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Abstract

We study the asymptotic behaviour of (exact or approximate) min-
imizers of 3D nonlinear elasticity for plates of thickness h in the limit
h → 0. We prove that 3D minimizers converge, after suitable rescal-
ing, to minimizers of a hierarchy of plate models. What distinguishes
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the different limit models is the scaling of the elastic energy per unit
volume ∼ hβ . This is in turn governed by the strength of the applied
force ∼ hα. Membrane theory, derived earlier by Le Dret and Raoult,
corresponds to α = β = 0, nonlinear bending theory to α = β = 2,
Föppl von Kármán theory to α = 3, β = 4 and linearized vK theory
to α > 3. Intermediate values of α lead to certain novel theories with
constraints. A key ingredient in the proof is a generalization to higher
derivatives of our rigidity result [31] that for maps v : (0, 1)3 → R

3,
the L2 distance of ∇v from a single rotation is bounded by a multiple
of the L2 distance from the set SO(3) of all rotations.
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1 Introduction

A fundamental problem in nonlinear elasticity is to understand the relation
between the three-dimensional theory and theories for lower-dimensional
objects (plates, shells, rods, ...). There are many such theories (see e.g.
[52, 3, 18]) and their derivation and validity has been a subject of many
discussions. In particular the von Kármán plate equations, first formulated
almost a hundred years ago [45], have been a subject of heated controversy
in the continuum mechanics and applied mathematics communities. On
the one hand these equations have been very widely used by engineers and
nonlinear analysts alike; on the other hand their derivation has faced harsh
criticism. Truesdell [76] writes about von Kármán’s theory: “Analysts seem
to love it, and it makes no sense to critical students of mechanics”. His
main criticisms (which he attributes to S.S. Antman) are: approximate ge-
ometry, assumptions one the way the stresses vary over the cross-section,
commitment to some specific linear constitutive relation, neglect of some
components of the strain and an apparent confusion of the referential and
the spatial descriptions. These five criticisms are also quoted in [17] and
we discuss them in more detail in Section 9. Villaggio [78] refers to the
von Kármán theory as a typical example of a “bad theory” in the introduc-
tion of his text book on structural analysis and Ciarlet writes in his three
volume treatise on nonlinear elasticity, plate and shell theories: “The two-
dimensional von Kármán equations for nonlinearly elastic plates, originally
proposed by T. von Kármán in 1910, play an almost mythical role in applied
mathematics” [18, p. 367].

In this paper we show that the vK equations arise as a rigorous vari-
ational limit (or Γ-limit) of the equations of nonlinear three dimensional
elasticity in the limit of vanishing thickness. In fact we derive a hierarchy
of limiting theories which include the vK theory (see Table 1 in Section 2.6
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for an overview and see Theorems 2 and 4 for precise statements). The
different limiting theories are distinguished by different scaling exponents of
the energy as a function of the thickness. The scaling of the energy in turn
is controlled by the scaling of the applied forces.

Our approach begins with the elastic energy

Eh(v) =
∫
Ωh

W (∇w(z))dz (1)

of a deformation

w : Ωh = S × (−h
2
,
h

2
) → R

3.

It is natural to consider the energy per unit volume Eh/h, see (2) below.
Heuristically one expects that deformations with Eh/h ∼ 1 correspond

to a stretching of the midplane S leading to a membrane theory, while
Eh/h ∼ h2 corresponds to a bending deformation (where S remains un-
stretched) leading to nonlinear plate theory (first proposed by Kirchhoff
[44]). If Eh/h ∼ h4 one expects that the relevant rotations vary only by or-
der h and that one can linearize around a rigid motion. Scaling the in-plane
and the out-of-plane deviation differently, one is formally lead to the von
Kármán theory of plates.

Membrane theory was rigorously justified in [47, 48, 49] in the sense of Γ-
convergence [24, 22] (for related work see also [1, 4] and for connections with
the classical tension field theory in mechanics [80, 70, 71] see [65, 66]). The
bending theory of plates and shells was recently obtained as a Γ-limit [30,
31, 33], see also [62, 63]. It is more delicate since the limit problem involves
higher derivatives and hence the limit h → 0 corresponds to a singular
perturbation. (The earlier work [13] also uses Γ-convergence, but the authors
need to impose additional constraints on the admissible three dimensional
deformations to get enough compactness to complete the argument).

In this paper we study limiting theories corresponding to the scaling
Eh/h ∼ hβ, β > 2, and we rigorously derive a hierarchy of theories by Γ-
convergence. For β = 4 we obtain the vK theory, for β > 4 we obtain the
usual linear theory (leading to the biharmonic equation for the out-of-plane
component for isotropic energies) and for 2 < β < 4 we obtain a theory
with constraints. From the point of view of vK theory the constraint is that
the vK stretching energy has to vanish, from the point of view of nonlinear
bending theory the constraint can be seen as a geometrically linear version of
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the isometry constraint. The famous expression (1/2)[∇′u+(∇′u)T +∇′v⊗
∇′v] for the membrane strain with its dependence on the in-plane and out-
of-plane displacement, which leads to the nonlinearity in the vK equations,
was used earlier in Föppl’s work [27]. Consequently, in the physics literature
one also finds frequently the term Föppl-von-Kármán theory. In contrast to
von Kármán, however, Föppl considers only a membrane contribution to the
energy and no bending contribution. In Section 2.5 we briefly discuss how (a
relaxed version of) Föppl’s theory arises if one assumes clamped boundary
conditions. The different scalings and the corresponding limiting theories
are summarized in Tables 1 and 2 in Section 2.6 below.

Various hierarchies of theories have been previously suggested in the lit-
erature based on formal asymptotic expansions or extra assumptions on the
kinematics of the three-dimensional deformations; for recent contributions
see, e.g., [29, 53]. However, the constrained theory we obtain for 2 < β < 4
and which involves non-integer scaling exponents seems to be new among
theories derived either rigorously or formally. One typical problem with for-
mal expansions is that they can miss important effects if the class of ansatz
functions is not rich enough. One example is the membrane theory con-
sidered in [29], which misses the fact the membranes have no resistance to
compression (due to lack of bending energy they show “crumpling”). We do
not discuss here the huge literature on the derivation of lower dimensional
theories starting from geometrically linear three dimensional elasticity; rig-
orous convergence results go at least back to [54], see [18] for an extensive
discussion of the literature.

