost 1
and one task of cost m′ � m. Obviously the total time is dominated by this large job, independently
of the number of processors.

The same is valid for sequence partitioning. The optimal partition does not guarantee a perfect
speedup if the costs of the jobs differ too much.

Block Cluster Tree admissible Blocks

l=1

l=2

l=3

l=4

Figure 7: Cost distribution for H-matrices

Fortunately in the context of H-matrices the distribution of the costs involved is not arbitrary
but dependent on the hierarchical decomposition of the index set. Consider for example the format
depicted in Figure 7 where all block clusters with different index sets are admissible. Since T (I) is a
cardinality balanced cluster tree, the resulting H-matrix contains the same amount of data on each
level, save the first one (see [13]). Hence, for p = l − 1 a perfect load balancing is possible if for
instance matrix-vector multiplication is considered. Since the number of processors is limited in this
paper (see Section 3), this case occurs even for small problem sizes.

This observation gives rise to the conjecture that almost all practical algorithms in the context
of H-matrices can be perfectly distributed on shared memory systems. Therefore in the following
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sections for an algorithm A with a sequential complexity WA it is assumed that the optimal parallel
complexity WA,opt(p) is given by

WA,opt(p) =
WA

p
. (4.2)

5 Parallel Arithmetics

Parallelising a sequential algorithm often results in a complete rewrite to achieve an optimal perfor-
mance. In contrast to this, the following parallel algorithms were designed with a special emphasis
on reusing as much as possible from an existing sequential implementation. Of course, an adequate
parallel efficiency was also sought.

Definition 5.1 Let t(p) denote the time needed by a parallel algorithm A with p processors. Then
S(p) := t(1)

t(p) denotes the parallel speedup and E(p) := S(p)
p = t(1)

p·t(p) the parallel efficiency of A.

For the remainder of this section, let I = {0, . . . , n − 1} be an index set and T (I) a cluster tree
over I. Furthermore let T = T (I × I) be a block cluster tree based on T (I). The H-matrices which
are considered in the following are not restricted to a fixed rank, but might also be defined by a fixed
precision (see Section 2). Therefore, the complexity estimates are only given w.r.t. corresponding
sequential formulae. For the exact estimates in the case of a constant rank, please refer to [11].

5.1 Matrix Construction

Building the H-matrix A ∈ H(T ) is usually accomplished by constructing the hierarchy which is
associated to inner nodes of T , i.e., nodes which are not a leaf, and building R-matrices for all
admissible leaves and dense matrices for all non-admissible leaves, respectively. This is shown in the
following recursive sequential algorithm:

procedure build matrix( b, T )
if b ∈ L(T ) then

if b is admissible then build R-matrix;
else build dense matrix;

else
build block matrix;

for all v′ ∈ S(v) do build matrix( v′, T );

endif; end;

As the computationally intensive part of this computation is concentrated in the matrix blocks
corresponding to leaves, it suffices to distribute this part of the algorithm. Furthermore, since the
cost for computing a matrix block is not necessarily known, e.g., as in the BEM example considered
in this paper, online scheduling techniques are preferred. The list scheduling algorithm in Section 4.1
can be used by moving the leaf-related computation into a special function which is then executed
in a thread of the thread pool:
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procedure build leaf( b )
if b is admissible then build R-matrix;

else build dense matrix;

procedure build matrix( b, T )
if b ∈ L(T ) then run( build leaf( b );
else build block matrix;

for all v′ ∈ S(v) do build matrix( v′, T );
endif; end;

Algorithm 5.1: Parallel Matrix-Construction using List Scheduling

Assuming a constant time for the construction of a block matrix and by using (4.1), the following
result for the execution time of Algorithm 5.1 is obtained.

