
�����������	�
���
�

für Mathematik
in den Naturwissenschaften

Leipzig

Examples of nonlinear homogenization

in plane strain involving degenerate

energies

by

Isaac Chenchiah and Kaushik Bhattacharya

Preprint no.: 49 2004





Examples of nonlinear homogenization in

plane strain involving degenerate energies

By Isaac V. Chenchiah1 and Kaushik Bhattacharya2

1Max Planck Institute for Mathematics in the Sciences,
Inselstr. 22, D-04103 Leipzig, Germany (Isaac.Chenchiah@mis.mpg.de)

2Division of Engineering and Applied Science, California Institute of Technology,
Pasadena, CA 91125, USA (bhatta@caltech.edu)

The study of polycrystals of shape-memory alloys and rigid-perfectly plastic
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1. Introduction

This paper discusses model problems that provide insight into the nature of stress
and strain fields in polycrystals made of shape-memory alloys. Our results also have
relevance to the dual problem of plastic yielding of polycrystalline media.

Shape-memory behavior is the ability of certain materials to recover, on heating,
apparently plastic deformations sustained below a critical temperature. In such
materials, one has multiple stress-free states or variants, and they may co-exist in
coherent fine-scale mixtures or microstructures. The origin of the shape-memory
effect lies in the fact that the material can be deformed by coherently changing the
microstructure through a rearrangement of the variants. Thus, the amount of strain
recoverable by a single crystal in the shape-memory effect can be determined from
crystallography (i.e., the number and stress-free strains of the variants).

The situation is more complex in polycrystals. Here the material is an assem-
blage of grains, each composed of the same material but with a different orientation,
that are bonded together. The deformation of a grain through rearrangement of vari-
ants depends on its orientation and thus each grain may seek to deform differently.
But the grains are bonded together, and thus constrain each other. Therefore an
imposed strain is recoverable in a polycrystal if and only if the different grains can
collectively and cooperatively adjust their microstructure to accommodate it. In-
terestingly, the amount of recoverable strain in a polycrystal can vary dramatically
even amongst materials that have comparable recoverable strain as single crystals.
Therefore, understanding the shape-memory effect in a polycrystal has received
much attention. We refer the reader to Bhattacharya (2003) for a comprehensive
discussion and references.
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In this paper, we study model problems in the two-dimensional setting of plane
infinitesimal strains corresponding to a two-variant material (square to rectangle
transformation). The recoverable strains of a single crystal are confined to one
(strain) direction, and the issue of interest is whether the polycrystal has any re-
coverable strains at all. This problem is motivated by an important class of materials
that undergo the cubic to tetragonal transformation. We restrict the deformation of
each grain to only those allowed by the formation and manipulation of microstruc-
ture (see DeSimone & James (2002) for a discussion of this assumption). So each
grain is a locking material (Prager, 1957; Demengel & Suquet, 1986).

We provide an alternative proof to a result of Bhattacharya & Kohn (1997)
that polycrystals of the two-variant material that possess sufficient symmetry are
rigid, i.e., have no recoverable strains. Our main tool in obtaining this result is
a characterization of the stress and strain fields in polycrystals of such materials:
specifically we show that they satisfy hyperbolic partial differential equations. The
strain (stress) is confined to lie on a certain one-dimensional line (two-dimensional
plane) and this along with compatibility (equilibrium) gives the hyperbolic equa-
tions. However, the set changes from grain to grain, and thus the characteristics of
our hyperbolic equations change orientation from grain to grain.

We also use this characterization to study in detail a series of examples of poly-
crystals. These examples demonstrate the result that polycrystals of the two-variant
material that possess sufficient symmetry are rigid. They also demonstrate the hy-
perbolic nature of the strain and stress fields: First, the set of recoverable strains
can be very sensitive to the orientation and arrangement of grains. Second, stress
can localize along lines that propagate through the grains. Heuristically, consider
a polycrystal subjected to an increasing macroscopic strain. Initially this strain
may be accommodated uniformly by every grain, but gradually the poorly oriented
grains begin to “lock”, i.e., have accommodated all the strains that they could ac-
comodate. The imposed strain now has to be accommodated by an inhomogeneous
strain field that circumvents the locked grains till one has a network of fully locked
grain. At this point, the stress is borne by the network of locked grains, and there-
fore the stress fields can become highly localized. This idea is made precise by the
hyperbolic characterization. We note that the problem of localization of stress fields
has also recently been studied numerically by Bhattacharya & Suquet (2004) in the
setting of antiplane shear for realistic micro-geometries of grains.

The dual of the shape-memory problem discussed above concerns rigid-perfectly
plastic materials. In this setting, if the single crystal of a material has a deficient
number of slip systems, an important question is whether a polycrystal of this
materials is macroscopically rigid-perfectly plastic or simply rigid. This issue is
of interest in hexagonal materials (see Kochs et al. (1998) for a comprehensive
discussion and references). It was recently formulated in a setting dual to ours by
Kohn & Little (1998). Our ideas and results have implications for these problems.

Problems related to both the shape-memory effect and plasticity have been
studied extensively recently using examples (Bhattacharya & Kohn, 1997; Kohn &
Little, 1998; Bhattacharya et al., 1999; Goldsztein, 2001, 2003; Garroni & Kohn,
2003). However, these have been confined to scalar problems. We find nontrivial
differences in our current setting of plane strain.

