
�����������	�
���
�

für Mathematik
in den Naturwissenschaften

Leipzig

H2-matrix arithmetics in linear complexity

(revised version: September 2005)

by

Steffen Börm

Preprint no.: 47 2004

H2-matrix arithmetics in linear complexity

S. Börm, Leipzig

September 8, 2005

For hierarchical matrices, approximations of the matrix-matrix sum and
product can be computed in almost linear complexity, and using these matrix
operations it is possible to construct the matrix inverse, efficient precondi-
tioners based on approximate factorizations or solutions of certain matrix
equations.

H2-matrices are a variant of hierarchical matrices which allow us to per-
form certain operations, like the matrix-vector product, in “true” linear com-
plexity, but until now it was not clear whether matrix arithmetic operations
could also reach this, in some sense optimal, complexity.

We present algorithms that compute the best-approximation of the sum
and product of two H2-matrices in a prescribed H2-matrix format, and we
prove that these computations can be accomplished in linear complexity. Nu-
merical experiments demonstrate that the new algorithms are more efficient
than the well-known methods for hierarchical matrices.

MSC Subject Classification: 65F30
Keywords: Hierarchical matrices, formatted matrix operations.

1 Introduction

The discretization of partial differential or integral equations leads to large systems of
linear equations, where the dimension increases with the desired accuracy. For partial
differential equations, the resulting matrices are sparse, i.e., most of their entries are zero,
and using this fact, very efficient techniques for storing and solving the corresponding
systems have been developed. For integral equations, the situation is more complicated:
since the underlying kernel functions are typically non-local, standard discretization
techniques lead to densely populated matrices, which cannot be treated directly.

In order to handle dense matrices efficiently, they are approximated not by sparse, but
by data-sparse representations: the panel-clustering technique [21] and the multipole
expansion [22, 15, 16] replace the kernel function by separable approximations, wavelet
methods [11, 25] use alternative discretization techniques in order to ensure that the
resulting matrix can be approximated by a sparse matrix.

1

Hierarchical matrices [17, 19, 12, 6] are the algebraic counterpart of panel-clustering
techniques: they work with low-rank approximations directly where the panel-clustering
technique uses degenerate expansions. Due to this algebraic approach, approximate
arithmetic operations on n-dimensional matrices can be performed in O(n logα n) oper-
ations for α ≥ 1 [12, 14]. This is a major advantage as compared to other data-sparse
representations, since the arithmetic operations can be used to construct preconditioners
or even approximative solvers for partial differential [1] or integral equations [13, 5].

H2-matrices [20, 7] are a variant of hierarchical matrices which allow us to store certain
(see [4] for a mathematically precise characterization) dense n-dimensional matrices in
only O(n) units of storage and for which the matrix-vector product can be evaluated in
O(n) operations. For the integral operators of classical potential theory, the construction
of H2-matrix approximants is straightforward and leads to very efficient algorithms [8,
9, 3], and recent results [4] indicate that H2-matrices can also be used to represent the
solution operators of elliptic partial differential equations.

Since each H2-matrix is also a hierarchical matrix, it is of course possible to apply the
well-established algorithms for approximative matrix arithmetics, and it is even possi-
ble to convert the resulting hierarchical matrix back to an H2-matrix. Obviously, the
complexity of algorithms derived in this way is at least as high as that of the underlying
operations for hierarchical matrices, i.e., it will not be in O(n), but only in O(n logα n).

This article presents algorithms which compute the best approximation of the sum and
product of H2-matrices in a prescribed H2-matrix format in linear complexity, i.e., only
O(n) operations are required for handling n-dimensional matrices. In the case of the
sum of two H2-matrices, this is not a surprising result, and the corresponding algorithm
is only included for the sake of completeness and as an introductory example. For the
product, on the other hand, the existence of a linear-time algorithm is remarkable, since
one would expect a higher complexity due to the fact that each of the O(n) blocks of
the product depends on O(log n) blocks in both factors. The key to the linear-time
algorithm lies in the recursive structure of H2-matrices, which allows us to improve the
efficiency by suitable pre- and postprocessing steps.

Another difference, as compared to hierarchical matrices, is that the new algorithms
only require products and sums of small matrices, but no intermediate truncation oper-
ations based on singular value decompositions, so their basic structure is much simpler
and their execution time much better. While the algorithms for hierarchical matrices
are only efficient if intermediate approximation steps are used, the new algorithms do
not require these steps and therefore compute the best approximation of the result in
the prescribed format.

The matrix-matrix multiplication is a fundamental operation required in the compu-
tation of approximate inverses, approximate LU and Cholesky factorizations or when
solving matrix equations, therefore it is to be hoped that the new algorithm can be
applied to improve the efficiency of numerical methods in these areas.

The algorithms presented in this article compute the best approximations of sums and
products of H2-matrices in a given block structure and for given expansion systems. In
order to find error bounds, we therefore have to investigate the approximation properties
of H2-matrix spaces. For matrices corresponding to integral operators, the necessary

2

bounds are well-known [8, 9, 5], but also the case of more general matrices has been
investigated recently [4].

There are parallels to standard finite element theory: Cea’s lemma bounds the error
of the Galerkin approximation by the error of the best approximation in the given finite
element space, then additional regularity assumptions have to be applied in order to
control the quality of this approximation. For H2-matrices, the addition and multipli-
cation algorithms compute the best approximation in the given H2-matrix space, and
we need additional properties of the matrices in order to find error bounds for this best
approximation.

Even if no a priori knowledge is available, it is possible to use algorithms which adapt
the expansion systems a posteriori in order to guarantee a prescribed accuracy. This is
still work in progress, but first experiments indicate that the new H2-matrix methods
are as flexible and already more efficient than standard hierarchical matrices. These
adaptive arithmetic algorithms will be addressed in a forthcoming paper.

2 H2-matrices

We will now briefly recall the structure of H2-matrices [20, 7].

2.1 Block structure

The basic idea is to split the matrix into a hierarchy of subblocks and to approximate
those blocks that satisfy an admissibility condition in a special data-sparse format. In
order to identify the admissible blocks efficiently, we introduce a hierarchy of subsets:

Definition 2.1 (Cluster tree) Let I be an index set. Let T be a labeled tree. We
denote its root by root(T), the label of t ∈ T by t̂ and the set of sons by sons(t,T) (or
just sons(t) if this does not lead to ambiguity).

T is a cluster tree for I if it satisfies the following conditions:

• ̂root(T) = I.

• If sons(t) �= ∅ holds for t ∈ T , we have

s1 �= s2 ⇒ ŝ1 ∩ ŝ2 = ∅ for all s1, s2 ∈ sons(t) and

t̂ =
⋃

s∈sons(t)

ŝ.

If T is a cluster tree for I, we will denote it by TI and call its nodes clusters. The set
of leaves of TI is denoted by

LI := {t ∈ TI : sons(t) = ∅}.

We note that the definition implies that t̂ ⊆ I holds for all clusters in TI and that LI
is a disjoint partition of I.

3

Definition 2.2 (Block cluster tree) Let I, J be index sets, and let TI and TJ be
corresponding cluster trees. Let T be a labeled tree. T is a block cluster tree for TI and
TJ if it satisfies the following conditions:

• root(T) = (root(TI), root(TJ)).

• Each cluster b ∈ T has the form b = (t, s) for t ∈ TI and s ∈ TJ and its label
satisfies b̂ = t̂ × ŝ.

• Let b = (t, s) ∈ T . If sons(b) �= ∅, we have

sons(b) =

⎧⎪⎨
⎪⎩
{t} × sons(s) if sons(t) = ∅, sons(s) �= ∅,
sons(t) × {s} if sons(t) �= ∅, sons(s) = ∅
sons(t) × sons(s) otherwise.

If T is a block cluster tree for I and J , we will denote it by TI×J and call its nodes
blocks.

This definition implies that a block cluster tree for I and J is a cluster tree for the
product index set I × J .

Definition 2.3 (Admissibility) Let TI and TJ be cluster trees for I and J . A predi-
cate adm : TI × TJ → B = {true, false} is called admissibility condition for TI and TJ
if it satisfies

adm(t, s) ⇒ adm(t′, s) and adm(t, s) ⇒ adm(t, s′)

for all t′ ∈ sons(t) and all s′ ∈ sons(s). This implies that all descendants of an admissible
pair are also admissible.

A block cluster tree is called admissible with respect to an admissibility condition adm
if it satisfies

b = (t, s) ∈ LI×J ⇒ (adm(t, s) or sons(t) = ∅ = sons(s)).

For an admissible block cluster tree, we split the set of leaves into

LI×J ,+ := {b = (t, s) ∈ LI×J : adm(t, s) holds} and LI×J ,− := LI×J \ LI×J ,+,

i.e., into admissible and inadmissible leaves. Usually, we will not work with adm, but
only use LI×J ,+ and LI×J ,−.

