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1 Introduction

We consider the Cauchy problem of the following kinetic equation

0
ot
when the initial data is zero :

f(0,2,0) =0, V(z,v)ecR¥.

(f(t,z,v)) +a(v) - Vo (f(t,z,v)) = g(t,x,v), in D'(Rfx RY xRY),  (1.1)

We assume that a is a C™ function from R" to R" and that the source term g
is in L} (RS x RY x RY), so that the solution f of (1.1) exists and is unique in
Ll (RS x RY x RY) (see [P] p.67).

In addition to the usual time and space variables (¢, z), kinetic models involve the
velocity v as a third variable and yield to equations of the form (1.1). Let us
point out that we consider in this paper only the case when the dimension N of
the space variable is equal to the dimension of the velocity variable. For instance,
famous kinetic equations such as Vlasov and Boltzmann equations are of the form
(1.1) with a(v) = v (see [BGP] for a description of these equations). The kinetic
formulation of a scalar conservation law with entropy condition also yields to the
problem (1.1), when the dimension of the space variable is equal to one. Indeed, it is
shown in [LPT] that if u € L}, .(R;"x RY) is the entropy solution of the conservation
law

% (u(t,2)) + div, (A(u(t,z))) =0, in D'(R"x RY),

u(0,-) = up € L™,

(1.2)

*Max Planck Institute for Mathematics in the Sciences, Inselstrasse 20, D-04103 Leipzig, Ger-
many, Myriam.Lecumberry@mis.mpg.de



then, the function f defined on R/ x RY x R, by

1 if 0 <o <u((tx),
ft,z,0):=<¢ —1 if u(t,z) <v <0, (1.3)
0 else,

satisfies the kinetic problem (1.1) where a(v) = A’(v) and g is the derivative in v of
the entropy measure. We refer to [P] for a review of kinetic formulations. Let us
point out that our restriction to the case of a same dimension for space and velocity
variables only allows us to study kinetic formulations of conservation laws in one
space dimension.

It was observed in [GLPS]| that compactness and regularity results exist, not for the
solution f of (1.1), but for velocity averages of f. For any ¢ € C>°(RY), the velocity
average p of f associated to ¢ is defined by

p(t,x) = ft,z,v)p(v)dv, V(t,r) € RTx RY, (1.4)

RN

For any f € L} (R x RY x RY), the set of all velocity averages of f, denoted by

loc

V(f), is defined as follows :
V(f) = {p € LL(Rix RY)| 3¢ € C°(RY) such that (1.4) holds }

The velocity averages of the solution f of (1.1) are of physical interest : in the case
of transport models, they may correspond to the density of particles, the moment
density or the energy density (see [BGP|), whereas in the case of the kinetic for-
mulation of the conservation law (1.2), the solution of the conservation law w is in
V(f) where f is the solution of the associated kinetic problem. The main result
obtained in [GLPS]| is a gain of regularity for the velocity averages of f : if f, g are
in L2(Rf x RY x RY) and satisfy (1.1) with a(v) = v, then any velocity average of
fis in HY2(R; x RY). Such results are called in the litterature “kinetic averaging
lemmas” (for a survey of them, see [BGP]). Among all of them, we may quote the
result given in [DLM| (in a weaker form) and in [B] (in the present form).

Theorem 1.1. [DLM, B] Let f,g € LP(R; x RY x RY), with 1 < p < 2, satis-

fying (1.1) with a(v) = v, Yo € RN. Then, any velocity average p in V(f) is in

H;*E(RHN)'

H;(Rd), for any s € R, 1 <p<+o0 and d€N*, denotes the fractional Sobolev space
defined by

HyRY) = {f e DPRY [ FH((1+]-P)EFS) € DRY},
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where F and F~! denote respectively the Fourier transform and the inverse Fourier
transform in R?. A norm on H}(R?) is given by

fllzry = L llze + [|FH @+ - P)ZFF) |-

Let us mention that the regularity result obtained in Theorem 1.1 also holds when f
is a solution of (1.1) with a € C*(R,R"), as in the case of the kinetic formulation of
a scalar conservation law in space dimension N, as soon as a satisfies the following
non-degeneracy condition (see [LPT]) :

VM >0,3C >0 such that V¢ € RN u e Rs.t. €]+ |u| <1, Ve >0,

£1<{v € [-M, M]]|a(v) - € +u| < g}) < Ce. (1.5)

Recently, P-E. Jabin and B. Perthame improved the embedding of Theorem 1.1,
assuming some regularity in the variable v of f and g. This assumption has some
relevance when the equation (1.1) comes from a conservation law : the function f
defined by (1.3) for u € L}, is in L™ and the derivative in v of f is a Radon measure
in R x RY x R,. By interpolation, f € LY(R;x RY W"4(R,)), for any v < 1/2 and
g < 2. In |JP], they proved the following result :

Theorem 1.2. [JP] Let f € L4RXRY WY(RY)) and g€ LP(Rx RY, WHP(RN)),
with 1 < p,q <2, 1— % <y <% and B < 3, satisfying (1.1). If either a(v) = v,
Vo € RY, or a € C°(R,RY) satisfies (1.5), then any velocity average p € V(f) is
in W (R x RY) for any s < 6 and r' < r with l= % + % and

loc

g — a(v,9)
a(y,q) + 1 —a(B,p)

where the function o is defined by

alv, ) =1+v—¢ ify<1/2
aly,q) =2—y+252 ify>1/2.

(1.6)

The space W*P(R%), also called in the litterature fractional Sobolev space, is defined
for0<s<1,1<p<+ooanddeN"by

WeP(R?) = {f € LP(RY) ‘ //R %dmdy < —|—oo} .

A norm on W#P(R%) is given by

_ P 1/p
e = 1o+ ([ HE ) 17)
3



Actually, W*P(R?) C H3(R?), but, unless p = 2, the inverse inclusion is not true
(see [T]).

The approach for proving the above velocity averaging lemmas is to write the ve-
locity average p as a sum of two functions, for the first one, the assumption on f is
used, whereas the assumption on g is used for the second one, and to conclude by a
real interpolation argument.

Here, we want to address the question of existence of averaging lemmas without
making further assumptions on f than to be in Lj,.. The method described above
can’t be applied anymore. Actually, very few results are known if f is not assumed
to be at least in L? with p > 1. In [GLPS]|, an example of a sequence g, bounded
in L' such that the sequence of velocity averages of the solutions f, of (1.1) (with g
replaced by g,) is not weakly compact in L}, is given. Thus, some stronger assump-
tion on g is needed to get regularity or compactness results for the velocity averages
of f. For instance, in the case N = 1, it is shown in [GLPS] that if a sequence (g,,) is
bounded in L} (Rfx R,x R,) and is uniformly integrable, then the sequence of any
1

velocity average of the solution f,, of (1.1) (with g replaced by g,,) is compact in L.