Lemma 5.2 The building of an H-matrix A ∈ H(T ) using Algorithm 5.1 with p processors has
complexity of

WMB(n, p) = O
(
|V (T ) \ L(T )| + WMB(n, 1)

p

)
. (5.1)

Proof: Block matrices are built in Algorithm 5.1 for all inner nodes of the block cluster tree,
which results in O (|V (T ) \ L(T )|). Together with the complexity of computing the matrix blocks
corresponding to leaves (5.1) is obtained. �

If only the matrix blocks corresponding to leaves are needed, e.g., for the matrix-vector multipli-
cation, the building of block-matrices can be skipped in Algorithm 5.1. This also leads to an optimal
parallel complexity of

O
(WMB(n, 1)

p

)
for the resulting algorithm.

The following two tables prove this theoretical result. In the first table, the H-matrix defined by
the BEM example described in Section 2.1 is build with a constant rank k = 10.

Matrix building, fixed rank k = 10
n p = 1 p = 4 p = 8 p = 12 p = 16 Storage

t [s] t [s] E t [s] E t [s] E t [s] E in MB
3968 117.3 29.4 99.9 14.7 99.7 9.8 99.6 7.4 99.3 33
7 920 320.2 80.1 99.8 40.2 99.6 26.8 99.7 20.1 99.4 83

19 320 1042.6 261.1 99.8 130.6 99.8 87.2 99.7 65.5 99.5 258
43 680 2904.2 727.2 99.9 364.4 99.6 243.1 99.6 182.4 99.5 706
89 400 6964.6 1747.2 99.7 875.2 99.5 582.1 99.7 437.4 99.5 1670

184 040 16694.9 4179.0 99.9 2081.1 100.0 1391.4 99.9 1049.9 99.4 3980

As one can see, the parallel efficiency is almost perfect. Even for small problem sizes, an optimal
speedup is achieved indicating a small overhead induced by the thread pool.

In the second table the same example is used to built an H-matrix with a fixed precision of
ε = 10−4.
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Matrix building, fixed precision ε = 10−4

n p = 1 p = 4 p = 8 p = 12 p = 16 Storage
t [s] t [s] E t [s] E t [s] E t [s] E in MB

3 968 101.9 25.6 99.9 12.8 99.6 8.6 99.6 6.4 99.4 46
7 920 269.3 67.4 99.9 33.8 99.7 22.5 99.7 16.9 99.5 88

19 320 826.0 206.9 99.8 103.6 99.7 69.1 99.7 51.9 99.4 226
43 680 2258.9 566.2 99.8 283.7 99.6 192.2 99.5 142.0 99.4 577
89 400 5362.4 1347.8 99.5 675.3 99.3 448.7 99.6 337.2 99.4 1326

184 040 12741.6 3185.6 100.0 1596.3 99.8 1059.5 100.0 796.0 100.0 3079

The results are similar to those in the case of a constant rank. Hence, list scheduling provides a
very efficient method to parallelise the construction of H-matrices.

5.2 Matrix-Vector Multiplication

In the sequential case the matrix-vector multiplication

y := αAx + βy (5.2)

with an H-matrix A ∈ H(T ), vectors x, y ∈ �I and α, β ∈ � is performed by looping over the set
of matrix blocks M corresponding to a leaf (τ, σ) in T and computing the local product1 y|τ :=
αMx|σ + y|τ .

Unfortunately, applying list scheduling to this algorithm implies some kind of write-protection of
y (or parts of it), e.g., in the form of mutices, since more than one processor could access the same
part of y while applying a processor-local result. This potentially leads to a blocking of processors,
which should be avoided to maintain a sufficient parallel efficiency.

Alternatively the multiplication could be split into two phases. At first each processor computes
all local products and collects them in a temporary vector y′q := αAqx with y′q ∈ �I , 0 ≤ q < p

and Aq denoting the part of A containing all matrices assigned to processor q. This computation is
completely independent resulting in an optimal complexity of

WMV(n, 1)
p

.

Afterwards the sum y := y +
∑p−1

q=0 y′q is computed in parallel. At this, the vectors x and y are
assumed to be distributed among the processors, each holding a sub-vector xi and yi of size n/p.
Unfortunately, all processors could contribute to every coefficient of y and hence, the complexity of
the summation alone is O ((pn)/p) = O (n), spoiling the parallel efficiency.

