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FUNCTION, GRADIENT AND HESSIAN RECOVERY USING
QUADRATIC EDGE-BUMP FUNCTIONS ∗

JEFFREY S. OVALL†

Abstract. An approximate error function for the discretization error on a given mesh is obtained
by projecting (via the energy inner product) the functional residual onto the space of continuous,
piecewise quadratic functions which vanish on the vertices of the mesh. Conditions are given under
which one can expect this hierarchical basis error estimator to give efficient and reliable function re-
covery, asymptotically exact gradient recovery and convergent Hessian recovery in the square norms.
One does not find similar function recovery results in the literature. The analysis given here is
based on a certain superconvergence result which has been used elsewhere in the analysis of gradient
recovery methods. Numerical experiments are provided which demonstrate the effectivity of the
approximate error function in practice.

Key words. finite elements, a posteriori estimates, hierarchical bases, superconvergence, gra-
dient recovery
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1. Introduction. Hierarchical basis a posteriori error estimators were intro-
duced in the early 1980s [22], and a general framework for the analysis of their
effectivity and computational cost has been given by Bank [1, 3] and others. The
basic idea behind such methods is that the base space of functions Vh, in which we
wish to find our finite element approximation uh, is augmented by a complementary
space Ṽh such that the composite space Vh ⊕ Ṽh provides an improved finite element
approximation ūh. In symbols, |||u − ūh||| ≤ β|||u − uh||| for some β ∈ [0, 1), where
||| · ||| is the energy norm associated with the underlying bilinear form. This improved
approximation assumption is referred to as a saturation assumption. An approximate
error function εh ≈ u−uh is computed in the space Ṽh. Using the saturation assump-
tion and strengthened Cauchy inequalities between the spaces Vh and Ṽh, effectivity
estimates of the form

c1 ≤ |||εh|||
|||u − uh|||

≤ c2 (1.1)

are proven.
In this paper a different sort of analysis which yields stronger assertions is given

for the case where Vh is the space of continuous, piecewise linear functions on a
given mesh and V̄h is the space of continuous, piecewise quadratic functions on that
same mesh. The augmenting space Ṽh consists of quadratic “bump” functions which
vanish on the vertices of the mesh. In particular, we show that the approximate error
function, εh ≈ u−uh, provides efficient and reliable function recovery, asymptotically
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exact gradient recovery, and convergent Hessian recovery:

c1 ≤ ||εh||0,Ω

||u − uh||0,Ω
≤ c2 ,

||εh||1,Ω

||u − uh||1,Ω
→ 1 ,

∑
τ∈Th

|εh|22,τ → |u|22,Ω. (1.2)

Our analysis is based on a superconvergence result of Bank and Xu [5, 6], which also
appears in a slightly more general form in [20]. This result was used in these papers
to explain the success of a number of popular gradient recovery methods, but we
use it here in the context of hierarchical basis error estimation to establish our key
approximation results (1.2).

The rest of this paper is organized as follows. In Section 2 we lay out the basic
notation and assumptions for this paper. Section 3 contains a statement of the super-
convergence result of Bank and Xu, which we then use to prove the above mentioned
gradient and Hessian recovery results. In Section 4 we prove the function recovery
result, and show why we cannot generally hope for asymptotic exactness in this case.
Section 5 comprises almost half of the paper and consists of four examples which are
used to verify the effectivity of our estimator in practice, and a brief subsection on
computational cost.

2. Notation and Basic Assumptions. Let Ω ⊂ R
2 be a bounded domain

with Lipschitz boundary ∂Ω = ∂ΩD ∪ ∂ΩN , and define

H ≡
{
v ∈ H1(Ω) : v|∂ΩD = 0 in the trace sense

}
. (2.1)

The usual spaces W k
p (Ω) and Hk(Ω) ≡ W k

2 (Ω) are equipped with their standard
norms || · ||k,p,Ω and || · ||k,Ω ≡ || · ||k,2,Ω, and seminorms | · |k,p,Ω and | · |k,Ω respectively.
For simplicity in exposition, we will assume that ∂Ω is a polygon. Let data functions
a : Ω̄ → R

2×2, b : Ω̄ → R
2, c, f : Ω̄ → R and g : ∂ΩN → R be given. The problem is

to find u ∈ H such that

B(u, v) = F (v) for all v ∈ H, (2.2)

B(u, v) ≡
∫

Ω

a∇u · ∇v + (b · ∇u + cu)v dx (2.3)

F (v) ≡
∫

Ω

fv dx +
∫

∂ΩN

gv ds. (2.4)

We will assume that the data functions are sufficiently smooth, and that the matrix
a is positive-definite, with smallest eigenvalue bounded below on Ω by some constant
γ > 0. We make the following standard assumptions concerning the bilinear form B
and linear functional F : There exist constants α, ν, µ > 0, such that, for all v, w ∈ H,

|F (v)| ≤ α||v||1,Ω,

|B(v, w)| ≤ ν||v||1,Ω||w||1,Ω,

B(v, v) ≥ µ||v||21,Ω.

Let Th denote a shape-regular triangulation of Ω with mesh size h ∈ (0, 1). Let
Vh ⊂ H denote the space of continuous, piecewise-linear polynomials defined on Th,
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and V̄h ⊂ H denote the continuous, piecewise-quadratic polynomials. We will think
of V̄h hierarchically as

V̄h = Vh ⊕ Ṽh, (2.5)

where Ṽh is the space of quadratic “bump” functions - continuous piecewise-quadratic
polynomials which vanish at all of the vertices of the triangulation. In what follows,
uh ∈ Vh and ūh ∈ V̄h denote respectively the piecewise linear and quadratic approxi-
mate solutions of (2.2):

B(uh, v) = F (v) for all v ∈ Vh (2.6)
B(ūh, v) = F (v) for all v ∈ V̄h. (2.7)

Let u� ∈ Vh and uq ∈ V̄h denote piecewise linear and quadratic interpolants of u on Th.
We make the following standard assumptions about their asymptotic approximation
quality:

||u − u�||k,Ω � h2−k||u||2,Ω, (2.8)
||u − uq||k,Ω � h3−k||u||3,Ω, (2.9)

for 0 ≤ k ≤ 1.

