
�����������	�
���
�

für Mathematik
in den Naturwissenschaften

Leipzig

Some piece-wise smooth Lagrangian fibrations

by

Ricardo Castaño-Bernard and Diego Matessi

Preprint no.: 47 2005





Some piece-wise smooth Lagrangian fibrations.

R. Castaño-Bernard∗ and D. Matessi†

May 10, 2005

Abstract

Motivated by the work of M. Gross [5] on topological Mirror Symmetry, we describe
some piece-wise smooth local Lagrangian models of singular torus fibrations. In order
to understand them better we also develop some tools which generalize the notion of
action-angle coordinates of smooth fibrations.

1 Introduction.

In this paper we present some results which are part of a current research project of the
authors on Lagrangian torus fibrations of symplectic 6-manifolds. The work is primarily
motivated by the topological description of Mirror Symmetry due to Mark Gross [5]. Let
f : X → B be a proper C∞ submersion of a symplectic manifold (X, ω) with Crit(f) = ∅

and such that all the fibres of f are connected Lagrangian submanifolds, that is to say,
a Lagrangian T n bundle. It is well known that B carries the structure of integral affine
manifold. In other words, B has an atlas A whose transition maps are integral affine linear
transformations Rn � Gl(n, Z).

When f : X → B has singular fibres –in which case we call f a Lagrangian fibration– B no
longer carries an affine structure but an affine structure with singularities. Roughly speaking
this means that there is a dense open subset B0 ⊆ B such that (B0, A ) is integral affine.
This process can be reversed: it is a standard fact that given an integral affine manifold
(B0, A ), there is a family of maximal lattices, Λ ⊂ T ∗B0, a symplectic manifold X(B0) and
a short exact sequence:

0→ Λ→ T ∗B → X(B0)→ 0

inducing a Lagragian T n bundle f0 : X(B0)→ B.

This article is motivated by the following problem. Suppose we are given a compact in-
tegral affine manifold with singularities. Consider the associated symplectic manifold X(B0)
foliated by the fibres of the induced Lagrangian T n bundle. We can ask: is there a compact
smooth symplectic manifold X(B) and a Lagragian T n fibration f : X(B)→ B such that

X(B0) ↪→ X(B)
↓ ↓

B0 ↪→ B

commutes? A conjecture says that in the case of the fibrations described by Gross this
should be true. One of the problems is that one has to allow piece-wise smooth fibrations.
Furtheremore, one should obtain symplectic manifolds X(B) symplectomorphic to known
examples of Calabi-Yau manifolds –such as the K3 surface or the quintic hypersurface in
P4. A topological compactification has been achieved by Gross [5] by means of gluing some
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standard singular local models to the smooth torus bundle. One of the results of this paper is
a simple construction of piece-wise smooth local Lagrangian models. Our hope is that these
will allow us to achieve a symplectic compactification. It is not yet clear how to do this.
Clearly, the symplectic topology of the resulting manifold X(B) a priori should depend on
the affine structure A but also on the structure of the singular fibres needed to compactify.
The problem is two-fold. First one has to obtain appropiate models of singular Lagrangian
fibrations, and it is not clear how regular the maps describing them can be. Then one has
to understand how to glue them together, which is not an easy problem if the models are
described by maps which are particularly non-smooth, like in our case.

Over the past few years, there has been important progress towards the understanding
of affine geometry in connection to Calabi-Yau manifolds and Mirror Symmetry. Gross and
Siebert [7], [8] introduce a discrete Legendre transform of affine manifolds and Log struc-
tures to understand how to (re)construct a mirror pair from the affine data. An alternative
approach is proposed by Kontsevich and Soibelman [13], [14]. See also [10], [11].

The contributions mentioned above deal mostly with the ‘complex side’ of Mirror Symme-
try. In our project we aim at developing a tool box that hopefully will help us to understand
the ‘symplectic side’ which should be, in theory, simpler. In a long series of papers [15], [16],
[17] W.-D. Ruan constructed examples of piece-wise C∞ Lagrangian fibrations of Calabi-Yau
manifolds. Ruan’s method consists, roughly speaking, on a “gradient flow deformation” of a
well known Lagrangian fibration of a singular Calabi-Yau variety to a Lagrangian fibration of
a non-singular Calabi-Yau manifold. Our approach, rather than being global, is semi-global.
It may be that some of our models are also implicit in Ruan’s construction, so isolating them
and understanding them better may also cast a bridge between the work of Ruan and Gross’s
approach.

This paper is organised as follows. In §2 we review Gross’s topological compactifications of
torus bundles. In §3 we overview briefly the theory of action-angle coordinates for Lagrangian
submersions and describe some known examples of affine manifolds with singularities. In
§4 we describe some examples of Lagrangian fibrations given by C∞ maps, resembling the
topology of the positive and generic fibrations of §2. These models are already well understood
[1], so here we just give a short description. Our results are described in §5 and §6. In §5
we give a simple general method to construct piece-wise smooth S1-invariant Lagrangian
fibrations with interesting singular fibres. These fibrations fail to be smooth along the slice
µ−1(0) of the moment map µ : X → s1. As a byproduct, these fibrations do not induce
affine structures with singularities on the base. The affine structure is “broken” in two
pieces, separated by a codimension 1 wall containing the discriminant locus of the fibration.
In Example 5.4 we give an explicit fibration with discriminant locus having the shape of an
amoeba. This model resembles an example of special Lagrangian fibration proposed by Joyce
[12] and topologically is a perturbation of the negative fibration described by Gross. We are
also able to perturb this model to a piecewise C∞ fibration with discriminant locus of mixed
codimension one and two. Again, the affine structure of this fibration is broken.

The results of the last section are only sketched, detailed proofs will appear elsewhere.
These results aim at a theory of action-angle coordinates for piece-wise C∞ Lagrangian
submersions with S1-symmetry. In particular they allow us to produce examples of piece-
wise C∞ Lagrangian fibrations by stitching together two honest C∞ fibrations along the
“seam” µ−1(0). In addition to the affine data induced by each of the two pieces, the stitching
data consists of a family of closed 1-forms on a torus satisfying some integrality properties.
The family is parametrized by the codimension 1 wall on the base. The piece-wise smooth
Examples of §5 are of this type. With such fibrations the computation of the periods fails to
provide information on the topological monodromy. This is in contrast with what happens in
the smooth situation. One of the results of §6 is that in the case of these stitched Lagrangian
fibrations monodromy can be interpreted as a jump in the cohomology class of the family of
closed 1-forms.
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2 The topology.

In this section we review Gross’s work [5] on topological mirror symmetry which is the main
motivation for our own work on Lagrangian fibrations. Gross explains how to compactify
certain n-torus bundles over n-dimensional manifolds obtaining topological models of Calabi-
Yau manifolds. We shall focus only on dimensions n = 2 and 3.

Definition 2.1. A topological T n fibration f : X → B is a continuous, proper, surjective
map between smooth manifolds, dimX = 2n, dimB = n, such that for a dense open set
B0 ⊆ B and for all b ∈ B0 the fibre Xb = f−1(b) is homeomorphic to an n-torus. We call
∆ := B−B0 the discriminant locus of f . We require our topological T n fibrations to satisfy
the following conditions:

1. There is a co-dimension four closed subset Σ ⊂ X such that for each b ∈ B, the set
Σ ∩ Xb consists of a finite union of locally closed submanifolds of dimension at most
n− 2. Furthermore, f(Σ) = ∆;

2. for n = 2, ∆ is a finite union of points;

3. for n = 3, ∆ = ∆d ∪∆g ∪∆a where

(a) ∆d is a finite union of points;
(b) ∆g is a finite disjoint union of 1-manifolds diffeomorphic to an open interval with

end points contained in ∆d forming a 3-valent vertex;
(c) ∆a is a finite disjoint union of closed subsets, each connected component being a

3-legged amoeba with ends contained in ∆g.

Figure 1: Components of ∆, n = 3.

The topological T 3 fibrations in [5] have everywhere codimension two discriminant, a
connected trivalent graph to be precise. In this paper we consider a slightly more general
situation by allowing ∆ to jump dimension, i.e. including a region ∆a, which may be regarded
as a “fattening” of a graph near some vertices. We give explicit examples of fibrations with
such discriminant locus later on. For now, we only pay attention to the trivalent graph case.

Definition 2.2. Let f : X → B be a topological T n fibration and let U ⊂ B be an open
neighbourhood of b ∈ ∆ such that U ∩∆ is homeomorphic to a point, when n = 2; or else
to an open interval, when b ∈ ∆g; to a cone over three points, when b ∈ ∆d; or to a 3-legged
amoeba, when b ∈ ∆a. Let Xb0 be a fiber over b0 ∈ U −∆. The image of

Mb : π1(U −∆, b0)→ SL(H1(Xb0 , Z))

is called the local monodromy group about Xb (also denoted by Mb). If there is a basis of
H1(Xb0 , Z) with respect to which Mb is generated by unipotent matrices we say that Mb is
semi-stable. We shall also say that Xb is a semi-stable singular fibre.
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The above definition is motivated by the well-known notion of semi-stable singularities of
elliptic fibrations.