This property of the list scheduling distribution is due to the unpredictable assignment of matrix
blocks to processors. That way, for a specific processor q the matrices in Aq can stem from all
parts of the block index set I × I as shown in Figure 8 (left). What is sought instead, is a more
“compact” distribution of the matrix blocks, which can be obtained by using sequence partitioning
and space-filling curves as described in Section 4.2 (Figure 8, right).

As explained above, the crucial part of a load balancing of the matrix blocks or block clusters,
respectively, is the number of processors contributing to a specific coefficient of y. This is expressed
in the sharing degree of a distribution:

1The scaling of y by β is assumed to be done beforehand
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Figure 8: Matrices scheduled to the same processor with List scheduling (left) and sequence parti-
tioning (right)

Definition 5.3 Let Lq ⊆ L(T ) denote the block clusters assigned to processor q. For i ∈ I define
the sharing degree dsh(i) of i as

dsh(i) = max{dr
sh(i), dc

sh(i)}, (5.3)

where dr
sh(i) = |{q | ∃(τ, σ) ∈ Lq : i ∈ τ}| and dc

sh(i) = |{q | ∃(τ, σ) ∈ Lq : i ∈ σ}|. Furthermore, let
dsh = maxi∈I dsh(i) be the sharing constant of I.

For dense matrices the sharing degree is
√

p (see [17]), whereas for typical sparse matrices, defined
by a FEM discretisation, dsh equals the number of entries per row, which is usually bounded by a
constant.

In Figure 9 the value of dsh for list scheduling and sequence partitioning with space-filling curves is
shown for a fixed problem size and an increasing number of processors. In the case of list scheduling,
for p ≤ 50 the sharing degree equals p. For larger values of p, the number of blocks per processor
gets smaller, thereby reducing the probability of contributing to an index. Hence, the dependence
of dsh is more of order

√
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Figure 9: Value of dsh for List scheduling and seq. partitioning with Z and Hilbert curve

The latter behaviour of dsh is visible from the beginning when using sequence partitioning with
space-filling curves. In this case, distributing the block cluster tree using the Hilbert curve has a
slight advantage compared to the Z curve.

Due to this results, the parallel matrix-vector multiplication seems to be more efficient when using
sequence partitioning, i.e., with an offline load balancing algorithm. The costs per matrix or block
cluster, respectively, which are needed for this type of scheduling, are defined by the representation
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of the matrix block M ∈ �τ×σ:

cM =

{
k(M)(|τ | + |σ|), (τ × σ) is admissible
|τ | · |σ|, else

,

where k(M) is the rank of M if using a R-representation.
For the final, parallel algorithm let Iq,vec denote the part of the index set associated to each

processor 0 ≤ q < p, as it is defined by the distribution of the vector y and Iq,mat = ∪(τ,σ)∈Lq
τ the

indices to which Aq contributes. The algorithm makes use of the two-step method: first the local
result is computed and afterwards these results are summed up in parallel.

procedure mv mul( i, α, A, x, β, y )

procedure mat vec ( i, β, yi, Ai, x )
yi := β · yi; y′

i := αAix;

end;

procedure sum ( i, yi )
Yi := {y′

j | Ii,vec ∩ Ij,mat �= ∅};
yi := yi +

∑
y′

j∈Yi
y′

j |Ii,vec ;

end;

for 0 ≤ i < p do run( mat vec( i, β, y, A, x ) ); endfor sync all();

for 0 ≤ i < p do run( sum( i, yi ) ); endfor sync all();
end;

Algorithm 5.2: Parallel matrix-vector multiplication

The complexity of the parallel matrix-vector multiplication can be estimated as:

Lemma 5.4 Computing the matrix-vector product (5.2) with an H-matrix A ∈ H(T ) with Algo-
rithm 5.2 on p processors has a complexity of:

WMV(n, p) = O
(WMV(n, 1)

p
+

dsh · n
p

)
. (5.4)

Using the
√

p behaviour of dsh in the case of sequence partitioning, (5.4) becomes

WMV(n, p) = O
(WMV(n, 1)

p
+

n√
p

)
.