3. Gradient and Hessian Recovery. In this section we prove asymptotically
exact gradient recovery and convergent Hessian recovery results,

||εh||1,Ω

||u − uh||1,Ω
→ 1 ,

∑
τ∈Th

|εh|22,τ → |u|22,Ω (3.1)

for the approximate error function εh ≈ u − uh described below. We first describe
the key assumption on the mesh that will play a role in these results. This mesh
condition and a slight generalization of it can be found in [5, 20].

Let e denote an interior edge in Th with adjacent triangles τ and τ ′. We say that
the quadrilateral formed by τ and τ ′ satisfies the approximate O(h2)-parallelogram
property provided that the lengths of opposite edges differ by only O(h2). The equiv-
alent property at the boundary is as follows: Let e and e′ denote adjacent boundary
edges sharing the vertex x, and τ and τ ′ be the triangles having the edges e and e′

respectively. Let t and t′ be the unit tangent vectors, corresponding to a counter-
clockwise orientation on τ and τ ′. Starting with e for τ and e′ for τ ′ we identify
corresponding edges of τ and τ ′ by traversing their edges counter-clockwise. We say
that the triangles τ and τ ′ associated with the boundary vertex x satisfy the approxi-
mate O(h2)-parallelogram property provided that the lengths of corresponding edges
in τ and τ ′ differ by only O(h2), and |t − t′| = O(h). The key assumption on the
triangulation is:

Assumption 3.1. An O(h2σ)-Irregular Triangulation.
1. Let E = E1 ⊕ E2 denote the set of interior edges in Th. For each e ∈ E1, τ

and τ ′ satisfy the approximate O(h2)-parallelogram property, while∑
e∈E2

|τ | + |τ ′| = O(h2σ)
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2. Let P = P1⊕P2 denote the set of boundary vertices. The elements associated
with x ∈ P1 satisfy the approximate O(h2)-parallelogram property, and
|P2| = κ, where κ is fixed independent of h.

The second condition is only necessary in the case of Neumann boundary condi-
tions, ∂ΩN �= ∅. The following result, due to Bank and Xu [5], is the key lemma for
the results in this paper:

Lemma 3.2. Under Assumption 3.1, we have

||uh − u�||1,Ω � h1+min(σ,1)| log h|1/2‖u‖3,∞,Ω. (3.2)

We now present a new result based on Lemma 3.2 for computing a superconver-
gent approximation of the gradient. Suppose that we first solve for the linear finite
element approximation, uh ∈ Vh, and then augment this approximation by solving
the residual equation on Ṽh, the space of quadratic bumps. In other words,

B(uh, v) = F (v) for all v ∈ Vh, (3.3)
B(εh, v) = F (v) − B(uh, v) for all v ∈ Ṽh. (3.4)

One can think of this as a projection of the residual error onto the space Ṽh. We have
the following result:

Theorem 3.3. Under Assumption 3.1, we have

||u − (uh + εh)||1,Ω � h1+min(σ,1)| log h|1/2‖u‖3,∞,Ω. (3.5)

Proof. Using Galerkin orthogonality to replace εh ∈ Ṽh with ub ∈ Ṽh, the “bump”
portion of the quadratic interpolant uq = u� + ub, we get the following estimate:

||u − (uh + εh)||21,Ω � B(u − (uh + εh), u − (uh + εh)) (3.6)
= B(u − (uh + εh), u − (uh + ub)) (3.7)
� ||u − (uh + εh)||1,Ω||u − (uh + ub)||1,Ω. (3.8)

We bound the term ||u − (uh + ub)||1,Ω as follows:

||u − (uh + ub)||1,Ω ≤ ||u − uq||1,Ω + ||uq − (uh + ub)||1,Ω (3.9)
= ||u − uq||1,Ω + ||u� − uh||1,Ω (3.10)

� h2‖u‖3,Ω + h1+min(σ,1)| logh|1/2‖u‖3,∞,Ω. (3.11)

This completes the proof. �
As an immediate corollary, we see conditions under which we can expect ||εh||1,Ω

to be an asymptotically exact estimator of the true gradient error ||u − uh||1,Ω.
Corollary 3.4. Suppose that there is some constant c > 0 such that ||u−uh||1,Ω ≥

ch. Then under Assumption 3.1, we have

||εh||1,Ω

||u − uh||1,Ω
→ 1. (3.12)
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Proof. It holds that∣∣∣∣ ||εh||1,Ω

||u − uh||1,Ω
− 1
∣∣∣∣ ≤ ||u − (uh + εh)||1,Ω

||u − uh||1,Ω
. (3.13)

Combining this with the estimate from Theorem 3.3 completes the proof. �
Theorem 3.3 and Corollary 3.4 and their proofs have also appeared in [17, 18].

Recall that the quadratic interpolant uq ∈ V̄h of u is decomposed as the sum
uq = u� + ub with u� ∈ Vh and ub ∈ Ṽh. In the following lemma we compare
the first and second derivatives the bump portion ub of the quadratic interpolant
and the approximate error function εh. The second of these results is used in the
proof Theorem 3.6 to establish the Hessian recovery result, and the first will play an
important role in the next section - where we prove the function recovery result.