That suitable bounds on the scaled displacements imply rigorous Γ-
convergence of the energy to the vK functional has been shown by A. Raoult
[69]. For a different rigorous approach to the von Kármán equations based
on a clever use of the implicit function theorem see [56]. A justification of
the von Kármán equations through formal asymptotics was given by Ciarlet
[17]. Some of the results proved here have been announced in [32].

2 Main results

2.1 Setup

To state our results it is convenient to work in a fixed domain Ω = S ×
(−1

2 ,
1
2), change variables x = (z1, z2, z3

h ) and rescale deformations according
to y(x) = w(z(x)) so that y : Ω → R

3. We abbreviate x′ = (x1, x2) and use
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the notation ∇′y = y,1 ⊗ e1 + y,2 ⊗ e2 for the in-plane gradient so that

∇w = (∇′y,
1
h
y,3) =: ∇hy

and

1
h
E(w) = Ih(y) :=

∫
Ω

W (∇hy) dx. (2)

We assume that the stored energy W is Borel measurable with values in
[0,∞] and satisfies

W (QF ) = W (F ) ∀Q ∈ SO(3), (3)
W = 0 on SO(3), (4)

W (F ) ≥ cdist2(F, SO(3)), c > 0, (5)
W is C2 in a neighborhood of SO(3). (6)

Since in many cases the relevant deformation gradients will be close to
SO(3) we also consider the quadratic form

Q3(F ) =
∂2W

∂F 2
(Id)(F,F ), (7)

which is twice the linearized energy, and Q2 : R
2×2 → R,

Q2(G) = min
a∈R3

Q3(G+ a⊗ e3 + e3 ⊗ a) (8)

obtained by minimizing over stretches in the x3 directions. In view of (4)
and (5) both forms are positive semidefinite and hence convex. For the
special case of isotropic elasticity we have

Q3(F ) = 2µ|F + F T

2
|2 + λ(trF )2,

Q2(G) = 2µ|G+GT

2
|2 +

2µλ
2µ+ λ

(trG)2. (9)

In view of (4)-(6) Q2 and Q3 are positive-definite on symmetric matrices.
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2.2 From membrane theory to nonlinear bending theory: 0 ≤
α ≤ 2

Here we quickly review the known (and some recent) results for forces with
scaling exponent α between 0 and 2. In the case α = 0, which leads to
membrane theory, we need some additional assumptions and notation. We
assume that the three-dimensional energy density W satisfies

W (F ) ≤ C(1 + |F |p), W (F ) ≥ c|F |p − C, for some p ≥ 2, c > 0. (10)

Weaker growth hypotheses, which are compatible with the conditionW (F ) →
∞ as detF → 0, are also possible, see [7]. For the corresponding membrane
theory we consider the two-dimensional energy densityW2D : R

3×2 → [0,∞],
defined by minimizing out over stretches in the x3 direction,

W2D(F ′) := min
a∈R3

W (F ′ + a⊗ e3) (11)

and its quasiconvexification

Wmembrane(F ′) := W qc
2D(F ′)

:= inf{
∫

S
W2D(F ′ + ∇′η) : η ∈ C1

0 (S,R3)}. (12)

In this way the membrane energy Wmembrane takes into account the energy
reducing effect of possible fine-scale oscillations. These do indeed arise in
compression and Wmembrane(F ′) vanishes whenever (F ′)TF ′ ≤ Id. This
effect is missed by theories based on formal asymptotic expansion.

The results about limiting theories can be stated in terms of convergence
of minimizers or using the closely related notion of Γ-convergence. For the
former we consider the functionals

Jh(y) =
∫
Ω

W (∇hy) − f (h)(x′) · y dx, (13)

where the applied forces f (h) : S → R
3 satisfy

1
hα
f (h) ⇀ f in L2(S; R3). (14)

Here and in the following the half-arrow ⇀ denotes weak convergence. We
assume that the total force and the total moment applied to the reference
configuration is zero, i.e.∫

Ω
f (h) dx = 0,

∫
Ω
x ∧ f (h) dx = 0. (15)
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Here, the former avoids the absence of a lower bound arising from the trivial
invariance y → y+const.. The latter can always be satisfied by rotating the
forces f (h) → Q(h)f (h), Q(h) ∈ SO(3), this being without loss of generality
because of the rotational invariance of W in (13). Since f (h) is independent
of x3 the conditions (15) are equivalent to∫

S
f (h) dx′ = 0,

∫
S
x′f (h)

3 dx′ = 0,
∫

S
x1f

(h)
2 − x2f

(h)
1 dx′ = 0. (16)

For α > 2 we also assume that the limiting force points in a single direction
which we may choose to be the x3 direction

f1 = f2 = 0. (17)

If one imposes suitable boundary conditions which prevent a rigid motion
of the plate one can also consider a combination of normal and tangential
forces with different scalings. This will be discussed in detail in [35].

To cover cases where there may be nonattainment of the 3D energy, it
is convenient to study not only convergence of exact minimizers but also
of almost minimizers of Jh. Since the energy Jh will typically scale like a
power of h we say that a sequence of deformations y(h) is a β-minimizing
sequence if

lim sup
h→0

1
hβ

(Jh(y(h)) − inf Jh) = 0. (18)

Theorem 1 (Membrane to nonlinear bending theory) Suppose that the
stored energy W satisfies (3)–(6) and the forces satisfy (14) and (16). The
following assertions hold.

i) (membrane theory [47, 48, 49]) Suppose in addition (10). Suppose
that α = 0 and set β = 0. Then | inf Jh| ≤ C. If y(h) is a β-minimizing
sequence then y(h) ⇀ ȳ in W 1,2(Ω; R3) (for a subsequence). The limit
ȳ is independent of x3 and minimizes

J0
0 (y) =

∫
S
Wmembrane(∇′y) − f · y dx′ (19)

among all y : S → R3.