In practice, the admissibility condition is used to identify those blocks that can be
approximated by low rank or (e.g., in the case of H2-matrices) more specialized formats.

Definition 2.4 (Sparsity) Let TI×J be a block cluster tree for TI and TJ . It is called
sparse with sparsity constant Csp ∈ N if

#{s′ ∈ TJ : (t, s′) ∈ TI×J } ≤ Csp and #{t′ ∈ TI : (t′, s) ∈ TI×J } ≤ Csp

hold for all t ∈ TI and s ∈ TJ .

4

2.2 Factorized representation

The leaves of an admissible block cluster tree define a block partition of matrices
A ∈ RI×J . Typical hierarchical matrices are defined based on this partition: for all
admissible blocks b = (t, s) ∈ LI×J ,+, the corresponding matrix block A|t̂×ŝ is required
to be of low rank and stored in an appropriate factorized form.

The H2-matrix format modifies this representation: we require not only that admis-
sible blocks correspond to low-rank matrix blocks, but also that the range and image of
these blocks are contained in predefined spaces.

In order to simplify the presentation, we introduce a restriction operator χt : I → I
for each t ∈ TI by

(χt)ij =

{
1 if i = j ∈ t̂,

0 otherwise.

For t ∈ TI , s ∈ TJ , the matrix χtAχs ∈ RI×J is equal to A in the sub-block t̂ × ŝ and
zero everywhere else.

Definition 2.5 (Cluster basis) Let TI be a cluster tree. A family k = (kt)t∈TI of
integers is called rank distribution. For a given rank distribution k, a family V =
(Vt)t∈TI satisfying Vt ∈ RI×kt and χtVt = Vt for all t ∈ TI is called cluster basis for TI
with rank distribution k.

We can see that this definition implies (Vt)iν = 0 for all t ∈ TI , i ∈ I \ t̂ and
ν ∈ {1, . . . , kt}, i.e., only matrix rows corresponding to indices in t̂ can differ from zero.

The definition does not require the matrices Vt be of full rank, so their columns do
not really form a basis, although the name “cluster basis” suggests this. This is only a
practical consideration: in some applications, a system of vectors spanning the desired
space can be constructed efficiently, but ensuring their linear independence would lead
to unnecessary technical complications.

Definition 2.6 (Nested cluster bases) Let TI be a cluster tree, and let V be a corre-
sponding cluster basis with rank distribution k. Let E = (Et)t∈TI be a family of matrices
satisfying Et ∈ Rkt×kt+ for each cluster t ∈ TI that has a father t+ ∈ TI. If the equation

Vt =
∑

t′∈sons(t)

Vt′Et′ (1)

holds for all t ∈ TI with sons(t) �= ∅, the cluster basis V is called nested with transfer
matrices E.

The case t = root(TI) is only included in order to avoid the necessity of treating a
special case: we can see that the definition does not require the transfer matrix for the
root of TI to satisfy any conditions. In practice, this matrix can be ignored completely.

The nested structure is the key difference between general hierarchical matrices and
H2-matrices [20, 7, 8], since it allows us to construct very efficient algorithms by re-using
information across the entire cluster tree.

5

Figure 1: Representation of a nested cluster basis by transfer matrices

Vt

Vt1

Vt2

Vt4

Vt5

Vt6

Vt7

Et1

Et2

Et4

Et5

Et6

Et7

Definition 2.7 (H2-matrix) Let TI and TJ be cluster trees. Let TI×J be an admissible
block cluster tree. Let A ∈ RI×J . Let V and W be nested cluster bases for TI and TJ
with rank distributions k and l. If we can find a matrix Sb ∈ Rkt×ls for each b = (t, s) ∈
LI×J ,+ satisfying

χtAχs = VtSb(Ws)�, (2)

the matrix A is called an H2-matrix with row cluster basis V and column cluster basis
W . The family S = (Sb)b∈LI×J ,+

is called the family of coefficient matrices.
The set of all H2-matrices with row cluster basis V , column cluster basis W and block

cluster tree TI×J is denoted by H2(TI×J , V,W).

This definition implies that each H2-matrix can be written in the form

A =
∑

b=(t,s)∈LI×J ,+

VtSb(Ws)� +
∑

b=(t,s)∈LI×J ,−

χtAχs,

since LI×J = LI×J ,+∪̇LI×J ,− defines a partition of I × J .
The major advantage of H2-matrices, as compared to standard hierarchical matrices,

is that by replacing the low-rank representation χtAχs = XbY
�
b by the specialized repre-

sentation (2), we can compute cluster-related quantities before performing complicated
operations. Due to the nested structure, these quantities can be prepared efficiently (cf.
Subsection 3.1 for an example).

Remark 2.8 (Rank distributions) The rank kt depends on the desired precision ε ∈
R>0 of the matrix approximation, and the precision will usually depend on the underlying
discretization error, e.g., ε ∼ n−β for some β ∈ R>0.

For general integral operators and polynomial approximation, we can expect kt ∼
O(| log ε|d). If multipole [16] or adaptive [3] approximations are applied, the rank is

6

reduced to kt ∼ O(| log ε|d−1). For special problems and if ε is proportional to the dis-
cretization error, it is even possible to use a variable-rank approximation with kt ∼ O(1)
for the majority of clusters [23, 24, 10, 9].

For elliptic partial differential operator, the theory [1] suggests kt ∼ O(| log ε|d+1), but
practical experiments indicate that the optimal rank behaves like kt ∼ O(| log ε|d−1).

The construction of H2-matrix approximations for discretized integral operators is
relatively simple and therefore well-suited as a model problem:

Example 2.9 (Integral operators) Let us consider the approximation of the matrix

Kij =
∫

Γi

∫
Γj

g(x, y) dy dx 1 ≤ i, j ≤ n (3)

resulting from a Galerkin discretization of an integral operator on a subdomain or sub-
manifold Γ ⊆ Rd with a kernel function g : Rd × Rd → R, using piecewise constant basis
functions on a partition (Γi)ni=1 of Γ.

We assume that g is asymptotically smooth, i.e., that we can find constants c0 ∈ R>0

and σ ∈ R≥0 satisfying

|∂ν
x∂µ

y g(x, y)| � c
|ν+µ|
0 (ν + µ)!‖x − y‖−σ−|ν+µ| (4)

for all x, y ∈ Rd with x �= y and all ν, µ ∈ Nd
0.

We fix axis-parallel boxes Bt for all t ∈ TI which satisfy Γi ⊆ Bt for all i ∈ t̂ and use

diam(Bt × Bs) ≤ dist(Bt, Bs) (5)

as admissibility condition.
It can be proven [8, 9] that approximating the kernel function g locally for admissible

pairs (t, s) of clusters by its m-th order Chebyshev interpolant

g̃t,s(x, y) =
∑

ν

∑
µ

g(xt,ν , ys,µ)vt,ν(x)ws,µ(y)

(with interpolation points (xt,ν)ν and (ys,µ)µ and corresponding Lagrange polynomials
(vt,ν)ν and (ws,µ)µ) in the domain Bt × Bs leads to an H2-matrix approximation K̃
which converges exponentially to K. A similar result can be proven for more general
kernel functions and discretization schemes [5].

2.3 Orthogonal cluster bases and best approximations

Since we intend to approximate results of arithmetic operations, we need an efficient way
of finding best approximations of arbitrary matrices in a given H2-matrix format. This
problem is especially simple if the columns of the cluster basis matrices Vt are pairwise
orthonormal.

7

Definition 2.10 (Orthogonal cluster basis) Let V be a cluster basis for the cluster
tree TI . It is called orthogonal if V �

t Vt = I holds for all t ∈ TI.

The orthogonality implies that VtV
�
t is an orthogonal projection onto the image of Vt,

since
〈VtV

�
t x, Vty〉 = 〈V �

t VtV
�
t x, y〉 = 〈V �

t x, y〉 = 〈x, Vty〉

holds for all x ∈ RI and y ∈ Rkt. Therefore VtV
�
t AWsW

�
s is the best approximation of

a matrix block χtAχs in the bases Vt and Ws, and

Ã :=
∑

b∈LI×J ,+

Vt(V �
t AWs)W�

s +
∑

b∈LI×J ,−

χtAχs

is the best approximation (in the Frobenius norm) of an arbitrary matrix A ∈ RI×J in
the H2-matrix format defined by TI×J , V and W .

If a non-nested cluster basis is given, an orthogonal counterpart can be constructed
by simple Gram-Schmidt orthonormalization. If a nested cluster basis is given, it is
possible to construct a nested orthogonal cluster basis by a modified orthonormalization
algorithm in linear complexity [3]. The orthogonalization does not lead to a deterioration
of the approximation properties.

3 Matrix-vector multiplication and matrix addition

The basic example for efficient algorithms for H2-matrices is the matrix-vector multi-
plication. We will only briefly recall the algorithm in order to pave the ground for the
more involved techniques required for matrix arithmetics.