Lemma 3.5. Under Assumption 3.1, we have

||εh − ub||1,Ω � h1+min(σ,1)| log h|1/2‖u‖3,∞,Ω, (3.14)∑
τ∈Th

|εh − ub|22,τ � h2min(σ,1)| log h|‖u‖2
3,∞,Ω. (3.15)

Proof. In the proof of Theorem 3.3, we saw that

||u − (uh + εh)||1,Ω , ||u − (uh + ub)||1,Ω � h1+min(σ,1)| log h|1/2‖u‖3,∞,Ω. (3.16)

This gives us

||εh − ub||1,Ω ≤ ||u − (uh + εh)||1,Ω + ||u − (uh + ub)||1,Ω (3.17)

� h1+min(σ,1)| log h|1/2‖u‖3,∞,Ω. (3.18)

Using a standard inverse estimate we see that,∑
τ∈Th

|εh − ub|22,τ � h−2||εh − ub||21,Ω � h2min(1,σ) |log h| ‖u‖2
3,∞,Ω, (3.19)

so we have proven both results. �
The convergent Hessian recovery result follows.

Theorem 3.6. Under Assumption 3.1, we have∑
τ∈Th

|u − εh|22,τ � h2 min(σ,1)| log h|‖u‖2
3,∞,Ω (3.20)

Proof. We have |u − εh|2,τ ≤ |u − ub|2,τ + |ub − εh|2,τ , so

∑
τ∈Th

|u − εh|22,τ ≤ 2

(∑
τ∈Th

|u − ub|22,τ +
∑
τ∈Th

|ub − εh|22,τ

)
(3.21)

� h2‖u‖2
3,∞,Ω +

∑
τ∈Th

|ub − εh|22,τ . (3.22)
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Combining this with the second estimate in Lemma 3.5 completes the proof. �
Provided that ‖u‖3,∞,Ω < ∞, the estimate in Theorem 3.5 is equivalent to

∑
τ∈Th

|εh|22,τ → |u|22,Ω. (3.23)

4. Function Recovery. In this section we prove that the approximate error
function εh provides efficient and reliable approximation of the true error u − uh in
the L2-norm,

c1 ≤ ||εh||0,Ω

||u − uh||0,Ω
≤ c2. (4.1)

We also explain why we cannot generally expect the same sort of asymptotic exactness
result which we saw for the gradient error. In other words, we cannot generally expect
that

||εh||0,Ω

||u − uh||0,Ω
→ 1, (4.2)

although the constants c1, c2 may be near 1 in practice.
This first lemma will allow us to convert the gradient approximation result from

Lemma 3.5 into the function (L2) approximation results that follow.
Lemma 4.1. Let Th be a shape-regular quasi-uniform mesh. For any b ∈ Ṽh, we

have

||b||0,Ω � h||∇b||0,Ω. (4.3)

Proof. Let τ ∈ Th be given, and write b in terms of its three bump basis functions
on τ , b = c1b1 + c2b2 + c3b3 . We denote the length of the edge on which bk does not
vanish by Lk, and without loss of generality take L1 ≤ L2 ≤ L3. It holds that

||b||20,τ =
8|τ |
45

(c2
1 + c2

2 + c2
3 + c1c2 + c1c3 + c2c3), (4.4)

||∇b||20,τ =
1

3|τ |
(
(c1 − c2 − c3)2L2

1 + (c2 − c1 − c3)2L2
2 + (c3 − c1 − c2)2L2

3

)
.(4.5)

We bound ||∇b||20,τ from below as follows:

||∇b||20,τ ≥ L2
1

3|τ |
(
(c1 − c2 − c3)2 + (c2 − c1 − c3)2 + (c3 − c1 − c2)2

)
(4.6)

=
L2

1

3|τ | (3c2
1 + 3c2

2 + 3c2
3 − 2c1c2 − 2c1c3 − 2c2c3) (4.7)

≥ L2
1

3|τ |
1
2
(c2

1 + c2
2 + c2

3 + c1c2 + c1c3 + c2c3). (4.8)
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This gives us

||b||20,τ ≤ 48
45

|τ |2
L2

1

||∇b||20,τ � h2||∇b||20,τ . (4.9)

Summing over triangles completes the proof. �
Lemma 4.2. Under Assumption 3.1, we have

||εh − ub||0,Ω � h2+min(σ,1)| log h|1/2‖u‖3,∞,Ω, (4.10)

||u − (u� + εh)||0,Ω � h2+min(σ,1)| log h|1/2‖u‖3,∞,Ω. (4.11)

Proof. Combining the first estimate from Lemma 3.5 with the result of Lemma 4.1
proves the first of these two estimates. We also have

||u − (u� + εh)||0,Ω ≤ ||u − uq||0,Ω + ||εh − ub||0,Ω � h3||u||3,Ω + ||εh − ub||0,Ω. (4.12)

This second estimate combined with the first completes the proof. �
We see from the estimate ||u− (u� + εh)||0,Ω = o(h2) that ||εh||0,Ω is an asymptotically
exact estimator of the interpolation error ||u−u�||0,Ω provided that ||u−u�||0,Ω > m1h

2

for some positive constant m1. We are now ready to prove the main result of this
section.

Theorem 4.3. Suppose that there are constants m1, m2 > 0, such that ||u −
u�||0,Ω ≥ m1h

2 and ||u − uh||0,Ω ≥ m2h
2. Then, under Assumption 3.1, there are

constants c1, c2 > 0, such that

c1 ≤ ||εh||0,Ω

||u − uh||0,Ω
≤ c2. (4.13)

Proof. It is certainly the case that there are constants M1, M2 > 0, such that
||u − u�||0,Ω ≤ M1h

2 and ||u − uh||0,Ω ≤ M2h
2. So we have

m1

M2
≤ ||u − u�||0,Ω

||u − uh||0,Ω
≤ M1

m2
. (4.14)

The proof is completed by using the fact that ||εh||0,Ω is an asymptotically exact
estimator of ||u − u�||0,Ω. �

Recall that the proof of the asymptotic exactness of ||εh||1,Ω as an estimator of
||u−uh||1,Ω relied on the fact that ||u�−uh||1,Ω = o(h). We see in Lemma 4.4 below that
we need ||u� − uh||0,Ω = o(h2) to get asymptotic exactness of ||εh||0,Ω as an estimator
of ||u − uh||0,Ω.