In the present work, we shall make the assumption that the source term g has some
regularity in the velocity variable v, whereas the solution f of (1.1) is only known
to be in Lj,.. Such a situation appears for instance while considering blow-ups in
studying the structure of the singular set of the entropic solution u of (1.2), with any
L initial data. In [DR], it is proved in the case N = 1 that the entropy measure
of the problem (1.2) (in the kinetic formulation of (1.2), the source term g = 0, )
concentrates on the 1-rectifiable singular set of u, when assuming that the set of
zeros of A” is locally finite and that the solution of (1.2) is an entropic solution
(i.e. satisfies a sign condition on entropy measures). Actually, it was already known
in the general N-dimensional case, without restricting to the entropic solution of
(1.2), that the singular set of u coincides, up to a H¥-negligible set, with the set of
points of RT x RY where the upper N-dimensional density of y is positive (see [LR]
for N = 1 and [DOW] for the general case). Here, H" denotes the N-dimensional
Hausdorff measure. To prove the concentration of x on this set, in the case when
N = 1, the approach in [DR] is to show that p “doesn’t see” the points (¢, o)
where the upper 1-dimensional density of p is 0 (i.e. limsup,_, M = 0).
The usual blow-up process consists of studying the limit of the rescaled functions
ur(t,x) == u(ty + rt,zo + rx). But, when the sequence «,, := M goes to

0 for some sequence r, — 0, then one has to divide by «,, the rescaled functions

to get a non trivial equation at the limit. In this case, the sequence of functions
fult,z,v) = [lotratzotrnty) whare fis defined from u by (1.3), satisfies (1.1) with

Qn




gn a Radon measure whose total variation is bounded independently of n. But, f,
is not bounded in L, since a,, — 0. In [DR], the authors prove that the second
derivative in v of the entropy measure (i.e. the first derivative in v of g for the
associated kinetic problem) is a Radon measure on R* x R? (here the assumption
that the solution is entropic is crucial, for more details see [DR|). With this regularity
in the velocity variable, they are able to prove a weak L' precompactness result for
velocity averages which allows to obtain the concentration result. Our goal was
to improve this weak L' compactness result. We manage to prove some Sobolev-
Poincaré type inequality. Precisely our main result is the following :

Theorem 1.3. Let f € L, (R} x RY x RY) satisfying (1.1) and coming from the

loc
zero initial data. Let us assume that either a(v) = v, Yo € RY, or N = 1 and

a € C*(R,R) satisfies (1.5). If g is in L}, (RS x RY, W P(RY)) with 1 < p < +o00

loc loc

and s < %, then any velocity average p € V(f) is in W.P(R} x RY). Moreover, for
any T € (0,4+00) and I compact of RY,

HPHWS’P([O,T}XI)) < CHQHLP([O,T]xJ,Wsm(K)) (1.8)

where C, T are positive constants, J, K are compacts of RN which only depend on
s,p, T and on the support, the sup and Lipschitz norms of a, its inverse a™ and ¢,
where ¢ is the C° function to which p is associated by (1.4).

The result is given for the solution of the Cauchy problem with zero initial data.
Actually, since the initial data and the source term play an equivalent role, the same
result holds when the initial data is not zero but has the same regularity in v as the
source term g.

Our result can be resumed as follows : for 1 < p < 400, the regularity W*? in
the variable v for g is transfered to the variables (t,z) for any velocity average of
f, under the condition s < %. On the contrary of velocity averaging lemmas (the
method has been described above), we don’t need any stronger assumption on f
than to be in L}, .. Moreover, we can treat the case p = 1, which is not possible as
soon as the argument is based on interpolation, like it was for the previous velocity
averaging lemmas. Actually, the regularity result yielded by our method is all the
better since p is close to 1. For the case p = 2, our method does not improve the
previous result of [DLM] and [B| obtained without the v-regularity assumption.

Now, let us compare our result to the one of [JP| (Theorem 1.2) where the v-
regularity of g is taken into account. Assume that g € LP(R;x RY WHP(RN)).
On one hand, by Theorem 1.3, any velocity average of f is in I/Vﬁ’p(Rzr x RY),

loc
1

if 6 < > On the other hand, in |JP] it is proved, under the assumption that

f e LIR x RY Wr4(RN)) with 1 < ¢ < 2, 1 —% < v < 3, that any velocity



average of f is in W (RT x RY) where s’ < 0 given by (1.6). When 1 < p < 2
and [ € (%, 1—17>,
a

1
0 = ,  wherea=1+~v—-€(0,1].
a—1+p8-—221 7= €01

One can easily remark that the sign of § — 3 is positive if a > % — 1 and is negative

else. For instance, § will be greater than 0 if v = ¢, ¢ = ﬁ with € small enough.
As expected, it is when the information on f is poor (7 is closed to 0 and ¢ is closed
to 1) that the method we use to obtain the regularity result of Theorem 1.3 is really

efficient compared to the one used in [JP].

In the context of the kinetic formulation of a conservation law, when a satisfies the
following weaker non-degeneracy assumption : VM > 0, 3C > 0, 36 € (0, 1] such
that V€ € RV, u € Rs.t. [£] + |u| < 1, Ve > 0,

El({v € =M, M]||a(v) - € +u| < g}) < O, (1.9)

the method of [DLM], [B| and [JP| yields to regularity results for velocity averages
(which are weaker than the one quoted before) : if f,g € LP, 1 < p < 2, satisfies

s1-1
(1.1), with a satisfying (1.9), then the velocity averages of f are in Hp( ”)(Rz).
The problem of the adaptation of our method to the case where a only satisfies the
weaker assumption (1.9) in the one dimensional case remains open.

One of the main motivations of our work was the question of the concentration of
the entropy measure on a N-rectifiable set in the problem of a scalar conservation
law, which remains open for any space dimension N > 2 or in one space dimension
but when the solution of the conservation law is not entropic. If we manage to
improve the compactness result used in [DR] to prove concentration, the restriction
to the case of equal space and velocity dimensions prevents us from dealing with
conservation laws in space dimension strictly greater than 1. Adapting the proof
of Theorem 1.3 to the case when the space dimension is not equal to the velocity
dimension is not straightforward. The main idea of the proof of Theorem 1.3 is to
make the space variable slide into the velocity variable by a simple change of vari-
ables. But, if the dimensions are not the same, this exchange can’t be done anymore.
We then leave open the interesting question of the generalization of Theorem 1.3
when space and velocity dimensions are different.

In a second part of this paper, we insist on the fact that our result includes the case
p = 1, which seems to us the most interesting case. We obtain that any velocity



average p € V(f) is in W2 (RT x RN) for any s < 1 as soon as we assume g to

loc
be in L} (Rt x RN, WLH(RY)). The result is optimal in the sense that we can’t

loc
hope to get p in I/Vlicl (R* x RY). Indeed, velocity averages of f typically present
N-dimensional singularities (“shock waves” in the case of the kinetic formulation of
a conservation law), even if the source term ¢ is smooth, so that they can’t belong
to VV;;;(]R* x RY). The appropriate space for velocity averages would be the space
of BV functions. We may wonder if we can estimate the BV norm of p by the
L} BV, norm of the source term g. In dimension 2, the space of BV functions is
continuously embedded in the space of L? functions. Then, a first step in the case
when N = 1 would be to obtain an estimate of the L? norm of p. Actually, we show
that a Poincaré-type inequality for the L? norm of velocity averages can’t hold : we
give a counter-example which consists of approaching by L' functions (g.) a Dirac
mass in the two-dimensional (¢, x) space (Proposition 3.1). Therefore, we can’t hope
to obtain any BV estimate for velocity averaging with the only assumption on the

v-regularity of the source term.