3.1 Matrix-vector multiplication

Let A be an H2-matrix with cluster bases V and W for the cluster trees TI and TJ and
the block cluster tree TI×J . Let E and F be the families of transfer matrices for V and
W .

The matrix-vector multiplication y := Ax is split into four phases: First, we compute
the auxiliary vectors

xs := (Ws)�x

for all s ∈ TJ . This step is called the forward transformation. Then, we compute the
auxiliary vectors

yt :=
∑

b=(t,s)∈LI×J ,+

Sbxs

for all t ∈ TI . This phase handles the interaction of all admissible blocks. In the third
step, the backward transformation, we accumulate the part of the result

y :=
∑
t∈TI

Vtyt

8

that corresponds to all admissible blocks of the matrix. In order to complete the multi-
plication, we add the non-admissible parts

y := y +
∑

b=(t,s)∈LI×J ,−

χtAχsx.

Under standard assumptions, the second and last step can be performed in linear com-
plexity, since they only involve relatively small matrices. In order to treat the forward
transformation efficiently, we have to make use of the nested structure: sons(s) �= ∅
implies

xs = W�
s x =

∑
s′∈sons(s)

F�
s′ W

�
s′ x =

∑
s′∈sons(s)

F�
s′ xs′ ,

so we can compute xs = W�
s x using 2ks(

∑
s′∈sons(s) ks′) operations instead of the 2ks#ŝ

operations required by a naive approach, and we need to store Ws only for leaves of
the cluster tree and can use the transfer matrices F for all other clusters. This leads
to linear complexity for the forward transformation and for the storage requirements.
The backward transformation can be treated in a similar way in order to reach linear
complexity for the entire algorithm.

3.2 Split and collect operations

For the matrix-vector multiplication and similar computations, it is sufficient to exchange
coefficient vectors like x̂s and ŷt between father and son clusters. For computations
involving entire matrices, we need a counterpart for the interaction of father and son
blocks.

Let V and W be nested cluster bases with transfer matrices E and F .

Algorithm 1 Split operation: Expresses a coefficient matrix S corresponding to (t, s)
by a coefficient matrix S′ corresponding to (t′, s′)

procedure Split((t, s), (t′, s′), E, F , S, var S′)
if t′ = t then

if s′ = s then
S′ := S { t′ = t and s′ = s }

else
S′ := SF�

s′ { t′ = t and s′ ∈ sons(s) }
end if

else
if s′ = s then

S′ := Et′S { t′ ∈ sons(t) and s′ = s }
else

S′ := Et′SF�
s′ { t′ ∈ sons(t) and s′ ∈ sons(s) }

end if
end if

9

The transfer from father to son is simple, since we can apply equation (1) to row and
column clusters in order to get an exact representation: Let b = (t, s) ∈ TI × TJ , and
let Sb ∈ Rkt×ls . If sons(t) �= ∅, we have

VtSbW
�
s =

∑
t′∈sons(t)

Vt′Et′SbW
�
s =

∑
t′∈sons(t)

Vt′S(t′,s)W
�
s (6)

for S(t′,s) := Et′Sb. If sons(s) �= ∅, we can apply the same idea to get

VtSbW
�
s =

∑
s′∈sons(s)

VtSbF
�
s′ W

�
s′ =

∑
s′∈sons(s)

VtS(t,s′)W
�
s′ (7)

for S(t,s′) := SbF
�
s′ . In order to avoid special cases, we define

sons+(t) :=

{
sons(t) if sons(t) �= ∅
{t} otherwise

and introduce the Algorithm 1 that converts a matrix block VtSbW
�
s into the form

Vt′Sb′W
�
s′ for all t′ ∈ sons+(t) and s′ ∈ sons+(s).

Algorithm 2 Collect operation: Approximates a coefficient matrix S′ corresponding to
(t′, s′) by a matrix S corresponding to (t, s)

procedure Collect((t′, s′), (t, s), E, F , S′, var S)
if t′ = t then

if s′ = s then
S := S + S′ { t′ = t and s′ = s }

else
S := S + S′Fs′ { t′ = t and s′ ∈ sons(s) }

end if
else

if s′ = s then
S := S + E�

t′ S
′ { t′ ∈ sons(t) and s′ = s }

else
S := S + E�

t′ S
′Fs′ { t′ ∈ sons(t) and s′ ∈ sons(s) }

end if
end if

The counterpart, the transfer from son to father, is slightly more complicated from a
theoretical point of view, since we can not expect to be able to express the cluster bases
of the sons in terms of those of the father.

If the cluster bases are orthogonal, we can at least get the best approximation of the
son blocks in the cluster bases corresponding to the father: If t′ ∈ sons(t) and if S(t′,s)
is given, (1) implies that the best approximation in the cluster basis Vt and Ws can be

10

Figure 2: Split and collect operations

The split operation computes an exact
representation of a subblock of an ad-
missible block.

The collect operation computes only an
approximation of a subblock in an ad-
missible block.

expressed in the form

VtV
�
t (Vt′S(t′,s)W

�
s) = Vt

⎛
⎝ ∑

t′′∈sons(t)

E�
t′′V

�
t′′ Vt′

⎞
⎠S(t′,s)W

�
s .

Since the sons of t correspond to disjoint subsets of t̂, only the case t′′ = t′ leads to a
non-zero contribution to the sum, and we find

VtV
�
t (Vt′S(t′,s)W

�
s) = VtE

�
t′ S(t′,s)W

�
s = VtSbW

�
s

with Sb := E�
t′ S(t′,s). We can apply similar arguments to the column cluster basis and

introduce the Algorithm 2 that approximates a matrix block (t′, s′) by a matrix block
(t, s) for all t′ ∈ sons+(t) and all s′ ∈ sons+(s).

3.3 Matrix addition

We will now investigate the addition of two H2-matrices. This operation is actually quite
simple, since the H2-matrices with a given block cluster tree and given cluster bases form
a subspace and are therefore closed under addition. In order to handle general block
cluster trees and non-matching cluster bases, we have to apply the correct projections.

Let A ∈ H2(T A
I×J , V A,W A) and B ∈ H2(T B

I×J , V B ,W B). We denote the transfer
matrices for V A and V B by EA and EB and those for W A and W B by FA and FB . We
do not require the block cluster trees T A

I×J and T B
I×J to match, they only have to be

formed corresponding to the same row and column cluster trees TI and TJ .
In order to keep the presentation simple, we assume that V B and W B are orthogonal.

The algorithm can be modified to work without this assumption, but in most applications
an orthonormalization of the involved cluster bases will be preferable.

Our goal is to approximate the sum A + B in a prescribed space M of H2-matrices.
Its best approximation in the Frobenius norm can be expressed as Π(A+B), where Π is

11

Algorithm 3 Efficient computation of cluster basis products
procedure ClusterBasisProduct(t, V B, V A, var X)
if sons(t) = ∅ then

Xt := (V B
t)�V A

t

else
Xt := 0;
for t′ ∈ sons(t) do

ClusterBasisProduct(t′, V B, V A, X);
Xt := Xt + (EB

t′)
�Xt′E

A
t′

end for
end if

the orthogonal projection from RI×J into the space M, since the orthogonality implies

‖(A + B) − Π(A + B)‖F = inf
M∈M

‖(A + B) − M‖F . (8)

Since Π is a linear operator, we have Π(A+B) = Π(A)+Π(B), so the projected addition
is an associative and commutative operation, just like the standard addition.

In order to keep the presentation simple, we will only consider the situation where Π is
the orthogonal projection into M := H2(T B

I×J , V B ,W B) and we will only investigate the
computation of Bnew := Π(A)+ B = Π(A+ B), where B is overwritten with Bnew. Due
to linearity, a more general addition D := Π(A + B + C), where Π is the projection into
a general H2-matrix space, can be split into the steps D(1) := 0, D(2) := Π(A) + D(1),
D(3) := Π(B) + D(2) and D := Π(C) + D(3).

Algorithm 4 Matrix forward transformation: Computes S̃A
t,s := (V B

t)�AW B
s recursively

procedure MatrixForward(b, V B, W B, X, Y , A, var S̃A) {b = (t, s) ∈ T A
I×J }

if b ∈ LA
I×J ,+ then

S̃A
b := XtS

A
b Ys {Xt and Ys computed by Algorithm 3}

else if b ∈ LA
I×J ,− then

S̃A
b := (V B

t)�AW B
s

else
S̃A

b := 0;
for b′ ∈ sons(b) do

MatrixForward(b′, V B, W B, X, Y , A, S̃A);
Collect(b′, b, EB , FB , S̃A

b′ , S̃A
b)

end for
end if

During the course of the computation, we can arrive at a block b = (t, s) ∈ T A
I×J that

is an admissible leaf in T B
I×J , but not in T A

I×J . In this case, the best approximation
of χt(A + B)χs in the given space is given by computing the coupling matrix S̃A

b :=
(V B

t)�AW B
s corresponding to the best approximation of χtAχs [2, Section 5] and adding

12

it to SB
b . Similar to the forward transformation used in the matrix-vector multiplication,

the auxiliary matrices S̃A
b can be computed efficiently by using the fact that V B and

W B are nested: if sons(b) �= ∅, we can first compute S̃A
b′ for all b′ ∈ sons(b) and then use

Algorithm 2 to compute S̃A
b itself.