Lemma 4.4. Under Assumption 3.1, we have

||u − (uh + εh)||0,Ω = o(h2) ⇐⇒ ||uh − u�||0,Ω = o(h2). (4.15)

Proof. We have the inequalities,

||u − (uh + εh)||0,Ω ≤ ||u − (u� + εh)||0,Ω + ||uh − u�||0,Ω, (4.16)
||uh − u�||0,Ω ≤ ||u − (u� + εh)||0,Ω + ||u − (uh + εh)||0,Ω. (4.17)
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Fig. 4.1. Uniform mesh with n = 3.

Lemma 4.2 completes the proof. �

The rest of this section is devoted to demonstrating by example that we cannot
generally expect ||u�−uh||0,Ω = o(h2) even in an ideal situation for which we can prove
||u� − uh||1,Ω � h2| log h|1/2||u||3,∞,Ω. Thus, we cannot generally expect asymptotic
exactness in the L2-norm.

Consider the following simple problem on the unit square Ω = (0, 1) × (0, 1):

−∆u = 2x(1 − x) + 2y(1 − y) in Ω
u = 0 on ∂Ω.

The exact solution is u = x(1 − x)y(1 − y). We take the family of uniform meshes
having mesh size h = 1

n+1 and n2 degrees of freedom located at (xi, yj) = (ih, jh) -
see Figure 4.1. We will show that h2 � ||u� − uh||0,Ω.

Let T ∈ R
n×n be the tridiagonal matrix with stencil (−1, 2, −1). Under the

standard ordering of unknowns (left to right, bottom to top) the stiffness matrix for
this problem is given by

A = T ⊗ I + I ⊗ T = (V ⊗ V )(D ⊗ I + I ⊗ D)(V ⊗ V ),(4.18)

Vij =

√
2

n + 1
sin

ijπ

n + 1
, Dij = δij(2 − 2 cos

iπ

n + 1
) = δij4 sin2 iπ

2(n + 1)
.(4.19)

We note that V = V T = V −1. As a notational convenience, for x ∈ R
n2

we use
x(i,j) ≡ x(i−1)n+j . Similarly, we take φ(i,j) to be the Lagrange nodal basis function
associated with the grid point (xi, yj). We define d and r to be the error and residual
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at the grid points

d(i,j) = u(xi, yj) − uh(xi, yj) = u�(xi, yj) − uh(xi, yj), (4.20)

r(i,j) = h2f(xi, yj) −
∫

Ω

fφ(i,j) dxdy =
2
3
h4. (4.21)

We have Ad = r. We first argue that ||u� − uh||0,Ω ≥ h
2 ||d||, and then establish that

||d|| ≥ Ch, thereby proving that h2 � ||u� − uh||0,Ω. We begin by noting that for any
linear function g on a triangle τ , given in terms of its three nodal basis functions,
g = c1�1 + c2�2 + c3�3, we have

||g||20,τ =
|τ |
6

(c2
1 + c2

2 + c2
3 + c1c2 + c1c3 + c2c3) ≥

|τ |
12

(c2
1 + c2

2 + c2
3). (4.22)

Therefore, if g is continuous and piecewise linear on T , we have

||g||20,Ω =
∑
τ∈Th

||g||20,τ ≥ |τ |
2
||c||2 =

h2

4
||c||2, (4.23)

where c is the vector of coefficients. The factor of six comes from the fact that each
coefficient appears in six of the summands ||g||20,τ . This proves that

||u� − uh||0,Ω ≥ h

2
||d||. (4.24)

We now consider ||d|| = ||A−1r|| = 2
3h4||A−1(e ⊗ e)||, where e ∈ R

n is the vector of
ones. It holds that ||A−1(e⊗ e)|| = ||(D ⊗ I + I ⊗ D)−1(V e⊗ V e)||, and

(V e)i =

√
2

n + 1

n∑
j=1

sin
ijπ

n + 1
=

√
2

n + 1
cot

iπ

2(n + 1)

∣∣∣∣sin iπ

2

∣∣∣∣ . (4.25)

This gives us,

||A−1(e⊗ e)||2 =
h2

4

n∑
i=1

n∑
j=1

∣∣∣∣sin iπ

2
sin

jπ

2

∣∣∣∣
(

cot iπ
2(n+1) cot jπ

2(n+1)

sin2 iπ
2(n+1) + sin2 jπ

2(n+1)

)2

(4.26)

>
h2

4

(
cot π

2(n+1) cot π
2(n+1)

sin2 π
2(n+1) + sin2 π

2(n+1)

)2

(4.27)

=
h2

16

cos4 π
2(n+1)

sin8 π
2(n+1)

>
h2

16

( 1√
2
)4

( π
2(n+1) )

8
=

4
π8

h−6. (4.28)

Combining these results we have ||u� − uh||0,Ω > h
2

2h4

3
2h−3

π4 = 2h2

3π4 , which completes
the argument.
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5. Experiments. In this section we offer four examples which illustrate the
effectivity of our estimator and provide some comments on its computational cost.
In particular, we wish to verify the key results of this paper (1.2) in practice. The
exact for each of the examples solution is known, so we can judge the quality of our
estimator directly. Throughout this section we use eh ≡ u − uh for the exact error
and the abbreviation EFF for each of the effectivity ratios

||εh||0,Ω

||eh||0,Ω
,

|εh|1,Ω

|eh|1,Ω
,

|εh|2,Ω

|u|2,Ω
. (5.1)

For the sake of convenience we abuse notation slightly by taking

|εh|2,Ω ≡
√∑

τ∈T
|εh|22,τ . (5.2)

This is an abuse because |v|2,Ω is infinite by its standard definition for functions
such as εh which have a gradient jump between elements in a mesh. Additionally,
we abbreviate standard scientific notation by placing the base ten exponent as a
subscript; for example, 3.54−2 ≡ 3.54 × 10−2.