In [5] Gross proposes a method for constructing semi-stable T n fibrations with prescribed
monodromy. Now we review the construction of these fibrations. For the details we refer the
reader to [5] §2. The construction of some of the building blocks rely on the following:

Proposition 2.3. Let Y be a manifold of dimension 2n − 1. Let Σ ⊆ Y be an oriented
submanifold of codimension three and let Y ′ = Y − Σ. Let π′ : X ′ → Y ′ be a principal
S1-bundle over Y ′ with Chern class c1 = ±1. For each triple (Y, Σ, π′) there is a unique
compactification X = X ′ ∪ Σ extending the topology of X ′, making X into a manifold and
such that

X ′ ↪→ X
↓ ↓
Y ′ ↪→ Y

commutes, with π : X → Y proper and π|Σ : Σ→ Σ the identity.

Remark 2.4. One can explicitly describe the above compactification as follows. For any
point p ∈ Σ there is a neighbourhood U ⊂ Y of p such that U ∼= R3 × Cn−2 and U ∩ Σ can
be identified with {0} × Cn−2. By unicity of π, there is a commutative diagram

π−1(U)
∼=−−−−→ C2 × Cn−2

π

⏐⏐� π̄

⏐⏐�
U

∼=−−−−→ R3 × Cn−2

(1)

where π̄(z1, z2, ζ) = (|z1|2 − |z2|2, z1z2, ζ), ζ ∈ Cn−2.

The basic principle to construct topological T n fibrations can be described as follows.
Typically, one starts with a manifold Y = B × T n−1 with dim B = n, a submanifold Σ ⊂ Y
and a map π : X → Y as in Proposition 2.3. The trivial T n−1 fibration P : Y → B can be
lifted to a T n fibration f := P ◦ π : X → B with discriminant locus ∆ := P (Σ). One can
readily see that for b ∈ ∆, the singularities of the fibre Xb occur along Σ∩P−1(b). The set Σ
–which is the locus of singular fibres of π– can be regarded as the locus where the vanishing
cycles of the fibres of f collapse (cf. Figure 2).

π

X

Y

P

B
∆

Σ

Figure 2: Negative fibration.

Example 2.5. Let D∗ = D − {0} and let f0 : X0 → D∗ be a T 2-bundle with monodromy(
1 0
1 1

)
. We can use Proposition 2.3 to compactify X0 as follows. The monodromy

invariant cycle, L ∈ H1(f−1
0 (b), Z), induces a fibre preserving T (L) action, with T (L) =
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L ⊗ R/L. The quotient modulo this action yields an S1-bundle π0 : X0 → Y0 = D∗ × S1.
One can verify that π0 extends to an S1-bundle π′ : X ′ → Y ′ = D × S1 − {(0, p)}, where
p ∈ S1. Furthermore c1(π′) = ±1. Then Proposition 2.3 ensures that X ′ compactifies
to a manifold X = X ′ ∪ {pt} and that there is a proper map π : X → Y = D × S1

extending π′. Defining P : Y → D as the projection map, we obtain a semi-stable fibration
f = P ◦ π : X → D extending f0. The only singular fibre, f−1(0), is homeomorphic to a
pinched torus, i.e. homeomorphic to a Kodaira type I1 singular fibre.

In dimension n = 3 there is a local model with discriminant of the type ∆ = ∆g –the
so-called generic fibration– and two models with discriminant of the type ∆ = ∆g ∪ ∆d

–the so-called positive and negative fibrations– which are dual in certain sense. These three
models are due to Gross [5]. A model with discriminant of the type ∆ = ∆g ∪ ∆a will be
given later on in this article.

Example 2.6 (Generic fibration). Let B = D × (0, 1), where D is a centered disc, and
let Y = T 2 × B. Define Σ ⊂ Y to be the cylinder sitting above {0} × (0, 1) ⊂ B defined as
follows. Let e2, e3 be a basis of H1(T 2, Z). Let S1 ⊂ T 2 be the circle whose homology class
is represented by e3. Define Σ = S1 × {0} × (0, 1). Now let π′ : X ′ → Y ′ := Y − Σ be an
S1-bundle with Chern class c1 = 1. Then X ′ compactifies to a manifold X = X ′ ∪ Σ and
there is a proper map π : X → Y extending π′. We can now define f = P ◦ π : X → B
where P : Y → B is the projection. Then it is clear f is a T 3 fibration with singular fibres
homeomorphic to I1 × S1 lying over ∆ := {0}× (0, 1). One can take e1, e2, e3 as a basis of a
regular fibre Xb, where e1 is an orbit of π. In this basis, e1 and e3 are monodromy invariant
and the monodromy of f about ∆ is represented in this basis by

T =

⎛
⎝ 1 1 0

0 1 0
0 0 1

⎞
⎠ . (2)

Example 2.7 (Negative fibration). Let Y = T 2×B with B homeomorphic to a 3-ball. Let
∆ ⊂ B be a cone over three distinct, non-collinear points. We write ∆ = {b0}∪∆1∪∆2∪∆3

where b0 is the vertex of ∆ and the ∆i are the legs of ∆. Fix a basis e2, e3 for H1(T 2, Z).
Define Σ ⊂ T 2 × B to be a pair of pants lying over ∆ such that for i = 1, 2, 3, Σ ∩ T 2 ×∆i

is a leg of Σ which is the cylinder generated by −e3, e2 and −e2 + e3 respectively. These
legs are glued together along a nodal curve or ‘figure eight’ lying over b0. Now consider an
S1-bundle π′ : X ′ → Y ′ = Y − Σ with Chern class c1 = 1. This bundle compactifies to
π : X → Y . Now consider the projection map P : Y → B. The composition f = P ◦ π is a
proper map. The generic fibre of f is a three-torus. For b ∈ ∆ the fibre f−1(b) is singular
along P−1(b) ∩ Σ, which is a circle when b ∈ ∆i, or the aforementioned figure eight when
b = b0. Thus the fibres over ∆i are homeomorphic to I1 × S1, whereas the central fibre,
Xb0 , is singular along a nodal curve. A regular fibre can be regarded as the total space of an
S1-bundle over P−1(b). We can take as a basis of H1(Xb, Z), e1(b), e2(b), e3(b), where e2 and
e3 are the 1-cycles in P−1(b) = T 2 as before and e1 is a fibre of the S1-bundle. The cycle
e1(b) vanishes as b → ∆. In this basis, the monodromy matrices corresponding to loops γi

about ∆i with γ1γ2γ3 = 1 are

T1 =

⎛
⎝ 1 −1 0

0 1 0
0 0 1

⎞
⎠ , T2 =

⎛
⎝ 1 0 −1

0 1 0
0 0 1

⎞
⎠ , T3 =

⎛
⎝ 1 1 1

0 1 0
0 0 1

⎞
⎠ . (3)

Observe that in the above examples there is a fibre-preserving S1-action, induced by the
S1 bundle π′. One can use the same principle to construct T 2-invariant fibrations starting
from suitable compactifications of T 2-bundles:

Example 2.8 (Positive fibration). Let Y = S1 × B with B and ∆ ⊂ B as in Example
2.7. Let Y ′ = Y \ ({p} × ∆), where p ∈ S1. Let L ∼= Z2 and define T (L) = L ⊗Z R/L.
Now consider a principal T (L)-bundle π′ : X ′ → Y ′. Under some mild assumptions on π′
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(cf. [5] Prop. 2.9), there is a unique manifold X with X ′ ⊂ X extending the topology of X ′

and a proper extension π : X → Y of π′. The composition of π with the projection Y → B
defines a topological T 3-fibration, f : X → B. The fibre of f over b ∈ B \ ∆ is T 3. The
fibre over b ∈ ∆i is homeomorphic to S1 × I1, whereas the fibre over the vertex b0 ∈ ∆ is
homeomorphic to S1×T 2/({point}×T 2). One can check that the monodromy of this model
can be represented by the inverse transpose matrices of the previous example.

The above models can be glued together to produce semi-stable T 3 fibrations with inter-
esting properties. We refer the reader to [5] §1 for the details:

Theorem 2.9 (Gross). Let B be a 3-manifold and let B0 ⊆ B be a dense open set such
that ∆ := B −B0 is a trivalent graph, ∆d ∪∆g. Assume that the vertices of ∆ are labeled,
i.e. ∆d decomposes as a union ∆+ ∪∆− of positive and negative vertices. Suppose there is
a T 3 bundle f0 : X(B0)→ B0 such that its local monodromy Mb is generated by

1. T as in (2), when b ∈ ∆g;

2. T1, T2, T3 as in (3), when b ∈ ∆−;

3. (T t
1)−1, (T t

2)−1, (T t
3)−1, when b ∈ ∆+.

Then there is a T 3 fibration f : X → B with semi-stable singular fibres and a commutative
diagram:

X(B0) ↪→ X
↓ ↓

B0 ↪→ B.

Definition 2.10. The manifold X obtained from X(B0) as in Theorem 2.9 is called a
topological semi-stable compactification.