We then restrict the set of source terms to Radon measures g in RT x R whose
derivative in v, 0,g, is also a Radon measure and which also have the following
property : for a.e. (¢t,z) € (0,400) x R,

lim sup 9 (Br(t,z) X R)
R—0 R

< 4o0. (1.10)

The new assumption (1.10) is relevant since it is satisfied when the kinetic equation
(1.1) comes from a conservation law with entropy condition (see [DOW| and |LR]).
But, even for this restricted set of source terms, which excludes Dirac masses in the
(t,x) space, we will show, giving a second counter-example, that we can’t get a BV
estimate of the velocity average by the L; BV, norm of g (Proposition 3.2).

Finally, still in the case N = 1, we establish a “weak” Poincaré-type inequality
involving the L% norm of velocity averages :

Theorem 1.4. Let f € L, (R x RZ ) satisfying (1.1) and coming from the zero

loc
initial data. If a € C*(R,R) satisfies (1.5) and g € L*'(R/x R,, BV(R,)). Then,
any velocity average p € V(f) is in L>*°(R;fx R,) and satisfies

pll5,00 < Cllgllzy, pv,- (1.11)

The paper is organized as follows : section 2 is devoted to the proof of Theorem 1.3.
First we consider the case of a(v) = v, v € RV :

5 (& 2,0) +0- Ve (f(t2,0) = g(t,@,0),  in D'(RTx RY x RM),
f(0,z,v) = 0.

(1.12)



We show the regularity of velocity averages of solutions of (1.12) in the space vari-
able (Proposition 2.1), using the explicit formula of f in the case when ¢ is smooth,
and then, using a density argument. Then, we explain briefly how to generalize the
preceding proof to the problem (1.1) when N =1 and a satisfies (1.5) (Proposition
2.2). Finally, we prove that space regularity implies time regularity for velocity av-
erages of solutions of (1.1), using Fourier analysis arguments (Proposition 2.3).

In section 3, we consider the particular case of p = 1. First, we give the example
which contradicts the L? Poincaré-type inequality. Then, we give the second exam-
ple where the assumption (1.10) holds and which contradicts a BV estimate for the
velocity averages. We finish by proving Theorem 1.4.

Acknowledgements : This work was carried out while the author was visiting the
Mathematic Department of the ETH of Zirich for three months. There, the dis-
cussions she had with Tristan Riviére contribute a lot to the achievement of this
paper and she would like to thank him. She also thanks the whole department for its
hospitality.

Before going into proofs, let us fix some notations :

- Ff and F~!f will denote respectively the Fourier transform and the inverse Fourier
transform of f. From time to time, the notation F f can be replaced by the simpler
one f . When we consider the partial Fourier tranform (resp. the inverse partial
Fourier) in the variable X of f, we will write Fx f (resp. Fy'f).

-Vé: RY — R, supp(¢) denotes the support of ¢, ||¢|s denotes the norm sup of
¢, Lip(¢) denotes the Lipschitz constant of ¢, and Lipy(¢) denotes the Lipschitz
constant of the restriction of ¢ on K.

- For any set A C RY 14 denotes the indicator function of A and L~ (A) denotes
the Lebesgue measure of A.

- B(x, R) denotes the closed ball centered in z of radius R in RY, Bp denotes
B(0, R). The Euclidean norm in any R is always denoted by | - |.

- A function f belongs to LF (RY), 1<p<+oc if and only if

1/p
| fllze(x) := (/ |f|p> < 400, VK compact of RY.
K

- A function f belongs to Ws’p(RN), 0<s<1and 1<p<+oo, if and only if

P 1/p
| fllwswy == | fll e (// 7 — y,spﬂy dx dy) <400, VK compact of RY.

- A multi-variable function f is in L7 (R™ W P(RY)), N;m € N*, 0 <s <1 and
1<p<+o0, if and only if

1l eeweriy = [[I1F (X, ) lwer K)HLp < +00, VY compacts K C RY JcCR™.



2 Proof of Theorem 1.3

2.1 Space regularity (case a(v) = v)

In the case when a(v) = v, Vo € RY, we prove partially the regularity result of
Theorem 1.3 : the following proposition only gives the regularity of velocity averages
of the solution f of (1.12) in the space variable.

Proposition 2.1. Let f € L} (Rf x RY x RY) satisfy (1.12). Let us assume that
g isin L (RS x RY WIP(RY)) with 1 < p < 400 and s < %. Then, any velocity

loc
(RZF, WSP(RN)), and for any T € (0,+00) and I compact

loc

average p € V(f) isin LY,
of RY,
el oo, ey < Cligllrqorxawer)) (2.1)

where C' is a positive constant, J, K are compacts of RY which only depend on s, p, T
and on supp ¢, ||¢|| and Lip(¢) where ¢ is the C° function to which p is associated

by (1.4).

Proof : First, let us assume that g € C°(R; x RY x RY). Then, the solution f of
(1.12) is given by the following formula :

t
f(t,x,v) = / g(r,x — (t —7)v,v)dr, V(t,z,v) € RTx R*,
0
Then, Vt > 0, Vo € RV,

p(t,x) = /]RN /tg(T,x — (t — 1)v,v)p(v)drdv

R

using Fubini’s theorem and doing the change of variables z(v) =z — (t — 7)v.
For any T € (0, +00) and for any compact I C RY, we have to estimate the quantity

lp(t, ) — p(t,y)|P
dxdy dt
// o — gy Y
// da:dydt
12’5’3_9“9”]\[
//RN ’tT (

Let us take M > 0 such that supp(¢) C By. Vo € I, Vu € [0,T], let us denote
B(z,uM) by Jyu. If 2 ¢ J,,, then ¢(22) = 0. Then, for any (z,y) € I? and

) ) ———~dzdT

p

2) = g (1.2 122) 0 (1) | ywdzdr |

9



t > 7 € [0,T], we can restrict the integral in z on the compact J;_,, U J;_.,. Since
LN(Jyr) = LY (Ji—ry) = Co(t — 7)Y MY with Cy > 0, using Holder inequality for
the integral over 7, and then on the integral over z, we have,

dxdydt
A pr—
LI =i

p
L e e s ) o ()| i
d:z:dydt
: /// o=yl
p
[ o6 -an 0| ar
dxdydtdr N(p—1)
< Cl////]2|x_y|sp+Nt )N
p

[ e e -0 (a0 ()] s

where (] is a positive constant depending on M and T

Let usset J := {z € RY | dist(z,I) < TM}, then J contains J,, , ¥(u, ) € [0,T]x1.
Using Fubini’s theorem and doing the changes of variables 2’ = == and y' = 4=,
we have

V2 )o(=2) — 9(T, 2, =)o ()P
A < t T t T t—1
< Cl///dthd /12 |x—y|5p+N|t—T|N dxdy

dtdrdz g(1,z,2)p(2") — g(7, 2,y ) (Y|P ., .,
< C do'dy/.
N ///\t—\// o/ =y [y ra

Now, let us remark that since g is in W P(RY) and ¢ is a Lipschitz funtion with

compact support in R, then g¢ is in W*P(RY). Precisely one can easily show that

g(r, 2,2 )p(x") — g(7, 2,4 )oY )P, ,
//RZN ’3; y ‘Sp+N de'dy” < CZ“Q(Ta 2, )“WSp (2.2)

where Cy depends on ||@]|~ and Lip(¢), and where K is the support of ¢. Since, by
assumption sp < 1, we then only have to estimate the L' norm of a convolution of
L' functions :

Tt “g(Ta Za')“%/s,)
A< GO Lizdtdr < C )
= 2/0/0/] |t—7'|5p T ||g||Lp ([0, T x J,WsP(K))>

10




where C' depends on T, s,p, supp ¢, ||¢|l« and Lip(¢). Hence (2.1) is proved for
any g € C°(RT x R?V).