ii) (constrained membrane theory [19]) Suppose that 0 < α < 1 and
set β = α. Then | inf Jh| ≤ Chβ and every β-minimizing sequence
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y(h) has a subsequence with y(h) ⇀ ȳ in W 1,2(Ω; R3). The limit ȳ is
independent of x3, satisfies (∇′ȳ)T∇′ȳ ≤ Id and minimizes

J0
α(y) =

∫
S
−f · y dx′ (20)

among all y : S → R3 with (∇′y)T∇′y ≤ Id.

iii) (nonlinear bending theory [30, 31]) Suppose that α = 2 and set
β = 2. Then | inf Jh| ≤ Ch2 and if y(h) is a β-minimizing sequence we
have strong convergence y(h) → ȳ in W 1,2(Ω; R3) (for a subsequence).
The limit map is independent of x3, is an isometric immersion, i.e.
(∇′ȳ)T∇′ȳ = Id, and belongs to W 2,2(Ω; R3). Introducing the normal
ν̄ = ȳ,1 ∧ ȳ,2 one can consider the second fundamental form Āij =
−ȳ,ij · ν̄, where i, j ∈ {1, 2}. Then ȳ minimizes

J0
2 (y) =

∫
S

1
24
Q2(A) − f · y dx′ (21)

among all isometries y : S → R
3 which belong to W 2,2(S; R3). The

nonlinear strain satisfies

h−1[(∇hy
(h))T∇hy

(h) − Id] → x3(Ā(x′) + sym amin ⊗ e3),

where 2 symG = GT +G and where amin is the vector which appears
in the definition (8) of Q2, i.e. Q2(Ā) = Q3(Ā+ amin ⊗ e3).

In all cases we have convergence of energy, i.e.

lim
h→0

h−βJh(y(h)) = lim
h→0

h−β inf Jh = J0
α(ȳ) = min J0

α. (22)

Convergence of minimizers for the nonlinear bending theory was ob-
tained independently by Pantz [62, 63] under the stronger assumption that
(∇hy

(h))T∇hy
(h) is uniformly close to the identity.

The range 1 ≤ α < 2 is largely unexplored. In the context of delamina-
tion and blistering of thin films [37] one is lead to the study of compressive
Dirichlet boundary conditions such as y(h)(x′, x3) = (λx′, hx3) on ∂S × I,
with 0 ≤ λ < 1 and one can show that ch ≤ inf Ih(y(h)) ≤ Ch, with c > 0,
see [9] (as well as [40, 8] for related work), and [19] for the extension to
anisotropic compression. The Γ-limit of h−1Ih is not known.

If instead of Dirichlet boundary conditions we only assume that y(h) ⇀
(λx′, 0) in W 1,2 then much less is known. S. Venkataramani has constructed
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maps with periodic boundary conditions whose energy scales like h5/3. His
construction shows that for λ = 0 one can achieve an energy bound Ch5/3.
Conti and Maggi [20] have generalized this construction to a much large
class of limit maps. They have also shown that every short map (i.e. every
map satisfying (∇′y)T∇′y ≤ Id) can be approximated in L∞ (and weakly
in W 1,2) by maps yh with energy bounded by Ch5/3−ε. Thus part ii) of
Theorem 1 can be extended to the regime α = β < 5/3.

On the other hand no general lower bound is known, except for the trivial
one lim infh→0 h

−2Ih(y(h)) = ∞, which follows from part iii) of the theorem.
The scaling exponent h5/3 has been suggested in the physics literature on
crumpling as a natural exponent based on a formal scaling argument and an
assumed equipartition of bending and stretching energy [51, 25] (for further
discussion of crumpling see e.g. [6, 14]). Experimentally the structure of
crumpled sheets is characterized by cone like singularities (smoothed at a
scale h) which are connected by ridges whose width varies with the distance
from the singularities. It is believed that the energy contribution of the cones
is of order h2 ln(1/h) while the ridges contribute h5/3. For a single ridge with
well-defined boundary conditions Venkataramani recently showed that the
energy scales indeed like h5/3 [77]. A related, but different, problem arises
in the study of complex folding patterns at free boundaries after rupture
and it has been suggested that similar patterns might be relevant in certain
growth models in biology [73, 5].

2.3 von Kármán like theories: α > 2

For α > 2 we will show that the limit map ȳ is not only an isometry (as in
part iii) of Theorem 1 above) but is even close to a rigid motion. Then it is
natural to study the deviation from the rigid motion and its scaling with h.
To a map y(h) : Ω → R

3 we associate

ỹ(h) := (R̄(h))T y(h) − c(h), with constants R̄(h) ∈ SO(3), c(h) ∈ R
3. (23)

We set I = (−1/2, 1/2) and consider the averaged in-plane and out-of-plane
displacements

U (h)(x′) :=
∫

I

(
ỹ

(h)
1

ỹ
(h)
2

)
(x′, x3) −

(
x1

x2

)
dx3, V (h)(x′) :=

∫
I
ỹ

(h)
3 dx3 (24)

and their rescalings

u(h) =
1
hγ
U (h), v(h) =

1
hδ
V (h) (25)
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defined by parameters γ, δ.
For u ∈ W 1,2(S,R2) and v ∈ W 2,2(S) we introduce the generalized von

Kármán functional

IvK
α (u, v) :=

Λα

2

∫
S
Q2(

1
2
[∇′u+ (∇′u)T + ∇′v ⊗∇′v]) dx′ +

1
24

∫
S
Q2((∇′)2v) dx′,

(26)

Λα :=

⎧⎨
⎩

∞ if 2 < α < 3,
1 if α = 3,
0 if α > 3

with the convention that 0 · ∞ = 0. In other words for α = 3 we have the
usual von Kármán functional

IvK(u, v) :=
1
2

∫
S
Q2(

1
2
[∇′u+ (∇′u)T + ∇′v ⊗∇′v]) +

1
24
Q2((∇′)2v) dx′,

(27)

for α > 3 we have the “linearized” von Kármán functional

IvK
lin (v) =

1
24

∫
Q2((∇′)2v) dx′, (28)

and for 2 < α < 3 we also have IvK
lin but subject to the nonlinear constraint

∇′u+ (∇′u)T + ∇′v ⊗∇′v = 0. (29)

A symmetrized gradient e = sym∇′u satisfies e11,22 + e22,11−2e12,12 = 0 (in
the sense of distributions). Thus if (29) holds with v ∈ W 2,2(S) we must
have

det((∇′)2v) = 0. (30)

Conversely (30) is sufficient for the existence of a map u such that (29) holds
(see Proposition 30 below).