The quantity N appearing in the tables is the number of triangles in the mesh.
For the larger values of N , this is roughly twice the number of vertices in the mesh.
In the first four examples, for which the exact error is known, we use the error model
E = CN−p, derived from standard a priori estimates and Nh2 ∼ 1, to give a sense
of the rate of convergence of error. In particular, we give the least-squares best fit
for each of the normed errors. We note that p = 1 (resp. p = 1/2) corresponds to
what is generally called quadratic (resp. linear) convergence - in terms of the mesh
parameter h - and we use this language in the explanations below. The code used for
the numerical experiments is PLTMG [2], with modifications necessary to implement
our error estimation technique.

5.1. The Simple Problem. For our first experiment, we revisit the example
from Section 4 which was used to demonstrate that one cannot generally expect
asymptotic exactness from our estimator in L2. We will see, however, that the function
recovery is very nearly exact in this case. Recall that the problem is to find u such
that:

−∆u = 2x(1 − x) + 2y(1 − y) in Ω
u = 0 on ∂Ω.

Here Ω is the unit square, and the exact solution is u = x(1− x)y(1− y). We provide
the values of the various norms of u so that the relative errors can be readily assessed
if desired.

||u||0,Ω =

√
1

900
= 0.03̄ , |u|1,Ω =

√
1
45

≈ 0.149 , |u|2,Ω =

√
22
45

≈ 0.699

This example is also used in the numerical experiments in [21, 23].
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Table 5.1
Estimates, exact values and effectivity for the simple problem.

N 88 441 1887 7765 31505 126919
||εh||0,Ω 1.71−3 2.93−4 6.98−5 1.62−5 3.90−6 9.64−7

||eh||0,Ω 1.65−3 3.09−4 7.22−5 1.63−5 3.93−6 9.76−7

EFF 1.04 0.947 0.966 0.993 0.994 0.987
|εh|1,Ω 3.19−2 1.36−2 6.61−3 3.14−3 1.54−3 7.67−4

|eh|1,Ω 3.14−2 1.37−2 6.61−3 3.15−3 1.55−3 7.72−4

EFF 1.01 0.998 1.00 0.997 0.996 0.996
|εh|2,Ω 0.726 0.713 0.709 0.705 0.703 0.703
|u|2,Ω 0.699 0.699 0.699 0.699 0.699 0.699
EFF 1.04 1.02 1.01 1.01 1.01 1.00

In Table 5.1 we see the predicted performance of the estimator in each of the
square norms, with the L2 error estimate having effectivity very near 1 on each mesh.
Below, we give the approximate error models for the function and gradient errors:

||eh||0,Ω ≈ 0.159N−1.02 , |eh|1,Ω ≈ 0.307N−0.502 .

We point out that we observe the predicted a priori quadratic convergence of ||eh||0,Ω

and linear convergence of |eh|1,Ω.

5.2. The Oscillatory Problem. In this second example we consider the situ-
ation where the exact solution still possesses no singularities, but oscillates strongly.
The problem is to find u such that:

−∆u = 128π2 sin(8πx) sin(8πy) in Ω
u = 0 on ∂Ω.

Here Ω is again the unit square, and the exact solution is u = sin(8πx) sin(8πy). The
pertinent norms of u are given below:

||u||0,Ω =

√
1
4

= 0.5 , |u|1,Ω =
√

32π2 ≈ 17.8 , |u|2,Ω =
√

4096π4 ≈ 632

In Table 5.2 we again see effectivity approaching 1 for the gradient error and
the Hessian in both norms. The effectivity of the function error estimate tends to
stay in the 80 − 85% range. We see in the approximate error models below that
the adaptive refinement seems to be producing suboptimal reduction of function and
gradient error:

||eh||0,Ω ≈ 36.5N−0.873 , |eh|1,Ω ≈ 149N−0.443 .

This is due to the fact that the two coarsest meshes are just beginning to resolve the
oscillatory behavior. When the error data from these two initial meshes is removed,
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Table 5.2
Estimates, exact values and effectivity for the oscillatory problem.

N 88 434 1888 7825 31679 127552
||εh||0,Ω 0.369 0.149 8.43−2 1.50−2 3.27−3 7.99−4

||eh||0,Ω 0.499 0.172 9.60−2 1.76−2 3.89−3 9.49−4

EFF 0.738 0.865 0.878 0.853 0.846 0.842
|εh|1,Ω 15.1 8.43 6.56 3.04 1.46 0.716
|eh|1,Ω 17.6 9.78 6.92 3.07 1.46 0.720
EFF 0.859 0.862 0.949 0.991 0.993 0.995
|εh|2,Ω 304 458 603 632 634 634
|u|2,Ω 632 632 632 632 632 632
EFF 0.481 0.693 0.954 1.00 1.00 1.00

we see the expected quadratic and linear convergence for the function and gradient
errors, respectively. More precisely, the exponents for the L2 and H1 error models
are p = 1.09 and 0.536.

5.3. The Slit Domain Problem. For our third example we consider a problem
for which the boundary conditions force a singularity at the origin. Because of the
infinite gradient at the origin, it is interesting to investigate the effectivity of the
estimators. The problem is to find u such that:

−∆u = 0 in Ω , u(r, 0+) = 0 , ∇u · n (r, 2π−) = 0 , u(1, θ) = sin(θ/4).