For the limited range of processors considered in this paper, the first term in (5.4) should dominate
the overall complexity of the matrix-vector multiplication. This is also visible in the following
numerical examples. In the first table the time for 100 multiplications of an H-matrix with a fixed
rank k = 10 defined by the BEM example is presented.

Matrix-Vector multiplication, fixed rank k = 10
n p = 1 p = 4 p = 8 p = 12 p = 16

t [s] t [s] E t [s] E t [s] E t [s] E

3 968 11.7 3.3 88.9 1.8 80.0 1.3 73.2 1.3 56.6
7 920 30.9 8.5 90.8 4.6 83.5 3.5 74.3 2.9 66.2

19 320 94.9 25.9 91.7 13.5 87.8 9.5 83.1 7.5 79.2
43 680 251.7 70.9 88.7 36.0 87.4 23.9 87.9 18.9 83.8
89 400 556.4 152.2 91.4 80.0 87.0 53.4 86.9 41.1 84.7

184 040 1277.5 347.7 91.9 186.0 85.9 120.1 88.7 97.5 81.9
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The low efficiency for small problem sizes is not due to the summation but comes from other
sequential parts in the algorithm, e.g., management overhead. Since that part remains constant if n

is increased, the parallel efficiency grows and stabilises at about 80-90 %.
The same experiment is done with an H-matrix of a fixed precision (ε = 10−4). The results are

shown in the second table.

Matrix-Vector multiplication, fixed precision ε = 10−4

n p = 1 p = 4 p = 8 p = 12 p = 16
t [s] t [s] E t [s] E t [s] E t [s] E

3 968 9.6 2.6 93.2 1.6 73.3 1.3 61.2 1.3 47.7
7 920 23.8 6.3 94.8 3.7 79.7 3.1 65.1 2.4 63.1

19 320 66.7 17.2 96.9 9.6 87.2 7.0 79.6 5.6 74.2
43 680 169.6 44.6 95.1 22.8 93.2 15.7 90.0 13.0 81.7
89 400 346.2 91.1 95.0 47.1 91.9 32.8 87.9 25.7 84.2

184 040 780.5 202.6 96.3 107.1 91.1 69.8 93.2 55.0 88.6

Again, the parallel performance of the matrix-vector multiplication algorithm increases if an
H-matrix corresponding to a larger problem size is used.

These results demonstrate the applicability of Algorithm 5.2 for the matrix-vector multiplication
on shared memory systems. Furthermore, the same algorithm can also be used in a distributed
memory environment, e.g., a cluster, as is shown in [2].

5.3 Matrix-Multiplication

In this section the multiplication of two H-matrices A,B ∈ H(T ) is considered, but instead of
restricting the discussion to this basic operation, the more general update of a matrix C ∈ H(T )

C := αAB + βC (5.5)

with α, β ∈ � is used.
The sequential matrix multiplication can be implemented by using a recursive algorithm based

on the multiplication of block-matrices as is shown in the following procedure:

procedure mul ( α, A, B, β, C )
procedure rec mul ( α, A, B, C )

if A, B and C are block-matrices then
for i, j, l ∈ {0, 1} do rec mul( α, Ail, Blj , Cij );

else
6: C := C + αAB;

end;

C := βC; rec mul( α, A, B, C );

end;

Algorithm 5.3: Sequential matrix multiplication

The precise definition of the multiplication in line 6 is not considered. This can be done by
computing the exact product or by truncating the result to a fixed rank or a fixed precision. The
recursion is stopped if either a factor or the destination matrix is a leaf. It should be noted, that
since admissible blocks occur at more than one level in the block cluster tree, this stopping criterion
leads to a different depth of the recursion in different parts of the H-matrix.
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A straight-forward modification of Algorithm 5.3 using list scheduling is to execute the multi-
plications in line 6 on a free processor. Unfortunately this potentially leads to a lot of collisions if
different processors attempt to write to the same matrix-block. Consider for example the following
multiplication: (

C00 C01

C10 C11

)
:=

(
C00 C01

C10 C11

)
+

(
A00 A01

A10 A11

)(
B00 B01

B10 B11

)

For the matrix C00 one gets the following two operations

C00 := C00 + A00B00 and C00 := C00 + A01B10.

which might be executed on different processors resulting in a concurrent write to C00, which therefore
has to be protected by a mutex. But this potentially leads to a sub-optimal parallel efficiency of the
multiplication algorithm.