Geometrically (30) is exactly the condition that the Gauss curvature of
the graph of v vanishes. Thus, at least for sufficiently smooth functions,
(30) is equivalent to existence of an isometric map from the graph of v to
R

2. See Theorem 25 for a precise statement.
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Theorem 2 (von Kármán like theories) Suppose that W satisfies (3)–
(6) and the applied forces satisfy (14), (16) and (17). Then the following
assertions hold.

i) (linearized isometry constraint) Suppose 2 < α < 3 and set β =
2α − 2, γ = 2(α − 2), δ = α − 2 (recall (25) for the definitions of
γ, δ). If α ∈ (2, 5/2) suppose in addition that S is simply connected.
Then 0 ≥ inf Jh ≥ −Chβ. If y(h) is a β-minimizing sequence (in the
sense of (18)) then there exists constants R̄(h) ∈ SO(3) and c(h) ∈
R

3 such R̄(h) → R̄ and ỹ(h) and the scaled in-plane and out-of-plane
deformations given by (23)–(25) satisfy (for a subsequence)

∇hỹ
(h) → Id in L2(Ω; R3×3), (31)

u(h) → ū in W 1,2(S; R2), v(h) → v̄ in W 1,2, (32)

equation (29) holds and v̄ ∈W 2,2. Moreover the pair (v̄, R̄) minimizes
the functional

JvK
lin (v,R) =

1
24

∫
Q2((∇′)2v) dx′ −R33

∫
S
f3 · v dx′, (33)

subject to

det(∇′)2v = 0. (34)

ii) (vK theory) Suppose that α = 3 and set β = 4, γ = 2, δ = 1. Then
0 ≥ Jh ≥ −Chβ and for a (subsequence of a) β-minimizing sequence
(31)-(32) hold and the limit (ū, v̄, R̄) minimizes the usual von Kármán
functional

Jvk(u, v,R) = Ivk(u, v) −R33

∫
S
f3 · v dx′. (35)

iii) (linearized vK theory) Suppose α > 3 and set β = 2α− 2, γ = α− 1
and δ = α − 2. Then 0 ≥ inf Jh ≥ −Chβ and for a (subsequence of
a) β-minimizing sequence (32) holds with ū = 0 and the pair (v̄, R̄)
minimizes the linearized von Kármán functional

JvK
lin (v,R) =

1
24

∫
S
Q2((∇′)2v) dx′ −R33

∫
S
f3 · v dx′. (36)
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In all cases we have convergence of the scaled energy h−βJh(y(h)) to the
minimum of the limit functional Ivk

α (u, v)−R33

∫
S f ·v. Moreover for f3 �≡ 0

we have R̄33 = 1 or R̄33 = −1.

Remark 3 If R̄33 = 1 then R̄ is an in-plane rotation and y(h) is close
to R̄

(
x′
0

)
(up to translation). If R̄33 = −1 then R̄ is an in-plane rotation

followed by a 180◦ degree out-of-plane rotation R0 = diag(−1, 1,−1). Since
J0 is invariant under the transformation (u, v,R) → (u,−v,R0R) it suffices
to consider the (conventional) situation R33 = 1.

For convergence of the nonlinear strain

(∇hy
(h))T∇hy

(h) = (∇hỹ
(h))T∇hỹ

(h) (37)

see (165) below. In particular the limiting strain is affine in x3, see (110).
In formal derivations of the vK equations such a form of the strain is often
assumed a priori, whereas here it arises as a consequence of the scaling of
the forces (and hence the energy).

2.4 Γ-convergence

Next we turn to the closely related description in terms of Γ-convergence.
In this setting we consider the behavior of general sequences with bounded
(scaled) energy rather than minimizing sequences. The Γ-limit I of a se-
quence of functionals Ih on a Banach space X captures the lowest limiting
value of Ih(y(h)) among all sequences y(h) converging to y. More precisely
Γ-convergence with respect to the weak (respectively strong) topology of X
requires that the following holds: (i) (Ansatz-free lower bound) For all se-
quences y(h) converging weakly (resp. strongly) to y, lim infh→0 I

(h)(y(h)) ≥
I0(y), (ii) (Attainment of lower bound) For each y ∈ X there exists a se-
quence yh converging weakly (resp. strongly) to y such that

lim
h→0

I(h)(y(h)) = I0(y). (38)

See [22] for a comprehensive treatment of Γ-convergence.
We restrict attention to the von Kármán like theories; for membrane

theory (α = 0) see [47, 48, 49], for nonlinear bending theory of plates and
shells (α = 2) see [30, 31, 33, 62, 63] and for 0 < α < 1 see [19].

Theorem 4 (Γ-convergence) Suppose that W satisfies (3)–(6) and the
applied forces satisfy (14), (16) and (17). Let α > 2 and let β, γ, δ be as in
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Theorem 2 (see Table 1). If α ∈ (2, 5/2) suppose that S is simply connected.
Then the functionals h−βIh are Γ-convergent to the generalized von Kármán
functional Ivk

α . More precisely we have

i) (Compactness and lower bound) If

lim sup
h→0

1
hβ
Ih(y(h)) <∞ (39)

then there exists constants R̄(h) ∈ SO(3) and c(h) ∈ R
3 such (for a

subsequence) R̄(h) → R̄ and ỹ(h) and the scaled in-plane and out-of-
plane deformations given by (23)–(25) satisfy

∇hỹ
(h) → Id in L2(Ω; R3×3), (40)

u(h) ⇀ u in W 1,2(S; R2), (41)

v(h) → v in W 1,2(S), v ∈W 2,2(S). (42)

For 2 < α < 3 we have

∇′u+ (∇′u)T + ∇′v ⊗∇′v = 0, det(∇′)2v = 0 (43)

lim inf
h→0

1
hβ
Ih(y(h)) ≥

∫
S

1
24
Q2((∇′)2v) dx′ (44)