Here Ω is the unit disk with the positive x-axis removed, and the exact solution is
u = r1/4 sin(θ/4). Though the gradient of u is infinite at the origin, |u|1,Ω finite.
However, this is not the case for |u|2,Ω - here we must avoid the origin to get a finite
H2 seminorm. Let Ωs denote Ω with the disk of radius s about the origin removed.
In the experiments, we take s = 1/100. The pertinent norms are given below:

||u||0,Ω =

√
2π

5
≈ 1.12 , |u|1,Ω =

√
π

4
≈ 0.886 , |u|2,Ωs =

√
3π

32
(s−3/2 − 1) ≈ 17.2 .

We note that the global smoothness condition u ∈ W 3
∞(Ω) is certainly not satisfied

here.
In Table 5.3 we see the clear effects of this singularity on the performance of

the function error estimates and the gradient error. Here the function error estimates
underestimate the true function error by roughly a factor of 26.5 at worst and a factor
of 5 at best, and the gradient error estimate underestimates the true gradient error
by 28% at best, though it is slowly improving. We also point out that the second
derivatives are recovered quite well. Concerning Table 5.3, we mention finally that
the performance of the gradient error estimate improves markedly if we restrict our
attention to the error on the subdomain Ωs, as is seen at the bottom of that table,



Function, Gradient and Hessian Recovery Using Quadratic Edge-Bump Functions 13

Table 5.3
Estimates, exact values and effectivity for the slit domain problem.

N 94 481 2031 8334 33704 135632
||εh||0,Ω 2.81−2 3.20−3 5.26−4 1.39−4 3.43−5 8.51−6

||eh||0,Ω 0.122 3.92−2 1.33−2 3.57−3 9.08−4 1.78−4

EFF 0.230 8.18−2 3.96−2 3.88−2 3.78−2 4.78−2

|εh|1,Ω 0.419 0.231 0.132 6.93−2 3.51−2 1.62−2

|eh|1,Ω 0.590 0.331 0.189 9.91−2 4.99−2 2.25−2

EFF 0.710 0.698 0.697 0.699 0.703 0.720
|εh|2,Ωs 5.34 19.9 24.2 18.2 17.5 17.2
|u|2,Ωs 17.2 17.2 17.2 17.2 17.2 17.2
EFF 0.310 1.16 1.40 1.06 1.02 1.00

but the performance of the function error estimate does not improve appreciably. The
approximate error models given below, though showing subquadratic convergence of
the function error and sublinear convergence of the gradient error, are actually quite
encouraging for a problem with this sort of singularity, where we would expect p ≈ 1/8
asymptotically for the gradient error |eh|1,Ω under uniform refinement:

||eh||0,Ω ≈ 9.31N−0.894 , |eh|1,Ω ≈ 5.11N−0.447 .

5.4. The Jumping Coefficient Problem. The problem is to find u such that:

−ak∆u = 0 in Ω, u(r, 0) = 0
∇u · n (r, π) = 0, u(1, θ) = bk sin(αθ) + ck cos(αθ).

Here Ω is the upper half of the unit disk, which is divided into two regions having
differing coefficients of diffusion. In the first region, 0 < θ < π

4 , we have a1 = 103.
In the second region, π

4 < θ < π, we have a2 = 1. The exact solution is u =
rα(bk sin(αθ)+ck cos(αθ)), where the values α, bk, ck are determined by the boundary
conditions at θ = 0, π and the continuity of u and ak∇u · n along the interface θ = π

4
between the two regions. The boundary condition at r = 1 is chosen to match the
solution in the interior. The boundary conditions on the positive and negative x-axis
and the continuity conditions at the interface provide four equations which are linear
in b1, c1, b2, c2 (and trigonometric in α). It is clear that b1 = c1 = b2 = c2 = 0 satisfies
all of the specified conditions trivially, so we must select α so that the resulting linear
system is singular - therefore admitting nontrivial solutions. If there are any such
choices of α, then there are infinitely many. We selected the following solution, with
α ≈ 0.666422:

b1 = 1 , c1 = 0 , b2 ≈ 750.416 , c2 ≈ −432.484
||u||0,Ω ≈ 515 , |u|1,Ω ≈ 767 , |u|2,Ωs ≈ 2.323 .
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Again we take Ωs to be Ω with the disk of radius s = 1/100 removed. Although
u �∈ H2(Ωs) because of the jump discontinuity of ∇u at the interface between the two
regions, we abuse notation by taking

|u|22,Ωs
≡
∑
τ∈Ts

|u|22,τ (5.3)

for Table 5.4. This sum is finite because the interface between the two regions does
not pass through the interior of any of the triangles.

In Table 5.4, we see the data for this experiment. We point out that the perfor-
mance of the various error estimates based on the approximate error function seem
to be unaffected by the jump in the coefficient. In particular, we see effectivity ratios
near or approaching 1 for the gradient error and the Hessian, and in the 80%-range
for the function values in each norm. The approximate error models given below
show error convergence which is better than one would expect, with superquadratic
convergence in function error and superlinear convergence in gradient error:

||eh||0,Ω ≈ 1.123N
−1.20 , |eh|1,Ω ≈ 1.583N

−0.589 .

These convergence rates are elevated in the models because of the significant error
reduction in the early stages of refinement. When we remove the error data from the
first two meshes, the convergence rates drop to the more normal quadratic and linear
levels.

In addition to having an rα , α < 1 singularity at the origin, the solution also
has a jump discontinuity in its gradient at θ = π/4. It is relevant at this point to
consider which of these two type of singularities has the stronger (negative) effect
on the performance of the estimator for problems of this sort. Considering that
the slit domain problem possesses only an rα singularity and that the α for that
problem is smaller than the one for this problem, comparing the performance of the
estimator in both cases suggests that rα singularities are more influential than jump
discontinuities in the gradient. In fact, a careful reading of either the Bank/Xu paper
[5] or the Xu/Zhang paper [20] reveals that the key superconvergence result for this
paper,

||uh − u�||1,Ω = o(h)

holds for u having a finite number of gradient jump discontinuities provided that u is
sufficiently smooth in each of corresponding subdomains. So we see that, asymptot-
ically, the effectivity of the estimator is only affected by jumping coefficients if they
lead to singularities which are worse than gradient jump discontinuities.