Finally, our characterization of stress and strain fields is reminiscent of the
classical theory of plastic slip-line fields (see, for example, Hill (1950)). This is
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derived under the assumption of plane strain, isotropy and rigid-plasticity: that the
stress in the plastic zone is confined to lie on a two-dimensional manifold (the yield-
surface) and also satisfy equilibrium implies that it satisfies a hyperbolic equations.
Similarly, our methods are reminiscent of classical plastic limit analysis (see, for
example, Drucker et al. (1952)). These methods have been extensively used to
study problems in isotropic homogeneous plasticity, and occasionally in isotropic
heterogeneous media (see Drucker (1966) for an insightful discussion). However, we
are unaware of the use of these ideas in anisotropic heterogeneous media.

2. Mathematical Formulation

We consider in two-dimensions a material with two variants that have transforma-
tion or stress-free strains ±

(
1 0
0 −1

)
. These strains are compatible in the sense that

one arrange them in a coherent microstructure. By making such microstructures, a
single crystal of this material can attain average strains in the set

Ŝ =
{
s
(

1 0
0 −1

)
| s ∈ R, |s| ≤ 1

}
. (2.1)

For a grain oriented at an angle θ, the corresponding set is given by

Ŝθ =
{

s ε̂2θ | s ∈ R, |s| ≤
√

2
}

(2.2)

where
ε̂2θ =

1√
2

(
cos 2θ sin 2θ
sin 2θ − cos 2θ

)
.

The material considered here is called ‘Two-Dimensional Diagonal Trace-Free Elas-
tic Material’ in Bhattacharya & Kohn (1997).

We assume that the energy density of a single crystal of this material is

Ŵ (ε) :=

{
0 ε ∈ Ŝ
∞ otherwise.

Notice that we have assumed that the elastic moduli of each phase is infinite and
thus may regard it as a locking material (Prager, 1957; Demengel & Suquet, 1986).

Let R : Ω → SO(2) describe the texture of the polycrystal: R(x) gives the
orientation of a grain at x relative to the laboratory frame. We assume in what
follows that R is piecewise constant. The effective energy density of a polycrystal
with texture R is given by

W (ε̄) := inf
ε∈Uad
〈ε(x)〉=ε̄

−
∫

Ω

Ŵ (RT (x)ε(x)R(x)) dx

where
Uad :=

{
u ∈ L∞(Ω, R2) | ε(u) ∈ L∞per(Ω,M2×2

sym )
}

.

It is easy to see that W is of the form

W (ε̄) :=

{
0 ε̄ ∈ S
∞ otherwise
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where S is the set of recoverable strains of the polycrystal; for a discussion see
Chenchiah (2004). Chenchiah (2004), extending methods of Demengel & Suquet
(1986), has also shown that W has the dual variational characterization,

W (ε̄) := sup
σ∈Sad

−
∫

Ω

σ · ε̄− Ŵ ?(RT (x)σ(x)R(x)) dx. (2.3)

Here
Sad :=

{
σ ∈ M1

per(Ω,M2×2
sym ) | div(σ) = 0

}
,

M1
per(Ω,M2×2

sym ), the dual of L∞per(Ω,M2×2
sym ), is the space of all periodic signed Radon

measures with finite mass; div(σ) = 0 means∫
Ω

σ · ∇φ dv = 0, ∀φ ∈ C∞0 (Ω, R2);

and Ŵ ?, the conjugate energy, is the Legendre dual of Ŵ :

Ŵ ?(σ) = max
ε

(
σ · ε− Ŵ (ε)

)
= max

ε∈ bS σ · ε.

Specifically for grain oriented at an angle θ and the set Ŝθ in (2.2), we have

Ŵ ?
θ (σ) = Ŵ ?(RT (x)σ(x)R(x)) =

√
2 |σ · ε̂2θ|. (2.4)

We note some properties that the set of recoverable strains of a polycrystal
inherits from the set of recoverable strains of a single crystal. Ŝ is convex, balanced
(i.e., ε ∈ Ŝ =⇒ −ε ∈ Ŝ), has square symmetry (i.e., ε ∈ Ŝ =⇒ RT

π
2
εRπ

2
∈ Ŝ) and

contained in the subspace of trace-free matrices. It is easy to show that S possesses
the same properties. Further 0 ∈ S. We shall call a polycrystal rigid if S = {0}
and flexible otherwise. A key issue in this paper is trying to understand whether a
polycrystal of a two-variant material is rigid.

Finally, we discuss stress-fields concentrated on lines since they will play an
important role in our examples. A divergence-free stress-field concentrated on a line
with tangent t̂ may be visualized as an element of a truss of structural mechanics
that carries a certain force f parallel to itself. Alternately, it may be visualized by
considering a piecewise constant stress field that is zero outside a strip of width τ
along the line and equal to f

τ t̂ ⊗ t̂ on it and then letting τ → 0. The total force
it contributes to a surface it intersects transversely is fsign(n̂ · t̂)t̂ where n̂ is the
outward normal to the surface. It’s average over a region D is given as

〈σ〉D =
length of the line in D

area of D
f t̂⊗ t̂.

We call f the force of the stress field concentrated on the line and f t̂⊗ t̂ the value
of the stress field. The stress is tensile if f > 0 and compressive otherwise. Finally,
if n lines, with force fi concentrated on the ith line, intersect at a point, then this
stress field is divergence free precisely when

∑n
i=1 fit̂i = 0, where t̂i is the tangent

to the ith line directed away from the point.
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3. Strain and stress fields

(a) Single crystals

Consider any zero-energy strain field in a single crystal oriented at an angle θ.
From (2.2) such a strain field is constrained to be of the form

ε(x, y) = s(x, y)ε̂2θ, |s(x, y)| 6
√

2

for some s ∈ L∞(R2, R). It also satisfies the strain compatibility equation,

∂2

∂y2
εxx − 2

∂2

∂x∂y
εxy,+

∂2

∂x2
εyy = 0.