For α = 3 we have

lim inf
h→0

1
hβ
Ih(y(h)) ≥ IvK(u, v), (45)

and for α > 3 we have

lim inf
h→0

1
hβ
Ih(y(h)) ≥

∫
S

1
24
Q2((∇′)2v) dx′. (46)

ii) (Optimality of lower bound) If 2 < α < 3 and if v ∈ W 2,2(S) with
det(∇′)2v = 0 then there exist u ∈ W 1,2(S; R2) such that (43) holds
and there exists a sequence ŷ(h) such that (40)-(42) hold (with ỹ(h)

replaced with ŷ(h) and R̄(h) = Id, c(h) = 0) and

lim
h→0

1
hβ
Ih(ŷ(h)) =

∫
S

1
24
Q2((∇′)2v) dx′. (47)
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If α = 3, v ∈W 2,2(S) and u ∈W 1,2(S; R2) then there exists ŷ(h) such
that (40)-(42) hold and

lim
h→0

1
hβ
Ih(ŷ(h)) = IvK(u, v). (48)

If α > 3 and v ∈ W 2,2(S) then there exists ŷ(h) such that (40) and
(42) hold

lim inf
h→0

1
hβ
Ih(ŷ(h)) =

∫
S

1
24
Q2((∇′)2v) dx′. (49)

Remark 5 In part i) one has in addition u = 0 provided that α > 3.
Further convergence results for ∇hy

(h) are given in Lemmas 13 and 15 as
well as in Corollary 14.

2.5 Clamped boundary conditions and Föppl’s theory

The scaling of the energy and the solutions can also depend strongly on the
boundary conditions. The influence of boundary conditions will be discussed
in more detail in [35]. Here we focus on an extreme case, the fully clamped
plate. We thus assume that

y(h)(x′, x3) =
(
x′

hx3

)
on ∂S × I. (50)

In terms of the averaged in-plane and out-of-plane displacements ((25) with
R̄(h) = Id, c(h) = 0) this implies in particular that

u = 0, v = 0 on ∂S, (51)

where we have omitted the superscript (h) here and below for simplicity.
The first equation has an important consequence. It implies that∫

S
sym∇′u dx′ = 0.

Therefore control the membrane energy (1/8)Q2(2 sym∇′u + ∇′v ⊗ ∇′v)
alone provides an estimate for v. Indeed we have by Jensen’s inequality and
the obvious estimate Q2(A) ≥ c|trA|2,∫

S
Q2(2 sym∇′u+ ∇′v ⊗∇′v) dx′

≥ 1
|S|Q2

(∫
S

2 sym∇′u+ ∇′v ⊗∇′v dx′
)

≥ c

(∫
S
|∇′v|2 dx′

)2

. (53)
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This implies that the clamped plate is much stiffer in response to applied
normal loads than a plate with free boundaries (see the different exponents
for δ in Tables 1 and 2). Note also that the above lower bound for the
membrane energy scales like the fourth power of the displacement, while the
bending energy (1/24)

∫
Q2((∇′)2v) scales only quadratically, leading to a

sublinear (in fact cubic root) behavior of the displacement in terms of the
strength of the applied force, when the membrane term is dominant. This
crossover from linear response for very weak forces (α > 3) to sublinear
behavior for stronger forces (0 < α < 3) is exactly what Föppl [27] and von
Kármán [45] wanted to capture with their extension of the linear, purely
bending dominated theory.

A precise statement is contained in the following theorem. We define the
relaxed membrane energy by

Qrel
2 (A, b) = min{Q2(A+

b⊗ b

2
+M) : M = MT ,M ≥ 0} (54)

for all A ∈ R
2×2, b ∈ R

2. This relaxed energy is a geometrically linear version
of the membrane energy of LeDret and Raoult: it vanishes if symA+(1/2)b⊗
b is negative semidefinite (pure compression) and it agrees with Q2 if the
stress σ = L(symA+ (1/2)b⊗ b) is positive semidefinite (here L is the self-
adjoint operator associated to the quadratic formQ2, i.e. (LA,A) = Q2(A)).
In fact Qrel

2 is both the quasiconvex and the rank-one convex envelope of Q2

if the latter if viewed as a function on 3 × 2 matrices
(
A
b

)
. We consider the

limiting energy functional

JFö
rel (u, v) =

1
2

∫
S
Qrel

2 (∇u,∇v) dx′ −
∫

S
f3v dx

′. (55)

Theorem 6 ([21]) Suppose that W satisfies (3)–(6) and that Ω is strictly
star-shaped with C2 boundary. Suppose also that 0 < α < 3, that f (h)

1 =
f

(h)
2 = 0 and that f (h)

3 : S → R satisfies

1
hα
f

(h)
3 ⇀ f3 in L2(S).

Set
β =

4
3
α, γ =

2
3
α, δ =

1
3
α.

Then
0 ≥ inf{Jh(y) : y satisfies (50)} ≥ −Chβ. (58)
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If y(h) is a β-minimizing sequence (subject to (50)) then (for a subsequence)

u(h) → u in L1(S; R2), sym∇′u(h) ∗
⇀ sym∇′u in M(S; R2×2), (59)

v(h) ⇀ v in W 1,2
0 (S) (60)

lim inf
1
hβ
Jh(y(h)) = JFö

rel (u, v). (61)

and (u, v) minimizes JFö
rel subject to the boundary conditions v = 0 on ∂S on

u−(x′) = λ(x′)ν(x′), with λ ≥ 0, on ∂S, where ν denotes the outer normal
and u− is the inner trace of u (which exists for functions whose symmetrized
distributional gradient is a Radon measure).

Remark 7 Föppl [27] considered the limiting functional with Q2 instead of
Qrel

2 . This misses the degeneracy due to the possibility of crumpling, but
Föppl’s functional is correct if the plate is always in a state of stretch (and
it may well be possible to prove that this is the case for certain reasonable
loading conditions). Table 2 makes precise von Kármán’s assertion that his
theory lies in between the fully linear theory (which arises for α > 3) and
Föppl’s theory.

