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HEAT CONTENT ASYMPTOTICS FOR RIEMANNIAN
MANIFOLDS WITH ZAREMBA BOUNDARY CONDITIONS

M. VAN DEN BERG, P. GILKEY, K. KIRSTEN, AND V. A. KOZLOV

ABSTRACT. The existence of a full asymptotic expansion for the heat content
asymptotics of an operator of Laplace type with classical Zaremba boundary
conditions on a smooth manifold is established. The first three coefficients
in this asymptotic expansion are determined in terms of geometric invariants;
partial information is obtained about the fourth coefficient.

1. INTRODUCTION

Let (M, g) be a smooth compact m-dimensional manifold with smooth boundary
OM and let V' be a smooth vector bundle over M. Let

D= —(aij Id'@iaj + bk(‘?k + C)

be a smooth second order operator over M with scalar leading symbol; we adopt the
Einstein convention and sum over repeated indices. We assume the matrix {a*} is
positive definite and use the inverse matrix g;; to define a Riemannian metric on
M.

We can write the operator D invariantly as follows. There is a unique connection
V on V and a unique endomorphism F of V' so that

D =D(V,E)=—(a"V;V; + E).

The connection 1 form and endomorphism E are given in terms of the derivatives
of the total symbol of D and the Christoffel symbols I by:

1 1 1 _kl
w; = 500! + sa™ Ty
(1.2) Gij 3 kl

2
E=c—a¥ (&wj + wiw; — wkl“ij’“) .

The boundary conditions we shall impose are at the heart of the matter. We
assume given a decomposition M = Cr U Cp as the union of two closed subman-
ifolds with common smooth boundary C'r N Cp = X. Let ¢.,,, denote the covariant
derivative of ¢ with respect to the inward unit normal on 9M. Let S be an auxiliary
endomorphism of V|, . We take Robin boundary conditions on Cr and Dirichlet
boundary conditions on Cp arising from the boundary operator:

(Lb) Bo = (¢im + S)l{cr-5}  dlop-
We refer to Seeley [17, 18] for a more general formalism; see also related work of
Avramidi [1], Dowker [7, 8], and Jakobson et al. [11].

Let e~*P5 be the fundamental solution of the heat equation; u = e~ *P5¢ is then
characterized by the equations:

(1.¢) (0: + D)u =0, u(z;0) = ¢(x), Bu(x,t) =0 for t > 0.

The equality u(z;0) = ¢(z) is to be taken in the L? sense where ¢ € C°>°(M;V)
is a smooth section to V which gives the initial temperature distribution. Let
¢* € C°(M;V*) be a smooth section to the dual bundle V* which gives the
specific heat of the manifold. We denote the natural pairing between V' and V* by
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(,*). Let dx, dz’, and dz be the Riemannian measures on M, on M, and on X,
respectively. We define the total heat energy content of the manifold by setting:

B(6,¢". D.B)(t) == /M<e*“35¢, 6*)dz.

It is worth putting this in a more classical framework in the special case where
D = A is the Laplacian and S = 0. Let W2(M) be the closure of C*°(M) with
respect to the Sobolev norm

el = [ (V67 + 16} da.
M
Let Wol,’éD (M) be the closure of the set
{¢ € WH2(M) : supp(¢) N Cp = 0} .
Thus, for example, Wy (M) = Wh2(M). Let Wy *(M) = Wy'5,,(M). For A >0,
let
N(M,Cp, ) = sup(dim E))

where the supremum is taken over all subspaces Ey C WO1 ’éD (M) such that

VOl L2 ary < MI9llz2(ary, Vo € En.
Then N(M,{,\) is the spectral counting function for the Neumann Laplacian on
M, N(M,0M,)) is the spectral counting function for the Dirichlet Laplacian on
M, and N(M,Cp, A) is the spectral counting function for the Laplacian acting in
L?(M) with Dirichlet conditions on Cp and Neumann conditions on M — Cp.
It is well known, see for example McKean and Singer [16], that since M is compact
and OM is smooth, N (M, (), \) is finite. By the variational principle,

N(Mvan)‘) < N(MvCDvA) < N(qu)v)‘)a

consequently N (M, Cp, A) is finite and counts the number of eigenvalues less than
A with the Zaremba boundary condition defined by Cp. Let Ay < Ay < ... be the
eigenvalues counted by N (M, Cp,-) and let {¢;} be a corresponding orthonormal
basis of eigenfunctions in L?(M). If ¢ and ¢* are smooth, we can express the heat
content in terms of the Fourier coefficients:

(ld) ﬁ(d)a ¢*7D76)(t) = Ze_t)\i<¢7 ¢Z>L2(M)<¢*a¢l>L2(M) :

By Parseval’s identity, the series converges for ¢ = ¢* =1 and for all £ > 0:

B(1,1,D,B)(t) = Ze_t’\i{<1,¢i>L2(M)}2

< et Z<]—7 $i)72(ary = vol(M)e~"A.
It now follows that the series in Equation (1.d) converges for all smooth ¢ and ¢*
and for all £ > 0.
We return to the general setting. Adopt the notation established above.

Theorem 1.1. Let ¢ € C®(M;V) and let ¢* € C°(M;V*). There exists a
complete asymptotic expansion B(¢, ¢*, D, B)(t) ~ Y ,.~0 Bn(®, ¢*, D, B)t"? where
the B, are locally computable in terms of integrals over M, Cp, Cr, and 2.

We use the dual connection V to covariantly differentiate sections of V*. Let
the dual endomorphism S on V* define the dual boundary condition B for the dual
operator D on Cr. Near the boundary, we choose a local orthonormal frame {ei}
for the tangent bundle of M so that e,, is the inward unit geodesic normal vector
field; on ¥, we assume e,,_; is the inward unit normal of ¥ C Cp. Let indices
a, b range from 1 through m — 1 and index the induced orthonormal frame for the
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tangent bundle of the boundary; let indices u,v range from 1 through m — 2 and
index the induced orthonormal frame for . Let Lap := Capm and Ly, := Lyv(m—1)
be the components of the second fundamental forms of OM C M and ¥ C Cp,
respectively. Let R be the Riemann curvature tensor with the sign convention that
Ri221 = +1 for the standard sphere in R3.

Theorem 1.2. There exist universal constants c; so that:

(2) ﬁl((bv ¢*a Dv B) = _% ch <¢7 ¢*>dl‘/

(3) Ba(¢,9",D,B) = — [,(Dd,¢*)dx + [ {(bm + S¢, ") }da’
+ fC’D{%LU«U«<¢7 ¢*> - <¢7 ¢Tm>}dx/ + Co L/‘E<¢’ ¢*>d2

(4) ﬁ3(¢7 ¢*a Da B) = % fCR<¢;m + S¢a ¢:km + S¢*>dl‘/
— - Jon {5 {Gmm: 6%) + 5(0 lnm) — (G ) + (B, 67)
_%Laa<¢7 ¢*>,m + <(11_2LaaLbb - %LabLab + %Ramam)gba ¢*>}dl‘/
+ fz{«clefl,mfl + C2Luu + CS-Z/uu + C4S)¢7 ¢*>

+05<¢7 ¢*>;m71 + CG<¢7 ¢*>,m}d'z
(5) We have co = —1%, c3 = ﬁ, cs = ﬁ7 6 = _#.
(6) We have c; — Scq = %

Remark 1.3. Our methods did not yield ¢;. They also did not permit us to
complete the computation of {ca,c4}.

Theorem 1.2 follows if ¥ is empty from results of [2, 4]; the new feature here is
the additional integrands over ¥ present in B2 and (3 and the partial information
we have obtained concerning these terms.