Together, they imply that s satisfies the hyperbolic partial differential equation

�2
θ s(x, y) = 0,

where

�2
θ ≡ cos 2θ

∂2

∂x2
+ 2 sin 2θ

∂2

∂x ∂y
− cos 2θ

∂2

∂y2
.

Since ε is allowed to be discontinuous (in L∞), we interpret these equations in the
sense of distributions. Notice that �2

θ is the wave operator with the ‘space-time’
coordinates oriented at an angle θ to the x− y coordinates. The characteristics of
the above wave equation are inclined at angles θ − π

4 and θ + π
4 respectively.

Let H be the displacement gradient. The constraint ε ∈ Ŝθ is equivalent to the
constraint H ∈ Ŝθ ⊕ Span

{(
0 1
−1 0

)}
:

H(x, y) = s(x, y)ε̂2θ + ω(x, y)
1√
2

(
0 1
−1 0

)
, |s(x, y)| 6

√
2 (3.1)

for some s ∈ L∞(R2, R) and some ω : R2 → R. This with the compatibility condition
∇×H = 0 implies the non-homogeneous transport equation,

∇w(x, y) =
(− sin 2θ cos 2θ

cos 2θ sin 2θ

)
∇s(x, y) (3.2)

and thus the hyperbolic partial differential equation,

�2
θ w(x, y) = 0.

From these results, it is easy to show (see Chenchiah (2004) for details) that
the displacement gradient in a grain oriented at an angle θ has the form

H(x, y) = p(cos(θ +
π

4
)x + sin(θ +

π

4
)y) n̂(θ − π

4
)⊗ n̂(θ +

π

4
)

+ q(cos(θ − π

4
)x + sin(θ − π

4
)y) n̂(θ +

π

4
)⊗ n̂(θ − π

4
) + c

(
0 1
−1 0

)
.

Here p, q ∈ L∞, c ∈ R is a constant and n̂(·) =
(

cos(·)
sin(·)

)
. In words, the displacement

gradient field in a grain oriented at θ is the superposition of the displacement
gradient supported on the characteristics in that grain. Further, the characteristic
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oriented at θ − π
4 supports a constant displacement gradient which is parallel to

n̂(θ − π
4 ) ⊗ n̂(θ + π

4 ) and the characteristic oriented at θ + π
4 supports a constant

displacement gradient which is parallel to n̂(θ + π
4 )⊗ n̂(θ − π

4 ).
We now turn to the stress fields that have zero conjugate energy. From (2.4),

Ŵ ?
θ (σ) = 0 precisely when σ · ε̂2θ = 0. This occurs precisely when σ is of the form

σ(x, y) = σh(x, y)I +
√

2t(x, y)ε̂2θ+ π
2

where I ≡ ( 1 0
0 1 ). This with the equilibrium equation div(σ) = 0 implies the non-

homogeneous transport equation

∇σh(x, y) =
(− sin 2θ cos 2θ

cos 2θ sin 2θ

)
∇t(x, y).

This implies that �2
θ t(x, y) = 0 and �2

θ σh(x, y) = 0.

(b) Polycrystals

The displacement gradient and stress fields must satisfy the relations above in
each grain. In addition, the displacement gradient has to be compatible across the
grain boundary and the stress equilibriated. Therefore the jump in displacement
gradient and stress satisfy

JHK ‖ n̂⊥ ⊗ n̂, JσK ‖ n̂⊥ ⊗ n̂⊥ (3.3)

a.e., where n̂ is normal to the grain boundary (here we have used Tr(H) = 0). We
now use this characterization to obtain the following result concerning the set of
recoverable strains of a polycrystal.

Proposition 3.1. For any polycrystal, dim(S) 6 1.

This result, along with the general properties of S discussed earlier in Section
2 shows that S is either {0} or equal to the segment of a line centered at the ori-
gin. Further, it implies that any polycrystal with sufficient symmetry is necessarily
rigid. Recall that S has square symmetry (invariance under four-fold rotations).
If the texture possess any additional symmetry (e.g., invariance under three-fold
rotations, as we shall see in the next section), then it follows from this result that
the polycrystal is necessarily rigid.

Bhattacharya & Kohn (1997, Thm. 5.3, pg.163) used the translation method to
prove this result for strain fields in L2(Ω,M2×2

sym ). Here we use duality in the context
of L∞(Ω,M2×2

sym ).

Proof. For any polycrystal, we prove that ε̄, ε̄′ ∈ S only if ε̄ ‖ ε̄′. The basic idea is
to take any strain field associated with the average strain ε̄ and construct a test
stress field for the dual variational principle (2.3) for ε̄′ ∦ ε̄.

If S = {0}, the result follows trivially. So let 0 6= ε̄ ∈ S. Then, there exist
s, w ∈ L∞(Ω, R) such that in a grain oriented at an angle θ, the displacement
gradient H is of the form (3.1) and satisfies (3.2). Further, the jump in H satisfies
(3.3)1 almost everywhere along the grain boundaries. Finally,

〈s(x, y)ε̂2θ(x,y)〉 = ε̄. (3.4)
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Consider the field which in each grain is given by

σ(x, y) = w(x, y)I +
√

2s(x, y)ε̂2θ(x,y)+ π
2
. (3.5)

Observe that this is a test field in the dual variational principle since it is divergence
free: in each grain, (c.f. (3.2)),

div(σ(x, y)) = ∇w(x, y)−
(− sin 2θ cos 2θ

cos 2θ sin 2θ

)
∇s(x, y) = 0,

and satisfies (3.3)2 a.e. along the grain boundaries:

Jσ(x, y)K =
1√
2
Jw(x, y)I +

√
2s(x, y)ε̂2θ(x,y)+ π

2
K

=
1√
2
J
√

2s(x, y)ε̂2θ(x,y) + w(x, y)
(

0 1
−1 0

)
K
(

0 1
−1 0

)
=

1√
2
JH(x, y)K

(
0 1
−1 0

)
‖ (n̂⊥(x, y)⊗ n̂(x, y))

(
0 1
−1 0

)
= n̂⊥(x, y)⊗ n̂⊥(x, y)

where we have used ε̂2θ(x,y)+ π
2

= ε̂2θ(x,y)

(
0 1
−1 0

)
and (3.3)1. Further, using (3.4),

〈σ(x, y)〉 =
1√
2
〈w(x, y)〉I + 〈s(x, y)ε̂2θ(x,y)+ π

2
〉

=
1√
2
〈w(x, y)〉I + 〈s(x, y)ε̂2θ(x,y)〉

(
0 1
−1 0

)
=

1√
2
〈w(x, y)〉I + ε̄

(
0 1
−1 0

)
. (3.6)

Finally, note that σ(x, y) · ε̂2θ(x,y) = 0. Now let ε̄′ be such that Tr(ε̄′) = 0. Using
the field σ describe above in the dual variational principle, (2.3), and by recalling
the dual energy (2.4), we conclude that

W (ε̄′) > 〈σ(x, y)〉 · ε̄′ − 〈|σ(x, y) · ε̂2θ(x,y)|〉
= 〈σ(x, y)〉 · ε̄′

= 〈w(x, y)〉I · ε̄′ + (ε̄′
(

0 1
−1 0

)
) · ε̄

= (ε̄′
(

0 1
−1 0

)
) · ε̄

> 0,

(by changing the sign of σ if necessary) except when ε̄′ ‖ ε̄. Thus

0 6= ε̄ ∈ S =⇒ S ⊂ Span {ε̄} =⇒ dim(S) = 1.

We present another proof that does not use the dual variational principle, and
is closer in spirit to Bhattacharya & Kohn (1997).

Proof. This is a proof by contradition. Assume that dim(S) = 2 for some poly-
crystal. Then, recalling that S is balanced and convex, it follows that there exists
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ε̄ 6= 0 such that ε̄ ∈ S and RT
π
4
ε̄Rπ

4
= ε̄

(
0 1
−1 0

)
∈ S. Since ε̄ ∈ S, we conclude

by the arguments in the proof above that there exist s, w ∈ L∞(Ω, R) such that
σ ∈ L∞(Ω,M2×2

sym ) given by

σ(x, y) = w(x, y)I +
√

2s(x, y)ε̂2θ(x,y)+ π
2

(3.5)

is divergence free and satisfies

〈σ(x, y)〉 = 〈w(x, y)〉I + ε̄
(

0 1
−1 0

)
. (3.6)

Since ε̄
(

0 1
−1 0

)
∈ S, there exist s′, w′ ∈ L∞(Ω, R) such that H ∈ L∞(Ω,M2×2)

given by
H(x, y) =

√
2s′(x, y)ε̂2θ(x,y) + w′(x, y)

(
0 1
−1 0

)
(3.7)

is curl-free and satisfies

〈H(x, y)〉 = ε̄
(

0 1
−1 0

)
+ 〈w′(x, y)〉

(
0 1
−1 0

)
. (3.8)

Thus, using (3.6) and (3.8),

|ε̄|2 = (ε̄
(

0 1
−1 0

)
) · (ε̄

(
0 1
−1 0

)
) = 〈σ(x, y)〉 · 〈H(x, y)〉.

Since σ is divergence free and H is curl free, one can integrate by parts (or use
the div-curl lemma) to show that the right-hand side above which is a product of
averages is in fact equal to the average of products. So,

|ε̄|2 = 〈σ(x, y) ·H(x, y)〉

=
〈(

w(x, y)I +
√

2s(x, y)ε̂2θ(x,y)+ π
2

)
·
(√

2s′(x, y)ε̂2θ(x,y) + w′(x, y)
(

0 1
−1 0

))〉
= 0

by recalling (3.5) and (3.7). Thus ε̄ = 0, which is a contradiction.

4. Examples of rigid polycrystals

We describe examples of rigid polycrystals (i.e., those with S = {0}) in this section.

Example 4.1 (Hexagonal microstructures). The polycrystals shown in figures
1(a) and 1(b) are rigid. By inspection, the texture of these polycrystals is invariant
under three-fold rotations. Therefore it follows from Proposition 3.1 that S = {0}.
Figure 1(c) shows three stress fields for the polycrystal shown in figure 1(b). Any
two of these suffice to independently show that the polycrystal is rigid.

We now show that even a polycrystal with square symmetry can be rigid.

Example 4.2 (Rigid checkerboard). The polycrystal shown in figure 2(a) is
rigid.

Proof. Since we already know that S is contained in the subspace of trace-free
tensors, we only need to show that W (ε̄) > 0 for each non-zero, trace-free ε̄.
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Examples of nonlinear homogenization in plane strain involving degenerate energies 9

(a) (b) (c)

Figure 1. (a),(b) Polycrystals with 120◦ symmetry. The directions of the characteristics in
each grain is shown. (c) Three independent dual fields for the polycrystal shown in (b).

0 π
4 0 π

4

π
4 0 π

4 0

0 π
4 0 π

4

π
4 0 π

4 0

(a) Rigid checkerboard.

0 π
4 0 π

4

π
4 0 π

4 0

0 π
4 0 π

4

π
4 0 π

4 0

(b) A variant of (a).

0

��
��
��
��
��
��
��
��
��
��
��

π
4

OOOOOOOOOOOOOOOOOOOOOO

0

π
4

(c) A variant of (a).

Figure 2. Three rigid polycrystals.