If sons(b) = ∅, the block can be admissible or non-admissible. The non-admissible
case can be treated directly, but the admissible case is slightly more complicated: the
matrix block is given by χtAχs = V A

t SA
b (W A

s)�, and we have to compute

S̃A
b = (V B

t)�AW B
s = (V B

t)�V A
t SA

b (W A
s)�W B

s .

Since the matrices V A
t , V B

t have #t̂ rows and the matrices W A
s , W B

s have #ŝ rows,
computing this product directly will lead to an inacceptable increase in the complexity.
Fortunately, we can once more use the nested structure: if sons(t) �= ∅, we have

Xt := (V B
t)�V A

t =
∑

t′∈sons(t)

(EB
t′)

�(V B
t′)�V A

t′ EA
t′ =

∑
t′∈sons(t)

(EB
t′)

�Xt′E
A
t′ (9)

and can compute the product matrices Xt by the efficient recursive procedure given in
Algorithm 3. The same holds for Ys := (W A

s)�W B
s .

Lemma 3.1 (Complexity of cluster basis products) Let c ∈ N such that #TI ≤ c.
Let k̂ ∈ N such that kA

t , kB
t ≤ k̂ holds for all t ∈ TI and that #t̂ ≤ k̂ holds for all t ∈ LI .

Then Algorithm 3 requires O(k̂3c) operations.

Proof. Let t ∈ TI . If sons(t) = ∅, we compute Xt := (V B
t)�V A

t directly, and this requires
O(kA

t kB
t #t̂) ⊆ O(k̂3) operations. If t has a father t+, the computation of Xt+ will

involve adding (EB
t)�XtE

A
t to Xt+ , and this requires O(kB

t kB
t+kA

t + kB
t+kA

t+kA
t) ⊆ O(k̂3)

operations. Adding these estimates for all clusters yields the desired result.

By preparing X = (Xt)t∈TI and Y = (Ys)s∈TJ in advance, we can compute S̃A
b

efficiently even in the case b ∈ LI×J ,+.
Combining Algorithm 2 with Algorithm 3 leads to Algorithm 4, the matrix forward

transformation.
We may also find a block b = (t, s) ∈ T B

I×J that is an admissible leaf in T A
I×J , but

not in T B
I×J . In order to compute the best approximation, we have to split the block

recursively until it matches the structure of B, then transform the cluster bases, and
finally add the result to the correct coefficient matrices of B. Instead of doing this
instantaneously, we store SA

b in a temporary matrix S̃B
b and handle it separately: this

time, we use the nested structure of the cluster bases V A and W A to construct the
counterpart of Algorithm 4, the recursive matrix backward transformation, Algorithm 5.

Lemma 3.2 (Complexity of transformations) Let c, b ∈ N such that #TI ,#TJ ≤ c
and #T A

I×J ,#T B
I×J ≤ b holds. Let k̂ ∈ N such that kA

t , kB
t , lAs , lBs ≤ k̂ holds for all

t ∈ TI , s ∈ TJ and that #t̂,#ŝ ≤ k̂ holds for all t ∈ LI , s ∈ LI.
Then the matrix forward and backward transformations require O(k̂3(b+c)) operations.

13

Algorithm 5 Matrix backward transformation: Updates B := B + V A
t S̃B

t,s(W A
s)�

procedure MatrixBackward(b, V A, W A, X, Y , var B, S̃B) {b = (t, s) ∈ T B
I×J }

if b ∈ LB
I×J ,+ then

SB
b := SB

b + XtS̃
B
b Ys {Xt and Ys computed by Algorithm 3}

else if b ∈ LB
I×J ,− then

B := B + V A
t S̃B

b (W A
s)�

else
for b′ ∈ sons(b) do

Split(b, b′, EA, FA, SB
b , SB

b′);
MatrixBackward(b′, V A, W A, X, Y , B, S̃B)

end for
end if

Proof. We will only consider the forward transformation, the complexity estimate for
the backward transformation follows by symmetry.

Due to Lemma 3.1, the matrices X = (Xt)t∈TI and Y = (Ys)s∈TJ can be computed in
O(k̂3c) operations, so we only have to consider the complexity of Algorithm 4.

Let b ∈ TI×J . If b ∈ LI×J ,+, we compute XtS
A
b Ys in O(k̂3) operations. If b ∈ LI×J ,−,

we compute (V B
t)�AW B

s , which can also be accomplished in O(k̂3) operations, since
sons(t) = ∅ = sons(s) holds by definition, implying #t̂,#ŝ ≤ k̂. If b is not a leaf of
TI×J , we use Algorithm 2, which once more requires only O(k̂3) operations. Summing
up over all blocks gives us a total complexity of O(bk̂3). Combining this with the estimate
for the preparation of X and Y , we get the desired upper bound.

Let us now turn to the matrix addition itself. Since the block cluster tree is defined
recursively, it is straightforward to look for a recursive algorithm. Let b = (t, s) ∈
T A
I×J ∩ T B

I×J .
If b ∈ LA

I×J ,+, we can add the corresponding coefficient matrix SA
b to the auxiliary

matrix S̃B
b and handle it by the matrix backward transformation.

If b ∈ LA
I×J ,−, the definition of the block cluster tree implies that sons(t) = ∅ = sons(s)

holds and we can infer b ∈ LB
I×J . If b ∈ LB

I×J ,−, we simply add dense matrices,
otherwise we have b ∈ LB

I×J ,+ and use the matrix S̃A
b prepared by the matrix forward

transformation.
If b �∈ LA

I×J , there are only two alternatives: If b ∈ LB
I×J , this implies b ∈ LB

I×J ,+ by
construction, so we again use the matrix S̃A

b prepared by the matrix forward transfor-
mation. If b �∈ LB

I×J , we can use the definition of the block cluster tree in order to find
sons(b,T A

I×J) = sons(b,T B
I×J) and proceed by recursion.

Since VB and WB are orthogonal cluster bases, our algorithm will compute the desired
best approximation of the sum A + B.

Theorem 3.3 (H2-matrix addition) Let c, b ∈ N such that #TI ,#TJ ≤ c and let
#TI×J ,#T ′

I×J ≤ b holds. Let k̂ ∈ N such that kA
t , kB

t , lAs , lBs ≤ k̂ holds for all t ∈ TI,

14

Algorithm 6 Matrix addition
procedure RecursiveAddition(b) {b ∈ T A

I×J ∩ T B
I×J }

if sons(b,T A
I×J) = ∅ then

if b ∈ LA
I×J ,+ then

S̃B
b := S̃B

b + SA
b {Handled by matrix backward transformation}

else
if b ∈ LB

I×J ,+ then
SB

b := SB
b + S̃A

b {Prepared by matrix forward transformation}
else

B := B + χtAχs {Direct addition of dense matrices}
end if

end if
else

if sons(b,T B
I×J) = ∅ then

SB
b := SB

b + S̃A
b {Prepared by matrix forward transformation}

else
for b′ = (t′, s′) ∈ sons(b,T A

I×J) do
RecursiveAddition(b′) {sons(b,T A

I×J) = sons(b,T B
I×J)}

end for
end if

end if

procedure MatrixAddition(A, var B)
ClusterBasisProduct(root(TI), V B , V A, X);
ClusterBasisProduct(root(TJ), W A, W B, Y);
MatrixForward(root(T A

I×J), V B , W B, X, Y , A, S̃A);
S̃B := 0;
RecursiveAddition(root(TI×J));
MatrixBackward(root(T B

I×J), V A, W A, X, Y , B, S̃B)

15

s ∈ TJ and that #t̂,#ŝ ≤ k̂ holds for all t ∈ LI , s ∈ LI.
Then the H2-matrix addition requires O(k̂3(b + c)) arithmetic operations.

Proof. Prior to the addition, we have to prepare the auxiliary matrices S̃A
b and S̃B

b . Due
to Lemma 3.2, this can be accomplished in O(k̂3(b + c)) operations.

The procedure RecursiveAddition is only called for blocks b ∈ T A
I×J ∩ T B

I×J , i.e., not
more than b times. In each call, at most one matrix addition takes place, and the involved
matrices have not more than k̂ rows or columns, therefore one addition requires not more
than O(k̂2) operations, and all additions require not more than O(k̂2b) operations.

Combining this estimate with the one from Lemma 3.2 proves the desired result.

Remark 3.4 (Linear complexity) If T A
I×J and T B

I×J are sparse with sparsity con-
stant Csp, we have b ≤ Cspc.