Here is a brief guide to the paper. In Section 2, we use invariance theory to
establish Assertions (1-4) of Theorem 1.2. In Section 3, we use product formulas
and make a special case computation to show

1 1
2" T
In Section 4 we use special cases on the half-plane to complete the proof by showing

1 1 2
1.f = — =— d = ——F=.
( ) C3 Cs an Ce 3\/7_r

27’ 2/’

The remainder of the paper is devoted to the proof of Theorem 1.1 using results

of [13, 14, 15]; we believe the methods of Seeley [17, 18] could also be used. We

switch focus completely at this stage. Instead of working invariantly and globally

in the context of Riemannian manifolds using methods of invariance theory, we

work locally in Euclidean space in a system of local coordinates. In Section 5, we

introduce the function spaces which we shall need. In Section 6, we discuss various

‘model” problems and in Section 7, we formulate a basic theorem on asymptotics.

We obtain a number of estimates and conclude the proof of Theorem 1.1 in Section
8 by establishing a slightly more general result (see Theorem 8.2).

1
(1.e) co = — —c3—c5=0, and 02—504—1—06:0.

2. UNIVERSAL EXPRESSIONS FOR THE INVARIANTS (32

Let 3> denote the additional invariant defined by integration over ¥. Dimen-
sional analysis then shows that 3> can be computed by integrating invariants which
are homogeneous of weight n — 2 in the jets of the symbol; see the discussion in
[2, 4] on this point where a similar analysis was performed which studied the interior
invariants and the boundary invariants for Dirichlet or Neumann problems. Thus
trivially, 35 = B = 0, and therefore the first interesting contribution arises at the
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B2 level; this must be a constant multiple of (¢, $*). Assertions (1-3) of Theorem
1.2 now follow.

To study the form of the additional boundary integral over X appearing in (3,
we investigate the local geometry near 3. Fix a point zg € ¥. Let z = (21, ..., Zm—2)
be local coordinates on ¥ so

9(02,02)(20) = 0wy and 07g(0Z,0%

w

)(20) =0 for 1<w,v,w<m-—2.
By considering the geodesic flow from ¥ C Cp, we introduce coordinates

(z,91) — exp {y1em—1(2)}

so that y; is the signed geodesic distance from X to M ; Cp corresponds to y; > 0
and C'r corresponds to y; < 0. The metric then satisfies:

9(9;,0/) =0 and g(5{,0{) = L.
Now use the geodesic flow of OM in M to introduce coordinates

(z,y1,92) — exp(z,yl){y2em('zay1)}
where y, is the geodesic distance to OM. We then have
9(05,03) = g(97,05) =0 and g(03,03) =1.

The only non-zero derivatives of the metric at zy are then given by the second
fundamental forms:

1
Luv(ZO) = _58%9(8;85)(2’0)’
1
Luv(ZO) = _5839(85785)(20)7 and

1
Lm—l,m—l(ZO) = —iagg(afvaf)(%) .

The structure group is the orthogonal group O(m — 2) and we apply H. Weyl’s
Theorem [19] on the invariants of the orthogonal group. Assertion (2) now follows
by writing down a basis for the set of invariants of weight 1 and applying the
symmetry

ﬂn(djadj*vD?B) = ﬁn((b*’qbabvg)

where D and B are the dual operator and dual boundary condition on the dual
bundle V*, respectively. The usual product and addition formulas then show the
constants are dimension free and universal. This completes the proof of Theorem
1.2 (4).

3. RELATIONS AMONG THE UNIVERSAL COEFFICIENTS

The universal coefficient ¢o of Theorem 1.2 (3) can be determined by a special
case calculation. Let M, be a compact convex subset of R? with non-empty interior
and smooth boundary 0M,. We suppose that M, contains a closed line segment
A of positive length. Let M_ be the reflection of M, with respect to the line
determined by A. We assume that A = OM; NOM_. We set N = M, UM_.

Let A = —0? — 93 be the usual flat Laplacian. Let

Cr(My) =47, Cp(My):=0Ms —A,
Cr(N):=0, Cp(N):=0N =Cp(Mi)UCp(M_).
We take ¢ = ¢* =1 and S = 0 to define u+ on My and uy on N. Let

(3.0) o) = 4/000 sinh((m — 7)s)

sinh(7s) - cosh(ys)
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The manifold N has two cusps of angle 27 at dA. The results of [3, 5] can be
used to compute (3, while Theorem 1.2 (3) can be used to see:

ol )
t{% /aN Laadz’ + 20(27r)} +0(t?),

2
de —Vt{ — dx’
M, {ﬁ oM, }
+ ¢ 1/ Lagda’ + 2¢o b + O(t3).
2 Cp (M)

We have by symmetry that uy (¢, ¢*, A, B) = uy(p, 0", A, B)if x € My and t >0
and trivially the normal derivative of N vanishes on A. Thus:
ﬁN(¢v ¢*7 A? B)(t) = ﬁM+ (¢7 ¢*v Av B)(t) + ,6]\/[7 (¢7 ¢*v Av B)(t)

= QﬁM+ (¢7 ¢*7 Av B)(t)

Since N = Cp(M1) U Cp(M_), we may use equations (3.b) and (3.c) to see that
4cog = 2¢(2m). By Equation (3.a), ¢(27) = —1. We may therefore conclude

_|_

ﬂM+ (¢7 ¢*7 Av B)(t)

(3.¢)

N[—=

Co — —

We use warped product formulae to obtain the two relationships between the
coefficients given in Equation (1.e). Let M; := [0,1] x S* be the cylinder with the
usual parameters (r,6). Set:

ds? := dr? 4 db?, Cp :={0,1} x [0, 7],
Cr :={0,1} x [m,27], ¥ :={0,1} x {0, 7},
Ay = —02-02, S1:=0,
¢ =1, o1 =1.

Since ¥ is discrete, dz is counting measure. Since all the structures are flat,
ﬁn(¢17¢T7A1761) =0 for TZZ3

Let ¢ be a small real parameter. Let My := M; x S! and let © be the usual
periodic parameter on the second circle. Let f = f(r,0) be a smooth warping
function and define

ds3 = dsf + >/ ("0dO?, Dy = Ay — e 2052
dvoly = e/ drdfd® .

We take the warping function to vanish identically near » = 1 and focus attention on
r = 0. Note that D, is not self-adjoint. We let Bo = B induce the same boundary
conditions; we must adjust S; appropriately to once again take pure Neumann
boundary conditions on Cr x S! as the connection induced by D having a non-
trivial connection 1 form. We let ¢2 = 1, but we set ¢ = e~/("% to compensate
for the change in the volume element. Set us = uy. We verify that us = e~ tA2.5; b2
by computing:

(8t + DQ)’LLQ = (8t + A1)U1 =0,
us(r,0,0;0) = ui(r,0;0) =1,
BQ’LLQ =0.
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Consequently we may compute:
B(1, ¢35, Ao, B2)(t) = / us(r,0,0; )¢5 (r,0,0)e! "9 drdhde
Mo

= 27r/ ui(r,0,0;t)drdd = 2n5(1,1, A1, B1)(t), so
My

(3.d) B3(1, ¢3, D2, Ba) = 2mwf3(1,1,A1,B1) =0.