If, on the other hand, all multiplications with the same destination, e.g., C00, are scheduled to the
same processor, no collision can occur. This idea is used in the following to distribute the complete
multiplication. At first all products contributing to a specific matrix block have to be identified.
This can be done by a simulation process which is almost identical to the recursive multiplication
Algorithm 5.3 itself, only instead of computing the product, the involved matrices are stored:

procedure sim ( A, B, C )
if A, B and C are block-matrices then

for i, j, l ∈ {0, 1} do sim( Ail, Blj , Cij );
else

PC := PC ∪ {(A, B)}; LMM := LMM ∪ {C};
endif;

end;

Algorithm 5.4: Identify all products for a matrix block

After completing the simulation, the set PC contains all pairs of factors contributing to the matrix
C. Furthermore, all blocks which occur as destination matrices during the multiplication are stored
in the set LMM. Due to the stopping criterion in Algorithm 5.3, this set is not identical to L(T ) but
a superset.

The actual matrix multiplication is afterwards accomplished by using list scheduling on LMM.

procedure mul tp( α, β, T,LMM )
procedure scale ( β, C ) C := βC;

procedure mul block( α, C )
for all (A, B) ∈ PC do

C := C + αAB

for all C′ ∈ L(T ) do run( scale( β, C′ ) ); endfor; sync all();

for all C′ ∈ LMM do run( mul block( α, C′ ) ); endfor sync all();

end;

Algorithm 5.5: Parallel matrix multiplication

Unfortunately, due to the stopping criterion in Algorithm 5.3 this parallel multiplication method
still can produce concurrent access to the data of a matrix block, as is shown in the example
in Figure 10. For the matrix C00 one obtains the set PC00 = {(A01, B10)}. In the same way,
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C BA

A01

B10

=

00(C   )
01

Figure 10: Concurrent access of matrix data

P(C00)01 = {((A00)00, (B00)01), ((A00)01, (B00)10)} is determined for the matrix (C00)01. Since (C00)01
is a subblock of C00, computing the products for both matrices in parallel, therefore potentially
leads to a concurrent write-access to (C00)01. Since this situation was rarely observed in practical
computations, a mutex suffices to ensure correct data without spoiling the parallel efficiency of the
matrix multiplication.

Lemma 5.5 The parallel computation of the product (5.5) by Algorithm 5.4 and Algorithm 5.5 on
a parallel computer with p processors has a complexity of:

WMM(n, p) = O
(

csp(T )|V (T )| + WMM(n, 1)
p

)
(5.6)

Proof: Since only nodes of T can occur in the simulation algorithm, the size of the set LMM is
bounded by the size of the block cluster tree: |LMM| ≤ |V (T )|.

Let b(M) = (τ, σ) denote the corresponding block cluster in T of a matrix M ∈ �τ×σ. For a
matrix C the stopping criterion in Algorithm 5.4 ensures

∀ (A,B) ∈ PC : b(C) ∈ T (i) =⇒ (b(A) ∈ T (i) ∧ b(B) ∈ T (i)),

i.e., all factors are on the same level of T . Hence, |PC | ≤ csp(T ) holds for all C and the execution time
of Algorithm 5.4 is bounded by O (csp(T )|V (T )|). By using (4.1) the final result (5.6) is obtained. �

Although (5.6) still has a sequential part due to the simulation of the matrix multiplication, this
part is associated with a very small constant. Hence for the considered range of processors this term
can be neglected, leading to an almost perfect parallel efficiency of the multiplication of H-matrices.