We also mention that, for problems of the sort for which we can expect gradient
jumps, a naive application of gradient recovery error estimators will lead to sub-
optimal and sometimes terrible performance. This is because of the fact that gradient
recovery schemes involve some sort of local or global averaging. If care is not taken
to avoid averaging across an interface where ∇u jumps, then the local error estimates
near the interface will tend to over-estimate the actual error there - particularly when
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Fig. 5.1. The meshes for the jumping coefficient problem after three stages of adaptive refine-
ment, using Bank/Xu gradient recovery estimates (left) and bump function error estimates (right).
The mesh on the left has 804 vertices and 1534 triangles, and the mesh on the right has 808 vertices
and 1530 triangles.

uh approximates u well. To illustrate this explicitly we give a brief summary of the
result of using the Bank/Xu recovery technique, which is a global recovery technique.
In Figure 5.1, we see a clear qualitative difference between the sort of refinement
produced by the bump estimator and the naive use of the Bank/Xu estimator - the
sort of difference we might have guessed due to the over-estimation of error near the
interface for the latter. The error model for this refinement is |eh|1,Ω ≈ 845 N−0.487,
with effectivity EFF ≈ 3 as the mesh is refined. We are not trying to make the
point that this sort of bad behavior is unavoidable for gradient recovery schemes - in
practice it can be avoided by taking care not to average out a gradient jump where
there should be one. Bank and Xu noted this in an example in [6], and performing
their gradient recovery scheme for our problem on each subdomain separately restores
the optimal performance. The point that we are trying to make with this discussion is
that with the bump error estimator it is not necessary to treat subdomains differently.
We think that this is an attractive feature of the estimator, particularly in cases where
the number of jumps in the coefficient on the diffusion term (and hence the number
of jumps in the gradient of the solution) is large, or where there are small or narrow
regions in which the number of elements needed to get a good approximation of the
true solution there is smaller than the number of elements needed to perform any of
the standard gradient recovery techniques.

5.5. Computational Cost. Although the linear system involved in the compu-
tation of εh can be expected to have roughly three times the number of unknowns as
that for computing uh, the system itself is readily solved because it is well-conditioned
(see [1], pg. 11, for example). But how does the cost compare with that of various
gradient recovery schemes? We content ourselves with a direct comparison with the
recovery scheme of Bank and Xu as it is currently implemented in PLTMG. In Ta-
ble 5.5, we have the ratios of the times needed to compute εh and the recovered
gradient R∇uh for three of the four problems considered here - the jumping coef-
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Table 5.4
Estimates, exact values and effectivity for the jumping coefficient problem.

N 66 353 1530 6337 25734 103617
||εh||0,Ω 6.67 0.396 8.04−2 1.86−2 4.33−3 1.22−3

||eh||0,Ω 11.1 0.811 0.116 2.29−2 5.21−3 1.49−3

EFF 0.603 0.488 0.691 0.814 0.831 0.820
|εh|1,Ω 96.0 33.3 13.6 6.06 2.90 1.42
|eh|1,Ω 108 36.1 14.1 6.16 2.92 1.43
EFF 0.886 0.923 0.960 0.985 0.994 0.997
|εh|2,Ωs 1.173 2.493 2.503 2.403 2.353 2.333

|u|2,Ωs 2.323 2.323 2.323 2.323 2.323 2.323

EFF 0.504 1.07 1.07 1.03 1.01 1.00

ficient problem was omitted because it would have required a modification of the
gradient recovery subroutines in PLTMG. We have used symmetric Gauß-Seidel as a
preconditioner for CG in the computation of εh, as in all of the experiments above,
and these data correspond to those experiments. For example the ratio 3.17 for the
Simple problem corresponds to the coarsest mesh, 88 triangles for both εh and R∇uh,
and 2.24 corresponds to the finest mesh, 126919 triangles for εh and 127020 for R∇uh.

For these three problems, unpreconditioned CG can be used instead with no loss
in effectivity. When this is done, the timing ratios drop from bewteen roughly 3.5 and
2.0 to between roughly 2.5 and 1.5. The reason that we generally advocate using some
sort of preconditioner is for problems such as the Jumping Coefficient problem, where
one notices a drop in effectivity otherwise. We suggest that the greater computational
cost, still quite small with respect to the total computational cost of the adaptive
algorithm, may be worthwhile for this very robust and flexible error estimator. The
robustness of the estimator is seen theoretically in that, even in situations where the
assumptions taken here do not apply, we have the “old” analysis based on the milder
saturation assumption and strengthened Cauchy inequality to fall back on - which
hold under quite general conditions (see [9, 10], for example - pp. 436–445 of the
latter). The flexibility of the approximate error function εh ≈ u − uh is clear in that
it can be used to measure error in other norms or to approximate error in certain
functionals of interest (see [18]), as well as for mesh smoothing procedures such as
that proposed by Bank and Smith [4].

6. Final Remarks. We have given proof and numerical evidence of the ef-
fectiveness of the hierarchical basis type bump function estimator εh ≈ u − uh in
recovering function values and first and second derivatives. The proofs offered here
are based on the superconvergence result ||uh − u�||1,Ω = o(h) which is usually used
in the proofs of the effectiveness of gradient recovery methods. In our proofs, we
replace the standard saturation assumption and strengthened Cauchy inequality used
in the analysis commonly given for hierarchical basis methods with relatively mild
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Table 5.5
Timing comparison - the ratio of the costs to compute εh and R∇uh.