First take f(r,0) = f(8) to be independent of the radial parameter near r = 0.
We use equation (1.a) to see:

wr = we =0, wo = —3fo,
Vopa = (0p +W29)¢2 = _%f9v Voops = (s _2W9)¢§ = _%f(”
—$2:005., = —%fefee_sf(e), E = 5 foo + %fefee_sf(g) .
Consequently we have
2 [ ¢

(36) ﬂ??D((b?v(b;aD%B):_ﬁ o 2

Note that ng/uu(gbg, #5) = —csfece™=/ and c5(po, O3)im—1 = —c5foce™c. Because

Fopd0d® — % /E F4d©

65 (s, 65, Do, B) = —< / (cs + c5) fod®,

b
we have the desired relationship

1 _ —
v C3 C5—0.

We now take f(r,0) = f(r) where
£(0)=0, 9,£(0) =1, and *f(0) = 0 for k > 1.

Since Bgs = 0 on Cgr, only Cp and X are relevant. We follow the discussion in

Section 3 of [4] to show 5™ = 0. We have
¢ = 1a ¢* = e—sf(’r‘)7 F@@T‘ _6esf7

~, — & —
wr—§7 52_

DN |
)

_ _E
Wr = -2

Consequently, we may compute on Cp that:

2 (G &%) + 2B, Bom) = 5

2

E = —wpw, +w,lgor = .,
~2Laa{d, 6 = — %7,
(11—2LaaLbb - %LabLab + %Ramam) = (% - % + %)52’
F T O
This implies that
0 = B3(1,65,49,B,)

/2 {{(2Luw + €42, 63) + co{d2, 85 m }dz
= (—ca+ %C4 —cg)evol(X) .

This establishes Equation (1.e) by showing that

02_%04"’_06:0.
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4. AN EXAMPLE ON THE HALF-PLANE

We now consider an example on the half-plane, where the classical Zaremba
boundary value problem that we are considering has a simple spectral resolution.
The two-dimensional Laplacian is given in polar coordinates by

A L0 (0, 1o
~ror Uor r2 9p?’

We let ¢ = 0 define the Dirichlet component and ¢ = 7 define the Neumann
boundary component. The spectral resolution is then given by:

(4.a) Yak(p,r) = \/gsin (lk +1/2]) Jig1/2(Ar), k€ IN.

We can can use this spectral resolution to write down the Fourier decomposition of
the heat content where we assume a suitable decay of ¢ and ¢* at infinity to ensure
this is well defined:

B(6,6" D.B)(H) = Y / A Ay r (B)a(67)  where
k=00

oa(f) = /O dp /O dr (o, 7Y (007

We first perform the X integration using [10], Equation 6.633,

o ta? 1 _a24p2 af
[ s ae 000 = g0, (57).

This leads to the following representation of the heat content,
* 1 G T o T / o ) * / /
ﬁ(@bad) 7DaB)(t) = E § d(p drr ng dr r¢(<p,r)¢ (90,7")
=00 0 0 0

rr!

(4.b) sin (iolk + 1/2)) sin (¢'[k + 1/2]) e L) (g) _

We will choose suitable angular parts for the localizing functions ¢, ¢* to ensure that
the angular integrals can be obtained in closed form. As we will see, an arbitrary
r-dependence can be dealt with.

The basis for the forthcoming calculation is the integral representation of the
Bessel function Ij, /o where k is an integer (we refer to [10], Equation 8.431.5 for
details):

1

Ipya)2(2) = ;/o df e*<>*? cos ([k 4 1/2])

_Sin([k + 1/2]7‘-) /OO dr efzcosh‘rf(k+%)‘r
m 0

l/ df e*<>*? cos ([k 4 1/2])

™ Jo

1 oo ]
(4.C) __(_]_)k / dr efzcoshrf(kJr%)T.
& 0

Remark 4.1. If we had studied pure Dirichlet or pure Neumann boundary con-
ditions, then the relevant Bessel functions would be indexed by an integer rather
than by the half integer k£ 4+ 1/2. The second term in the representation given by
Equation (4.c) would be absent in such a case.

Substituting the identity

2 12 / 2 /
(4.d) exp{—r tr +ic050} :exp{_u_i_%(cosg_l)}

4t 2t 4t
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into (4.b) and using a saddle point argument, we can verify that the first term in
(4.c) is ‘responsible’ for producing the volume and boundary contributions. We will
show that the second term is ‘responsible’ for the contributions concentrated on X.
As we are interested in the contributions concentrated on X, which we will denote
by 3%, we only study the second term in (4.c).

We give another derivation of the identity ¢ = —1/2 to illustrate the general
idea behind the calculation. We assume ¢ and ¢* to have the product form

¢ =M(p)Ra(r), ¢ =Qa(p)Ra(r).

We first study a constant angular part Q;(¢) = 1, ¢ = 1,2, and perform the

angular integrations,
i 1 1
de si E+=|)=—72.
Ji ten(elra)) =

This yields the identity

1 o0 S 2202
P DB =~ [ dr [ @t R (e
0 0
0 , Oo —(k+1/2)7
7%Cosh7' o k:e
/0 dre Z( 1) YRR

k=0

Thus only 7 ~ 0 and 7" ~ 0 contribute to the asymptotic small ¢ expansion of the
heat content.

We substitute y = r/v/t, v’ = 7//+/t, and expand around r = 0, ' = 0. To
leading order this produces

F60 DB ~ L RORO) [ arY ()
) s & 7T2 o (k m 1/2)2

k=0

S S 2, .72 ’
/ dy/ dy/yy/e—y Jzy —% cosh-r.
0 0

The constant ¢y is determined by this triple integral and the sum over k. We
perform the y/-integral using [10], Equation 3.322.2; this involves a complementary
error function which, together with [10], Equation 6.286.1, yields

2 (60" -t (D"
F49,9% D B)E) w2 Fa(0)%2(0) = (k+1/2)?
(4.e) / dre—(k+1/2)7 {_ ' 42 n 47.002}17}-
0 sinh® 7 sinh® 7

The integration of the single terms in (4.e) is not possible as is seen from the 7 — 0
behaviour. In order to use [10], Equation 3.541.1,

> T 1 Je'
4.f KT sinh® = B|———= 1
(4.1) /0 dre™ "7 sinh®(57) 5a+15 (25 5 & + ) ,

with the beta-function B(z,y), we need to introduce a regularizing factor sinh” 7
in (4.e), integrate the single terms and perform the limit v — 0" at the end of the
calculation. We obtain

3%(¢, 6", D, B)(1)
. _%Rl(O)Rz(o)iﬁ [—2 (’” %) " (“ %>2¢/ (é [“ %m

k=0
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with the psi-function ¢ (z) = (d/dz)InT(x). The first term can be summed with
the aid of the Hurwitz zeta function,

- k+3/2 o«
k;(_l)km =5 +14C,

C being the Catalan constant. The summation over the derivatives of the 1-function
is performed using [10], Equation 8.363.8,

V'(2) = Cu (2 2).

We use this to write

P =0 = (1 +
= lim kZ:O(—l)k ; i [k1+ )7
= . ; =0 { (+k +11/4)2+” X +13/4)2+" }
= gé { (m+ 11/4>2+” (m+ 31/4)2*”}

oo

~ im Z m+1 B m+1
=0t A L(m A+ 142 (m+3/4)2

=l (G4 v 1/4) = G+ 033/4)) + SCn(251/4) = 70(253/4)

2

1 3 3 1
= —¢ (Z) + (Z) + ZCH (2;1/4) — ZCH (2;3/4) =7 +8C+ %
This allows us to conclude
G5(6,0° DB)0) ~ —5tRa(0)Rs(0),

which gives us another derivation of the result that ¢ = —1/2. Since we have chosen
a constant angular dependence, we do not have < ¢, ¢* >.,,, terms. Also, given the
localizing functions are assumed to be C*°(M; V), we need R;(r) = R;(—r), which
implies (0/0r)R;(r)|r=0 = 0; so we do not have < ¢, ¢* >.,,,_1 terms either and we
need not consider other terms in the asymptotic expansion for this example.