In suitable cases, Theorem 2.9 produces dual semi-stable T 3 fibrations of mirror pairs
of Calabi-Yau manifolds. In §3 we shall review how to construct a T 3 bundle X(B0) which
compactifies to a smooth manifold X diffeomorphic to the quintic hypersurface in P4. The
compactification of the dual bundle produces a manifold X̌, which is diffeomorphic to the
mirror quintic. Gross uses this construction as a topological evidence that the SYZ duality
should indeed explain Mirror Symmetry.

Our work is motivated by a conjecture stating that there should exist symplectic com-
pactifications with respect to which the fibres are Lagrangian. We shall explain how this
problem can be approached using affine manifolds and Lagrangian fibrations over them.

3 Affine manifolds and Lagrangian fibrations

Definition 3.1. An n-dimensional affine manifold is a pair (B, A ) where B is an n-dimensional
manifold and A is an atlas of coordinate charts {Ui, φi} whose transition maps are affine,
i.e. such that φi ◦ φ−1

j ∈ Rn � Gln(R), for all i, j, A is also called an affine structure on B.
We say that (B, A ) is integral affine if φi ◦ φ−1

j ∈ Rn � Gln(Z).

When B is integral affine we can define a maximal integral lattice Λ ⊂ T ∗
B by

Λ|U = spanZ〈du1, . . ., dun〉
for all U . Therefore to every integral affine manifold (B, A ) we can associate the 2n-
dimensional manifold

X(B, A ) = T ∗
B/Λ,

which together with the projection f : X(B, A ) → B forms a T n fibre bundle. Also no-
tice that the standard symplectic form ω on T ∗

B descends to X(B, A ) and the fibres of f
are Lagrangian. In the next section we explain how affine manifolds arise naturally from
Lagrangian fibrations.
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Action-angle coordinates.

We review here some classical facts about Lagrangian fibrations which we will use in the next
Sections. For details we refer to Duistermaat [2]. Assume we are given a 2n-dimensional
symplectic manifold X with symplectic form ω, a smooth n-dimensional manifold B and a
proper smooth submersion f : X → B whose fibres are connected Lagrangian submanifolds.
For every b ∈ B, denote by Fb the fibre of f at b.

Proposition 3.2. In the above situation, for every b ∈ B, T ∗
b B acts transitively on Fb. In

particular there exists a maximal lattice Λb of T ∗
b B such that Fb is naturally diffeomorphic

to T ∗
b B/Λb, therefore Fb is an n-torus.

Proof. To every α ∈ T ∗
b B we can associate a vector field vα on Fb by

ιvαω = f∗α.

Let φt
α be the flow of vα with time t ∈ R. Then we define the action θα of α on Fb by

θα(p) = φ1
α(p),

where p ∈ Fb. One can check that such an action is well defined and transitive. Then, Λb

defined as
Λb = {λ ∈ T ∗

b B | θλ(p) = p, for all p ∈ Fb}.
is a closed subgroup of T ∗

b B, i.e. a lattice. From the properness of Fb it follows that Λb is
maximal (in particular homomorphic to Zn) and that Fb is diffeomorphic to T ∗

b B/Λb.

We denote Λ = ∪b∈BΛb. An interesting way to compute the lattice Λ is the following.
Given a point b0 ∈ B and contractible neighbourhood U of b0, for every b ∈ U , H1(Fb, Z) is
naturally identified with H1(Fb0 , Z). Choose a basis γ1, . . . , γn of H1(Fb0 , Z). Given a vector
field v on U , denote by ṽ a lift of v on f−1(U). We can define the following 1-forms λ1, . . . , λn

on B:
λj(v) = −

∫
γj

ιṽω. (4)

It is a classical fact that the 1-forms λj are closed 1-forms and they generate the lattice Λ.
If σ : B → X is a section, we can define the map Θ : T ∗B/Λ → X by Θ(b, α) = θα(σ(b)).
This map is a diffeomorphism and it is a symplectomorphism if σ is a Lagrangian fibration.
A choice of functions aj such that λj = daj defines coordinates a = (a1, . . . , an) on U called
action coordinates. In particular a covering {Ui} of B by contractible open sets and a choice
of action coordinates ai on each Ui defines an integral affine structure on B. The lattice Λ
defined above coincides with the lattice coming from this affine structure.

A less invariant approach –but useful for explicit computations– can be described as
follows. Let (b1, . . . , bn) be local coordinates on U ⊆ B and let fj = bj ◦ f . Then f1, . . . , fn

is an integrable Hamiltonian system. Let Φt
ηj

be the flow of the Hamiltonian vector field
ηj of fj . Let σ be a Lagrangian section of f over U . In canonical coordinates the map
Θ : T ∗U/Λ→ f−1(U) is the following

Θ : (b, t1db1 + . . . + tndbn) 
→ Φt1
η1
◦ · · · ◦ Φtn

ηn
(σ(b)). (5)

One may easily verify that

Λb = {(b, t1db1 + · · ·+ tndbn) ∈ T ∗
b U | Φt1

η1
◦ · · · ◦ Φtn

ηn
(σ(b)) = σ(b)}.

When (b1, . . . , bn) are action coordinates, the coordinates (b1, . . . , bn, t1, . . . , tn) and the map
Θ are called action-angle coordinates.

Remark 3.3. Observe that (4) allows us to read the (topological) monodromy of f : X → B
from the mondoromy of the locally constant sheaf Λ.
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Affine manifolds with singularities.

When a Lagrangian fibration has singular fibres, the base of the fibration is no longer an
affine manifold but an affine manifold with singularities, i.e. we have to remove the set of
critical values from B before defining the affine structure. We are thus motivated to give the
following

Definition 3.4. An (integral) affine manifold with singularities is a triple (B, ∆, A ), where
B is a topological n-dimensional manifold, ∆ ⊂ B a set which is locally a finite union of
locally closed submanifolds and A is an (integral) affine structure on B0 = B −∆.

Example 3.5. Let X = C2−{z1z2+1 = 0} and let ω be the restriction to X of the standard
symplectic form on C2. One can easily check that the following map onto R2 is a Lagrangian
fibration f : X → R2,

f(z1, z2) =
( |z1|2 − |z2|2

2
, log |z1z2 + 1|

)
. (6)

The only singular fibre is f−1(0), which has the topology of S1×S1 after {x}×S1 is collapsed
to a point, i.e. this fibration coincides topologically with the model in Example 2.5. These
type of singular Lagrangian fibrations are called of focus-focus type.

Let arg : C∗ → R be the multivalued function ρeiθ 
→ θ. Denote D = {b ∈ C | |b| < 1}
and D∗ = D − {0}. It has been shown [18] that there are coordinates b = (b1, b2) on R

2,
with values in D, a smooth function q : D → R and a choice of generators of H1(Fb, Z) with
respect to which the periods λ1 and λ2 of the fibration (6) can be written as

λ1 = − log |b| db1 + arg b db2 + dq

λ2 = 2π db2.

Clearly λ1 is multivalued and blows up as b→ 0. The lattice

Λ = spanZ〈λ1, λ2〉
has monodromy given by

T =
(

1 0
1 1

)
. (7)

Taking primitives of λ1 and λ2 on suitable contractible open subsets of D∗ gives the affine
structure with singularities (D, ∆, A ), with ∆ = {0}.

Example 3.6. This example is taken from [6] §19.3. Let Ξ be the 4-symplex in R3 spanned
by

P0 = (−1,−1,−1,−1), P1 = (4,−1,−1,−1), P2 = (−1, 4,−1,−1),
P3 = (−1,−1, 4,−1), P4 = (−1,−1,−1, 4).

Let B = ∂Ξ. Denote by Σj the open 3-face of B opposite to the point Pj and by Fij the
closed 2-face separating Σi and Σj . Each Fij contains 21 integral points (including those on
its boundary). These form the vertices of a triangulation of Fij . By joining the barycenter
of each triangle with the barycenter of its sides we form a 3-valent graph as in Figure 3.
Define the set ∆ to be the union of all such graphs in each 2-face. Denote by I the set of
integral points of B. We can form a covering of B0 = B −∆ by taking the open 3-faces Σj

and small open neighbourhoods UQ inside B0 of Q ∈ I. A coordinate chart φi on Σi can be
obtained from its affine embedding in R4. If we denote again by RQ the linear space spanned
by Q ∈ I, as a chart on UQ we take the projection φQ : UQ → R4/RQ. Let X(B0, A ) be the
bundle T ∗B0/Λ as defined at the beginning of this section. Then a computation shows that
the monodromy of this bundle computed around each vertex is given either by the matrices
(3) or by their inverse transpose matrices. In fact the vertices of ∆ which are contained in
the interior of each 2-face are of negative type and those which are contained in the 1-faces
are of positive type.

8



negative

positive

Figure 3: Affine S3 with singularities.

This is a very interesting example for the following result

Theorem 3.7 (Gross [5]). Let (B, ∆, A ) be the integral affine manifold with singularities
described in Example 3.6. Then the bundle X(B0, A ) = T ∗B0/Λ admits a semi-stable
topological compactification X(B0, A ) ↪→ X . Moreover X is diffeomorphic to a non-singular
quintic hypersurface in P4.