Simple 3.17 3.37 3.53 3.25 2.66 2.24
Oscillatory 3.15 4.07 3.61 3.40 2.05 2.38
Slit Domain 3.19 2.83 2.85 3.01 2.66 2.03

mesh symmetry conditions and relatively strong smoothness assumptions, which are
sufficient but which are often not seen to be necessary in practice. We thereby obtain
stronger theoretical results than are generally given for such estimators, and these
results are borne out in practice. The approximation εh ≈ u − uh is provably quite
robust, and can be used for error estimation and adaptivity in a variety of norms and
other measures.

In terms of the asymptotically exact recovery of gradient error, our estimator
||∇εh||0,Ω has a lot of very good competition in the many gradient recovery procedures
proposed in the literature. In addition to the recovery procedure of Bank and Xu
which is mentioned several times above, we also cite the local least-squares fitting of
Zienkiewicz and Zhu[23, 24] (perhaps the most popular), the polynomial preserving
method of Zhang and Naga [16, 21], and the method proposed by Wiberg and Li
[15, 19] - which has the most in common with our own in that it can be used directly
to produce a locally quadratic (though not globally contiuous) approximation of the
error u−uh. These methods should also be suitable for recovering second derivatives
- Bank and Xu argue as much for their estimator - but not much has been written
in the gradient recovery literature about estimating the function error. The notable
exception in this regard is the aforementioned work of Wiberg and Li, where numerical
evidence of efficiency and reliability of their estimator are given, but no analysis is
provided.

We now briefly consider a few straight-forward generalizations of what has been
presented here. The O(h2σ)-Irregular Triangulation assumption is generalized in [20],
where Xu and Zhang call it Condition(α, σ). We note that the σ in the Xu/Zhang
paper plays the role of the 2σ used in both the Bank/Xu paper and in our own,
and an O(h1+α)-parallelogram property is used instead of an O(h2)-parallelogram
property. In their paper, Xu and Zhang also use the less stringent regularity condition
u ∈ H3(Ω)∩W 2

∞(Ω). Under these assumptions and a few natural assumptions on the
bilinear form for the problem, they prove that

||uh − u�||1,Ω � h1+min(α,1/2,σ/2)(||u||3,Ω + |u|2,∞,Ω). (6.1)

The results in this paper can be modified in the obvious way to incorporate the
Xu/Zhang version of the mesh symmetry conditions and the weaker regularity as-
sumption, with no change in the proofs.

We will mention two other ways in which the arguments given here can be readily
generalized. The first is to consider linear simplicial elements in R

n, n > 2. Recall
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that the key result from which all of the other estimates were proven was of the form

||uh − u�||1,Ω = o(h), (6.2)

where uh is the linear finite element approximation and u� is the linear Lagrange
interpolant. Brandts and Kř́ıžek [7, 12] show that

||uh − u�||1,Ω � h2||u||3,Ω, (6.3)

on very regular meshes for u ∈ H1
0 (Ω) ∩ Hs(Ω) and s = 3 for n ≤ 5 and s > n/2

for n ≥ 6. Any s greater than 3 is only needed to assure that the nodal interpolant
u� can be well-defined. Chen [8] generalizes the argument in [5] to mildly structured
tetrahedral meshes in R

3 to obtain

||uh − u�||1,Ω � h1+min(1,σ)||u||3,∞,Ω, (6.4)

where u ∈ H1
0 (Ω) ∩ W 3

∞(Ω) and σ measures the violation of an O(h2)-parallelepiped
property. With such superconvergence results, the extension of our results proceeds
in the obvious fashion.

Another generalization would be to consider hierarchical error estimators for
higher order elements. For example, let V̂h = V̄h ⊕ (V̂h \ V̄h) be the piecewise cubic
finite element space, which we think of hierarchically. If ūh ∈ V̄h is the finite element
solution, we might want to estimate the error u− ūh using a function in V̂h \ V̄h, call
it ε̄h. Bo Li [13, 14] has shown that Lagrange interpolation does not generally give
the analagous superconvergence results for elements of degree 3 or higher in R

2, but
we are free to use some other appropriate interpolation scheme. Let Πq : C(Ω̄) → V̄h

and Πc : C(Ω̄) → V̂h be defined by

Πqu(vi) = Πcu(vi) = u(vi) for vertices vi∫
ej

u − Πqu ds =
∫

ej

(u − Πcu)v ds = 0 for edges ej and linear functions v

∫
τ

u − Πcu dx = 0 for triangles τ .

Huang and Xu [11] argue that

||ūh − Πqu||1,Ω � h2+min(1,σ)/2(||u||4,Ω + |u|3,∞,Ω) , Πcu − Πqu ∈ V̂h \ V̄h. (6.5)

One might correctly infer from the statement of the result that a similar argument to
those found in [5, 20] is used. With an estimate like this, the analogue of Theorem 3.3
can be proven in the obvious way. Using arguments like those given in Lemma 3.5
and Theorem 3.6, we see that our approximate error function ε̄h ≈ u − ūh provides
superconvergent approximation of ||u−ūh||2,Ω and convergent approximation of ||u||3,Ω.
Finally, arguing along the same lines as in Section 4 we get even better results than in
the case of piecewise linears, because it actually does hold that ||ūh−Πqu||0,Ω = o(h3).
Huang and Xu have plans to extend their results to higher order elements as well,
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and the analagous results should be able to be plugged into our framework with little
difficulty.

The author thanks Wolfgang Hackbusch and other colleagues in the scientific
computation group at the Max Planck Institute in Leipzig for many helpful discus-
sions, as well as Randy Bank at UC San Diego for assistance with PLTMG, and for
useful comments concerning this manuscript. Additionally we thank the referees for
their helpful input.
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