In order to obtain information about constants c; and cg, we need to study
nontrivial angular dependences. The constant cg is studied by looking at

N(p) =1, Qa(p) =sinp.

Assuming Ry(r) = rR5(0) + O(r?) as r — 0, we have that ¢, [,—o = R5(0).
As in the previous calculation, we start by observing that

"o s N snoe (caypr (1
/Od<p sm(cp{k—i—J)smgo—( 1) <2k—1 2k—|—3>'

This allows us to write the leading term of 3% as ¢t — 0 in the form

B(¢,¢*,D,B)(t)

2t3/2 , > 1 1
~ 3 Rl(O)RQ(O)Z{(Qk—l)(Qk‘—Fl) N (2]<;—|—1)(2k‘—|-3)}

k=0
o0 oo oo 2, ,/2 ’
Y= +y Yy N
/ d,re—(k-‘r%)'r/ dy/ dy/yy/2677/ e 2 COShT.
0 0 0
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To proceed as before with [10], Equations 3.322.2 and 6.286.1, we observe

o > 2 _ w24’y
I = / dy// dy yy/ e~ cosh T
0 0
= —— 2 i/wdy’y’e—# /Oodye—%—ygl cosh*r.
sinh 7 dr J, 0

The y-integral is evaluated using [10], Equation 3.322.2, the resulting y’-integral
with [10], Equation 6.286.1. This shows that

2 1
1= VT di Fy (1,§;2;tanh27'>7

B sinh 7 E cosh2 T 2 2

with the hypergeometric function 2 Fi(a, b; ¢; ). For the particular parameters in-
volved, the hypergeometric function is

) (1, §;2;x> _Adlog)
2 V1 —=x

which for z = tanh? 7 yields the identity

3 sh”
oy (1, X 2; tanh? ’7') = 2C?bh2 7—(—1 + cosh ).

sinh” 7
This shows that

I:—4ﬁ{2COShT 2 1 }_ V3

. - . - . - 9
sinh* 7 sinh*7  sinh® 7 cosh* (%)

and consequently we have that

B*(¢,¢*,D,B)(t)

22 R 1 1
~ 7 RO)R0) k;) { 2k —1)(2k+1) (2k+1)(2k+3) }

(4.8) X /OOO dr e~ (k+3) !

cosh? (%) '

We evaluate the integral using [10], Equation 3.541.8. With u = k + 1/2 and with
the standard notation [10]

2o () w ()] -5 2
This shows that

oo

/%Ch - ;M {1+2(> = D)[Br+1) = B}

We note that
1 1 1

2k—1)2k+1) (Zk+D2k+3) (u—Dup+1)

which allows us to write
B%(¢, 9", D, B)(t)
an o~ 2EROBO Y { e + 28 1 - a1}




ZAREMBA 11

Our final task is the evaluation of the sum over k. To this end, we note that

oo

1
———— =0, and
DBy VY
z:(ﬁ(lC +3/2) - B(k+1/2)) = —-5(1/2) = _g,
k=0

We may then conclude that
2
bY * D 0 o~ — 1032

This shows, as desired, that
2

In order to determine c5, we choose

Ceg —

Qi(p) =1 and Qa(p) =cosep.
We again suppose that Ro(r) = rR5(0) + O(r?). Then as r — 0,
Olm—1lr=0 = R5(0).

The relevant angular part integration is

I e ——
S11 — S = .
, ey 21 )Y T o 1 T %k 13

The y and 3’ integration, as well as the resulting 7-integration are the same as
before, and the equation corresponding to (4.h) for this example is

556,67, D B)1) ~ —— R1(0)R5(0)
, > 1 1
(4) YU (gt g e ) - s}

N EEY X (_1\k
Z( ) :—%(w—i—ﬁl), Z( D) :%(4—77), and

e 3 ikt 3
S (1)F(k + 1/2)(B(k +3/2) — Bk + 1/2)) = _g .
k+0

We add these relations to conclude that
1
» * D ~ / 3/2 )
This shows that
1
27

This establishes Equation (1.f) and thereby completes the proof of Theorem 1.2.

Cs =
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5. FUNCTION SPACES

The analysis in question is local so we shall suppose M is an open domain in R™
with compact closure and with smooth boundary OM . For the sake of simplicity, we
shall assume that the vector bundle in question is trivial; the analysis is similar in
the bundle valued case. We write the Robin boundary operator in local coordinates
in the form

Ru = Z a”(2)0;0,, + d(z),

where ¢ = (01,...,0u,) is the outward unit normal to M and d is a smooth
function on OM.

Let v be the distance to M and let 2’ denote a point on M. We introduce
coordinates (2, v) — a’+vo on a collared neighborhood of the boundary to express

(5.a) D(x,0,) = —a(z)0? + vb(x',v)0? + Ly (2, v,04:)0, + Lo(x',v,0,) .

In Equation (5.a), a is a smooth positive function on 0M, b is smooth in a neigh-
borhood of the boundary, and L; and Lo are differential operators in =’ of orders
1, 2, respectively, with smooth coefficients near 9M.

Near X, M is diffeomorphic to ¥ x B4 (g) for some £ > 0, where

Bi(e) ={y = (y1,92) : y2 >0, yf +y§ < 62}.

We may choose y2 to be the normal parameter v and use coordinates (z,y) near X.
With these normalizations,

Cp={(2,9) 192 = 0,491 20} and Cr ={(z,9) :y2 = 0,51 <0}.
We can express the operator D as:
D(x,0,) = —L(z,0y) + Aa(z,y,0,)
+ 2 ic12WiBi2(2,y,0y) + Ai(2,y,0:)0y,) .

In this formulation, A;; and B;s, Ao are differential operators with smooth coeffi-
cients of orders 1 and 2, respectively. Furthermore, L can be expressed as

(5.¢) L(z,0,) = Zi,j:1,2 AW (2)0y, 0y, ,

where A% are smooth real valued functions on ¥ such that the matrix {A¥} is
symmetric positive definite and

(5.d) L(2,€) < 35 |€)? forall z € X and ¢ € R™—2

(5.b)

with some positive s¢p. The boundary operator R can be represented in these
coordinates as

(56) R(xlv aﬂi) = RO(Zvay) + lel (Zvylvay) + Al(zvyvaz) 5

where B; and A; are differential operators with respect to y and z of orders 1 with
smooth coefficients, and

(5.) Ro(2,0y) =3, 15 A7%(2)0y, .
We blowup ¥ and introduce polar coordinates near ¥ by setting:

(z,0,0) = (2,y) = (2,pcos b, psinb).

Note that 8 = 0 defines Cp while § = 7 defines Cr.

Let C*°(Msy) be the class of smooth functions on C*°(M — X) which extend
smoothly to the blowup. In what follows we shall suppose that a function p, which
defined only locally, has been extended smoothly as a C°°(Msy) function which is
positive outside the original neighborhood.
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Definition 5.1. For x > 0, let £(x) be the set of functions U € C*°(]0, 00)) which
satisfy estimates of the form

U (7)| < Chpr exp(—k'7%) for k=0,1,2,... and &' €(0,k).
The optimal constants Cy, , define semi-norms
pk,ﬁ/(U) := inf C’k,ﬁ/

giving a Frechet space topology on £(k). We use this topology to define subspaces
of £(k) of smooth functions on Cp and on Cg:

E(Cp,k) =C®(Cp,E(k)) and E(Cr,k) =C®(Cr,E(K)).