Now, let g € LF (R x RY W P(RY)). Let T € (0,+00) and I be any compact of
RY. Let ¢ € C°(RY). We define as above compacts J and K. Let § € C>°(R'"2Y)
such that supp 6 C [0, 7] x J x K, ||0||.c = Lip(#) = 1, and let us extend g by 0 on
(—00,0) x RN,

Let ¢ € C(R™N) such that £ > 0, supp & C By and [& = 1. Let us set
&ty v) = I (nt, na, o), V(t,z,v) € RN and g, := g0 % &,. Then, g,
converges to g6 in LP(R, x RY W*P(RY)), and

||gn||Lp(Rth;V,Wsm(Rva)) < ||99||LP(RthiV,WS’p(R£V))'
Vn € N, let f,, be the solution of (1.12) with g replaced by g,,. Since g, € C>(R*2V),
then f, is given by

t
folt,z,v) = / Gn(T, 0 — (t —T)v,0)dr, V(t,z,v) € RTx RN,
0

Since the LP norm of g, is uniformly bounded, then (f,,) is bounded in L? and, up to
a subsequence, (f,) converges in the distributional sense to the function f satisfying
(1.12). ¥Yn € N, let p, be the velocity average of f,, associated to ¢ by (1.4), then
(pn) converges in the distributional sense to p the velocity average of f associated
to ¢. But, since g, € C®(R'*2Y), we know from above that

| onll e o, wer 1)) < Cllgnllromyxswsrxy) < Cllg 0| Lo@i+n wer@yy),

where C' > 0 depends on T, s,p, supp(¢), ||¢|l« and Lip(¢). Using the estimate
(2.2) with # instead of ¢, we have :

1901 Lori+~ wer@nyyy < CollgllLeqo,rxswsr(x))

where Cj is some positive constant.

Therefore, the weak limit p of p,, is in L |

(R, W P(R,)) and satisfies

loc
ol e o, werry) < CCollgll oo, xawsw(k))-

Proposition 2.1 is proved.

11



2.2 Space regularity (N =1)

In the one dimensional case, we generalize the preceding result to the case when
a € C satisfies the non-degeneracy condition (1.5). We obtain the same result as
for the case a(v) = v.

Proposition 2.2. Let f € L}, (R x R, x R,) satisfy (1.1). Let us assume that a

loc

satisfies (1.5) and g € I} (R} x Ry, W,2P(R,)) with 1 < p < 400 and s < }—17. Then,

loc loc

(R, WiP(R,)), and for any T € (0,+00)

loc

any velocity average p € V(f) is in LY
and I compact of R,

1ol e ooy wswnyy < CllgllLeor<swsr(x)

where C' is a positive constant, J, K are compacts of R which only depend on s,p, T
and on the support, the sup and Lipschitz norms of a, its inverse a~' and ¢ where
¢ is the C° function to which p is associated by (1.4).

Proof : If a € C* satisfies (1.5), then the derivative a’ of a can’t vanish. Indeed, let
us asume that there exists vy € R such that a’(vy) = 0. Let us take M such that
vy € (—M, M). By the Taylor formula,

Vo e [-M,M], |a(v) —a(v)| < Ci(v—p)?,

where C) = sup |a”|. Thus,
[_MuM]

{vel-M M| @w-w?< g} {vel-M M|lav) - o) <&}
By (1.5), we have
! ({v € [—M, M] | (v — )2 < C—}) < (e, V>0,
But, for & small enough,
cl <{v € [-M, M]| (v —1p)® < C—}) SN

which yields to a contradiction. Therefore, a’ is either positive or negative, and for
any compact K of R, inf |a’| > 0. Moreover, since a is either strictly increasing or
strictly decreasing, then a is bijective and its inverse a~! is in C'(R).

We first assume that g € C°(R* x R?), and then we conclude by the same density

argument as in the proof of Theorem 1.3. When g is in C°(R* x R?), the solution
f of (1.1) with zero initial data is given by

f(t,x,v) = /tg(T,.CE — (t = 7)a(v),v)dr, V(t,z,v) € Rt x R
0
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Let ¢ € C°(R) and p € V(f) associated to ¢ by 1.4, then V(¢,z) € Rt x R,

p(t,x) = /ot/K g(t,x — (t — 17)a(v),v)o(v)dvdr,

where K is the support of ¢. Since infx |a’| > 0, we can make the change of variable
z(v) =z — (t — 7)a(v) and we get

)= [ [ s (=) S N L

where J,, = x —ua(K), V(u,z) € RT x R. Let us remark that Vz & J,_, .,
[0) (a_1 (g)) = 0. For any T € (0,400) and I compact of R, let us set

t t p
/ / p(t, x) — p(t, y)] dedy.
I2 |z — y|8p+1
/ / dxdydt
12 ’33 —ylHt

Jt—T,zUJt—‘r,y

Then,

llJtm (2)g (7,207 () — 7=y

~1;,_(2)g (1, 2,07 (£2))

dzdydt o1
/ /// PR
/-]tT,zU-]tT,y

Ly .. (2)g (72,07 (§22)) W

—1,,_,,(2)g (T, za”! (?:TZ)) o (a—l (y: ))

using Holder inequality and noticing that £'(J,,) = ul!(a(K)), Y(u,z) € RT x R.
Let us set J := {z € R| dist(z,I) < Tﬁl(a(K))}. Then, Vax € I, V7 <t € (0,71,

13



Ji—r» C J and we have

A < 01/ / /dthdz
t— T

/],

Lyl (™ 22 SO D

17 W)y (12,07 (32))

Doing the changes of variables 2’ = a™ (£2) € K and y = o' () € K, we

obtain t o
s [ ] o

e >||a<'>|<t—7>2 o
la(z’) — a(y’)|spL(t — 7)sp+! dz'dy

dtdrdz
< Cilipgla // /]t—Tysp
( ((y))|l’
O dxdy.
//K a() —a<y>|sp+1 o

But, o’ is locally Lipschitz and does not vanish, therefore is locally Lipschitz and
has compact support. Moreover, a~! is Lipschitz on K so that Vr,y € K we have