Consider a stress field σ concentrated on the diagonal line shown in figure 3(a)
and taking the value ( 1

1 )⊗ ( 1
1 ) = ( 1 1

1 1 ). Note that this field is divergence free, has
average 1

2 ( 1 1
1 1 ), is supported in the grains oriented at 0, and has zero dual energy

(c.f. (2.4)). Thus from (2.3), W (ε̄) > 〈σ〉 · ε̄ which — changing the sign of σ if
necessary — is positive for each non-zero, trace-free ε̄ except when ε̄ ‖

(
1 0
0 −1

)
.

To dispose this remaining case when ε̄ ‖
(

1 0
0 −1

)
, consider a family σθ of stress

fields, parameterized by θ ∈ (0, π
4 ), concentrated on the lines shown in figure 3(a)

and taking the value
( 0

1 )⊗ ( 0
1 ) on the vertical line

1
2 sin θ n̂(θ)⊗ n̂(θ) on the lines inclined at θ

1
2 sin θ n̂(−θ)⊗ n̂(−θ) on the lines inclined at −θ

Note that the field is divergence free and is supported within the grains oriented
at π

4 . Since each vertical line segment has length 1 − tan θ, and each inclined line
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π
4

π
4

0

0

(a)

π
4

π
4

0

0

θ

θ

θθ

1

1
2sinθ

1
2sinθ

(b)

Figure 3. Dual fields for the rigid checkerboard and a free body diagram showing force
equilibrium.

segment has length 1
2 sin θ , the average value of this field is

〈σθ〉 =
1
2
(1− tan θ) ( 0

1 )⊗ ( 0
1 ) +

1
4 sin2 θ

n̂(θ)⊗ n̂(θ) +
1

4 sin2 θ
n̂(−θ)⊗ n̂(−θ)

=
1
2
(1− tan θ) ( 0 0

0 1 ) +
1

4 sin2 θ

((
cos2 θ − cos θ sin θ

− cos θ sin θ sin2 θ

)
+

(
cos2 θ cos θ sin θ

cos θ sin θ sin2 θ

))
=

1
2
(1− tan θ) ( 0 0

0 1 ) +
1

2 sin2 θ

(
cos2 θ 0

0 sin2 θ

)
=

1
2

(
1

tan2 θ
0

0 2−tan θ

)
,

and average dual energy is

〈Ŵ ?(RT (x)σθR(x))〉 =
√

2
4 sin2 θ

|− cos θ sin θ|+
√

2
4 sin2 θ

|cos θ sin θ| = 1√
2 tan θ

.

Note that the ratio

〈Ŵ ?(RT (x)σθR(x))〉
〈σθ〉 ·

(
1 0
0 −1

) =
2
√

2 tan θ
1

tan2 θ − 2 + tan θ
→ 0+ as θ → 0.

Thus for every 0 6= ε̄ ‖
(

1 0
0 −1

)
with |ε̄| sufficiently small, there exists θ such that

W (ε̄) > 〈σθ〉 · ε̄− 〈Ŵ ?(RT (x)σθR(x))〉 > 0.

Remark 4.3. Variations of this example are possible. For instance, the above
proof shows that the polycrystal shown in figure 2(b) is rigid. Moreover, for this
polycrystal a stress field simpler than that shown in figure 3(b) exists, namely one
concentrated on a vertical or horizontal line contained in the grains oriented at
π
4 and passing through the corners where the grains meet. A similar construction
shows that the polycrystal in 2(c) is rigid.

5. Examples of flexible polycrystals

Example 5.1 (Flexible strip). The polycrystal shown in figure 4(a) is flexible.
For the grain oriented at π

4 , the associated characteristics are horizontal and verti-
cal. Since a family of horizontal characteristics percolates through this grain, it is
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π
4

π
4

π
4

φ

φ

(a) (b)

Figure 4. Two flexible polycrystals. For the checkerboard, φ ∈ (0, π
4
).

possible to construct non-trivial piecewise constant strain fields that are non-zero
on (horizontal) strips in this grain and zero otherwise.

Example 5.2 (Flexible checkerboard). For the polycrystal shown in figure 4(b),

S = {s ( 0 1
1 0 ) | s ∈ R, |s| 6 tanφ} .

Proof. Step 1: S ⊃ {s ( 0 1
1 0 ) | s ∈ R, |s| 6 tanφ}.

Consider the piecewise constant displacement gradient field shown in figure 5(b)
(the corresponding deformation is shown in 5(a)). Here n̂− = n̂(−φ − π

4 ), n̂⊥− =
n̂(−φ + π

4 ), n̂+ = n̂(φ− π
4 ) and n̂⊥+ = n̂(φ + π

4 ). Note that

n̂− ⊗ n̂⊥− − n̂⊥− ⊗ n̂− =
(

0 1
−1 0

)
, n̂+ ⊗ n̂⊥+ − n̂⊥+ ⊗ n+ =

(
0 1
−1 0

)
,

n̂− ⊗ n̂⊥− + n̂⊥− ⊗ n̂− =
√

2ε−2φ, n̂+ ⊗ n̂⊥+ + n̂⊥+ ⊗ n̂+ =
√

2ε2φ.

With this it is easy to see that all jump conditions are satisfied and that the strain
field lies within the zero set of each grain. Indeed, from (2.2) within the inner square
in each grain, the strain field lies at the boundary of the zero set of that grain. Let
each grain of the polycrystal be a square whose side is of length 1. The area of the
inner square is sec2 θ

2 . Thus the average strain in the polycrystal is

sec2 θ

4

(√
2ε2φ −

√
2ε−2φ

)
= tan φ ( 0 1

1 0 ) .