Remark 8 It might at first glance seem surprising that the limiting bound-
ary condition for u is not simply u = 0. The reason is that displacements
satisfying the condition in the theorem can be approximated well in energy by
deformations with zero boundary conditions. Indeed assume the inequality
condition and consider an approximation uδ with zero boundary conditions
which agrees with u except on a boundary layer of thickness δ in which uδ is
almost linear in the direction normal to the boundary. The ∇uδ is approx-
imately −u− ⊗ ν in the boundary layer and therefore sym∇uδ is (almost)
negative semidefinite since λ ≥ 0, i.e. uδ is (almost) compressive. Now the
relaxed energy is zero on compressive deformations, hence there is almost
no extra energy in the boundary layer.

If the forces are scaled with exponent α ≥ 3 and we impose the clamped
boundary conditions (50) then we obtain Γ-convergence to the same limit
functionals as above, subject to the constraints

u = 0, v = ∇′v = 0. (62)

The only slightly delicate point is to establish the new boundary condition
∇′v = 0. For this one can use Corollary 14; see [35] for the details. The
upper bound in the proof of Γ-convergence is easy since the ansatz functions
essentially inherit the clamped boundary conditions from (62).
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α β γ δ
applied force energy in-plane out-of-plane limit model

α = 0 0 0 0 Membrane
0 < α < 1 α 0 0 Constrained membrane
α = 2 α 0 0 Bending, isometric mid-

plane
2 < α < 3 2α− 2 2(α− 2) α− 2 Linearized isometry

constraint
α = 3 2α− 2 2(α− 2) α− 2 von Kármán
α > 3 2α− 2 α− 1 α− 2 Linearized vK

Table 1: Relation between the scaling exponents α of the applied forces,
β of the energy γ of the in-plane deformation and δ of the out-of-plane
deformation. For α > 2 we assume that the limit force is normal (see (17);
cf., also Theorem 2)

2.6 Overview of scaling exponents and limit models

Given the scaling exponent of the applied force, the exponents describing the
convergence of the energy and of the solution, together with the expression
for the limiting theory, are determined by Theorems 1-6. Tables 1 and 2
give an overview of the different exponents, for unconstrained and clamped
boundary conditions, respectively.

3 Outline of the proof

a) Rigidity estimates. As in the work on the nonlinear bending theory [31]
the crucial ingredient is a quantitative estimate that bounds the squared L2

distance of the deformation gradient ∇w from a rigid motion in terms of the
energy

∫
W (∇w). We recall this estimate in Theorem 9 at the beginning of

the next section.
b) Scaled rigidity estimates in thin domains. In a thin domain Ωh =

S × (−h/2, h/2) the constant in the rigidity estimate degenerates as h→ 0.
We show that globally the constant degenerates like h−2. Locally one can
obtain a good approximation of ∇w by covering Ωh by cubes of size h
and using a constant rotation in each cube. This leads to two important
approximations: one by a piecewise constant maps R(h) with values in the
rotations SO(3) and another one R̃(h) (obtained by a difference quotient
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α β γ δ
applied force energy in-plane out-of-plane limit model

α = 0 0 0 0 Membrane
0 < α < 3 (4/3)α (2/3)α (1/3)α Relaxed Föppl

= lin. membrane
α = 3 2α− 2 2(α− 2) α− 2 von Kármán
α > 3 2α− 2 α− 1 α− 2 Linearized vK

Table 2: Relation between the scaling exponents for a clamped plate, assum-
ing normal forces. Föppl’s theory (or more precisely its relaxed version, can
be seen as a geometrically linear version of membrane theory. von Kármán’s
theory which has both membrane and bending contributions lies in between
Föppl’s theory (capturing only membrane energy) and the linear theory
(capturing only bending energy)

estimate and smoothing) which is differentiable, takes values close to SO(n)
(in an L2 sense) and whose gradient can be bounded in terms of the energy.
While this is straightforward in the interior some care has to be taken near
the boundary. All these estimates are carried out in Theorem 10 in the
next section. It is convenient to state them in the fixed domain Ω = S ×
(−1/2, 1/2). Thus the gradient has to be replaced by the scaled gradient
∇h.

c) Scaling of the in-plane and out-of-plane components. From b) one
sees that if the energy is small compared to h2 then the deformation is close
a rigid rotation even in a thin domain. Normalizing this rotation to the
identity one easily derives the natural scaling exponents for the in-plane
and out-of-plane components (see Table 1). This is done in Lemma 13 in
Section 5.

d) Identification of the limiting strain. The estimates in b) show that
the scaled approximate nonlinear strain G(h) = h2−α[(R(h))T∇hw

(h) − Id]
is bounded in L2. Using a difference quotient argument we show that the
limiting strain G is affine in x3, i.e. G = G0(x′) + x3G1(x′) and we identify
(the relevant submatrices) of the coefficients G0 and G1 in terms of the lim-
iting in-plane and out-of-plane components u and v. From this one obtains
the lower bounds in Theorem 4 by a careful Taylor expansion. All this is
done in Lemma 15 and Corollary 16.

e) Γ-convergence The lower bound follows directly from d). For the
upper bound one has to identify good test functions. For α ≥ 3 one can
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use a more or less the standard ansatz (which is often assumed a priori in
heuristic arguments in favour of the von-Kármán theory). For α < 5/2
the situation is more delicate, since the standard ansatz only produces an
approximate isometry of the mid-plane (the mid-plane is isometric only in
the sense of geometrically linear elasticity) and the deviation from a true
isometry leads to a too high elastic energy. To overcome this problem we
need to study carefully the relation between geometrically linear isometries
and full isometries. This is done in detail in Section 8. In addition we need
to approximate W 2,2 isometries by W 2,∞ maps which are isometries except
on a very small set (such an approximation was already used in [31]).

f) Convergence of minimizers This follows from Γ-convergence by a suit-
able Poincaré inequality, see Section 7.1. To establish strong convergence of
the in-plane components in W 1,2 (and not just weak convergence) we use
an equiintegrable version of the rigidity estimates. This is carried out in
Section 7.2.

Finally in Section 9 we discuss how our results address the criticisms
raised against the vK theory. We also discuss possible extensions, open
questions, and directions for future research.