Introduce the halfspace Ri = {y = (y1,92) : y2 > 0} with polar coordinates
(p, ) for p € [0,00) and 0 € [0, 7).

Definition 5.2. Let U be a smooth function on R3 — {0}. We say that U € A% if
(1) \3§8§U(y)\ < Cyjp"~* for p <1 and for all k, j.
(2) For large values of p, the function & admits an asymptotic expansion

o0

(5.2) Uly) ~y p™’ {WT@ + ZUJ*(yz)x(%)} :
+

Jj=0

where v; € C*°([0,7]), where x is a smooth cutoff function on Ry which
equals 1 for small 7 and 0 for large 7, and where Uji € E(») with “+7
corresponding to y; > 0 and “ — " corresponding to y; < 0.

The asymptotic expansion in Definition 5.2 is to be understood in the following
sense. For any N = 1,2,... and for any multi-indices o and ~ with |y| < |af, we
have a constant C, which is independent of # and of p, so that:

N-1

(5h) [yog | Ulp,0)— > p7 {Uj’& + ZUf(yz)x(%)} <CpN,p=1.
+

J=0

One verifies that the class given in Definition 5.2 is independent of the particular x
chosen.

Definition 5.3. Let A/(X) = C(3; A%) be the set of all functions U = U(z,y)
from C*° (X x (R% — {0})) belonging to A¥ for every z € 3. The coefficients v; and
U ji in the asymptotic expansion (5.g) and in the inequality (5.h) may depend on
z € 3. We assume that these coefficients belong to C*° (3, £(k)) and that (5.g) and
(5.h) can be differentiated with respect to z.
Definition 5.4. Let R, be the set of smooth functions on R, so that:

(1) |95V(p)] < Crpt=* for p <1,

(2) Vip) ~ S5 a7 as p — oo,

Remark 5.5. Condition (2) of Definition 5.4 means that we have estimates
N .
05 (V(p) =Y _ajp)| < Cnpp™ V1
3=0

for all N and k and for p > 1.

We put
Ru(E) :==C™(5, Ry).
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6. MODEL PROBLEMS

We shall first consider boundary value problems on a half-line and then subse-
quently consider boundary value problems on the half-plane. We begin with the
Dirichlet problem:

(6.2) (0 = 02120 (25) = 271 F (), U(0) =G,
where v > 0,¢ >0 and k= 0,1,... The function U = U(v) then satisfies
U (v) 4+ 20U (v) — 2kU (v) = —4F(v) for v >0, U(0) = G.
The homogeneous equation for U (with F = 0) has two solutions
Ye(v) = [7(s — vke=s*ds and ¢p(v) = e ke’ .
Therefore if F' = 0 the only solution to (6.a) decaying for large v is the function
U(v) = 209, (v)/T((k +1)/2).

Let G = 0. We impose suitable decay properties on F' to ensure the following
integrals converge and set:

Ak ) [} e o(s)F(s)ds + o1 (v) [2° e i (s)F(s)ds) & odd

U == 0o g2
VT B I e 0 () + 0ulv) [ () Pls)as)
((k+;/})k/2y(k_/2)' Jo e P (s)F(s)ds .k even .
Proposition 6.1. Let a € C™(Cp) be a positive function, let F € E(Cp, k), let
G € C®(Cp), and let k < mingec, a1 (2'). Then there exists U € £(Cp, k) so

(8t—a83)tk/2U(2”\/)—tk/2 'F(3%) and U(0)=G.

Proof. We make the change of variable 7 = at to reduce the problem of Proposition
6.1 to that given in Equation (6.a) with F' = F(2’) and G = G(2') for 2/ € Cp. One
can then use the formulae given above to see that U € £(Cp, k) as claimed. g

A similar argument can be given to deal with the Neumann problem:

Proposition 6.2. Let a € C°(Cr) be a positive function, let F € E(Cr, k), let
H € C*(CRr), and let k < mingcc, a~'(z'). Then there exists U € E(Cr, k) so

(O — adR)t*PU (2!, 52) = 271 F (2!, 52%)  and U'(0) = H .
Next we study a model problem in the half-space Ri:
(6.b) (0 — Ay)(tk/QU(ﬁ{)) = tk/2*1}"(2i\/z) for y € R2 and t > 0,
(6.c) U(y1,0) = G(p) for y1 >0 and pd,,U(y1,0) = H(p) for y1 <O,

where k is a nonnegative integer, where F € A#, and where G, H € R,,. Equation
(6.b) can be rewritten as

(6.d) (05 + 50 + mONU + (20, + —2k)U = —4F on RZ..
We adopt the notation of Definition 5.4. We omit details of the proof of the

following Theorem as it is analogous to the proof given for Proposition 2 [13].

Theorem 6.3. Let s € (0,1) and p € (—1/2,1/2). Let F € A¥=2 and G, H € R,,.
Then there exists a unique solution to Equations (6.c) and (6.d) belonging to A¥.

Next we consider the case when the operator and the right-hand sides in Equa-
tions (6.c) and (6.d) depend on a parameter. Let Ry be the operator of Equation
(5.1), let L(z,0,) be the operator of Equation (5.c), and let 3¢ be the constant of
Equation (5.d).
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Theorem 6.4. Let k € (0,50 and p € (—1/2,1/2). If F € AL=2(X) and if
G,H € R,(X), then there exists a unique element U € AE(X) such that
(0r — L(2,0,))(t*2U(z, 2\/)) = th/2=1 F (2, W) fory € R and t > 0,
U(Z,yl,()) = g(zvyl) fO’/‘ Y1 > 0}
p(Ro(z,0y)U))(z,y1,0) = H(z, —y1) fory1 <O0.
Proof. Let B = B;j = A=1/2 where A = AY. Set Y, = Zj:1,2 Byjy;. Then the
equations given in Theorem 6.4 become Equations (6.b) and (6.c) where the right-

hand side depends on the parameter z € 3. The desired result now follows from
Theorem 6.3. O

7. A THEOREM ON ASYMPTOTICS
We can now establish the result from which Theorem 1.1 will follow. Let

k= min »(z’)
€M

where »(z') is the best constant in the inequality
D ai (@6 < = @)EfP for EER™.

Theorem 7.1. Let & € C*°(Myx). Then the weak solution of Equation (1.c) has
the asymptotic representation:

u(e, t) ~ ;W{E(ﬁi) (wnte) + Pt/ 0P (+',57)
+on(v/p)UL (', QLﬂ)) + o (=, 2iﬂ)} .

In the above, &, ¢, and n are smooth cutoff functions on Ry which vanish when
the argument is greater than 0 and which are equal to 1 if the argument is less
than %(5 where § > 0 is suitably chosen. We set = = 1 — £. The functions uy
belong to C*°(Ms), UP € £(Cp, k), ULt € E(Cr, k) and Uy, € A*(X) with arbitrary
w € [0,1/2). Moreover the coefficient ULt equals zero.

The asymptotic expansion in this theorem is to be understood in the sense that
the difference

N
(e t) = u(x,w—;t’“/z{a( =) (s (@) + 0/ 0)UP (2 ,275)

(7.0) + /o (5 7)) + o (=57 }

satisfies the estimate
t(N+1)/27Oéof\a|/2 for t < p2

@) a0l <O i gl

Moreover, the same estimate (in a neighborhood of ¥) is valid for all the derivatives
of ry with respect to z where the constant involved may depend on the number of
derivatives.