% < Lipg(a™'). Therefore, using the estimate (2.2), we have

A < Cllgllzeqomixawen ),

where C' depends on T,s,p, supp(¢), Lipg(a), Lipg(a™), ||% -

Proposition 2.2 is proved.

and Lip (%)

2.3 Time regularity

We finish the proof of Theorem 1.3 showing that space regularity implies time reg-
ularity for the velocity averages. Let us stress on the fact that the following result
does not require the v-regularity assumption on g or any further assumption on f.
Also, let us remark that this result (quoted in the case when space and velocity
dimensions are equal) holds even if the velocity dimension is not the same as space
dimension.
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Proposition 2.3. Let f € L (Rfx RY x RY) satisfying (1.1). Let us assume
that g € L (Rfx RY x RY) with 1 <p < +oo. Let s € (0,1). If any velocity
average p € V(f) is in L} (Rf, W P(RY)), then any velocity average p € V(f) is in
W2P(R x RY).

loc

Proof : We extend f, g (resp. any function of V(f)) by 0 on (—o0,0) x R?V (resp.
on (—00,0) x RY) . Let K be any compact of R*x RY and 6 € C>°(R'™) be such
that # = 1 on K. Let ¢ € C°(RY) and p € V(f) be the velocity average of f
associated to ¢ by (1.4). Let us show that, under the assumption of Proposition 2.3,
po = p0 is in W*P(R*Y), this will prove that p € W P(R} x RY).

loc

Since f satisfies (1.1), then the following equality holds in D'(R* x RY),

5 ([ raemoan) +aw. ([ sz nawoa) = [ oo vsa.

(2.3)
Let us set p(t, ) := [, f(t, 2, v)p(v)a(v)dv € V(f), and g(t,x) := [, g(t, z,v)p(v)dv.
Multiplying (2 3) by 6, we get

859—t + div,(ps) = G, in D'(RTx RY), (2.4)

where gy = pf and G = G0 — p2 — pdiv,(0). Clearly, G € LP(R'*Y). By assump-
tion, p and p are in L (R, WSP(RN)). Thus, pg and pg are in LP(R, W*P(RY)).

loc

To prove that pg € WP(R*™) we will use the characterization of W*P(R?), for
deN,0<s<land1l<p<+o0,in terms of Besov norms. Indeed, we have (see
[T], sections 2.2.2 and 2.5.7)

WeP(RY) = B;p(Rd), Vs € (0,1), ¥p € [1,4+00).

Let us recall how the Besov space Bj (R?) is defined. The set A4 is defined to be
the set of all sequences (1) ey in C®(R? R) such that

supp n; C {X € RY[ 271 < [X| < 27H1}, vj > 1,

supp 10 C {X € RY| | X| < 2},
- 20 Dn; |0 < Cay Vo = (i)1<ica € N, Jal = 30y, Vj €N,
- ZjeNnj(X) =1,VX € R4,
Let (¢;)jen € F'Aq = {(F'n;)jen; (nj)jen € Aq}. The Besov space Bs (R?) is
defined by
B; ,(RY) = {f € LP(RY) ‘ Z 2| ¢; % fllLe)” < +oo}
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and a norm on B (R?) is given by

/]

+00 . 1/p
Byp = (Z (27]1¢; = f\lm)p) : (2.5)

=0

The Besov space B‘j’p(]Rd) does not depend on the choice of the sequence (¢;);en in
F~1A, : another choice will yield to an equivalent norm. For any (¢;);en € F 1Ay,
the norm (2.5) is equivalent to the norm (1.7), when s € (0,1) and p € [1, +0).

~

We can construct a sequence (¢;)jen € F Ay in the following way : let ¢ € C°(R?)
such that supp ¢ C {1 < |X| < 2} and such that ¢(2X)+¢(X) = 1,if | X]| € [1/2,1].
Then, the sequence (qgj)jeN, defined by

0;(X) = 0(277X), VX eR% Vj>1,

+oo
Go(X)=1-3427X), VX eRY,
j=1

is in Ag. Then, (¢;)jen defined by ¢; := F~'¢;, Vj € Nis in F 1A,

Let ¢ € C°(R"™Y) such that supp $C {(7.,§) e RM*N | 1< (72 4+ [¢)1/2 <2}, We
define the sequence (¢;);en from ¢ by (2.6). Then,

+o0
po € WHP(R*™™) if and only if Z (2°7)|¢; * pollzr)” < +oc.

§=0
Moreover, in this case, there exists C' > 0 such that

“+o00

1/p
lpellwsr < C (Z (2105 PeHLP)p) :

=0

Let us choose (1;)jen € F 'Ay. Since py € LP(R, W*P(RY)), then 3C > 0,

+oo
/R > @7y % pot, Vo) dt < Cllpalpyyen
7=0

By the monotone convergence theorem, we can pass the integral under the sum to

get
+oo

. P
S (2 apolizy, ) < Clloollpysn (2.7)

Jj=0
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The same inequality holds for py.

Now, let xo € C®(R¥) such that 0 < o < 1, xo = 1 on {]T‘ < ‘5‘} U {‘T’ < %}7
supp xo C {|7] < V3[¢|} N {|7| < 1}, and

[D*Xo| (7, €) < V(r,€) e RN Vae NV o] <K,

where K is an integer depending on the dimension 1+ N in the following way :
K > % Let us set x; := 1 — xo. For any 7 > 1, we have

~

Flogm) = 6i(r.p(r.6) A
= X0<7_v S)QEJ (Ta 5)ﬁ9<7_7 5) + X1 (T’ €)¢J (Ta 5):59(7—’ 5)

Taking the Fourier transform in (¢, ) of (2.4), we get

—i7po(T,€) — i€ - po(r, ) = G(7, ).

Since supp x1 C {|7| > 1}, then we have

: e
f(¢] * IO9) = Xo (7—7 §)¢j<7—7 5):60 (7—7 5) — X1 (7—7 §)¢] (7—7 5) (271 5)
—xar,i(r ) E 28

ThUS, ij * Py = Wjo — W1 — Wj2 where

wio = F 1 (xo(1,€)d;(m.€)pe(T,€)),

and,
“+o00 —+00 —+00 “+o00
> 2g % pallte < Y 2 lwjollfe + D) 29wl + Y 2wl (2:8)
J=1 j=0 §=0 §=0

Let us recall some results on the theory of LP multipliers which will be useful to
estimate each term of the right hand side of (2.8).
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Let M,(R™™) be the set of LP multipliers in R i.e. the set of all functions m
defined on R such that Vf € LP(R'™), F~Y(m Ff) € LP(R**Y). The M, norm
is defined by [|m||x, = inf{||F " (mFf)|lre |||l = 1}. We recall a sufficient
condition on a function m to ensure that m € M,(RY) (see for instance |BL],
lemma 6.1.5) : if m € WS2(R'™Y), where K > £ then m € M,(R"™) and
3C > 0 such that

IFHmF e < Cllmllwrzllflle, Vf € LP(R™Y), V1<p<+oo.

With this result, we can show the following lemma :

Lemma 2.1. Let h € C=®(R'™Y) such that supp h C {27 < (72 + [¢]3)V/? < 29}
with o € N*. Let h; :=h(27 ). Let K € N such that K > Y. Let m € C’OO(RHN
such that

C

R V(7,8 e RN Vae NV |o| < K. (2.9)

| D% (7,€) <

Then, m = mh; € M,(R"™N) and ||m|y, < C where C does not depend on j.