For a first reading we recommend the reader to focus on Γ-convergence
for the vK case, i.e. α = 3, β = 4 and Eh = h4. This case already contains
the main ideas of our analysis and Sections 4, 5 and Subsection 6.1 are suffi-
cient to obtain Γ-convergence to the vK functional. The main points in this
case are the bounds on the scaled in-plane and out-of-plane displacements
u(h) and v(h) (see Lemma 13) and the identification of the limiting strain
in Lemma 15. This immediately yields the lower bound for Γ-convergence,
and the upper bound follows by using the usual test function (123).

4 Geometric rigidity

Theorem 9 (Quantitative rigidity estimates) Let U be a bounded Lip-
schitz domain in R

n, n ≥ 2. There exists a constant C(U) with the follow-
ing property. For each v ∈ W 1,2(U,Rn) there is an associated rotation R ∈
SO(n) such that,

‖∇v −R‖L2(U) ≤ C(U) ‖dist(∇v, SO(n))‖L2(U). (63)

The constant C(U) can be chosen uniformly for a family of domains which
are Bilipschitz equivalent with controlled Lipschitz constants. The constant
C(U) is invariant under dilations.
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For a proof see [31]. The estimate (63) was established by John [41, 42]
under the stronger hypothesis that v is locally Bilipschitz (for further devel-
opments along this line see [10]). The main difficulty with this assumption
is that it does not follow from suitable bounds on the elastic energy alone.
Reshetnyak [72] established a rigidity results for almost conformal maps
(rather than almost isometries). He showed that if ∇v is close to the set
R

+
0 SO(n) of all conformal matrices in Ln then ∇v is close to the gradient

of a single conformal map in Ln. His argument does, however, not give a
quantitative estimate like (63).

In a thin domain Ωh = S × (−h/2, h/2) the constant C(Ωh) degenerates
like h−2 (see (66) below). We can obtain a good approximation (at least
in the interior) for ∇y by a piecewise constant map R(h) (with values in
SO(3)) by covering Ωh by cubes of size h. Application of Theorem 9 to two
neighbouring cubes in addition yields a difference quotient estimate. Thus
after mollification on a scale h we can obtain another approximation R̃(h)

(which in general no longer takes values exactly in SO(3)) whose gradient
can be controlled in terms of the energy. This second approximation will
prove useful to establish compactness and also higher regularity of the limits
as h→ 0. The following result summarizes the estimates (up to the bound-
ary) one can obtain in this way. As before we rescale to a fixed domain Ω
and use the scaled gradient ∇h = (∇′, h−1∂3).

Theorem 10 (Approximation by rotations in thin domains) Suppose
that S ⊂ R

2 is a bounded Lipschitz domain and Ω = S × (−1
2 ,

1
2). Let

y ∈W 1,2(Ω; R3) and

E =
∫
Ω

dist2(∇hy, SO(3))dx,

where h ∈ (0, 1]. Then there exist maps R : S → SO(3) and R̃ : S → R
3×3,

with |R̃| ≤ C, R̃ ∈W 1,2(S,R3×3) such that

||∇hy −R||2L2(Ω) ≤ CE, ||R − R̃||2L2(S) ≤ CE, (64)

||∇R̃||2L2(S) ≤
C

h2
E, ||R− R̃||2L∞(S) ≤

C

h2
E. (65)

Moreover there exists a constant rotation Q̄ ∈ SO(3) such that

||∇hy − Q̄||2L2(Ω) ≤
C

h2
E. (66)
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and

||R − Q̄||2Lp(S) ≤ Cp

h2
E, ∀p <∞. (67)

Here all constants depend only on S (and on p where indicated).

Remark 11 If E ≤ δ0h
2 for a sufficiently small value of δ0 then, in view

of (80) we always have R̃(x′) ∈ U , where U is a tubular neighbourhood of
SO(3). Hence the map R : S → SO(3) obtained by projection to SO(3) is
in W 1,∞ and ||∇R||2L2 ≤ Ch−2E. Thus in this case the relevant estimates
can be stated in terms of R directly and R̃ appears only as an intermediate
quantity.

Proof. The result is implicit in [31]. We could follow the strategy used
there and use Theorem 9 to first construct a map R which is constant on
squares of size h and then mollify R to obtain R̃ (using a suitable change
of variables and tangential mollification near the boundary). For variety
we follow a different approach, constructing R̃ first. One advantage of this
approach is that the map y → R̃ is linear (as long as E ≤ Ch2, which is the
main case of interest). To construct R̃ we use separate constructions in the
interior and near the boundary and then glue them together by a partition
of unity. We begin with the relevant local estimates.

Step 1 (local estimates). Let U be an open set in R
2, and let K ⊂

U be compact. We suppose that 3h < dist∞(K,∂U), where dist∞ is the
distance with respect to the norm |(x1, x2)|∞ = max(|x1|, |x2|). Let y ∈
W 1,2(U × (−1

2 ,
1
2); R3). To abbreviate the notation we write F (x) for the

scaled gradient and F̄ (x′) for its vertical average

F (x) = ∇hy(x), F̄ (x′) =
∫

I
F (x′, x3) dx3, I = (−1/2, 1/2).

For each point x′ ∈ K we consider the square

Sx′,h = x′ + (0, h)2

with lower left corner x′. Let ψ ∈ C∞
0 ((0,−1)2) be a standard mollifier, i.e.

ψ ≥ 0,
∫
ψ = 1 and set ψh(·) = h−2ψ(·/h). On K we define the smoothed

rotation R by

R = ψh ∗ F̄ .
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Here we write R instead of R̃ or R̃h to simplify the notation. The R defined
above is not the map R mentioned in the theorem. Explicitly we have

R(x′) =
∫

Sx′,h×I
h−2ψ

(
x′ − z′

h

)
F (z) dz′dz3.