This completes step 1. To complete the proof, we prove the reverse inclusion.
Step 2: S ⊂ {s ( 0 1

1 0 ) | s ∈ R, |s| 6 tanφ}.
Consider a stress field σ concentrated on the lines shown in figure 6(a) (see also
figure 6(b)). On each line segment the value of the field is proportional to t̂ ⊗ t̂
where t̂ is tangent to the line; the magnitude of the value of the field on each line
segment is marked in figure 6(a).

Note that

ÂB =
(

cos( π
4−φ)

− sin( π
4−φ)

)
, B̂C =

(
− cos(φ+ π

4 )

− sin(φ+ π
4 )

)
, ĈA =

(
− cos( π

2−φ)

sin( π
2−φ)

)
,

Â′B′ =
(
− cos(φ+ π

4 )

sin(φ+ π
4 )

)
, B̂′C ′ =

(
cos( π

4−φ)

sin( π
4−φ)

)
, Ĉ ′A′ =

(
− cos( π

2−φ)

− sin( π
2−φ)

)
.
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(a)

-( )

-( )

-

-

-

(b)

Figure 5. (a) A deformation and (b) the corresponding displacement gradient field for
the flexible checkerboard.

− sinφ

sin(φ+ π
4)

sinφ

sinφ

sin(φ+ π
4)

− sin(φ+ π
4)

− sin(φ+ π
4)

cos(φ+ π
4)

cos(φ+ π
4)

− cos(φ+ π
4)

− cos(φ+ π
4)

− sinφ

π
4 − φφ+ π

4

A

A0

BB0

C

C 0

(a) A dual field for the flexible checkerboard. (b) The same dual field as in (a) with more
grains shown.

Figure 6.

To verify that this field is divergence free, it is sufficient to verify equilibrium at
the points marked A/A′, B/B′ and C/C ′ in figure 6(a) (see figure 7):

− sinφ Â′C ′ + sin(φ +
π

4
) Â′B′ + sinφ ÂC + cos(φ +

π

4
) ÂB = 0,

− cos(φ +
π

4
) B̂′C ′ + cos(φ +

π

4
) B̂A− sin(φ +

π

4
) B̂C + sin(φ +

π

4
) B̂′A′ = 0,

− sin(φ +
π

4
) ĈB + sinφ ĈA− cos(φ +

π

4
) Ĉ ′B′ − sinφ Ĉ ′A′ = 0,
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cos(φ+ π
4)

sin(φ+ π
4)

π
4 − φ
π
4 − φ

φ+ π
4

φ+ π
4

− sinφ

sinφ

(a) Equilibrium at A/A′.

sin(φ+ π
4)− sin(φ+ π

4)

cos(φ+ π
4)

− cos(φ+ π
4)φ+ π

4 φ+ π
4

π
4 − φ π

4 − φ

(b) Equilibrium at B/B′.

sinφ

− sin(φ+ π
4)

− cos(φ+ π
4)

φ+ π
4

π
4 − φ

φ+ π
4

π
4 − φ

− sinφ

(c) Equilibrium at C/C′.

Figure 7. Free body diagrams for dual field shown in figure 6(a).

respectively. This is easily verified.
Let L be the length of a side of the inner square (shown partially in dotted lines

in figure 6(a)). Then

2
L
〈σ〉 =

√
2 sinφ

((
cos(φ+ π

2 )

sin(φ+ π
2 )

)
⊗

(
cos(φ+ π

2 )

sin(φ+ π
2 )

)
−

(
cos( π

2−φ)

sin( π
2−φ)

)
⊗

(
cos( π

2−φ)

sin( π
2−φ)

))

− sin(φ +
π

4
)
((

cos(φ+ π
4 )

sin(φ+ π
4 )

)
⊗

(
cos(φ+ π

4 )

sin(φ+ π
4 )

)
−

(
− cos(φ+ π

4 )

sin(φ+ π
4 )

)
⊗

(
− cos(φ+ π

4 )

sin(φ+ π
4 )

))

+ cos(φ +
π

4
)
((

− cos( π
4−φ)

sin( π
4−φ)

)
⊗

(
− cos( π

4−φ)

sin( π
4−φ)

)
−

(
cos( π

4−φ)

sin( π
4−φ)

)
⊗

(
cos( π

4−φ)

sin( π
4−φ)

))

=
√

2 cos φ ( 0 1
1 0 ) .

The average dual energy 〈Ŵ ?(RT (x)σR(x))〉 is given by

2〈Ŵ ?(RT (x)σR(x))〉 = (
√

2L)
√

2
∣∣∣sinφ

(
cos(φ+ π

2 )

sin(φ+ π
2 )

)
⊗

(
cos(φ+ π

2 )

sin(φ+ π
2 )

)
· ε̂2φ

∣∣∣
+ (
√

2L)
√

2
∣∣∣sinφ

(
cos( π

2−φ)

sin( π
2−φ)

)
⊗

(
cos( π

2−φ)

sin( π
2−φ)

)
· ε̂−2φ

∣∣∣
= 2

√
2L sinφ.

Thus for any ε̄ = λ ( 0 1
1 0 ), changing the sign of σ if necessary,

W (ε̄) = 〈σ〉 · ε̄− Ŵ ?(RT (x)σR(x)) = (|λ| cos φ− sinφ)
√

2L,

which is positive whenever |λ| > tanφ.