In fact Gross proves more. If Λ̌ is the dual lattice in TB0, then he proves that also
X̌(B0, A ) = TB0/Λ̌ admits a semi-stable compactification X̌ which is diffeomorphic to the
mirror of the quintic. It is also important to mention that in recent work Gross and Siebert
[7] generalize a great deal Example 3.6 and describe an interesting form of mirror symmetry
of affine manifolds with singularities.

We insist that the compactifications in Theorem 3.7 are topological. A much more difficult
problem is to carry out these compactifications in the complex and symplectic categories. The
main difficulty to achieve a symplectic compactification is the existence of local models of
singular Lagrangian fibrations.

4 Lagrangian models: positive and generic fibrations.

Lagrangian fibrations resembling the topology of the positive and generic models of §2 are
well understood [1]. Now we give some explicit examples.

Example 4.1 (Lagrangian positive fibration). Let X = C3 − {1 + z1z2z3 = 0} with
canonical coordinates z1, z2, z3 and the standard symplectic structure. Consider the T 2-
action on X given by (z1, z2, z3) 
→ (eiθ1z1, e

iθ2z2, e
−i(θ1+θ2)z3). We obtain f : X → R

3 given
by f = (f1, f2, f3) where

f1 = log |1 + z1z2z3|, f2 = |z1|2 − |z2|2, f3 = |z1|2 − |z3|2.
The reader may verify that µ = (f2, f3) is the moment map of the T 2 action and f1 is T 2-
invariant so the fibres of f are Lagrangian. The critical locus of f is Crit(f) =

⋃
ij{zi = zj =

0} and its discriminant locus is ∆ = {b1 = 0, b2 = b3 ≥ 0} ∪ {b1 = b2 = 0, b3 ≤ 0} ∪ {b1 =
b3 = 0, b2 ≤ 0}, i.e. a cone over three points with vertex at 0 ∈ R3. One can verify that this
fibration coincides, topologically, with the one in Example 2.8.
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Figure 4: Positive fibration.

Example 4.2 (Lagragian generic fibration). Let X ′ = C2 − {1 + z1z2 = 0} and let
X = X ′ × C

∗ with the standard symplectic structure. Define f : X → R
3 by f = (f1, f2, f3)

where

f1 = |z1|2 − |z2|2, f2 = log |1 + z1z2|, f3 = log |z3|.
The singular fibres of f are lying over ∆ = {(0, 0, r) | r ∈ R}. The reader may verify that
the above gives a Lagrangian fibration with the topology of the fibration of Example 2.6.

Remark 4.3. There other ways of constructing Lagrangian fibrations as above. In fact,
there is an infinite number of Lagrangian positive (respectively generic) fibrations which
are not fibre-preserving symplectomorphic to the one described in Example 4.1 (respectively
Example 4.2). Details of this can be found in [1].

The affine structures.

Now we shall describe the singular affine structures induced by the above models. For the
details we refer the reader to [1].

Proposition 4.4. Let f : (X, ω) → B be a Lagrangian T 3 fibration with singular fibres
of generic type along ∆ ⊂ B. There are coordinates (U, b1, b2, b3) around b0 ∈ ∆, with
U ∼= D2 ×D1 and a basis of H1(f−1(b), Z), b ∈ B − ∆ such that, in this basis, the period
lattice of f is Λ = 〈λ1, λ2, λ3〉 where

λ1 = λ0 + dA, λ2 = 2πdb2, λ3 = db3 (8)

where A ∈ C∞(B) and λ0 = − log |b1 + ib2|db1 + Arg(b1 + ib2)db2. The monodromy of F is
given by ⎛

⎝ 1 0 0
1 1 0
0 0 1

⎞
⎠ . (9)

Sketch of the Proof. Let ηi be the Hamiltonian vector field on X corresponding to the func-
tion bi ◦ f , i = 1, 2, 3. The vector fields ηi are tangent to the regular fibres. One can define
generators of H1(f−1(b), Z) as a composition of suitably chosen integral curves of the vector
fields ηi. Then one uses formula (4) to compute the periods explicitly. For the details we
refer the reader to [1] Proposition 3.9.

As in the focus-focus case (cf. Example 3.5), one can choose suitable branches of λ0 and
define action coordinates on these branches obtaining an affine manifold with singularities,
(B, ∆, A ), with the monodromy of A being generated by (9).
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The case of Lagrangian fibrations of positive type is completely analogous. We have (cf.
[1] Theorem 4.19):

Proposition 4.5. Let f : (X, ω)→ B be a Lagrangian fibration of positive type. Then there
are local coordinates b1, b2, b3 on B and a basis of H1(f−1(b), Z) such that the corresponding
period 1-forms are:

λ1 = λ0 + dH, λ2 = 2πdb2, τ3 = 2πdb3

where H is a smooth function on B and λ0 is multi-valued 1-form blowing up at ∆ ⊂ B,
where ∆ = {b1 = 0, b2 = b3 ≥ 0} ∪ {b1 = b2 = 0, b3 ≤ 0} ∪ {b1 = b3 = 0, b2 ≤ 0}. In
the basis λ1, λ2, λ3 of Λ and for suitable generators of π1(B −∆) satisfying γ1γ2γ3 = I, the
monodromy representation of f is generated by the matrices:⎛

⎝1 0 0
1 1 0
0 0 1

⎞
⎠ ,

⎛
⎝1 0 0

0 1 0
1 0 1

⎞
⎠ ,

⎛
⎝ 1 0 0
−1 1 0
−1 0 1

⎞
⎠ . (10)

5 Some piece-wise smooth examples

It is now a commonly accepted fact (cfr. [4], [12], [16]) that to produce Lagrangian fibrations
of the type described in Section 2, one has to allow also piece-wise smooth Lagrangian
fibrations. The reason is that there may not exist a smooth model of negative Lagrangian
fibration. Examples of piece-wise smooth Lagrangian fibrations of Calabi-Yau manifolds were
constructed by Ruan [15, 16, 17]. Here we wish to present a simple way to produce local
models of piece-wise smooth Lagrangian fibrations. We suspect that models similar to our
own are also implicit in Ruan’s fibrations, but we have been unable to verify this. The
method described here is inspired by ideas of Gross [4], Goldstein [3] and Joyce [12].

Lagrangian fibrations with torus symmetry.

Let (X, ω) be a symplectic 2n-manifold and let µ : (X, ω) → t∗ be the moment map of a
Hamiltonian T k-action. Let t ∈ µ(X) and let πt : µ−1(t) → Xt be the projection modulo
the T k action. When t is a regular value of µ, Xt is a smooth manifold and the symplectic
form ω descends to a symplectic form ωt on Xt. When t is a critical value of µ, Xt may be
a singular space and ωt will be only defined on the smooth part of Xt. The space (Xt, ωt) is
the Marsden-Weinstein reduced space at t.

Remark 5.1. We shall denote by

ωCm =
i

2

∑
k

dzk ∧ dzk

the standard symplectic structure on C
m and ω0 will denote the reduced symplectic form of

the reduced space Xt at time t = 0.

Goldstein [3] and Gross [4] used reduced spaces to construct T k-invariant (special) La-
grangian fibrations. The following is a particular case of [4] Thm 1.2:

Proposition 5.2. Let T k act effectively on X , k ≤ n−1. Suppose that there is a continuous
map G : X → M to an n − k-dimensional manifold M such that G(T · x) = G(x) for all
T ∈ T k. Suppose that for t in a dense subset of µ(X) the induced maps Gt : Xt → M have
fibres that are Lagrangian with respect to ωt. Then f : X → µ(X)×M given by:

f = (µ, G) (11)

defines a T k-invariant Lagrangian fibration.

When the T k-action has fixed points, the construction of Proposition 5.2 will produce
fibrations with interesting singular fibres. Later, in this paper we will show some examples.
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The reduced geometry.

Consider the following S1 action on C
3:

eiθ(z1, z2, z3) = (eiθz1, e
−iθz2, z3). (12)

This action is Hamiltonian with respect to ωC3 . Clearly it is singular along the surface
Σ = {z1 = z2 = 0}. The corresponding moment map is:

µ(z1, z2, z3) =
|z1|2 − |z2|2

2
. (13)

The only critical value of µ is t = 0 and Crit(µ) = Σ ⊂ µ−1(0).

Now consider the map

π̄ : C
3 → R× C

2 (14)
(z1, z2, z3) 
→ (µ, z1z2, z3). (15)

Notice that π̄ is the same map as in Remark 2.4. Therefore π̄ restricted to C3 − Σ is an
S1-bundle onto (R×C2)− π̄(Σ) with Chern class c1 = 1. Let πt be the restriction to µ−1(t)
of the map

(z1, z2, z3) 
→ (z1z2, z3).

Then πt can be used to identify the reduced space µ−1(t)/S1 with C2. Under this identifica-
tion, i.e. letting the coordinates u1 = z1z2 and u2 = z3, the reduced Kähler form ωt can be
written as:

ωt =
i

2

(
1

2
√

t2 + |u1|2
du1 ∧ du1 + du2 ∧ du2

)
. (16)

Away from t = 0, the reduced spaces are smooth manifolds.