7.1. The main term. We are looking for « in the form
ule,t) = 2 uo(@) + vl 1),
where ug = ® and v satisfies the equations:

(0t + D(x,0,))v=f in M x(0,7T),
(7.¢) v=yg on Cp x (0,7),
Rv=nh on Cr x (0,T),
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with initial condition

(7.d) v=0 on M for ¢t =0.
Here
(7.) fz,t) = =E(55) Duo(z) + [0 + D, £(55) uo (),
9= -E(z%)uola), and h= ~<m>w)< 2).
where here and elsewhere [-, -] denotes the commutator of two operators. Decompose

the function u near ¥ in an asymptotic series with respect to p:

E(ﬁ)fm( Zt_1+k/2~7:0k( 2\/—)

where fo1 € C*°(Msyx) and For(z,Y) belongs to A#(X) and is equal to zero for small
|Y|. The asymptotic expansion given above means that the remainder

(2\/)f°1 Zt_1+k/2f°’“< 2\/)

f(.i?,t) ~

QN('r’t) = f('r’t) -

satisfies the estimate
07005 0] g (x, t)] < |CtN =1 2meo=lal/z,

where g (x,t) = 0 for p < ev/t and for some small positive ¢.
Analogously, one can represent g and h as

9, 0) = =57 ) pan ) + <= (57 ool
where ggo € C*(X) and gg1 € C*°(Cp), and

h(z',t) ~ (2\/)%1( )l Ztk/zHOk( 2\/)

where ho; € C*°(Cr) and Hox(2,Y) are smooth functions from R,(X) which are
equal to 0 for Y] <e.
Now, the function Uy can be found by solving the problem

(00 + L(.0,)o(z 727) = 11 (E(520) () 2uon(.0) + Fooz: 727),
Up(z,91,0) = 5(2—\/5)900( z) for y1 >0,
p(ROZ/{O)(ZvylaO) = HOO( 72\[) for Y1 < 0.

By Theorem 6.4, this boundary value problem has a solution from A#(X). Similarly,
the function UL satisfies the relations

(0 — ad)Us’ (5%) = 0, Uz’ (0) = go1 ()
and, by Proposition 6.1, has a solution U € £(Cp, k). The remainder
w(z,t) = u(z,t) — Z(35) (uo(x) + n(v/p)pUs (2", 557)) — C(p)Uo(5%%)

satisfies the Equations

(Or 4+ D(z,0,))w=f in M x(0,T),
(7.1) w=g on Cp x (0,7T),
Rw=nh on Cr x (0,T),

and the initial condition

(7.2) w=0 on M for ¢t =0.
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One can verify that the right-hand sides in (7.f) admit the following asymptotic
expansions as t — 0:

flat) ~ fjt’“/“{a(%/)( o) + pulw /) (572

k=1

(7.h) + pn(V/p)sz’( 2\/)) ¢(p)F (%\/g)}
with fr € O%(Mx), FP € £(Op, »), [ € £(Or, ») and Fi € ALTH(D),

(7.4) Ztm( (557 ponta) + )G (= 5572) )

with gr, € C*(Cp), G € Ru+1(X), and

(7.) Zt(k 1)/2( (2\/) k(@ ’)+C(p)\/7¥7ik(2» QL\%))

with hy € C*(Cr), Hi € Ru41(X). The asymptotic expansion of Equation (7.h)
is to be understood in the following sense. Let

Zt’“” 1{ (zf)( w(a )+pn(V/P)F'?(x/’2Lﬂ)
+pn(v/p)FR (m ) 2—\/1_5)) + C(p) Fi (z, 2L\/1_5)}

then the remainder Ry = f — f(N) satisfies the estimate

o t(N=1)/2—a0~|al/2 fort < p2
(7Xk) |05°0%0) Ry (z,t)| < C{ t(N=1)/2=a0+(1=p)/2 pu=1=lal  for t > p2,

for all ap = 0,1,... and multi-indices & = (@1, -, ) and v = (71, ..., Ym—2) With
nonnegative integer components. The derivatives with respect to z are defined
and should be taken into account only in a neighborhood of ¥, outside of this
neighborhood + is zero.

If we denote by g™¥)(2/,t) and hN) (', t) the partial sums in (7.i) and (7.j) from
1 to N and introduce the remainder terms Ryny = g — g(N) and Ry = h — h()
then the asymptotic representations (7.i) and (7.j) mean that

o t(N+1)/2—ao—|al/2 for t < 02
(1) 1900 01 Ryn (,1)] < C{ (N/2moomi2prilelfor ¢ > p?,

and

, N/2—ap—|al/2 < 2

Ta) OO R (801 < O e ars it ot
for all g =0, 1,... and multi-indices &' = (a1, - ,m—1) and v = (Y1, -+, Ym—2)-
Roughly speaking the estimates for the remainder terms are the same as the estimate
for the next terms in the asymptotic expansions (7.h)—(7.j).

The form of the right-hand sides (7.h)—(7.j) are more general than we need but it
is convenient to consider this more general form in order to unify the construction
of other terms in the asymptotic expansion for u.

7.2. Higher order terms. We first describe the construction of the terms uy, UL,
UlR and L{1 .
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The term ui. We take uy = 2f;. Then

o5 o (1= ) ()

R )
+t1/25(2%i)p(x, By )u1(z).

Decomposing the function u; near ¥ in asymptotic series with respect to p we obtain
that the right-hand side is asymptotically equal to

t1/2”(2\/—)f11 +Ztk/2 ¢ )flk( 2\/—)

with fi11 € C®°(Mx) and Fi € A%(X). Moreover Fii(z,Y) = 0 for [Y] < ¢ for
some positive €. So, we have compensated the term containing f; in the right-hand
side of (7.h) and the discrepancy, which came, can be included in the remaining
terms in the right-hand side in (7.h). We shall denote the new right-hand sides by
the same letters.

The term Uy. We find this function from the equation

(0 — L(z,0,)) (t1/2u1 (z 2L\/E)) — - V2E (z QLﬁ)

supplied with boundary conditions
U](Z,yl,O) = g1(2,y1) for Y1 > 0
and

pZ:A]2 )(0y,U1)(2,91,0) = Hi(z, —y1) for y1 <O0.

The discrepancy in the equation brought by this term is equal to

(8, + D) (tl/Qg(p)uk (z QLﬂ)) — V2 (p) (z %)

=D + LW (25 ) + 1210, o (2.5 7)

Using (5.b) and the asymptotic expansion at infinity for functions from the class A
one can show that the right-hand side of the equation above has asymptotics

f: t’“/2*1{5(2\p/£) (fur@) +n(w/r) R, 2%,;)

ol FL (e 572) ) + o P (=5 72) |

where f1p € C®°(My), FE € £(Cp, k), F} € E(Cr, k) and For, € AL7L(D).
The discrepancy in the Dirichlet boundary condition is zero and in the Robin
boundary condition is

(t“chl) —C(p)p~ Mo
_Ztk 072 (= (2 Yhuste') + o) St (=522 ).

where hy, € C® (CR), Hik € Rut1(X). So, one can see that Ui compensates
the terms Fi, G; and H; in the right-hand sides of (7.h)—(7.j). The discrepancies
brought by U; have lower order and can be included in terms in the asymptotic
expansions (7.h)—(7.j) with k > 2.
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The terms UP and Uf*. We define the function U, 2’ € Cp, as a solution of
the boundary value problem

(0 — a(a"OR) (UL (2!, v)) =t PFPP (2 v),
U (,0) = gi(a)
with 2’ considered as a parameter. We have

(at+D(9678m))(t”2 ( )PUl( 2;5))
()
:tl/Q”(pr) (”)( (2,0,) + (ml)as)pUlD(x/’QL\/E)

oo (L 7).