We now provide another, more direct, proof that shows that any non-trivial
strain-field in this checkerboard is necessarily of the type constructed in step 1.
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14 Isaac V. Chenchiah and Kaushik Bhattacharya

Proof. Consider any zero-energy displacement gradient field H in the flexible checker-
board. From §3(a), on the characteristics numbered as shown in figure 8,

H =

{
h+

n n̂(φ− π
4 )⊗ n̂(φ + π

4 ) |n|: odd
h+

n n̂(φ + π
4 )⊗ n̂(φ− π

4 ) |n|: even

in the grains oriented at φ, and

H =

{
h−n n̂(−φ + π

4 )⊗ n̂(−φ− π
4 ) |n|: odd

h+
n n̂(−φ− π

4 )⊗ n̂(−φ + π
4 ) |n|: even

in the grains oriented at −φ. Here h+
n , h−n ∈ R. Imposing displacement compatibility

at the points where characteristics meet we obtain


h−n+1

h+
n+1

h−−(n+1)

h+
−(n+1)

 =



1
2

 tan2(φ+ π
4 )−1 sec2(φ+ π

4 ) 0 0

sec2(φ+ π
4 ) tan2(φ+ π

4 )−1 0 0

0 0 tan2(φ+ π
4 )−1 sec2(φ+ π

4 )

0 0 sec2(φ+ π
4 ) tan2(φ+ π

4 )−1


 h−n

h+
n

h−−n

h+
−n


n > 0, odd

1
2

 tan2(φ+ π
4 )−1 0 0 sec2(φ+ π

4 )

0 tan2(φ+ π
4 )−1 sec2(φ+ π

4 ) 0

0 sec2(φ+ π
4 ) tan2(φ+ π

4 )−1 0

sec2(φ+ π
4 ) 0 0 tan2(φ+ π

4 )−1


 h−n

h+
n

h−−n

h+
−n


n > 0, even

Each of the matrices above has eigenvalues −1 and tan2(φ+ π
4 ) > 1. The eigenspaces

corresponding to −1 are{
Span

{
(1,−1, 0, 0)T , (0, 0, 1,−1)T

}
n: odd

Span
{
(1, 0, 0,−1)T , (0, 1,−1, 0)T

}
n: even.

These relations are recursive, alternating between the odd and even cases. There-
fore, unless the vector (h−1 , h+

1 , h−−1, h
+
−1)

T lies in the intersection of eigenspaces
corresponding to −1 of both matrices, either h±n or h±−n will grow unbounded (as
some integer power of tan2(φ + π

4 )). Such a strain field does not remain in the
zero set Ŝ. On the other hand, if (h−1 , h+

1 , h−−1, h
+
−1)

T lies in the intersection of
eigenspaces corresponding to −1 of both matrices, (h−n , h+

n , h−−n, h+
−n)T also lies in

this space for all n. This implies that the only strain field that remains in the zero
set Ŝ a.e. is one that satisfies (h−n , h+

n , h−−n, h+
−n)T = λ(−1)n(1,−1, 1,−1)T for some

|λ| 6 1. It is easy to verify that the displacement gradient field that results from
the choice (h−n , h+

n , h−−n, h+
−n)T = (−1)n(1,−1, 1,−1)T is the field constructed in

step 1 of the earlier proof.

Between steps 1 and 2 above we implicitly used proposition 3.1 to deduce that
S ⊂ Span {( 0 1

1 0 )}. It is possible to also show this by constructing stress fields.
Consider the stress field σ concentrated on the spiralling lines shown in figure

9(a) (see also figure 9(b)). In each grain, the spiral consists of ‘arms’ of straight line
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-

-

-

-
-

- --
-

-

-

-

-
-

Figure 8. A segment of an arbitrary zero-energy displacement gradient field in the
flexible checkerboard.

(a) A dual field for the flexible checkerboard. (b) The same dual field as in (a) with more
grains shown.

Figure 9.

segments which are numbered as shown. The spiral converges to the square shown
in dashed lines. This is the same square as in figure 5(b).

The value of the stress on the nth arm of the spiral is given by

σ =

{
cotn(φ + π

4 ) n̂(φ + π
4 )⊗ n̂(φ + π

4 ) n: odd
cotn(φ + π

4 ) n̂(φ− π
4 )⊗ n̂(φ− π

4 ) n: even

in the grains oriented at φ, and by

σ =

{
cotn(φ + π

4 ) n̂(−φ + π
4 )⊗ n̂(−φ + π

4 ) n: odd
cotn(φ + π

4 ) n̂(−φ− π
4 )⊗ n̂(−φ− π

4 ) n: even
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16 Isaac V. Chenchiah and Kaushik Bhattacharya

Figure 10. A free body diagram showing force equilibrium at the point where arms n and
n + 1 meet for the stress field shown in figure 9(a).

in the grains oriented at −φ. It is clear that this field is divergence free within each
grain; it is easy to check using figure 10 that it is also divergence free at the grain
boundaries.

The lengths of the arms satisfy the recurrence relation

L1 cos(
π

4
− φ) = 1

Ln cos(φ +
π

4
) + Ln+1 cos(

π

4
− φ) = 1

which can be solved to give

Ln =
sec φ√

2

(
1−

(
− cot(φ +

π

4
)
)n)

.

Averaging over both grains, the average value of σ in the nth arm is
1
2 cotn(φ + π

4 )
(

cos2(φ+ π
4 ) 0

0 sin2(φ+ π
4 )

)
n:odd,

1
2 cotn(φ + π

4 )
(

cos2( π
4−φ) 0

0 sin2( π
4−φ)

)
n:even.

Thus the net average value of the stress is parallel to(
cos2(φ+ π

4 ) 0

0 sin2(φ+ π
4 )

) ∑
n:odd

(
cotn(φ +

π

4
)(1− (− cot(φ +

π

4
))n)

)
+

(
cos2( π

4−φ) 0

0 sin2( π
4−φ)

) ∑
n:odd

(
cotn(φ +

π

4
)(1− (− cot(φ +

π

4
))n)

)

which is parallel to
(

cos(φ+ π
4 ) 0

0 sin(φ+ π
4 )

)
. Thus from (2.3), W (ε̄) > 〈σ〉 · ε̄ which —

changing the sign of σ if necessary — is positive except when ε̄ ‖ ( 0 1
1 0 ).