On the other hand, at t = 0 the reduced form ω0 = ωt|t=0 blows up along the plane
π0(Σ) = {u1 = 0}, so the reduced space (X0, ω0) is singular. However, it was observed by
Guillemin and Sternberg in [9], that it can be smoothed out, i.e. it can be identified with
(C2, ωC2). Indeed, the identification is given by the following

Γ0 : (u1, u2) 
→
(

u1√|u1|
, u2

)
. (17)

One can see that Γ0 is continuous, smooth away from u1 = 0 and such that Γ∗
0ωC2 = ω0. One

can do more: one can identify all the reduced spaces with (C2, ωC2) at once. In fact consider
the map

Γt : (u1, u2) 
→
⎛
⎝ u1√
|t|+√t2 + |u1|2

, u2

⎞
⎠ (18)

One can verify that Γt is a symplectomorphism between (C2, ωt) and the standard symplectic
space C2. However the problem is that this identification, although continuous and smooth
for fixed t, is not smooth in t when t = 0. In fact one can show that it cannot be otherwise.

A construction

We now illustrate a general method to construct piece-wise smooth Lagrangian fibrations
using Proposition 5.2 and the observations about the reduced geometry. Let Log : (C∗)2 →
R2 be defined by

Log(v1, v2) = (log |v1|, log |v2|). (19)
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Clearly the map Log is a Lagrangian fibration, with respect to the standard symplectic form.
Moreover it is a trivial T 2-bundle over R2. Let Φ : C2 → C2 be a symplectomorphism of the
standard C

2. Let Xt be the open and dense subsets of (C2, ωt) defined by

Xt = Γ−1
t ◦ Φ−1((C∗)2).

Then examples of maps Gt : Xt → R2 of Proposition 5.2 can be defined by

Gt = Log ◦Φ ◦ Γt.

This clearly makes sense also when t = 0. It is also clear that, for all fixed t ∈ R, Gt is a
Lagrangian fibration with respect to the reduced symplectic form (16). We summarize this
in the following

Proposition 5.3. Let Xt and Gt be as above. Define a map Q by

Q(t, u1, u2) = (t, Gt(u1, u2)). (20)

Then Q is defined on the dense open subset Y of R× C2 defined by

Y = {(t, u1, u2) ∈ R× C
2 | (u1, u1) ∈ Xt}.

If π̄ is as in (14), let
X = (π̄)−1(Y )

with the standard symplectic form induced from C3. Then the map f : X → R3 given by

f = Q ◦ π̄

is a piece-wise smooth Lagrangian fibration of X which fails to be smooth on the 5-dimensional
subspace µ−1(0) ∩X .

It is clear that all the singular fibres of f must lie in µ−1(0)∩X . In fact the singular fibres
are all the lifts of fibres of G0 in X0 which intersect the surface Σ = {u1 = 0} ∩ X0. The
topology of the singularity depends on the topology of this intersection. The discriminant
locus of the fibration is therefore the set ∆ ⊂ R3 given by

∆ = {0} × (Log ◦Φ ◦ Γ0(Σ ∩X0)).

Given a point b = (0, b1, b2) ∈ ∆, the fibre f−1(b) looks like S1×G−1
0 (b1, b2) after the circles

over all points in G−1
0 (b1, b2) ∩ Σ have been collapsed to points (cfr. Figure 6).

Examples

Define the piece-wise smooth map γ : C
2 → C by

γ(z1, z2) =

⎧⎪⎨
⎪⎩

z1z2
|z1| , when t ≥ 0

z1z2
|z2| , when t < 0.

(21)

Then one can easily see that for all (z1, z2, z3) ∈ µ−1(t), the map Γt ◦ πt is given by

Γt ◦ πt : (z1, z2, z3) 
→ (γ(z1z2), z3).

This is useful when computing the explicit examples below. We point out that in the con-
struction of Proposition 5.3 the topology of the fibration depends on how we choose the
symplectomorphism Φ.
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Example 5.4 (The amoeba). Take as a symplectomorphism Φ the linear map

Φ(u1, u2) =
1√
2

(
u1 − u2, u1 + u2 −

√
2
)

. (22)

Then the fibration resulting from Proposition 5.3 can be written explicitly in the coordinates
of the total space, in fact

f(z1, z2, z3) = (µ, log
1√
2
|γ − z3|, log

1√
2
|γ + z3 −

√
2|). (23)

The discriminant locus of this fibration is depicted in Figure 5. This is not difficult to see.
In fact Φ ◦ Γ0 sends the surface Σ to the plane in C2 given by

Σ′ = {v1 + v2 + 1 = 0}.

Then the discriminant locus is
∆ = {0} × Log(Σ′),

which has the shape in Figure 5. The images under Log of algebraic hyper-surfaces in (C∗)2

are known in the literature as amoebas. Figure 5 is the amoeba of Σ′.

Figure 5: Amoeba of v1 + v2 + 1 = 0

One can see that the fibres of Log over a point (b1, b2) intersect Σ′ in two distinct points
when (b1, b2) is in the interior of the amoeba. These two points come together to a double
point as (b1, b2) approaches the boundary of the amoeba. If p1 and p2 are two points on
T 2 (which may coincide), then the singular fibres of f look like S1 × T 2 after S1 × {pj} is
collapsed to a point. This model has the same topology as one conjectured by Joyce [12]
for special Lagrangian fibrations. Also the singularities are modeled on those of an explicit
example by Joyce of a singular special Lagrangian fibration with non-compact fibres.

In view of Proposition 2.3 and Remark 2.4, the total space of the amoeba fibration is
diffeomorphic to X as in Example 2.7, although the fibrations differ. In Example 2.7 the
discriminant locus is of codimension two (a graph), in the amoeba the discriminant has
codimension one. In both cases the singularities of the fibres occur along the intersection
of the critical surface Σ with the fibres of P (in Example 2.7) or of Q (as in (20)) in the
amoeba. But the intersections happen in a different way. In Example 2.7 they occur either
along circles, or along a figure eight. In the amoeba they occur as pairs of isolated points
which come together as a base point approaches the boundary of the amoeba. Intuitively, the
amoeba may be interpreted as a perturbation of Example 2.7 . In some sense, the singularities
in the amoeba are more generic. A schematic description of the amoeba fibration is depicted
in Figure 6. It can be compared with Figure 2. We remark that in the amoeba fibration
the monodromy around the legs is the same as the monodromy of Example 2.7, i.e. it is
represented by the matrices (3).

In two dimensions we have the following:
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X
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P ′

π̄

R3

Σ′

Figure 6: Negative fibration with amoeba-like discriminant.

Example 5.5 (Stitched focus-focus). With a similar construction in dimension two we
can obtain the following piece-wise smooth fibration

f(z1, z2) =
( |z1|2 − |z2|2

2
, log |γ(z1, z2) + 1|

)
. (24)

where γ is as in (21). It is clearly well defined on X = {(z1, z2) ∈ C2 | γ(z1, z2) + 1 �= 0}.
Observe that f has the same topology as a smooth focus-focus fibration. The only singular
fibre is f−1(0) and it is a pinched torus. The fibration fails to be smooth on µ−1(0).

There is an analogous model in three dimensions:

Example 5.6 (The leg). This is another three dimensional example. Consider the following
affine symplectomorphism of (C2, ωC2)

Φ : (u1, u2) 
→ (−u2, u1 − 1). (25)

The surface Σ is sent by Φ ◦ Γ0 to Σ′ = {v2 + 1 = 0}. The amoeba of Σ′ is just a straight
line. The resulting fibration f becomes

f(z1, z2, z3) =
( |z1|2 − |z2|2

2
, log |z3|, log |γ(z1, z2)− 1|

)
. (26)

The discriminant locus is {0} × R× {0} ⊂ R3. The fibration is a piece-wise smooth version
of the generic fibration in Example 4.2.

Example 5.7 (The amoeba with a thin leg). We now construct an example which
interpolates Example 5.4 and Example 5.6. Take the following Hamiltonian function

H0 =
π

4
Im(u1u2)

and let ηH0 be the Hamiltonian vector field associated to H0. If Φs is the flow generated by
ηH0 , then the Hamiltonian symplectomorphism associated to H0 is defined to be ΦH0 = Φ1.
One computes that in our case

ΦH0 : (u1, u2) 
→ 1√
2
(u1 − u2, u1 + u2).

It maps {u1 = 0} to {v1 + v2 = 0}. We now want a symplectomorphism which acts like ΦH0

in a small ball centered at the origin and like the identity outside a slightly bigger ball. So
choose a cut-off function k : R≥0 → [0, 1] such that, for some ε > 0,

k(t) =
{

1 when 0 < t ≤ ε
0 when t ≥ 2ε

(27)
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and define the Hamiltonian
H = k(|u1|2 + |u2|2)H0.

The Hamiltonian symplectomorphism ΦH associated to H satisfies

ΦH(u1, u2) =

⎧⎪⎨
⎪⎩

IdC2 , when |u1|2 + |u2|2 ≥ 2ε

1√
2
(u1 − u2, u1 + u2), when |u1|2 + |u2|2 ≤ ε.