If all clusters in the cluster tree satisfy # sons(t) �= 1 and #t̂ > 0, we find c ≤ 2n − 1
and conclude that the H2-matrix addition requires O(k̂3n) operations, i.e., its complexity
grows only linearly in the number of degrees of freedom.

Remark 3.5 (Implementation) Storing all auxiliary matrices S̃A
b and S̃B

b requires
O(k̂2b) units of storage, which is on the same order as the storage required for the
matrices A and B themselves.

In practical implementations, this is not acceptable. The amount of auxiliary storage
can be reduced drastically by combining matrix forward and backward transformations
with the addition routine, i.e., by writing benign “Spaghetti code”. Using this approach,
only one auxiliary k̂ × k̂-matrix is required per level of T A

I×J or T B
I×J .

The error equation (8) implies that the approximation error ‖(A + B)−Π(A + B)‖F

depends only on the choice of the space of H2-matrices used for the representation.
Its meaning for H2-matrices can be compared to that of Cea’s Lemma for Galerkin
discretizations: if the solution can be approximated in the given space, the computed
approximation will be close to the true solution. For Galerkin discretizations, Cea’s
Lemma is typically combined with regularity assumptions for the true solution in order
to derive error estimates. For H2-matrices, we also need “regularity assumptions” for
the true solution. In the general case, these assumptions have been investigated in [4],
in the simple case of integral operators with asymptotically smooth kernel functions, the
error analysis is more simple:

Example 3.6 (Integral operators) Let us consider the case of Example 2.9. If A
and B correspond to approximations of integral operators with asymptotically smooth
kernel functions, so will A + B, i.e., Π(A + B) will be an H2-matrix approximation of
an asymptotically smooth kernel function, therefore the approximation error ‖(A + B)−
Π(A+B)‖F can be bounded by the error of polynomial interpolation [8] and will therefore
converge exponentially if the rank is increased.

16

4 Matrix multiplication

The matrix forward and backward transformations can also be applied to speed up the
multiplication of H2-matrices. Our goal is to compute Cnew := C + Π(AB), where
C,Cnew ∈ H2(T C

I×K, V C ,W C), A ∈ H2(T A
I×J , V A,W A) and B ∈ H2(T B

J×K, V B ,W B)
and Π denotes the orthogonal projection into H2(T C

I×K, V C ,W C). As in the case of
the addition, we will compute the best approximation of Cnew in the space M =
H2(T C

I×K, V C ,W C), i.e., we will have

‖(C + AB) − Cnew‖F = ‖(C + AB) − Π(C + AB)‖F = inf
M∈M

‖(C + AB) − M‖F . (10)

Our algorithm will overwrite the representation of C with that of the result Cnew.
We denote the transfer matrices for V A,V B and V C by EA, EB and EC and those

for W A,W B and W C by FA, FB and FC .
For the sake of simplicity, we require V C and W C to be orthogonal.
We will again proceed recursively. In the case of the addition, only two matrices are

involved, so the number of possible combinations of blocks (each can be an admissible
or non-admissible leaf or not a leaf) is limited. In the case of the multiplication, the
number of combinations triples, which makes writing one large procedure to handle them
all inconvenient. Therefore we will split the computation into three cases: The case that
the target matrix block is an admissible leaf of T C

I×K, the case that it is a non-admissible
leaf of T C

I×K, and the case that it is not a leaf.

4.1 Admissible leaf as target

This is the most important of the three cases: experiments indicate that approximately
50% of products fall into this category. Therefore we need an especially efficient way of
handling it.

We have to compute

SC,new
(t,r) := SC

(t,r) + (V C
t)�AχsBW C

r (11)

for t ∈ TI , s ∈ TJ and r ∈ TK, since then the orthogonality of V C and W C guarantees
that SC,new

(t,r) will correspond to the best approximation of the desired result.
If (t, s) ∈ LA

I×J ,+, i.e., if (t, s) is an admissible leaf, we know that

χtAχs = V A
t SA

(t,s)(W
A
s)�

holds and can use this equation to re-write the operation in the form

SC,new
(t,r) = SC

(t,r) + (V C
t)�V A

t SA
(t,s)(W

A
s)�BW C

r .

We see that we can apply two techniques already established in the previous section:
if we prepare the auxiliary matrices Xt := (V C

t)�V A
t and S̃B

(s,r) := (W A
s)�BW C

r in
advance, we find that we only have to compute

SC,new
(t,r) = SC

(t,r) + XtS
A
(t,s)S̃

B
(s,r),

17

Algorithm 7 Matrix multiplication with admissible leaf as target
procedure MultiplyAdmissible(t, s, r)
if (t, s) ∈ LA

I×J ,+ ∨ (t, s) �∈ T A
I×J then

SC
(t,r) := SC

(t,r) + XtS
A
(t,s)S̃

B
(s,r) {Prepared by matrix forward transformation}

else
if (s, r) ∈ LB

J×K,+ ∨ (s, r) �∈ T B
J×K then

SC
(t,r) := SC

(t,r) + S̃A
(t,s)S

B
(s,r)Zr {Prepared by matrix forward transformation}

else
if (t, s) ∈ LA

I×J ,− ∧ (s, r) ∈ LB
J×K,− then

SC
(t,r) := SC

(t,r) + (V C
t)�AχsBW C

r {All clusters are leaves}
else

for t′ ∈ sons+(t), r′ ∈ sons+(r) do
SC

(t′,r′) := 0; {Create artificial block (t′, r′)}
for s′ ∈ sons+(s) do

MultiplyAdmissible(t′, s′, r′);
end for
Collect((t′, r′), (t, r), EC , FC , SC

(t′,r′), SC
(t,r))

end for
end if

end if
end if

and this operation involves only matrices of low dimension.
If (s, r) ∈ LB

J×K,+, i.e., if (s, r) is an admissible leaf, we can use the same argument
to find

SC,new
(t,r) = SC

(t,r) + S̃A
(t,s)S

B
(s,r)Zr,

where we use the auxiliary matrices Zr := (W B
r)�W C

r and S̃A
(t,s) := (V A

t)�SA
(t,s)V

B
s .

Using the Algorithm 3 and the matrix forward transformation Algorithm 4, all auxil-
iary matrices can be computed efficiently.

If (t, s) and (s, r) are non-admissible leaves, we can compute their product directly by
using (11).

If (t, s) or (s, r) is not a leaf, we introduce an auxiliary matrix for each combination
of t′ ∈ sons+(t) and r′ ∈ sons+(r), compute the corresponding product recursively and
then use Algorithm 2 to construct the best approximation for the entire block.

All of these different sub-cases are treated by Algorithm 7.

4.2 Non-admissible leaf as target

In this case, we have to compute

Cnew := C + χtAχsBχr.

18

Algorithm 8 Matrix multiplication with non-admissible leaf as target
procedure MultiplyDense(t, s, r)
if (t, s) ∈ LA

I×J ,+ ∨ (t, s) �∈ T A
I×J then

if (s, r) ∈ LB
J×K,+ ∨ (s, r) �∈ T B

J×K then
S̃C

(t,s) := S̃C
(t,s) + SA

(t,s)YsS
B
(s,r) {Handled by backward matrix transformation}

else if (s, r) ∈ LB
J×K,− then

C := C + V A
t SA

(t,s)(W
A
s)�Bχr {t, s and r are leaves}

else
for s′ ∈ sons(s) do

Split((t, s), (t, s′), EA, FA, SA
(t,s), SA

(t,s′)); {Create artificial block (t, s′)}
MultiplyDense(t, s′, r)

end for
end if

else if (t, s) ∈ LA
I×J ,− then

if (s, r) ∈ LB
J×K,+ ∨ (s, r) �∈ T B

J×K then
C := C + χtAV B

s SB
(s,r)(W

B
r)� {t, s and r are leaves}

else
C := C + χtAχsBχr {(s, r) ∈ LB

J×K,−}
end if

else
if (s, r) ∈ LB

J×K,+ ∨ (s, r) �∈ T B
J×K then

for s′ ∈ sons(s) do
Split((s, r), (s′, r), EB , FB , SB

(s,r), SB
(s′,r)); {Create artificial block (s′, r)}

MultiplyDense(t, s′, r)
end for

else
for s′ ∈ sons(s) do

MultiplyDense(t, s′, r)
end for

end if
end if

19

Non-admissible leaves appear only if the row cluster t and the column cluster r are
leaves of TI and TK, respectively, so if the block (t, s) of A or the block (s, r) of B are
not leaves, their sons can only have the form (t, s′) or (s′, r), where s′ ∈ sons(s). If, e.g.,
(t, s) ∈ LA

I×J ,− holds, this even implies sons(s) = ∅, and in this case (s, r) ∈ LB
J×K has

to hold.
Let us first consider the case that (t, s) and (s, r) are admissible. This implies

χtAχs = V A
t SA

(t,s)(W
A
s)� and χsBχr = V B

s SB
(t,s)(W

B
r)�.