Finally, note that by superposing the stress field considered in the preceeding
proof with a diagonally translated copy of itself we obtain another stress field which
is shown in figures 11(a) and 11(b). This resulting stress field is more (globally)
symmetric than the preceeding stress field. Other variations are also possible.

Article submitted to Royal Society



Examples of nonlinear homogenization in plane strain involving degenerate energies 17

(a) A dual field for the flexible checkerboard. (b) The same dual field as in (a) with more
grains shown.

Figure 11.

Remark 5.3. The flexible checkerboard shows that the zero-set of a polycrystal can
depend discontinuously on microstructure. As φ → 0, S → {0}. However, when φ =
0, the checkerboard reduces to a single crystal and S =

{
s
(

1 0
0 −1

)
| s ∈ R, |s| 6 1

}
!

Scalar examples presented in Bhattacharya & Kohn (1997, §4) lead to the con-
jecture that a polycrystal is flexible only when strips supporting gradients traverse
or ‘percolate’ through it. The flexible checkerboard shows that the situation is more
complex in the context of strain and percolation can be through isolated points.

Variations of the flexible checkerboard are possible; for example, the polycrystal
shown in figure 12(a).

Example 5.4. Consider a displacement gradient field consisting of three square
regions of constant displacement gradient arranged around a triangle (rather than
four around a rhombus as in the flexible checkerboard). This pattern can be peri-
odically extended; see figure 12(b). If one picks a periodic texture with three-fold
symmetry that is consistent with this displacement gradient, then the polycrystal
with that texture is rigid by proposition 3.1. Yet it can support strain fields that
are not identically zero.

It would be interesting to study small perturbations of this texture, and ask
whether the polycrystal would become flexible, but unfortunately our tools are
currently inadequate to do so.

6. Remarks on Plasticity

We briefly discuss application of these ideas to plasticity. Consider an incompressible
rigid-perfectly plastic material (in two-dimensions) with two slip systems,

(
1 0
0 −1

)
with yield strength 1 and ( 0 1

1 0 ) with yield strength M . If M � 1, the crystal can
slip easily on one system,

(
1 0
0 −1

)
, while it is almost constrained in the other. Such

a crystal is said to be deficient. An interesting and important question is the plastic
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(a) A variant of the flexible checkerboard
that supports the deformation gradient
shown in figure 5(b). The regions shown in
black are inclusions of arbitrary orientation.

(b) A displacement gradient field
(constant in each of the coloured
squares) that generalizes that of
the flexible polycrystal. The tex-
ture of the polycrystal is not
shown.

Figure 12. Variants of the flexible checkerboard.

behavior of a polycrystal made of such a material. This has motivated recent work
in the scalar setting following Kohn & Little (1998).

By scaling the stress by 1/M and letting M → ∞, we obtain a problem very
similar to what we have studied above. Now the material has zero yield stress in
the

(
1 0
0 −1

)
system and unit yield strength in the ( 0 1

1 0 ) system. We describe this by
introducing an yield set,

Y =
{
σ ∈ M2×2

sym | σ ·
(

1 0
0 −1

)
= 0, |σ · ( 0 1

1 0 ) | ≤ 1
}

,

a stress potential

W ?(σ) =

{
0 σ ∈ Y
∞ otherwise,

and complimentary strain energy,

W (ε) =

{∣∣( 1 0
0 −1

)
· ε

∣∣ Tr ε = 0
∞ otherwise.

Note that Y is two-dimensional and unbounded in the ( 1 0
0 1 ) direction. The effective

behavior of a polycrystal is again described through variational principles

W
?
(σ̄) := inf

σ(x)∈Sp
ad

〈σ(x)〉=σ̄

−
∫

Ω

W ?(RT (x)σ(x)R(x)) dx

= sup
ε∈Up

ad

−
∫

Ω

σ̄ · ε−W (RT (x)ε(x)R(x)) dx.
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where

Sp
ad :=

{
σ ∈ L∞per(Ω,M2×2

sym ) | div(σ) = 0
}

,

Up
ad :=

{
u ∈ L∞(Ω, R2) | ε(u) ∈ M1

per(Ω,M2×2
sym )

}
.

Note that the stress-fields are bounded and the strains are measures here. W
?

vanishes on Y and is infinite otherwise. The effective yield set Y is unbounded in
the ( 1 0

0 1 ) direction, and is convex, balanced and contains the origin. The issue is
to understand the nature of the set Y0 := Y ∩ {σ | Trσ = 0}. We say that the
polycrystal is degenerate, deficient or rigid depending on whether the dimension of
Y0 is 0, 1 or 2, respectively.

It is also easy to verify that the stress field with zero stress potential and the
strain and deformation gradient fields with zero strain energy are exactly as de-
scribed in §3(a). We can use this to prove the following analog of proposition 3.1.

Proposition 6.1. For any polycrystal, dim(Y0) 6 1.

Thus, a polycrystal of this material is never rigid. Further, polycrystals with
sufficient symmetry are always degenerate.

Turning now to the examples, it is easy to show that polycrystals with hexagonal
grains (example 4.1; figures 1(a) and 1(b)) are degenerate as is the checkerboard
we had describe earlier as rigid (example 4.2, remark 4.3; figure 2). In contrast, the
polycrystals in examples 5.1 and 5.2 (figure 4) are deficient. In working out these
examples it is useful to note that shear strain fields t̂⊗ t̂⊥+ t̂⊥⊗ t̂ can be supported
on lines with tangent t̂.

Results for finite but large M will be considered in future work.
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