By Equation (5.a), the right-hand side in this equation asymptotically equals

th/z ()i (= Q\f)ﬂ’z w2 1~(2\[) (”/")Fg(m/’%\/i)

with flj € Aﬁil( ) and Flj S 5(01),#&).

The term U{ is then constructed analogously. Thus, we have constructed the
approximation of the solution which contains all terms in the asymptotic expansion
of Theorem 7.1 with & = 1 and which compensates all terms in the asymptotic
representations (7.h)—(7.j) of the right-hand sides of (7.f) with ¥ = 1. Continuing
this procedure we can compensate terms with k = 2,3,.... Therefore, if we put

e = S0 ) (i (et .55
(o 50) (=510}

and ry = u — uy. The function ry then satisfies the equations:
(Bt + D(x,az))’l“N =fy in M x (O,T)
TN = gN on Cp x (0,7,
RUN = hN on CR X (O,T),
with the initial condition ry =0 on M for t = 0. The right-hand sides in these re-

lations admit the asymptotic expansions (7.h)—(7.j), respectively, where summation
is started from k= N + 1.

8. ESTIMATE OF THE REMAINDER TERM IN THE ASYMPTOTICS

In this section, we complete the proof of Theorem 7.1 by establishing the remain-
der estimate given in Equation 7.b. The proof rests on a result (Theorem 8.1 below)
obtained by Johansson [12]. First we introduce some additional notation. Let T" be
a positive number and Qr = M x (0,T), TR = Cp x (0,T) and TF = Cr x (0,T).
We introduce also weighted Sobolev spaces. Let £ = 0,1,..., 8 € R. The space
W;Z’Z(QT) consists of functions on Q7 with the finite norm

o o Ho 1/2
ul 2 o) = (/ P20 3 p2'“‘|8t°amu|2dxdt)
’ Qr &l <2¢

where we set @ := (ap, @) and |a| := 2ap + |a|. For s = 1/4,3/4, ..., introduce the
trace spaces W;S’S(FD) with the norm

|\u|\wga (TR fo [|u(:, Vga(cb dt+ [, p*|u, )] 3{5(07T)d1')1/2.
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Here H*® stands for the standard Sobolev space on the interval (0,7). If k is a
positive integer, then V; -1/ (Cp) is the space of traces on Cp of functions from
the space Vﬂk(M) with the norm

HvHv;(M) = (Jar 2ol <k p?O=FHlel |52 (x) 2 de) /2 .
The norm in V;fl/z (Cp) is defined by
HwHV[ffl/Z(CD) = inf{ Hvva(M) S V;(M)a”’cp =w}.

Analogously, one can define the space WgS’S(FJQ ).
The closure of functions from the space WEM(QT) equal to 0 for small ¢ will be de-
noted by ngdl(QT). Analogously one defines the spaces ngo’s(I‘qQ) and ngjs (TH.
If [&] < 2¢ —n/2 — 1 then functions u € W;Z’Z(QT) have continuous derivatives
of order @ in Q7 and

8200 u(x, t)| < Cp*I=lal=n/2-1-5 llullyzee gy -
e

This estimate can be obtained from the analogous estimate for functions from non-
weighted spaces (see [6], Chapter 3) and homogeneity arguments. If u € ngdz(QT)
and |@| + 2m < 2¢ —n/2 — 1 with a nonnegative m then, clearly,

(8) 050 0 u(w )] < OF™ P12

The proof of the following result is contained in [12].

Theorem 8.1. Let £ > 1 be an integer and let B satisfy 1/2 < -3+ 2¢ < 3/2. If
FeWS N Qr), g e Wiy VATVHTR) and hoe WA TR then there

exists a unique solution u € WE%E(QT) to problem (7.f). This solution satisfies the
estimate

HUHW?""‘(QT) < C(Hf”wge—z,e—l(QT)+|‘g‘|W§e—1/2,e—1/4(F¥)
(8.b) +Hh|\W;f—3/“—3/4(rfT?))'

Now we are in a position to prove the remainder estimate (7.b). According to the
construction of the terms in the asymptotic expansion given in Theorem 7.1 (see
the end of Sect. 7.2) the remainder (7.a) satisfies the boundary value problem (7.f),
(7.g), where the right-hand sides admit the asymptotic representations (7.h)—(7.j)
with summation starting with & = N 4 1. Therefore these right-hand sides are
estimated by the right-hand sides in (7.k)—(7.m). This implies that the derivative
of order k with respect to ¢ and all derivatives with respect to z (in a neighborhood
of ¥) belong to

20— 20—1/2,0—1/4 20—3/2,0—3/4
Wi N Qr), WETYATVATR) and WA ATE),

for £ < (N —2k —1)/2 and 2¢ — 8 < 2 + u, respectively. We suppose here that p
is an arbitrary number from the interval (0,1/2). Now applying Theorem 8.1 we
obtain that dFrx together with all derivatives with respect to z (in a neighborhood
of ¥) belongs to ngée(QT) for1/2< —f+20 <14+ pand?l < (N—-2k-1)/2.
This implies that in a +neighborhood of ¥ the integral

[ PP 50 cop P00 O O ulPdy

is bounded uniformly with respect to ¢ and z. By the usual imbedding theorem we
obtain

‘agatk—la;yqd < C«pQZ—\a|—1—ﬂ
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for |a| < 2¢—1. Choosing o = 2 — 1 — (3 close to 1/2 and then taking u € (0,1/2)
we can rewrite the above estimate as

(8.c) 02 0F 07 u| < Ctmpo el

which is valid for |a| 4+ 2k + 2m < N — 2 and for arbitrary multi-index ~.
In order to obtain a remainder estimate outside a neighborhood of ¥ one can use
(8.a) which gives

(8.d) |07 05 rN (z,t)] < Ct™

for [@ +2m < 2¢ —n/2 — 1 and for p > & where ¢ is a small positive number.
Estimates (8.c) and (8.d) imply

(8.0) 09002 (2, )] < CEmprl =l

for @] +2m < N —n/2 — 2 and for arbitrary o € (0,1/2).
In order to obtain estimate (7.b) for ry we proceed as follows. We choose an
integer M > N and represent the remainder term ry as

M
e 35 () )+ o (4,55

(8.6) +on(v/p)UL (<, %ﬁ)) + o (2, 2%) 3

One can check that all the terms in the summation satisfy estimate (7.b). By
choosing M sufficiently large, we obtain estimate (7.b) for rj; from (8.e). The
proof of Theorem 7.1 is complete. ad

Let Xp and X denote the boundaries of Cp and Cg, respectively. Clearly,
functions from C*°(Msy) may take different values on ¥ p and Y g. The existence of
the asymptotic series given in Theorem 1.1 is a special case of the following more
general result:

Theorem 8.2. Let u be the solution to problem (1.c) and let o € C*°(Ms). Then
the following asymptotic expansion for u is valid:

(8.2) / o(x)u(z,t)dx ~ Ztk / o(z)ug(x)dx + Z tk/2 (tak + Y2y, + tg/Qck),
M im0 M

k=0

where

ak:// vi(z,0)dzdo bk:/ w,?(x’)dx’—l—/ wit (z")da’
YJ-7r Cp Cr

ck:/ th(z)dz—i—/ hE(2)dz .
ED z:R

Here uy, vg, w2, wl, hP and b are smooth functions whose values at a given
point depend only on values of ¢ and its derivatives at this point.

and

Proof. We have

(8.h) /M U(x)E<2\p/g)uk(m)dm = /M o(x)ug(x)dx — /M 5(%)0(35)1%(33)6&: .