Now let Ψ be the affine symplectomorphism

Ψ : (v1, v2) 
→ 1√
2
(v1 − v2, v1 + v2 −

√
2).

and finally, define Φ = Ψ ◦ ΦH . It is clear that

Φ(u1, u2) =

⎧⎪⎨
⎪⎩

Ψ, when |u1|2 + |u2|2 ≥ 2ε

(−u2, u1 − 1), when |u1|2 + |u2|2 ≤ ε.

Notice that Φ acts like in (25) on the ball of radius
√

ε around the origin and like in (22)
outside a larger ball. We use this Φ to construct a fibration f from Proposition 5.3. One can
then see that Σ′ = Φ◦Γ0(Σ) is a surface such that A = Log(Σ′) is a three-legged amoeba with
a leg pinched down to a straight line. The discriminant locus of f is then ∆ = {0}×A ⊂ R3.
Of course, f fails to be smooth on the slice µ−1(0).

Using the above method, one can choose a symplectomorphism Φ twisting the surface
{u1 = 0} suitably and obtain an amoeba with three thin legs (cf. Figure 7).

R2
Log

C2 (C∗)2

Φ

Figure 7: Amoeba with thin legs.

Definition 5.8. A fibration as in Example 5.7 with three thin legs will be called a Lagrangian
negative fibration.

The total space of a topological negative fibration coincides with that of a Lagrangian
negative fibration but the fibrations themselves are different. In view of Proposition 5.3,
a Lagrangian negative fibration is piece-wise C∞. More precisely, a Lagrangian negative
fibration is a union of two honest C∞ fibrations meeting along µ−1(0). A very similar
phenomenon occurs in special Lagrangian geometry [12].

Periods of a Lagrangian negative fibration

Let f : X → µ(X)×M be a Lagrangian fibration constructed as in Proposition 5.2. Let us
also assume that the action if free so that µ has no critical points. It is natural to ask what is
the relation between the periods of f and the periods of the reduced fibrations Gt : Xt →M .
Let U ⊂ µ(X)×M be a contractible open subset. Given t ∈ µ(X) denote Ut = U∩({t}×M).
A basis {γ1, . . . , γn} of H1(f−1(U), Z) can always be chosen so that the following holds. The
first γ1, . . . , γk are induced, via the T k action, by some basis e1, . . . , ek of t, the Lie algebra
of T k. Moreover, for every t ∈ µ(X) with Ut non-empty, {πt∗γk+1, . . . , πt∗γn} form a basis
of H1(G−1

t (Ut), Z). We have the following simple but useful result:
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Lemma 5.9. Given a basis {γ1, . . . , γn} of H1(f−1(U), Z) chosen as above, let λ1, . . . , λn

be the periods of f with respect to γ1, . . . , γn and let ξt
1, . . . , ξ

t
n−k be the periods of Gt with

respect to πt∗γk+1, . . . , πt∗γn. Then we have

λj = ej , j = 1, . . . , k (28)
λk+j |Ut = ξt

j , j = 1, . . . , n− k, (29)

where e1, . . . , ek are interpreted as 1-forms on µ(X) ⊆ t∗.

Proof. The proof of (28) is left to the reader. Let v be a vector field on Ut and let v′′ be a lift
of v with respect to f . Then v′ = πt∗v is a lift of v with respect to Gt. When j = 1, . . . , n−k,
we have

ξt
j(v) = −

∫
πt∗γk+j

ιv′ωt = −
∫

γk+j

ιv′′ω = λk+j(v), (30)

which proves (29).

Now let f : X → R3 be the amoeba fibration of Example 5.4 or a Lagrangian negative
fibration. Remember that ∆ is the discriminant locus. We compute the periods of f over
the following contractible open subset U of R

3 −∆:

U = (R3 −∆)− ({b1 = 0, b2 ≥ 0} ∪ {b1 = 0, b3 ≥ 0})

Proposition 5.10. Let f : X → R3 be an amoeba fibration or a negative fibration and
U ⊂ R3 be as above. Then there is a basis {γ1, γ2, γ3} of H1(f−1(U), Z) with respect to
which the periods λ1, λ2, λ3 are

λ1 = db1,

λ2 = α1 db1 − e2b2 db2,

λ3 = α2 db1 − e2b3 db3,

where α1 and α2 are functions on U .

Proof. Given t ∈ R, let Ut = U ∩ {b1 = t}. When t �= 0, Ut = R
2 and when t = 0, U0 is a

subset of {b1 = 0} not containing ∆. The reduced Lagrangian fibrations Gt are given by

Gt = Log ◦Φ ◦ Γt.

Observe that Φ ◦ Γt is a C∞ symplectomorphism between (C2, ωt) and (C2, ωC2). Given
b = (b2, b3) ∈ R2,

Log−1(b) = {(eb2+iθ1 , eb3+iθ2), (θ1, θ2) ∈ T 2}.
We can choose a basis ζ′1, ζ′2 of H1(Log−1(b), Z) represented by ζ′1 = {θ2 = 0} and ζ′2 = {θ1 =
0}. Now let ζi ∈ H1(G−1

t (b), Z) be such that (Φ ◦ Γt)∗(ζi) = ζ′i. Clearly ζ1, ζ2 form a basis
of H1(G−1

t (b), Z). From the fact that (Φ ◦Γt)∗ωC2 = ωt, one can see that the periods ξt
1 and

ξt
2 of Gt with respect to ζ1 and ζ2 are equal to the periods of Log with respect to ζ′1 and ζ′2.

After an easy computation we therefore obtain

ξt
i = −e2bidbi (31)

We can choose a basis {γ1, γ2, γ3} of H1(f−1(U), Z) so that γ1 is represented by an S1-orbit
and πt∗γ1+i = ζi. Lemma 5.9 and (31) imply the result.

Remark 5.11. Notice that from the fact that periods are always closed, we find that the
αj ’s appearing in the expression of λ2 and λ3 must depend only on b1. It follows that in
no way the periods could show a monodromy given by matrices (3), as we would expect if
the fibration were smooth (cfr. Remark 3.3). In the next section we discuss how to read
monodromy in the case of these type of fibrations.
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6 Stitching Lagrangian fibrations

In these last two sections we wish to report on some current research of the authors aiming at
a better understanding of the examples of piece-wise smooth Lagrangian fibrations described
in the previous sections. We briefly outline the main ideas of this research mainly through
the discussion of some examples. Proofs and technical details will appear elsewhere in a joint
work in preparation. We define and study a certain class of piece-wise-smooth Lagrangian
fibrations which include the examples of the previous sections. We call these fibrations
stitched Lagrangian fibrations. Before giving any formal definition we recall the motivating
examples.

Example 6.1 (Stitched focus-focus, revisited). We take a closer look at the fibration
f : X → R2 of Example 5.5. Let µ = |z1|2−|z2|2

2 be the moment map of the usual S1 action.
Then the total space X can be divided in two halves:

X+ =
{

z1z2

|z1| + 1 �= 0
}
∩ {µ ≥ 0}

and

X− =
{

z1z2

|z2| + 1 �= 0
}
∩ {µ ≤ 0},

which are separated by Z = µ−1(0) = ∂X+ = ∂X−. As we pointed out f is piece-wise
smooth on X and fails to be smooth on Z. In fact f restricted to X± − f−1(0) is locally
the restriction of a smooth function on C2. Moreover f has the same topology of a smooth
focus-focus fibration. The fibre over 0 ∈ R

2 is a pinched torus. Denote the components of
f restricted to X± by f = (f1, f

±
2 ). Let η1 and η±

2 be the Hamiltonian vector fields of f1

and f±
2 respectively. Notice that η1 is smooth on X while η±

2 extend to smooth vector fields
on Z − f−1(0), but in general η+

2 |Z−f−1(0) �= η−
2 |Z−f−1(0). A measure of how f fails to be

smooth is given by the difference between η+
2 and η−

2 along Z. Notice that both of them
must be tangent to the fibres of f and both commute with η1. A computation shows that

(η+
2 − η−

2 )|Z−f−1(0) = a η1|Z−f−1(0),

where

a = Re
(

z1z2

|z1|2z1z2 − |z1|3
) ∣∣

Z−f−1(0) .

Example 6.2 (The amoeba, revisited). Similar observations hold for f : X → R3 given
in Example 5.4. Recall that the discriminant locus ∆ of f has the shape in Figure 5 and it is
contained in in the plane {b1 = 0}. For the purpose of this discussion we restrict f to the set of
smooth fibres X# = X−f−1(∆). As in the previous example we can divide X# in two halves:
X+ = X# ∩ {µ ≥ 0}, X− = X# ∩ {µ ≤ 0}, separated by Z = µ−1(0) ∩X# = ∂X+ = ∂X−.
Again f is piece-wise smooth on X#, but when restricted to X±, f is locally the restriction
of a smooth map. We denote f restricted to X± by f± = (f1, f

±
2 , f±

3 ). Let η1 and η±
j be the

Hamiltonian vector fields of f1 and f±
j , j = 2, 3. Since f2 and f3 are piece-wise smooth, we

expect η+
j |Z �= η−

j |Z . A computation shows that, for j = 2, 3

η+
j |Z − η−

j |Z = aj η1|Z ,

where

a2 = −
Re
(
(γ − z3) z1z2

|z1|3
)

|γ − z3|2
and

a3 = −
Re
(
(γ + z3 −

√
2) z1z2

|z1|3
)

|γ + z3 −
√

2|2 .