Proof of Lemma 2.1 :
First, let us remark that for any f,m : RN — R, for any b > 0,

F mFfHX)=F (m@)F(FO ")) 0X), vXeRV

Thus,

1+ N

IFHmF A = b |F 7 mO)F(FO)0)] L
< b Im( ) lweal FO ) e = [[m(b) lweel| e,

as soon as m € WH2(R'"N). Hence, Vb > 0, ||m|a, < ||m(b-)||wx.z2. Therefore, we
have '
lmlla, < (2 )hllwrz, Vi =1,

It is not hard to see that (2.9) implies that ||m(27-)h||yx2 < C where C' does not
depend on j. Thus, Lemma 2.1 is proved.
|

Let us start with the term wjo.

@jo(T,€) = Xo(T, &) (7, €)po(T, €).

18



Figure 1:  supp(xo¢,;) C Df UDy, supp(x16;) C Dy U Dy

Since supp(yoe;) C {2771 < (72 + [¢)V2 <277} 0 {|r| < VBIE|} = Dy U Dy (see
Figure 1), then supp(xo®;) C {2772 <|¢] <271} and

j+1
VEesupp(xody), D k() =1.
k=j-2
Hence,
Jj+1
@i0(1,€) = Y Xo(7,€)5(7, )¥n(&)po (7, €).
k=j—2

By Lemma 2.1 and by the assumption on xo, mq(7, &) := xo(T, §)g5j(7', ¢) € M, and

Jj+1 Jj+1

lwiollze < D llmolliy, | Fod (9@ pa(m )7 <C D bk o pollfy - (2:10)

k=j—2 k=j—2

where C' does not depend on j. Therefore, by (2.7) and (2.10),

+oo J+1
> 2wl < 0225”) > v pollgy .
7j=1 7j=1 k=j—2
+0c0 ‘
< Y 0 sl <Cllolpzr (211
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Next, let us consider wj;.

o1 = 31 (r, Oy (r, ) FTE).

1T

Let h € C2°(R?) such that supp hC {2 < (7% +[£[*)"/?<4} and such that h =1 on
{L< (72 + |¢2)/2 <2}, Let us define h; := h(27-). In this way, h; = 1 on supp ¢;,
and we have
hj<T7 5)
T

d}jl(T? 5) = X1 (7—7 5)7QA5] (7—7 5)@(7’, 5)

i
Since G € LP(R™N), then Z,G := F, (1 + [€]> + 72) 72 G) € B, (R*™Y) (see [T],
section 2.3.8), and
400
> 276 * LG, < ClIC L. (2.12)
=0
But, by Lemma 2.1,

m1<7—7 5) = Xl(Ta g)whj@? 5) € MP’

and its norm does not depend on j. Indeed, as supp x1 C {]T\ > \5\} N {\T! > %},

one can easily show that m,(7,&) = x1(7, £)W satisfies (2.9). Since

T

Dj1 = mu (7, €)d;(1, O F(LG)(T,€),

then,
lwinll7e < Cllo; * LG,

By (2.12), we get
+oo

> 2|lwpll < CIGI,. (2.13)

j=1
Finally, we consider wjs.
~ " 5 p 7—,5
ij(Ta 5) = X1 (7—7 §)¢] (7—7 g)ﬂ

T

Since supp(x1¢;) C {2071 < (72 + [¢)Y2 <2741} 0 {|7| > [¢]} = Df U D7, then
supp(x1¢;) C {1¢] <20+t U {2772 < 7| <20%1} (see Figure 1), and
j+1

VEesupp(agy), > Uk(€) =1,

k=0
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and we have
j+1

21, €)= 3 (1,5 (m, &) TalE)E - ol ©)

k=0

Let us set, for any function f defined on R, J1f = .7-"_1(5]?). By Lemma 6.2 of
IBL|, |71fllze < C2%||f||z»- Applying this result to the function vy * py(t,-), we
have for almost every ¢ € R,

171 %2 Po(t, )7y < C 2|14k 0 po(t, )17

Integrating in the variable ¢, we get

1710k 52 ol < C 2[00k 50 o7y
where j1¢k ki o = ft,_xl (I/Ajk(§>§ ) ﬁQ(Ta 5))

Let us set mg(7,&) = %Xl(T, f)ggj(T, €). Let h; be the function defined above, let us
recall that h; = 1 on supp gEj, then

m3<7_7 5) = m(Tv 5)&] (7—7 5)7
where m(7, &) = x1(7,&)h;(7,€). Since supp(h;) C {2073 < (72 + [¢[?)1/2 < 2042},
then supp(x1h;) C {277* < |7] < 2772}, and m satlsﬁes
2-1C
(TP

where C' does not depend on j and K > By the same argument as Lemma 2.1,
one can show that ms = me; € MP(R1+N), with ||ms]|a, < 277C. Then,

il

V(&) e RN, Vae N'*Y o] <K,

| D*m(7,§)| <
1+N

Jj+1 j+1

lwiallf, < 277C (1Tt * polle < 279C > " 2%y # ol
k=0 k=0

and,

Jj+1

+00
> 2wl < 0225 V3 2 ol
j=1

“+o0
< oy ( > 2“””) 28|y g1
=0 \j=k-1
“+o0
< O 2k pollls < Cllbolpyer  (214)
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By (2.11), (2.13) and (2.14), we have
400 4
S 290, % ollts < C (loolpyes + oz +1GI) . (215)
j=1

By assumption, all the terms in the right hand side of (2.15) are finite. Moreover,
g0 polle < Idollt[lpoll o, then 3775 29971 pg |7, is finite and py € WHP(RMN),
which proves Proposition 2.3. [

Proof of Theorem 1.3 : Theorem 1.3 is a consequence of Propositions 2.1, 2.2 and
2.3. What we still have to prove is the inequality (1.8).

Let ¢ € C®(RY) and p € V(f) associated to ¢ by (1.4). Let T' € (0, +00) and I be
any compact of RV,

Let 6 € C°(R*) such that § = 1 on [0, 7] x I and supp 6 C [—1,T+1] x I, where
I is the set of points whose distance to I is less than 1. Let us extend g (resp. any
function of V(f)) by 0 on (—occ,0) x R?Y (resp. on (—00,0) x RY). Then,

+o0 1/p
lollwseoryxny < llpollwsr@ier) < C (Z 2275 pe“ip) :

Jj=0

Since p is extended by 0 on (—o00,0) x R¥, then supp pg C [0,7 + 1] x I;.