We can again use Algorithm 3 to prepare auxiliary matrices Ys := (W A
s)�V B

s in advance
and find

Cnew = C + V A
t SA

(t,s)YsS
B
(t,s)(W

A
s)�.

As in the case of the addition, we handle this situation by storing only the auxiliary
matrix

S̃C
(t,r) := SA

(t,s)YsS
B
(t,s)

and then using the matrix backward transformation Algorithm 5 to assemble the product
after completing the recursion.

As mentioned before, (t, s) ∈ LA
I×J ,− implies (s, r) ∈ LB

J×K, and (s, r) ∈ LB
J×K,−

implies (t, s) ∈ LA
I×J , so we can treat these cases directly.

This leaves us with the case of non-leaf blocks. If both (t, s) and (s, r) are not leaves,
their sons have the form (t, s′) and (s′, r) for s′ ∈ sons(s), so we handle them by a
recursion.

If (t, s) is admissible and (s, r) is not a leaf, we have to create artificial blocks (t, s′)
for all s′ ∈ sons(s). Due to the definition of the admissibility condition, the artificial
blocks will also be admissible and we can create them using Algorithm 1. We also have
to modify our algorithms in such a way that they assume that all blocks that are not
part of the corresponding block cluster trees are artificial.

Treating the situation that (s, r) is admissible and (t, s) is not a leaf similarly leads
us to Algorithm 8.

4.3 Non-leaf as target

This case is similar to that of non-admissible leaves: if (t, s) and (s, r) are admissible,
we multiply and store the result in the auxiliary matrix S̃C

(t,r), and this matrix is handled
after the recursion by the matrix backward transformation.

If (t, s) is admissible and (s, r) is not, we again create an artificial block and proceed
recursively. A similar procedure is applied if (s, r) is admissible and (t, s) is not.

If both (t, s) and (s, r) are not admissible, we can use a simple recursion to compute
the result.

4.4 Multiplication algorithm

Now that we know how to treat all possible combinations of blocks, we can combine
the Algorithms 7, 8 and 9, which perform the multiplication itself, with the Algorithms 3,

20

Algorithm 9 Matrix multiplication with non-leaf as target
procedure MultiplySub(t, s, r)
if (t, s) ∈ LA

I×J ,+ ∨ (t, s) �∈ T A
I×J then

if (s, r) ∈ LB
J×K,+ ∨ (s, r) �∈ T B

J×K then
S̃C

(t,r) := S̃C
(t,s) + SA

(t,s)YsS
B
(s,r) {Handled by backward matrix transformation}

else
for t′ ∈ sons+(t), s′ ∈ sons+(s) do

Split((t, s), (t′, s′), EA, FA, SA
(t,s), SA

(t′,s′)); {Create artificial block (t′, s′)}
for r′ ∈ sons+(r) do

RecursiveMultiply(t′, s′, r′)
end for

end for
end if

else
if (s, r) ∈ LB

J×K,+ ∨ (s, r) �∈ T B
J×K then

for s′ ∈ sons+(s), r′ ∈ sons+(r) do
Split((s, r), (s′, r′), EA, FA, SA

(s,r), SA
(t′,r′)); {Create artificial block (s′, r′)}

for t′ ∈ sons+(t) do
RecursiveMultiply(t′, s′, r′)

end for
end for

else
for t′ ∈ sons+(t), s′ ∈ sons+(s), r′ ∈ sons+(r) do

RecursiveMultiply(t′, s′, r′)
end for

end if
end if

21

Algorithm 10 Matrix multiplication
procedure RecursiveMultiply(t, s, r)
if (t, r) ∈ LC

I×K,+ then
MultiplyAdmissible(t, s, r)

else if (t, r) ∈ LC
I×K,− then

MultiplyDense(t, s, r)
else

MultiplySub(t, s, r)
end if

procedure MatrixMultiplication(A, B, var C)
ClusterBasisProduct(root(TI), V C , V A, X);
ClusterBasisProduct(root(TJ), W A, V B, Y);
ClusterBasisProduct(root(TK), W B , W C , Z);
MatrixForward(root(T A

I×J), V C , V B, X, Y , A, S̃A);
MatrixForward(root(T B

J×K), W A, W C , Y , Z, B, S̃B);
S̃C := 0;
RecursiveMultiply(root(TI), root(TJ), root(TK));
MatrixBackward(root(T C

I×K), V A, W B, X, Z, C, S̃C)

4 and 5, which handle the auxiliary matrices, to get Algorithm 10, the H2-matrix mul-
tiplication.

Let us consider the total complexity of this algorithm. Due to the Lemmas 3.1 and
3.2, the construction and transformation of the auxiliary matrices can be accomplished
efficiently. Obviously, each single step of the recursion is rather inexpensive, so we only
need to bound the number of calls to the main recursion. This means that we have to
ensure that the artificial matrices created in our algorithms will not interfere with this
bound.

Lemma 4.1 If the Algorithms 7, 8 and 9 are called with t ∈ TI, s ∈ TJ and r ∈ TK,
not more than one of the blocks (t, s), (s, r) and (t, r) can be artificial.

Proof. We proceed by induction: the Algorithm 10 starts with t = root(TI), s = root(TJ)
and r = root(TK). By definition, we have (t, s) ∈ T A

I×J , (s, r) ∈ T B
J×K and (t, r) ∈ T C

I×K,
so in the first recursion step, all blocks are not artificial.

Now let us inspect the circumstances in which artificial blocks are created:
In Algorithm 7, this happens only when both (t, s) and (s, r) are not admissible and

therefore not artificial, so their descendants can not be artificial.
In Algorithm 8, an artificial block is created if (s, r) is not a leaf. Since (t, r) is a

non-admissible leaf, both (s, r) and (t, r) can not be artificial, so the same holds again
for their descendants. Due to symmetry, the same holds for the case that (t, s) is not a
leaf.

22

In Algorithm 9, an artificial descendant of (t, s) is created if (s, r) is not admissible.
As in the previous cases, this implies that (s, r) and (t, r) are not artificial, therefore
their descendants are not artificial. Again due to symmetry, the same statement is valid
for the case that (t, s) is not admissible.

Using this lemma, we can now bound the number of calls to the recursion:

Lemma 4.2 Let T A
I×J , T B

J×K and T C
I×K be sparse with sparsity constant Csp. Let c ∈ N

satisfy #TI,#TJ ,#TK ≤ c.
Then the Algorithms 7, 8 and 9 are called not more than 3C2

spc times during the course
of Algorithm 10.

Proof. The inspection of the recursive calls in the Algorithms 7, 8 and 9 shows that one
combination of clusters t, s and r appears at most in one function call.

Let t ∈ TI . We set

Rt := {(s, r) ∈ TJ × TK : (t, s, r) appears in a function call}.

We will now prove

Rt ⊆ R1
t ∪ R2

t ∪ R3
t for

R1
t := {(s, r) ∈ TJ × TK : (t, s) ∈ T A

I×J , (s, r) ∈ T B
J×K}

R2
t := {(s, r) ∈ TJ × TK : (t, s) ∈ T A

I×J , (t, r) ∈ T C
I×K}

R3
t := {(s, r) ∈ TJ × TK : (s, r) ∈ T B

J×K, (t, r) ∈ T C
I×K}.

Let (s, r) ∈ Rt. If (t, r) �∈ T C
I×K, Lemma 4.1 implies (s, r) ∈ R1

r . If (s, r) �∈ T B
J×K, the

same lemma implies (s, r) ∈ R2
t . Otherwise, we have (s, r) ∈ R3

t .
Due to the sparsity of T A

I×J , T B
J×K and T C

I×K the estimates

#R1
t ≤ C2

sp, #R2
t ≤ C2

sp and #R3
t ≤ C2

sp

hold, and we can conclude #Rt ≤ 3C2
sp. Summing up over all t ∈ TI yields the desired

estimate.

Now we can prove a bound for the complexity of the H2-matrix multiplication.

Theorem 4.3 (H2-matrix multiplication) Let c ∈ N such that #TI,#TJ ,#TK ≤ c
holds. Let T A

I×J , T B
J×K and T C

I×K be sparse with sparsity constant Csp.
Let k̂ ∈ N such that kC

t , kA
t , lAs , kB

s , lBr , lCr ≤ k̂ holds for all t ∈ TI, s ∈ TJ , r ∈ TK and
that #t̂,#ŝ,#r̂ ≤ k̂ holds for all t ∈ LI, s ∈ LI and r ∈ LI.

Then the H2-matrix multiplication Algorithm 10 requires O(C2
spk̂3c) arithmetic oper-

ations.

Proof. Due to Lemma 4.2, we have to compute not more than 3C2
spc products. Each of

the algorithms requires only O(k̂3) operations per product, so the total complexity for
the recursion is O(C2

spk̂
3c).

The Lemmas 3.1 and 3.2 imply that the preparation of X, Y , Z, S̃A and S̃B and the
handling of S̃C requires O(k̂3c) operations, which concludes the proof.