From o, u, € C*°(Myx) it follows that

N

o(w)uk(z) =Y uk;(z,0)p" + O(p" )
§=0
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for each N, which implies that

/ (2\f) o@)ur(z dm_tzcj/lﬂngzﬂdzd0t3/2

where c; are constants independent of the initial data . Therefore, the integrals
in (8.h) give the first sum in the right-hand side of (8.g) in Theorem 8.2 and terms
of the form tas in (8.g).

Next, consider the integral

(8.1) /M U(x)E(QLQE)pn(%)U,?(x’,QL\/E)dm.

Let us introduce a cutoff function ¢(y1) which is equal to 1 for |y1| < e/2 and 0 for
ly1| > &, where € is a small positive number. Then we represent (8.i) for small ¢ as

[ (= qwon(2)otavp (. 52 ) da
// / C(y1)po(z, y) UL (z i, \/_)dydz
// / Clyi)p —) Doz, y)UP (2, y1,2\/_)dydz
(8.) // / 2\[ on( ) (2, 9)UP (2, y1,2\/_)dydz

where p is equal to \/y? + y5 in coordinates y = (y1,y2). One can check directly
that the first two integrals in (8.j) have asymptotics

>t /2/ qrj (2)da’
Cp

Jj=0

and the third integral has an expansion of the form

Z $1+i/2 /2 h,(clj) (2)dz
Jj=0 b

Making change of variables 3, = 2v/tY] and y» = 2v/tY> we can rewrite the last
integral in (8.j) as

12 [ [ [ elpmva oot ViV IUP (2. 2VE Vi, Vo) aYidads
> JO 0

Since UP € £(Cp, k), the last integral has the asymptotics
Z $(3+9)/2 h,(é) (2)dz,
=0 o

where h,(fj) are integrals with respect to Y5 of linear combinations of functions
95, UP (2,Y1,Y2)|y,—o multiplied by explicit weights. The term

| o@=(55)ontw/ot (o', 52 ) o

is considered analogously.
It remains to obtain an asymptotic expansion of the term

(8) L/ N / " o (@)U (552 )t

Using the asymptotic expansion for the function U}, for large second argument:

— i vki(z,0
Up(2,Y) ~ 000 [V [{ED £ 30 U (2, Y2)x(32)}
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we obtain integrals similar to the ones just considered. Moreover, one can show that
the coeflicient vgg is equal to zero because of vanishing of the analogous coefficient in
the asymptotics of the right-hand side in the equation for the function Uy. Reasoning
as above we arrive at the required asymptotic representation for these integrals.
This completes the proof of Theorem 8.2 and thereby of Theorem 1.1. O

ACKNOWLEDGMENTS

The research of P. Gilkey was partially supported by the Max Planck Institute
for Mathematics in the Sciences (Leipzig, Germany) and the Institut Mittag-Leffler
(Stockholm, Sweden). The research of K. Kirsten was partially supported by the
Max Planck Institute for Mathematics in the Sciences (Leipzig, Germany) and by
the Baylor University Summer Sabbatical Program. The research of M. van den
Berg was supported by the London Mathematical Society under Scheme 4 refer-
ences 4817 and 4407, and by the Institut Mittag-Leffler (Stockholm, Sweden). The
research of V. Kozlov was supported by the Swedish Research Council.

REFERENCES

[1] 1. G. Avramidi, Heat kernel asymptotics of Zaremba boundary value problem, Mathematical
Physics, Analysis and Geometry 7 (2004), 9-46.

[2] M. van den Berg, S. Desjardins, and P. Gilkey, Functoriality and heat content asymptotics

for operators of Laplace type, Topological Methods in Nonlinear Analysis 2 (1993), 147—

162.

M. van den Berg and J.-F. Le Gall, Mean curvature and the heat equation, Math. Zeit.

215 (1994), 437-464.

M. van den Berg and P. Gilkey, Heat content asymptotics of a Riemannian manifold with

boundary, J. Funct. Anal. 120 (1994), 48-71.

M. van den Berg and S. Srisatkunarajah, Heat flow and Brownian motion for a region in

R? with a polygonal boundary, Probab. Th. Rel. Fields 86 (1990), 41-52.

[6] O.V.Besov, V. P.II'in, and S. M. Nikol’skii, Integral representations of functions and
imbedding theorems. Vol. I. Translated from the Russian. Scripta Series in Mathematics.
Edited by Mitchell H. Taibleson. V. H. Winston and Sons, Washington, D.C.; Halsted Press
[John Wiley and Sons], New York-Toronto, Ont.-London, 1978.

[7] J. S. Dowker, The N U D problem, hep-th/0007129.

(8] J. S. Dowker, The hybrid spectral problem and Robin boundary conditions,
math.sp/0409442.

[9] J. S. Dowker, P. Gilkey, and K. Kirsten, On properties of the asymptotic expansion of the
heat trace for the N/D problem, Int. J. Math 12 (2001), 505-517.

[10] I.S. Gradshteyn and I.M. Ryzhik, Table of Integrals, Series and Products, Academic
Press, New York, 1965.

[11] D. Jakobson, M. Levitin, N. Nadirashvili, and I. Polterovich, Spectral problems with mized
Dirichlet-Neumann boundary conditions: isospectrality and beyond, math.SP/0409154.

[12] T. Johansson, Solvability of a boundary value problem for the heat equation in weighted
Sobolev spaces, to appear.

[13] V. A. Kozlov, Asymptotics as t — 0 of solutions of the heat equation in a domain with a
conical point, (Russian). Matem. Sbornik. 136 (1988), 384-395; Math. USSR Sbornik 64
(1989), 383-395.

[14] V. Kozlov and V.Maz’ya, On singularities of solutions to the first boundary value problem
for the heat equation in domains with conic points 1. (Russian). Izv. VUZov. Matem. 2
(1987), 38-47; translation in J. Sov. Math. 31 (1987), 61-74.

[15] V. Kozlov and V. Maz’ya, On singularities of solutions to the first boundary value problem
for the heat equation in domains with conic points 2. (Russian). Izv. VUZov. Matem. 3
(1987), 37-44; translation in J. Sov. Math. 31 (1987), 49-57.

[16] H. P. McKean and I. M. Singer, Curvature and the eigenvalues of the Laplacian, J. Differ-
ential Geometry 1 (1967), 43-69.

[17] R. Seeley, Trace expansions for the Zaremba problem, Comm. Partial Differential Equa-
tions 27 (2002), 2403-2421.

[18] R. Seeley, Trace expansions for the Zaremba problem, Comm. Partial Differential Equa-
tions 28 (2003), 601-616.

[19] H. Weyl, The Classical Groups, Princeton Univ. Press, Princeton, 1946.

3

4

[5



24

M. VAN DEN BERG, P. GILKEY, K. KIRSTEN, AND V. A. KOZLOV

MvVDB: DEPARTMENT OF MATHEMATICS, UNIVERSITY OF BRISTOL, UNIVERSITY WALK, BRISTOL,
BS8 1TW, U.K.
E-mail address: M.vandenBerg@bris.ac.uk

PG: MATHEMATICS DEPARTMENT, UNIVERSITY OF OREGON, EUGENE, OR 97403, USA
E-mail address: gilkey@darkwing.uoregon.edu

KK: DEPARTMENT OF MATHEMATICS, BAYLOR UNIVERSITY, WACO, TX 76798, USA
E-mail address: Klaus_Kirsten@baylor.edu

VK: MATHEMATICS DEPARTMENT, LINKOPING UNIVERSITY, SE-581 83 LINKOPING, SWEDEN
E-mail address: vlkoz@mai.liu.se