Matrix multiplication, fixed rank k = 7
p = 1 p = 4 p = 8 p = 12 p = 16

n t [s] t [s] E t [s] E t [s] E t [s] E

4 096 72.9 18.6 98.0 9.8 93.0 8.1 75.0 5.1 90.0
16 384 564.3 142.5 98.7 73.7 95.6 58.8 80.0 38.2 92.3
65 536 3775.1 949.0 99.3 496.9 95.0 345.4 91.1 257.7 91.6

262 144 23062.1 5878.2 98.1 3048.3 94.6 2084.6 92.2 1591.2 90.6
1 048 576 132373.7 33357.5 99.2 17372.7 95.2 12029.9 91.7 9213.7 89.8

In the first example the time for multiplying matrices from the FEM example with a constant
rank of k = 7 is measured. One can see a slight drop of the parallel efficiency with a higher processor
number, although it stabilises at about 90 %. This behaviour is not due the determination of
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multiplication factors for each matrix block which is done sequentially since running Algorithm 5.4
takes less then 5 seconds even for the largest problem size.

Instead, the characteristics of the computer system have a large influence on the results. Espe-
cially since the computation of the matrix product involves many accesses to the global memory,
a non-optimal implementation of a PRAM leads to the results in the table. In particular, the low
efficiency in the case of p = 12 for smaller problem sizes seems to be directly related to the computer
hardware (see also [15]).

The same behaviour is visible in the second example with an H-matrix of a fixed precision of
ε = 10−6.

Matrix multiplication, fixed precision ε = 10−6

p = 1 p = 4 p = 8 p = 12 p = 16
n t [s] t [s] E t [s] E t [s] E t [s] E

4 096 44.8 12.4 90.3 6.2 90.3 4.9 76.2 3.3 84.8
16 384 376.1 101.8 92.1 51.5 90.9 41.8 74.6 26.3 89.4
65 536 2526.0 682.9 92.5 344.6 91.6 232.4 90.6 172.2 91.7

262 144 15089.6 4096.2 92.1 2057.5 91.7 1415.7 88.8 1041.2 90.6
1 048 576 84737.3 22617.4 93.7 11320.8 93.6 7706.1 91.6 5774.2 91.7

The dependency of the execution time from the number of processors is not as large as in the
previous case, especially since the drop of the parallel efficiency is already visible for p = 4.

Nevertheless, both experiments show a nearly optimal speedup of Algorithm 5.5 for the parallel
matrix multiplication.

5.4 Matrix-Inversion

For a 2 × 2 block matrix

A =

(
A00 A01

A10 A11

)
,

the inverse C = A−1, if it exists, can be written as

C =

(
A−1

00 + A−1
00 A01S

−1A10A
−1
00 −A−1

00 A01S
−1

−S−1A10A
−1
00 S−1

)
,

with the Schur complement
S = A11 − A10A

−1
00 A01.

This representation results from a Gaussian elimination applied to A and leads to the well known
(see [13] or [11]) algorithm

procedure invert ( A, C )
if A is a block matrix then

invert( A00, C00 );

T01 := C00A01; T10 := A10C00;
A11 := A11 − A10T01; invert( A11, C11 );

C01 := −T01C11; C10 := −C11T10;

C00 := C00 − T01C10;
else C := A−1;

end;

Algorithm 5.6: Computation of the inverse of an H-matrix



5 PARALLEL ARITHMETICS 18

As one can see, it only consists of recursive calls and matrix multiplications in the form of (5.5).
Hence, a parallelisation ansatz is to distribute these multiplications as was described in the previous
section, albeit this cannot lead to an optimal parallel efficiency. This is due to the intrinsic, sequential
nature of the inversion algorithm where the computation of the diagonal element cii of the matrix
C depends on the coefficients cjj for j < i.

On the other hand, it has to be recalled, that the number of processors is of a limited range. So
the hope is, that at least for this range, the sequential part of the inversion does not dominate the
computation.