23

Remark 4.4 (Linear complexity) If T A
I×J , T B

J×K and T C
I×K are sparse with sparsity

constant Csp and if all clusters in TI, TJ and TK are not empty and have either no or
at least two clusters, the H2-matrix multiplication requires O(C2

spk̂3n) operations.

Remark 4.5 (Implementation) We can avoid storing S̃A and S̃B by combining the
matrix forward transformations with the main recursion of the multiplication. This
means that only auxiliary storage for X, Y , Z and S̃C is required.

As in the case of the matrix addition, we can combine “regularity assumptions” for
the exact solution C + AB with the error equation (10) in order to derive error bounds
for the approximative solution Cnew. The case of general matrices can be reduced to the
results presented in [4], the case of integral operators with asymptotically smooth kernel
functions can again be handled by relatively simple arguments:

Example 4.6 (Integral operators) Let us consider the case of Example 2.9. If A
and B correspond to approximations of integral operators with asymptotically smooth
kernel functions, the product AB will, up to discretization errors, correspond to the
convolution of the kernel functions. Under standard assumptions, the convolution of
asymptotically smooth kernel functions is again asymptotically smooth, and we find that
the approximation error ‖AB−Π(AB)‖F can be bounded by the exponentially convergent
error of polynomial interpolation [8].

5 Numerical experiments

We compute the H2-matrix approximations [8] of the classical single and double layer
potential operators

V[u](x) =
∫

Γ

u(y)
4π‖x − y‖ dy, K[u](x) =

∫
Γ

〈x − y, n(y)〉u(y)
4π‖x − y‖3

dy,

discretized by Galerin’s method using n piecewise constant basis functions. We approxi-
mate the kernel function

γ(x, y) :=
1

4π‖x − y‖
by Chebyshev interpolation of order m. The kernel function of V is γ, so the interpolant
of γ gives rise to an H2-matrix approximation V of the related discrete operator. The
kernel function of K is the normal derivative of γ, therefore we can approximate it by
the normal derivative of the interpolant. This yields an H2-matrix approximation K of
the corresponding discrete operator.

On a smooth surface, V and K correspond to asymptotically smooth kernel functions,
and we expect (cf. [18, Satz 2.8]) that this will also hold for their compositions VV,
KV, VK and KK, i.e., that these compositions can be approximated efficiently by H2-
matrices.

Up to errors introduced by the discretization process, the matrix products V V , KV ,
V K and KK can be expected to share the properties of their continuous counterparts,

24

Oper. n m=2 m=3 m=4 m=5
VV 512 2.2 1.5−4 1.0 8.5−7 0.4 conv. 0.9 conv.

2048 13.0 2.6−4 32.3 9.6−6 40.8 4.6−7 47.4 conv.
8192 66.5 4.6−4 184.2 3.6−5 355.2 1.6−6 1187.8 1.6−7

32768 283.9 5.4−4 897.0 4.9−5 1919.2 2.3−6 6562.9 3.1−7

131072 1196.8 5.6−4 3625.6 4.7−5 7918.5 3.6−6 27784.2 4.5−7

KV 512 2.3 2.6−3 1.0 4.9−5 0.4 conv. 1.0 conv.
2048 13.8 5.4−3 34.4 1.7−4 41.7 5.9−6 48.7 conv.
8192 71.1 1.0−2 196.7 8.5−4 374.8 5.3−5 1220.3 2.6−6

32768 304.3 1.6−2 959.9 2.3−3 1982.2 1.4−4 6890.1 9.6−6

131072 1257.4 2.3−2 3876.3 4.0−3 8361.8 2.8−4 29784.5 3.1−5

VK 512 2.3 5.0−3 1.0 7.8−6 0.4 conv. 1.0 conv.
2048 14.0 2.1−2 35.6 4.2−4 41.7 1.9−5 48.6 conv.
8192 72.7 4.2−2 204.3 2.0−3 395.3 1.3−4 1268.2 7.1−6

32768 313.1 7.0−2 1003.3 4.1−3 2098.5 2.6−4 7157.2 2.6−5

131072 1323.6 1.1−1 4101.6 7.1−3 8744.8 5.1−4 30979.0 5.9−5

KK 512 2.2 6.9−4 1.0 9.4−6 0.4 conv. 0.9 conv.
2048 12.9 2.9−3 32.4 5.2−5 40.6 4.8−6 47.5 conv.
8192 66.4 6.1−3 184.0 2.6−4 354.4 1.8−5 1154.2 9.5−7

32768 283.9 1.1−2 894.0 5.5−4 1881.5 3.5−5 6538.1 3.4−6

131072 1169.1 1.6−2 3602.0 9.6−4 7839.9 6.8−5 27652.0 7.9−6

Table 1: Multiplying double and single layer potential on the unit sphere

i.e., the the approximations computed by our algorithm should converge exponentially
if the order of the polynomial approximation is increased.

In the first example, we consider a sequence of polygonal approximations of the unit
sphere ΓS = {x ∈ R3 : ‖x‖ = 1} consisting of n = 512, 2048, 8192, 32768 and 131072
plane triangles.

The results are collected in Table 1. For each grid, each product and each interpolation
order, it contains the time1 in seconds for computing the product by Algorithm 10 and
the resulting approximation error in the operator norm, which was estimated using a
power iteration.

We can see that increasing the interpolation order m will typically reduce the approx-
imation error by a factor of 10, i.e., we observe the expected exponential convergence.

Since we are working with interpolation in three space dimensions, the rank of the
cluster bases will be bounded by k = m3, i.e., we expect a behaviour like O(nk2) =
O(nm6) in the computation time. Especially for higher interpolation orders and higher
problem dimensions, this behaviour can indeed be observed.

In Table 2, we investigate the behaviour of the polynomial approximation on the

1On one 900 MHz UltraSPARC IIIcu processor of a SunFire 6800 computer.

25

Oper. n m=2 m=3 m=4 m=5
VV 768 2.0 2.9−3 3.8 3.5−4 1.2 conv. 1.5 conv.

3072 10.9 3.6−3 32.0 6.3−4 133.7 2.0−4 182.1 6.6−5

12288 49.7 3.8−3 176.7 7.9−4 455.6 2.8−4 1411.8 1.2−4

49152 208.6 4.0−3 850.7 8.5−4 1867.4 3.4−4 7580.0 1.6−4

196608 833.0 4.0−3 3692.2 8.6−4 7542.0 3.6−4 36077.4 1.7−4

KV 768 2.2 6.3−2 3.9 5.5−3 1.2 conv. 1.6 conv.
3072 11.7 7.0−2 34.9 1.4−2 134.6 3.2−3 185.2 1.0−3

12288 53.4 8.5−2 200.4 1.9−2 470.0 7.2−3 1510.5 3.2−3

49152 222.8 8.6−2 978.0 2.1−2 1922.1 8.6−3 8280.3 4.2−3

196608 869.8 8.2−2 4245.9 2.1−2 7862.8 9.1−3 40326.5 4.6−3

VK 768 2.4 1.9−1 3.8 4.4−2 1.2 conv. 1.6 conv.
3072 11.8 2.7−1 37.7 1.1−1 134.4 3.9−2 185.8 2.0−2

12288 55.0 3.4−1 214.5 1.6−1 484.0 8.3−2 1638.2 5.1−2

49152 232.3 3.7−1 1059.7 2.0−1 2045.5 1.2−1 8951.6 8.0−2

196608 930.5 3.7−1 4614.4 2.3−1 8454.1 1.4−1 43588.5 1.0−1

KK 768 2.0 2.7−2 3.8 5.1−3 1.2 conv. 1.5 conv.
3072 11.0 3.5−2 32.6 1.2−2 132.6 5.1−3 183.2 2.6−3

12288 49.7 4.7−2 185.3 1.9−2 454.3 9.4−3 1418.3 6.3−3

49152 206.5 5.7−2 903.1 2.4−2 1823.6 1.4−2 7649.4 9.4−3

196608 804.8 6.3−2 3945.2 2.7−2 7374.3 1.8−2 37011.2 1.3−2

Table 2: Multiplying double and single layer potential on the unit cube

surface ΓC = ∂[−1, 1]3 of the cube. Since it is not a smooth manifold, we expect that
the smoothness of the result of the multiplication, and therefore the speed of convergence,
will be reduced. This is indeed visible in the numerical experiments: we no longer observe
a convergence like 10−m, but only 2−m for V V and KV and even slower convergence
for V K and KK. The latter effect might be a consequence of the fact that the column
cluster bases used for K involve the normal derivative of the kernel function, which
reduces the order of smoothness even further.