Hence, ||pgllLows» < C|pllzror+1,wsr(1))- The same inequality holds for p defined
from p as in the proof of Proposition 2.3. Moreover, by definition of GG, we have
IGller < ||9l|le(o,r+1)xnxx) Where K = supp(¢). Therefore, by (2.15) and by
Proposition 2.1 or 2.2 applied to the velocity averages p, p, to the positive constant
T + 1 and to the compact I, we have

lpllwsrorixr < Cllgllceo,rr1xswsr(x)),

where C' > 0, J compact of RY which only depend on 7', s,p and on the support,
the sup and Lipschitz norms of a, a=! and ¢. Theorem 1.3 is proved.
|

3 The case p=1

3.1 Optimality of Theorem 1.3
If we assume that f satisfies (1.1) with g in L} (R, x R,, WEL(R,)), where s < 1,

loc loc

then, by Theorem 1.3, any velocity average of f is in I/Vl‘zcl(]ij R.). But, if we
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assume that g is in L}, (R x R,, W,>'(R,)), can we obtain an estimation of the BV
norm of velocity averages of f by the L; W' norm of g? The following proposition
proves that a Poincaré-type inequality in L? can’t hold, i.e. we can’t estimate the
L? norm of the velocity average of f by the Ly W' norm of g. A fortiori, since
BV (R?) is continuously embedded in L*(R?) (see [AFP], Theorem 3.47), the answer

to the above question is no.

Proposition 3.1. There exists a family (g.) of C™ functions, uniformly bounded
in LY RYx R,WHHR)) and there exists ¢ € C(R) such that the L* norm of p.,
the velocity averages associated to ¢ of the solution f. of (1.12) with g. as source
term, is not bounded independently on €.

Proof : Let x € C°(R?) such that supp x C [-1,1]*, x > 0, and [, x = 1. Let
to > 1. For any € > 0, let us set Xg(t x) = gzx(t o ‘T) Then, fR2 Xe = 1. Moreover,

if ¢ € LlocORQ) then Xe * 1/} 1/} m Lloc7 where 1/J<t7$) ¢<t —to, )
Let h € C*(R), h(v ) = 1,Vv € [-1,1], and supp h C [—2,2]. Let us consider the
following family of source terms :

ge(t, z,v) = x(t, z)h(v).

Ve > 0, g. € C°(R*x R x R)) and the norm of g. in L'(Rfx R,, W' (R,)) does
not depend on e.

Let us take ¢ € C(R) such that ¢(v) = 1, Vo € [—2,2]. The velocity average
associated to ¢ of the solution f. of (1.12) with g. as source term is given by

t
[ [0 s
/ /Xs 7, 2)Lg—r>0yh(% _ZidZdT

= x.*xP(t, 1)

where ®(t,z) = 1{t>0}h(%)% ® € L}, (R?), therefore p. — ® in L} . But, one can
easily see that ® ¢ L? (R?). Thus, the L? norm of p. can’t be bounded indepen-
dently on ¢.

3.2 A second example

The first example described in the previous section consisted to choose a family
of source terms (g.) which approaches a Dirac mass in the two-dimensional (t,z)
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space. When the kinetic equation (1.1) comes from a conservation law with entropy
condition, the source term g is a Radon measure which can’t concentrate on sets of
Hausdorff dimension less than 1. Indeed, g satisfies

sup g (BR<t7$) X R)
R>0 R

< 400,

for almost every (t,z) € (0,+00) x R. But, even in this context, we can’t obtain an
estimation of the BV norm of velocity averages by the L; BV, norm of the source
term, as the following proposition shows.

Proposition 3.2. There exists a family (g.) of C™ functions, uniformly bounded
in LNR) x R, BV(R,)), such that for almost every (t,z) € (0,+00) X R,

1

3C >0, sup —/ / 19(7,y, v)|dvdydr < C,
r>0 B Jp,t0)Jr

and there exists ¢ € C(R) such that the BV norm of p., the velocity average
associated to ¢ of the solution f. of (1.12) with g. as source term, is not bounded
independently of ¢.

Proof : Let 0 > 0. Let x € C°(R) such that supp x C [-1,1], x > 0 and [ x = 1.
Let us set x-(-) :== x(£). Let  be the indicator function of the interval [0 —1,0+1]
and let us set h. := h x x.. Then, h, — h in L' and ||h.||z: < ||h]|z:. We consider
the family (g.) defined by

g-(t,7,v) = xe(x — ot)h(v), V(t,z,v) € Rt x R

Ve > 0, g. € C°(RTxR?). Forany T" € (0, +00), I compact of R, || gzl 1(j0,11xR, BV (R))
is uniformly bounded in e. For a.e. (t,z) € (0,+00) x R, 3C > 0 such that

1
—/ / |ge(T,y,v)|dvdydr < C, VR > 0.
R BR(t,CC) R

Let f. be the solution of (1.12) with g. as source term. Let ¢ € C°(R) such that
¢ =1on [0 —204 2] and let p. be the velocity average of f. associated to ¢ by
(1.4). Then, VY(t,z) € Rt x R,

t
pitr) = [ [0 (re) 0 (52) odeir
0
t t
— //Xg(z—m)hE (=2) ﬁdsz:/ /Xg(z)hE (z==2) Ldzdr.
0 R 0 R
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The sequence (p.) converges in L} . to p defined by

loc

¢
p(t, ) ::/ h(ﬂ)d—T, V(t,z) € R* x R.
0

t=r 't — 1

Indeed, for any T € (0, +oo),

T
/ / lpe—rl < | Xe(2)he (5577) o7 — b (%57) | drduvdt
0 JR
= Xs (==27) — h (£=27) ] =\ drdadt,
since [ x. = 1. Thus,
T
//!pa—p\ Xs (=== —h(ﬁj?)}ﬁ—i drdxdt
0 JR
+||Xs||oo/ / /{ (2=2=2r) — h (=0T td—ﬁ} dzdrdt.

The first term tends to 0 by the dominated convergence theorem and since the

function z +— h (£=27) 71 is in L' for any 7 < ¢ and its L' norm does not depend

t
on t,7. The second term also tends to 0, again using the dominated convergence
theorem and the convergence in L' of (h.) to h. But, the limit p of (p.) is not in

BVpe(RTx R). Indeed, since £=2F € [t — 1,7+ 1] < |z — ot| < (t — 7), then

t—|z—ot|
p(t, x) :/ th =Int—In|lr —ot] ¢ BV, (Rt xR).
0

Therefore, the BV norm of (p.) can’t be bounded independently of .

3.3 Weak Poincaré-type inequality

We assume in this section that the derivative in v of g, d,g, is a Radon measure
in RT x R? and we establish some weak Poincaré-type inequality in the sense that,
instead of the L? norm, we estimate the L?> norm of the velocity averages. Before
stating the result, let us recall some useful facts about the Lorentz space L?*(R?)
(also called weak L? space). We refer to [H| for further details and proofs.

Let f:R? — R. The distribution function of p is defined by

Mla)=L?({z eR? | |f(z)| > a}), Va >0,
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The non-increasing rearrangement f* of f is given by

f(y) =inf{a > 0] (a) <y}
The Lorentz space L>*°(R?) is the space of functions f such that

11500 = sup (4'2F°(5)) < +o0.
y>0

This quantity only defines a quasi-norm on L?°°, but it is possible to define a norm
in L** denoted by || - ||2,00, Which satisfies

11500 < 1 ll200 < 20 fll50  Vf € L*(R?). (3.1)

Precisely, this norm is defined in the following way : let us define Vy > 0,

Kk - 1
0=, i )

the norm || - [|2,00 is given by || fllo.eo 1= [[f*[|5 o, Vf € L2*(R?).
For any subset Q of R? L?(Q) is defined in the same way : the definition of the
distribution function A; of a function f defined on {2 is replaced by

Ap(a) = L2 ({z € Q|| f()] > a}), Ya >0,

and the sup in the definition of f** is taken over all £ C ().