Nevertheless, the complexity of the hereby defined parallel algorithm can be analysed without
this discussion. For that only the quasi-optimal result (5.6) is necessary.

Lemma 5.6 The parallel computation of the inverse of an H-matrix A ∈ H(T ) on p processors
using Algorithm 5.6 has a complexity of

Winv(n, p) = O
(

n2
minn +

Winv(n, 1)
p

)
(5.7)

Proof: Since only diagonal blocks are inverted in Algorithm 5.6, the recursion stops if A is of
size nmin × nmin. The costs for inverting a matrix block of this size can be estimated by O (n3

min

)
.

Together with n/nmin, the number of matrices of this size, the first term in (5.7) is gained.
The remaining complexity is defined by the multiplications in Algorithm 5.6 and can be esti-

mated by Winv(n, 1). Since these multiplications have a perfect parallel efficiency (see (5.6)), (5.7)
is completed. �

In practice however, not all multiplications can be parallelised with optimal parallel efficiency
as is assumed so far. Especially the multiplication of small blocks, or even leaves, cannot be dis-
tributed to p processors. Therefore, a minimal size n0 of the matrices is introduced, which defines
a switching point from working in parallel and doing all computations sequentially. The complexity
of Algorithm 5.6 has to be modified in this case resulting in

Winv(n, p) = O
(Winv(n0, 1) · n

n0
+

Winv(n, 1)
p

)
.

Still open is the question of the influence of the sequential part in the parallel inversion algorithm.
This is best answered by numerical experiments for which the results of the FEM model problem
are presented below. At first an H-matrix with a fixed rank of k = 7 was inverted.

Matrix inversion, fixed rank k = 7
p = 1 p = 4 p = 8 p = 12 p = 16

n t [s] t [s] E t [s] E t [s] E t [s] E

4 096 27.3 7.6 89.8 4.4 78.4 3.1 73.4 2.6 65.6
16 384 197.3 53.8 91.7 28.8 85.6 20.9 78.7 17.3 71.3
65 536 1237.2 329.2 94.0 179.4 86.2 132.9 77.6 110.8 69.8

262 144 7264.0 1937.0 93.8 1041.6 87.2 757.0 80.0 640.7 70.9
1 048 576 40316.4 10674.4 94.4 5849.4 86.2 4328.8 77.6 3619.3 69.6

As the results show, the parallel efficiency is dependent on the number of processors. The results
are also consistent throughout all level numbers, save the first. For p = 16 an efficiency of about
70 % is achieved, which demonstrates the usability of the parallel Gaussian elimination.

In the next table the results for inverting an H-matrix with a fixed precision of ε = 10−6 are
presented.



REFERENCES 19

Matrix inversion, fixed precision ε = 10−6

p = 1 p = 4 p = 8 p = 12 p = 16
n t [s] t [s] E t [s] E t [s] E t [s] E

4 096 12.8 3.6 88.5 2.1 76.3 1.6 65.9 1.4 56.4
16 384 114.5 30.8 92.9 17.5 81.8 13.0 73.4 11.5 62.2
65 536 806.0 213.2 94.5 119.8 84.1 91.7 73.2 78.9 63.8

262 144 4993.3 1330.5 93.8 745.1 83.8 562.0 74.0 487.1 64.1
1 048 576 28653.5 7610.3 94.1 4298.4 83.3 3275.0 72.9 2795.8 64.1

The results are only slightly worse than in the previous case with a fixed rank. Again, the parallel
efficiency for p = 16 indicates, that the simple parallelisation method used in Algorithm 5.6 leads to
an applicable parallel inversion algorithm.

Remark 5.7 By using the Newton iteration as it was described in [14] to invert an H-matrix, a
parallel algorithm with an optimal parallel efficiency can be obtained since only matrix multiplica-
tions are involved. In practice however, the Gaussian elimination is more efficient, i.e., less time
consuming, which can also be seen by comparing the numerical results in the tables above with the
corresponding results in the previous subsection.
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