The rank k = m3 results from the polynomial expansion used for the approximation
of the matrices V and K. Taking the special structure of the kernel functions into
account, optimized cluster bases with significantly lower rank can be constructed by an
efficient algorithm [3], which leads to an improved performance of both matrix-vector and
matrix-matrix multiplication algorithms. Since the optimized cluster bases might not be
suitable for the representation of the product, it can be necessary to construct adaptive
cluster bases for the product a posteriori [7]. For Table 3, we have used optimized H2-
matrix approximations of V and K, constructed by the algorithms given in [3] with an
initial polynomial order of m = 4 and a truncation tolerance of ε = 10−3. Then we
approximate the products V V , KV , V K and KK by four different algorithms:

26

• We compute them directly by Algorithm 10, using the corresponding optimized
cluster bases instead of the polynomial bases.

• We compute H2-matrix approximations M of the products by a modified version
of the algorithm presented in [7], prescribing an error tolerance of 10−4. This new
algorithm will be the subject of a forthcoming paper.

• We compute the products by Algorithm 10, but use the adapted cluster bases
prepared for M in the previous algorithm.

• We compute the product by the standard H-matrix multiplication algorithm [14],
again prescribing an error tolerance of 10−4.

We can see that using optimized cluster bases leads to significantly improved perfor-
mance, but also that the optimized bases are not well suited for representing the product
of matrices (the relative error is signicantly larger than in Table 1). Using optimized
cluster bases, the relative error can be reduced to the desired level, but the construction
of the new cluster bases takes more time than Algorithm 10. The H-matrix multiplica-
tion algorithm is slower than all the other algorithms: it takes roughly 24 times longer
than Algorithm 10 and 4 times longer than the adaptive algorithm.

We can also see that both the adaptive H2- and H-matrix arithmetic algorithms
indeed guarantee the prescribed accuracy of 10−4 for the product. When using the
cluster bases from the adaptive H2-matrix algorithm in conjunction with Algorithm 10,
its best-approximation property guarantees that the error of the latter is not larger than
that of the former. We can see that this holds in practice by comparing the sixth and
eighth column of Table 3.

The comparison of H- and H2-matrices is not entirely fair: in the context of hierar-
chical matrices, a weaker admissibility condition and a weaker stopping criterion for the
construction of the block cluster tree can be used, and by these advanced techniques
[13] the performance of the H-MMM can be significantly improved. This will narrow
the gap between the H- and H2-matrix algorithms, but the latter will still be faster.

References

[1] M. Bebendorf and W. Hackbusch, Existence of H-matrix approximants to the
inverse FE-matrix of elliptic operators with L∞-coefficients, Numerische Mathe-
matik, 95 (2003), pp. 1–28.

[2] S. Börm, H2-matrices — multilevel methods for the approximation of integral op-
erators, Comput. Visual. Sci., 7 (2004), pp. 173–181.

[3] , Approximation of integral operators by H2-matrices with adaptive bases, Com-
puting, 74 (2005), pp. 249–271.

[4] , Data-sparse approximation of non-local operators by H2-matrices, Preprint
44/2005, Max Planck Institute for Mathematics in the Sciences, 2005.

27

Oper. n A priori Adaptive A priori/new H-Arithmetic
VV 768 0.7 conv. 0.7 conv. 0.7 conv. 0.7 conv.

3072 32.1 3.1−3 35.8 1.8−5 32.6 1.1−5 153.0 1.7−5

12288 70.6 3.5−3 276.6 3.1−5 72.3 3.0−5 824.8 2.5−5

49152 235.4 3.6−3 1343.7 4.1−5 240.5 4.0−5 6591.3 2.5−5

196608 807.8 3.6−3 6513.3 4.7−5 805.5 4.6−5 29741.6 2.5−5

KV 768 0.7 conv. 0.7 conv. 0.7 conv. 0.7 conv.
3072 34.2 1.8−2 37.6 2.7−5 37.2 2.6−5 152.9 5.5−5

12288 76.9 2.0−2 270.3 3.5−5 87.6 3.4−5 755.5 5.4−5

49152 257.1 2.0−2 1267.0 4.3−5 291.6 4.2−5 5688.3 5.6−5

196608 875.4 2.0−2 5933.5 9.0−5 989.9 9.0−5 26404.6 5.5−5

VK 768 0.7 conv. 0.7 conv. 0.7 conv. 0.7 conv.
3072 39.0 1.3−1 37.8 3.2−5 40.2 3.1−5 150.2 3.3−5

12288 89.5 2.0−1 267.1 3.3−5 94.4 3.3−5 737.4 3.7−5

49152 291.9 2.3−1 1219.5 4.5−5 310.4 4.4−5 5886.5 3.4−5

196608 995.9 2.5−1 5734.5 8.0−5 1067.0 7.8−5 27303.6 3.6−5

KK 768 0.7 conv. 0.7 conv. 0.7 conv. 0.7 conv.
3072 41.1 1.3−2 39.8 6.8−6 44.0 6.6−6 151.4 5.3−6

12288 93.0 2.2−2 272.4 1.6−5 100.3 1.6−5 658.2 6.4−6

49152 300.6 2.7−2 1327.9 3.2−5 324.5 3.2−5 5066.8 1.4−5

196608 1005.6 3.2−2 5791.6 4.5−5 1080.8 4.5−5 24862.1 1.5−5

Table 3: Adaptive and non-adaptive multiplication algorithms for the single and double
layer potential on the cube

[5] S. Börm and L. Grasedyck, Hybrid cross approximation of integral operators,
Preprint 68/2004, Max Planck Institute for Mathematics in the Sciences, 2004. To
appear in Numerische Mathematik.

[6] S. Börm, L. Grasedyck, and W. Hackbusch, Hierarchical Matrices. Lecture
Note 21 of the Max Planck Institute for Mathematics in the Sciences, 2003.

[7] S. Börm and W. Hackbusch, Data-sparse approximation by adaptive H2-
matrices, Computing, 69 (2002), pp. 1–35.

[8] , H2-matrix approximation of integral operators by interpolation, Applied Nu-
merical Mathematics, 43 (2002), pp. 129–143.

[9] S. Börm, M. Löhndorf, and J. M. Melenk, Approximation of integral operators
by variable-order interpolation, Numerische Mathematik, 99 (2005), pp. 605–643.

[10] S. Börm and S. A. Sauter, BEM with linear complexity for the classical boundary
integral operators, Mathematics of Computation, 74 (2005), pp. 1139–1177.

28

[11] W. Dahmen and R. Schneider, Wavelets on manifolds I: Construction and do-
main decomposition, SIAM Journal of Mathematical Analysis, 31 (1999), pp. 184–
230.

[12] L. Grasedyck, Theorie und Anwendungen Hierarchischer Matrizen, PhD thesis,
Universität Kiel, 2001.

[13] , Adaptive recompression of H-matrices for BEM, Computing, 74 (2004),
pp. 205–223.

[14] L. Grasedyck and W. Hackbusch, Construction and arithmetics of H-matrices,
Computing, 70 (2003), pp. 295–334.

[15] L. Greengard and V. Rokhlin, A fast algorithm for particle simulations, Jour-
nal of Computational Physics, 73 (1987), pp. 325–348.

[16] , A new version of the fast multipole method for the Laplace in three dimensions,
in Acta Numerica 1997, Cambridge University Press, 1997, pp. 229–269.

[17] W. Hackbusch, A sparse matrix arithmetic based on H-matrices. Part I: Intro-
duction to H-matrices, Computing, 62 (1999), pp. 89–108.

[18] , Hierarchische Matrizen — Algorithmen und Analysis. Available online at
http://www.mis.mpg.de/scicomp/Fulltext/hmvorlesung.ps, 2004.

[19] W. Hackbusch and B. Khoromskij, A sparse matrix arithmetic based on
H-matrices. Part II: Application to multi-dimensional problems, Computing, 64
(2000), pp. 21–47.

[20] W. Hackbusch, B. Khoromskij, and S. Sauter, On H2-matrices, in Lectures
on Applied Mathematics, H. Bungartz, R. Hoppe, and C. Zenger, eds., Springer-
Verlag, Berlin, 2000, pp. 9–29.

[21] W. Hackbusch and Z. P. Nowak, On the fast matrix multiplication in the
boundary element method by panel clustering, Numerische Mathematik, 54 (1989),
pp. 463–491.

[22] V. Rokhlin, Rapid solution of integral equations of classical potential theory, Jour-
nal of Computational Physics, 60 (1985), pp. 187–207.

[23] S. Sauter, Variable order panel clustering (extended version), Preprint 52/1999,
Max-Planck-Institut für Mathematik, Leipzig, Germany, 1999.

[24] , Variable order panel clustering, Computing, 64 (2000), pp. 223–261.

[25] J. Tausch and J. White, Multiscale bases for the sparse representation of bound-
ary integral operators on complex geometries, SIAM J. Sci. Comput., 24 (2003),
pp. 1610–1629.

29

Steffen Börm
Max-Planck-Institut für Mathematik in den Naturwissenschaften
Inselstrasse 22–26
04103 Leipzig
Germany
sbo@mis.mpg.de

30