Notice that the aj ’s are S1 invariant functions.
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Stitched Lagrangian fibrations

In view of the examples above we give the following definition.

Definition 6.3. Let (X, ω) be a smooth 2n-dimensional symplectic manifold. Suppose there
is a free Hamiltonian S1 action on X with moment map µ : X → R. Let X+ = {µ ≥ 0},
X− = {µ ≤ 0} and Z = ∂X+ = ∂X−. A map f : X → Rn is said to be a stitched
Lagrangian fibration if there are S1 invariant maps G+ and G−, G± : X± → R

n−1, such that
the following holds.

(i) G+|Z = G−|Z and G± are restrictions to X± of smooth maps on X .

(ii) f can be written as

f =
{

(µ, G+) on X+,
(µ, G−) on X−

and f restricted to X± is a proper submersion with connected Lagrangian fibres. Denote
f restricted to X± by f±.

(iii) Let G±
j be the components of G± and let η1 and η±

j be the Hamiltonian vector fields of
µ and G±

j respectively, j = 2, . . . , n. Then there are S1 invariant functions aj , j = 2, . . . , n
on Z such that

(η+
j − η−

j )|Z = aj η1|Z . (32)

We call Z the seam.

We remark that the definition excludes the possibility that a stitched Lagrangian fibration
has singular fibres. From the theory of action-angle coordinates it is known that all smooth,
proper, Lagrangian submersions with connected fibres are locally fibre-wise symplectomor-
phic. In general this is no longer true for stitched Lagrangian fibrations. Our ideas aim at
a generalization of the theory of action angle coordinates to stitched Lagrangian fibrations.
Hopefully, this will allow us to understand if and how we can use the examples in the pre-
vious section as building blocks of Lagrangian fibrations of Calabi-Yau manifolds or even
of more general symplectic manifolds. We show that in the setting of stitched Lagrangian
fibrations one not only needs action-angle coordinates but also a family of closed 1-forms on
an (n − 1)-torus satisfying some integrality properties. This family of 1-forms carries some
key information needed to describe the non-smoothness happening along Z. We outline here
how this family of 1-forms is obtained.

Assume that f : X → U is a stitched Lagrangian fibration onto a contractible open
neighbourhood U of 0 ∈ R

n, with coordinates b = (b1, . . . , bn), so that X is a topologically
trivial torus bundle over U . Let U+ = U ∩ {b1 ≥ 0} and U− = U ∩ {b1 ≤ 0} and Γ =
∂U+ = ∂U−. Let σ : U → X be a continuous section which is smooth and Lagrangian
when restricted to U±. Then, as explained in Section 3, there are maximal smooth lattices
Λ± ⊂ T ∗U± and a diagram

T ∗U±/Λ±
Θ±−−−−→ X±

π±
⏐⏐� ⏐⏐�f±

U± Id−−−−→ U±

where Θ± is a symplectomorphism and π± are the standard projections. Let Φt
η1

, Φt
η±
2

. . . , Φt
η±

n

be the flows of η1, η
±
2 , . . . , η±

n respectively. Then

Θ± : (b,
∑

j

tj dbj) 
→ Φt1
η1
◦ Φt2

η±
2
◦ . . . ◦ Φtn

η±
n
(σ(b)), (33)

and
Λ± = {(b,

∑
j

Tj dbj) ∈ T ∗U± | ΦT1
η1
◦ ΦT2

η±
2
◦ . . . ◦ ΦTn

η±
n
(σ(b)) = σ(b)}
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Notice that because of the S1 action, we always have that db1 ∈ Λ±. Now, due to the
discrepancy (32) between η+

j and η−
j along Z, Θ+ and Θ− behave differently on fibres over

points b ∈ Γ. In fact let
Z± = (π±)−1(Γ),

then we have the diagram
Z−

Θ−
⏐⏐�
Z

Θ+←−−−− Z+

and the difference between the two maps is measured by

(Θ+)−1 ◦Θ− : Z− → Z+

We denote by Q the map (Θ+)−1 ◦ Θ−. It is not difficult to compute Q explicitly. In fact
let (b1, . . . , bn, t1, . . . , tn) and (b1, . . . , bn, y1, . . . , yn) be the canonical coordinates on T ∗U−

and T ∗U+ respectively. From its definition, we see that Θ+ identifies η1, η
+
2 . . . , η+

n with
∂y1 , . . . , ∂yn , therefore (32) becomes

η−
j = ∂yj − (aj ◦Θ+) ∂y1 . (34)

Notice that aj ◦ Θ+ is independent of y1. Computing the flows of η1, η
−
2 , . . . , η−

n in these
coordinates is not difficult and it turns out that Q is given by

Q : (b, t1, . . . , tn) 
→
⎛
⎝b, t1 −

n∑
j=2

∫ tj

0

aj ◦Θ−(b, t2, . . . , tj−1, t, 0, . . . , 0)dt, t2, . . . , tn

⎞
⎠ .

Now let
λ1 = db1.

We have λ1 ∈ Λ±. Let us denote a basis for Λ± by {λ1, λ
±
2 , . . . , λ±

n }, where

λ±
j =

n∑
k=1

T±
jkdbk.

The S1 action on the seam Z corresponds to translations along the λ1 direction on Z±. We
want to describe Z/S1. Let

λ
±
j = λ±

j mod db1

and let Λ
±

= span〈λ±
2 , , . . . , λ

±
n 〉Z. Then we can identify Z/S1 with

Z
±

= T ∗Γ/Λ±.

Now notice that the functions aj ◦Θ− descend to functions on Z
−

. Define the 1-form

�− =
n∑

j=2

(aj ◦Θ−) dtj .

One can see that the fact that [η−
j , η−

k ] = 0 for all j, k = 2, . . . , n is equivalent to the fact that

�− restricts to a closed 1-form on the fibres of Z
−

. Denote by t = (t2, . . . , tn) the coordinates
on the fibres of Z

−
. Then Q can be re-written as

Q : (b, t1, t) 
→
(

b, t1 −
∫ t

0

�−, t

)
, (35)
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where the integral is a line integral in the covering space T ∗Γ along a path joining 0 and t̄.
We would like to understand how Q acts on the periods. The maps Θ± naturally identify
H1(X, Z) ∼= Z

n with Λ±. In particular the cycle γ1 represented by the orbits of the S1

action is identified with λ1 = db1. Suppose we choose a pair of basis of H1(X, Z) of the type
{γ1, γ

+
2 , . . . , γ+

n } and {γ1, γ
−
2 , . . . , γ−

n } satisfying the relation

γ+
j = mjγ1 + γ−

j

for integers m2, . . . , mn. Let {λ1, λ
±
2 , . . . , λ±

n } be the basis of Λ± corresponding to {γ1, γ
±
2 , . . . , γ±

n }.
One can easily see that, at a point b ∈ Γ, we must have

λ+
j (b) = λ−

j (b) +

(
mj −

∫
λ
−
j

�−(b)

)
λ1, (36)

This follows from the fact that Q must map mjλ1 + λ−
j to λ+

j , since they represent the same
cycle inside Z.

Notice that the whole manifold X is obtained by “gluing” T ∗U−/Λ− and T ∗U+/Λ+

along their boundaries Z− and Z+ via the map Q. Moreover the map Q can be completely
recovered from the closed 1-form �−.

In general one can try to construct stitched-Lagrangian fibrations in the following way.
Suppose we have maximal lattices Λ± inside T ∗U± generated by closed one forms {λ1, λ

±
2 , . . . , λ±

n },
where λ1 = db1. Suppose we are also given a smooth 1-form �− on Z

−
which is closed on

the fibres and such that for every b ∈ Γ, (36) holds. Then the map Q defined by (35) is
a well defined, fibre preserving, smooth map Q : Z− → Z+. Let X+ = T ∗U+/Λ+ and
X− = T ∗U−/Λ−. Then we can form a manifold

X = X+ ∪Q X−.

This gluing is only topological, but X has a symplectic form on X+ and on X−, i.e. the
standard ones. Is there a way of extending the gluing to give rise to a smooth symplectic
manifold, whose symplectic form coincides with the standard ones when restricted to X+ and
X−? If the answer is yes, then one can define the stitched Lagrangian fibration to be π+ on
X+ and π− on X−. So far we have been able to give a positive answer in the 4 dimensional
case. In the higher dimensional case it looks more delicate. Nevertheless we believe it should
be possible.

With stitched Lagrangian fibrations one can allow a more general set of coordinate changes
on the base than just the smooth ones. We call these admissible coordinates and they are
homeomorphisms A : U → U ′ between the base U and another open neighbourhood U ′ of
0 ∈ Rn such that A ◦ f is again a stitched Lagrangian fibration. In particular A is piece
wise-smooth on U and smooth on U+ and U−.