Let us mention some properties, which will be useful in the following. First, we have

10 =sup (9727 () =sup (a[As(@)] %), vfe L@ (32)
y>0 a>0
Secondly, we have,
Yy >0, f(y) <) (3.3)
and
(f)y=r (3.4)

The last fact comes from the property of f** to be non-negative and non-increasing.
Let us remark that from the two last properties, one can obtain easily the first in-
equality in (3.1).

Proof of Theorem 1.4 : Let us assume that g € C°(R*x R?) and ¢ € C>°(R), then,
as in the proof of Proposition 2.2, p € V(f) associated to ¢ by (1.4) is given by

p(t,x) = /0 /Rg (T,z, a ! (f:f)) j’((z_—l ((;—_2)))) ; _1 szdr.
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Let us fix y > 0. By (3.3),

1

Py) <pTy)= sup S / |p(t, x)|dtdz.
ECR*T xR ‘CQ(E) E
y<L2(E)<+oo

For any £ C R* x R such that y < L*(E) < 400,

1
2205 /E |p(t, x)|dtdx

< #E)/E/OT/R g (r, 27t (22)) 25((211 <<:__))))t_17 ddrdtdz
_ /OT /R ﬁ /E g(rza (f—f))a/iz_ll(é:—?)))t—lT dtda:]dzdr

Let us show that the function

U(t,z) =

P o =)

Ntz

is in L>*°(R* x R) for all (7,2) € [0,T] x R.

Since BV (R) is continuously embedded in L>(R), then there exists C' > 0 such that
“9(7_7 2 )”00 < CHg(T,Z, ')HBVa for any (7—7 Z) < [OaT] x R.

Let K :=supp ¢. Let M > 0 such that a(K) C [-M, M], then ¢ ((a_l(g))) =0
as soon as |z — z| > M|t — 7|. Therefore, one have to take into account only the
points (¢,z) such that |z — z| < M|t — 7| and for these points, we have

1 M?+1
< .
t=r = Qo2 + [t — 7)1
Hence,
19 (7, 2, llooll Z oo
0<V¥(t,x) <C 5
S ( 733) = (\x—z\2+ ‘t_7‘2)1/2
and, Va > 0,
{(t0) |0t a) = a}  {(La) [ (lo =2+t = 7" < Lg(r. 2, )l | S }-
Thus,
C 2
)\q;(@) S ?Hg(TWZa)HgO % oo
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Then, by (3.2), ¥ € L**(R* x R) and

19150 < Clla(r, 2, )l | 7] < Cllg(rs 2 )y || 5] - (3.5)
For any F C R™x R such that y < £L?(F) < oo,
L / U(t, 2)dtdr < T (y). (3.6)
LAE) Jp
Since U € L?»*(RT x R), then, by (3.1) and (3.4), Vy > 0,
y P () < ¥ la00 < 20195 0 (3.7)

Therefore, by (3.6) and (3.7), for any y > 0, for any E C R* x R such that

y < L2(E) < +o0,
T
oo/ / Hg(’er, ')HBVCZZdT
0 R

o glley, sy, -

k22

(Zl

2}

al

1
— t)|dtde < Cy Y2
i L el < oy
_ Cy_1/2

Hence, for any y > 0, y'2p*(y) < C||%ll«llgllz1 v, and (1.11) is proved when g is
. ’

Now, let g € LY(R} x R,, BV(R,)) and ¢ € C°(R). Let f € L'(R* x R?) be the
solution of (1.1) and p € V(f) associated to ¢ by (1.4). Let & € C>°(R3) such that
supp £ C [—1,1]%, £ > 0 and [£ = 1. Let us set &, := n*¢(n-) and g, := &, * g,
Vn € N, where g is extended by 0 on (—o00,0) x R?. Then, g, — g in L'(R? BV (R))
and || gullzs sy, < Cliglles v, For alln € N, let f, be the solution of (1.1) with g,
as source ferm, and let p;L € V(f,) associated to ¢. Up to a subsequence, f, (resp.
pn) converges to f (resp. p) in the sense of distributions (as explained at the end of

the proof of Proposition 2.1). Since g, is in C*°(R?), then

1onll5.00 < Cllgnllzs, sy, < Cllgllzy v,

Therefore, (p,) is bounded in L*»*(R*™ x R) and the limit p is in L>*(RT x R).
Moreover, by the lower semicontinuity of the norm || - |2 and by (3.1) we have

1Pl5,00 < Pll2.00 < llpnll2ce < Clipnllzee < Cllgllzy, pv,-

Theorem 1.4 is proved.

28



References

[AFP| Ambrosio L., Fusco N. and Pallara D., Functions of Bounded Variation and
Free Discontinuity Problems, Oxford Science Publications, 2000.

[B] Bézard, M., Régularité LP précisée des moyennes dans les équations de trans-
port, Bull. Soc. math. France, 122, 1994, p. 29-76.

[BGP] Bouchut F., Golse F. and Pulvirenti M., Kinetic Equations and Asymptotic
Theory, Series in apllied mathematics, Gauthier-Villars, 2000.

[BL] Bergh J.and Lofstrom J., Interpolation Spaces, Springer-Verlag, 1976.

[DLM| Di Perna R.J, Lions P-L and Meyer Y., L? regularity of velocity averages,
Ann. Inst. H. Poincaré Anal. Non Linéaire 8 (1991), no 3-4, p. 271-287.

[DOW] De Lellis C., Otto F. and Westdickenberg M., Structure of entropy solutions
for multi-dimensional conservation laws, to appear in Arch. Ration. Mech. Anal.

[DR| De Lellis C. and Riviére T., Concentration estimates for entropy measures, to
appear in J. Math. Pures et Appl..

|GLPS| Golse F., Lions P-L., Perthame B. and Sentis R., Regularity of the moments
of the solution of a transport equation, J. Funct. Anal. 76 (1988), no 1, p. 110-
125.

[H] Hunt, R.A., On L(p, q) spaces, Enseignement Math. (2), 12, (1966), p. 249-276.

[JP] Jabin P-E. and Perthame B., Regularity in kinetic formulations via averaging
lemmas, ESAIM Control. Optim. Calc. Var, 8, 2002, p. 761-774.

[LPT| Lions P-L., Perthame B. and Tadmor E., A kinetic formulation of multidi-
mensional scalar conservation laws and related questions, J. AMS, 7, 1994, p.
169-191.

[LR] Lecumberry M. and Riviére T., The rectifiability of shock waves for the so-
lutions of genuinely non-linear scalar conservation laws in 1+1 D., Preprint
2002.

[P] Perthame B., Kinetic Formulation of Conservation Laws, Oxford lecture series
in mathematics, Oxford University Press, New York, 2002.

|T| Triebel H., Theory of Function Spaces, Birkhauser, 1983.

29