Let {λ1, λ
+
2 , . . . , λ+

n } and {λ1, λ
−
2 , . . . , λ−

n } be periods on U+ and U− respectively, cho-
sen as above. Then it turns out that action coordinates on U+ chosen with respect to
{λ1, λ

+
2 , . . . , λ+

n } and on U− chosen with respect to {λ1, λ
−
2 , . . . , λ−

n } give an admissible
change of coordinates on U . This is convenient because then one can assume that λ±

j = dbj.
Computed in action-angle coordinates �− becomes a 1-form on Γ×Rn−1/Zn−1. Since action-
angle coordinates are unique up to an integral affine change of coordinates, they give a conve-
nient normalization of �−. In particular, when the base has action coordinates, (36) implies
that �− must satisfy ∫

λ
−
j

�−(b) = mj (37)

for all b ∈ Γ.

Stitched Lagrangian fibrations with monodromy

We now discuss fibrations over non-simply connected open U which have non-trivial mon-
odromy. With smooth fibrations usually monodromy is reflected by the periods, as discussed
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in previous sections. This may no longer be true in the case of stitched fibrations, as we
observed in Remark 5.11. This is due to the non-smoothness along the seam Z. Here, in
fact, there is a discrepancy between the pull back of forms with respect to f+ and with
respect to f−. To understand monodromy one needs to take into consideration the 1-form
�− which, somehow, measures this discrepancy. We illustrate here how this can be done with
two examples.

Example 6.4. Suppose U ⊂ R
2 is an annulus centered at 0 ∈ R

2 and let f : X → U be
a stitched Lagrangian fibration. As before denote U+ = U ∩ {b1 ≥ 0}, U− = U ∩ {b1 ≤ 0}
and Γ = U+ ∩ U−. This time Γ is necessarily disconnected. We let Γu = Γ ∩ {b2 ≥ 0} and
Γl = Γ ∩ {b2 ≤ 0} be the upper and lower parts of Γ respectively. Now let b ∈ Γu and let

Mb : π1(U)→ H1(f−1(b), Z)

be the monodromy map at b. Choose as generator e of π1(U) a loop going once around in
the anticlockwise direction. Suppose there is a basis {γ1, γ2} of H1(f−1(b), Z) with respect
to which

Mb(e) =
(

1 −m
0 1

)
, (38)

for some integer m �= 0. Since γ1 is monodromy invariant it must be represented by the
orbits of the S1 action. As usual let X± = f−1(U±). Since U − Γl is contractible, we can
think of {γ1, γ2} as a basis of H1(f−1(U − Γl), Z). Consider the natural isomorphisms

H1(f−1(U − Γl), Z)→ H1(X+, Z)→ H1(f−1(U − Γu), Z)

or
H1(f−1(U − Γl), Z)→ H1(X−, Z)→ H1(f−1(U − Γu), Z)

induced by inclusions and restrictions. The first row identifies {γ1, γ2} with a basis of
H1(f−1(U − Γu), Z) which we call {γ1, γ

+
2 }, the second one identifies it with another ba-

sis which we call {γ1, γ
−
2 }. Notice that, from monodromy it follows that we must have

γ+
2 = mγ1 + γ−

2 .

Let λ+
2 and λ−

2 be periods on U+ and U− respectively, both corresponding to γ2 (or, equiv-
alently, to γ+

2 and γ−
2 respectively). Assume for simplicity that we have action coordinates

(b1, b2) on U so that λ1 = db1 and λ±
2 = db2. We can now apply the considerations of the

previous section first to f restricted to f−1(U − Γl), then to f restricted to f−1(U − Γu).
In the former case we obtain a 1-form �−u on Γu × R/Z and in the later case a 1-form �−l on
Γl × R/Z. From the integral condition (37) applied to �u and �l in our situation, we obtain
that the two 1-forms must satisfy∫

λ
−
2

�−u (b) = 0 and
∫

λ
−
2

�−l (b) = m, (39)

for all b in Γu and in Γl respectively. What this tells us is that monodromy happens because �−u
and �−l belong to different cohomology classes! A particular case of the situation considered
is the stitched focus-focus example. Here we have U = R

2 − {0} and m = 1.

A result we have proved is that any pair of one forms �−u and �−l on Γu × R/Z and
Γl×R/Z, satisfying (39) can be used to symplectically glue T ∗U+/Λ+ and T ∗U−/Λ− along
their boundary exactly as outlined in the previous section. We thus obtain many examples
of a manifold X with a stitched Lagrangian fibration f : X → U which has monodromy (38).

Example 6.5. We now discuss a three dimensional example. In R3 consider the three-valent
graph

∆ = {(0, 0,−t), t ≥ 0} ∪ {(0,−t, 0), t ≥ 0} ∪ {(0, t, t), t ≥ 0}
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and let D be a tubular neighbourhood of ∆. Take U = R3−D and assume we have a stitched
Lagrangian fibration f : X → U with seam Z = f−1({b1 = 0} ∩ U), e.g. like in Example
5.4. Again we let U+ = U ∩ {b1 ≥ 0}, U− = U ∩ {b1 ≤ 0} and Γ = U+ ∩ U−. Also let
X± = f−1(U±). This time Γ has three connected components

Γ0 = {(0, t, s), t, s < 0} ∩ U,

Γ1 = {(0, t, s), t > 0, s < t} ∩ U,

Γ2 = {(0, t, s), s > 0, t < s} ∩ U.

Fix b ∈ Γ0 and suppose that there is a basis {γ1, γ2, γ3} of H1(f−1(b), Z) and generators
e0, e1, e2 of π1(U), with e0e1e2 = 1, with respect to which the monodromy transformations
are

Mb(e1) = T1 =

⎛
⎝ 1 0 −m1

0 1 0
0 0 1

⎞
⎠ , Mb(e2) = T2 =

⎛
⎝ 1 −m2 0

0 1 0
0 0 1

⎞
⎠ . (40)

and Mb(e0) = T0 = T−1
1 T−1

2 , for non zero integers m1 and m2. We have that γ1 is represented
by the orbits of the S1 action. Now, since U − (Γ1 ∪Γ2) is contractible, {γ1, γ2, γ3} is a basis
of H1(f−1(U − (Γ1 ∪ Γ2)), Z). Consider the natural isomorphisms

H1(f−1(U − (Γ1 ∪ Γ2)), Z)→ H1(X+, Z)→ H1(f−1(U − (Γ0 ∪ Γ1)), Z)

or
H1(f−1(U − (Γ1 ∪ Γ2)), Z)→ H1(X−, Z)→ H1(f−1(U − (Γ0 ∪ Γ1)), Z)

induced by inclusions and restrictions. The first row identifies {γ1, γ2, γ3} with a basis of
H1(f−1(U − (Γ0 ∪ Γ1)), Z), which we call {γ1, γ

+
2 , γ+

3 }, while the second one identifies it
with another basis, which we call {γ1, γ

−
2 , γ−

3 }. Notice that, from the monodromy map
Mb(e1) = T1, it follows that we must have

γ+
2 = γ−

2 ,

γ+
3 = −m1γ1 + γ−

3 .

Let {λ1, λ
+
2 , λ+

3 } and {λ1, λ
−
2 , λ−

3 } be periods on U+ and U− respectively, corresponding to
the basis {γ1, γ2, γ3} of H1(f−1(U − (Γ1 ∪ Γ2)), Z) (or respectively to the basis {γ1, γ

+
2 , γ+

3 }
and {γ1, γ

−
2 , γ−

3 } of H1(f−1(U − (Γ0 ∪ Γ1)), Z) ). Let us once more assume that we have
action coordinates (b1, b2, b3) on U so that λ1 = db1 and λ±

j = dbj , j = 2, 3. We can apply
the considerations of the previous section first to f restricted to f−1(U − (Γ1∪Γ2)) and then
to f restricted to f−1(U − (Γ0 ∪ Γ1)). We obtain a 1-form �−0 on Γ0 × R2/Z2 in the former
case and a 1-form �−2 on Γ2 × R2/Z2 in the latter. From the integral condition (37) applied
to �−0 and �−2 we obtain that the two 1-forms must satisfy∫

λ
−
2

�−0 (b) =
∫

λ
−
3

�−0 (b) = 0

and ∫
λ
−
2

�−2 (b) = 0 and
∫

λ
−
3

�−2 (b) = −m1,

for all b in Γ0 and in Γ2 respectively. Similarly one defines a 1-form �−1 on Γ1. It will satisfy∫
λ
−
2

�−1 (b) = −m2 and
∫

λ
−
3

�−1 (b) = 0.

Again, monodromy is understood in terms of the difference in the cohomology class of the
three 1-forms �−0 , �−1 and �−2 . Example 5.4 is a special case of this situation, where m1 =
m2 = 1.

One of the goals of our current research is to prove that any triple of three forms �−0 , �−1
and �−2 of the above type can be used to construct stitched Lagrangian fibrations f : X → U ,
with the given monodromy (40). The method we have in mind is the gluing illustrated in
the previous section.
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