We claim that∫
Sx′,h×I

|F (z) −R(z′)|2 dz ≤ C

∫
Sx′,2h×I

dist2(F (z), SO(3)) dz, (68)

|∇R(x′)|2 ≤ C

h4

∫
Sx′,h×I

dist2(F (z), SO(3)) dz (69)

dist2(R(x′), SO(3)) ≤ C

h2

∫
Sx′,h×I

dist2(F (z), SO(3)) dz (70)

To prove (68) we use Theorem 9 applied to a cube of size h. Keeping in
mind that y(x1, x2, x3) = ỹ(x1, x2, hx3) and F (x) = ∇ỹ(x1, x2, hx3) we see
that there exists Rx′,h ∈ SO(3) such that∫

Sx′,h×I
|F (z) −Rx′,h|2 dz ≤ C

∫
Sx′,h×I

dist2(F (z), SO(3)) dz. (71)

Since ψh ≥ 0 and
∫
ψh = 1 Jensen’s inequality yields

|R(x′) −Rx′,h|2 ≤
∫

Sx′,h×I
ψh(x′ − z′)|F (z) −Rx′,h|2dz

≤ C

h2

∫
Sx′,h×I

|F (z) −Rx′,h|2 dz ≤ C

h2

∫
Sx′,h×I

dist2(F (z), SO(3)) dz.(72)

This establishes (70). Using the fact that
∫ ∇ψh = 0 we obtain similarly for

x̃′ ∈ Sx′,h

|∇R(x̃′)|2 ≤ C

h4

∫
Sx̃′,h×I

dist2(F (z), SO(3)) dz ≤ C

h4

∫
Sx′,2h×I

dist2(F (z), SO(3)) dz.

(73)

and this proves in particular (69). We also conclude that for x̃′ ∈ Sx′,h

|R(x̃′) −R(x′)|2 ≤ C

h2

∫
Sx′,2h×I

dist2(F (z), SO(3)) dz. (74)
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and combining this with (71), (72) and the elementary inequality∫
Sx′,h×I

|F (z) −R(z′)|2dz ≤ 2
(∫

Sx′,h×I
|F (z) −Rx′,h|2dz + h2 sup

(x̃,x3)∈Sx′,h×I
|Rx′,h −R(x̃′)|2

)

we obtain (68).
Finally, for future reference consider a lattice of squares of size h in R

2,
sum (68) over all squares which intersect K and integrate (69) over K × I.
This yields∫

K×I
|R− F |2 + h2|∇R|2 dz ≤

∫
U×I

dist2(F (z), SO(3)) dz (75)

Step 2 (estimates near the boundary). We fix again an open set U ⊂ R
2

and a compact subset K ⊂ U . We first consider the situation near a flat
piece of the boundary of S. More precisely we suppose that U ∩S = U ∩R

2
+,

U ∩ ∂S = U ∩ ∂R
2
+, where R2

+ = {(x1, x2) : x2 > 0} is the upper half plane.
For x′ ∈ K ∩R

2
+ we define as before R(x′) = (ψh ∗ F̄ )(x′). Since the support

of ψ is contained in the lower half plane R is indeed well-defined when h is
small enough. Proceeding as in Step 1 (and using the standard lattice (hZ)2

for the summation) we obtain (75) with K and U replaced by K ∩ S and
U ∩ S, respectively.

Now suppose that S is locally the epigraph of a Lipschitz function, i.e.
there exist a bounded open interval J ⊂ R, a Lipschitz function f : J → R

and an orthonormal coordinate system (still denoted (x1, x2)) such that

U ∩ S = {x ∈ U : x1 ∈ J, x2 > f(x1)}, (76)

U ∩ ∂S = {x ∈ U : x1 ∈ J, x2 = f(x1)}. (77)

To flatten the boundary of S consider the map Φ : U ∩ S̄ → R2
+ given by

Φ(x) = (x1, x2−f(x1). Note that Φ is Bilipschitz and area preserving. Now
set

(R ◦ Φ−1) = ψh ∗ (F̄ ◦ Φ−1).

Then for ξ′ ∈ Φ(K) and sufficiently small h the value (R ◦ Φ−1)(ξ′) is well-
defined. Application of Theorem 9 shows that there exists Rξ′,h ∈ SO(3)
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such that ∫
Sξ′,h×I

|F (Φ−1(ζ ′), z3) −Rξ′,h|2 dζ ′dz3

=
∫

Φ−1(Sξ′,h)×I
|F (z′, z3) −Rξ′,h|2 dz′dz3

≤ C

∫
Φ−1(Sξ′ ,h)×I

dist2(F (z′, z3), SO(3)) dz′dz3

= C

∫
Sξ′,h×I

dist2(F, SO(3))(Φ−1(ζ ′), z3)) dζ ′dz3.

The constant C is independent of ξ′ since the estimate in Theorem 9 holds
uniformly in domains which are Bilipschitzly equivalent. As before we de-
duce from the above estimate the following analogue of (72)

|R ◦ Φ−1(ξ′) −Rξ′,h|2 ≤ C

h2

∫
Sξ′,h×I

dist2(F, SO(3))(Φ−1(ζ ′), z3)) dζ ′dz3

as well as the pointwise estimates for ∇(R ◦ Φ−1) and R ◦ Φ−1. This yields
again an estimate for ||R ◦ Φ−1 − F ◦ Φ−1||L2(Sξ,h×I) and after summation
over the standard lattice we obtain the counterpart of (75), namely∫

(K∩S)×I

(
|R− F |2 + h2|∇R|2

)
dz ≤ C

∫
(U∩S)×I

dist2(F (z), SO(3)) dz.

(78)

Step 3 (global estimates for R̃). Now it suffices to combine the es-
timates in Steps 1 and 2 via a partition of unity. Since S is a Lipschitz
domain its closure S̄ can be covered by open sets U0, . . . , Ul where Ū0 ⊂ S
and where U1, . . . , Ul are of the form (76) and (77) (after a possible rotation
of the coordinates). Consider a partition of unity subordinate to the cover
{Ui}, i.e.

ηi ∈ C∞
0 (Ui), ηi ≥ 0,

∑
ηi = 1 in S

and set Ki = supp ηi. Denote by R̃0, . . . R̃l the maps on K0, . . . ,Kl con-
structed in Steps 1 and 2 and set

R̃ =
∑

ηiR̃i.
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Using the fact that
∑∇ηi = ∇∑ ηi = 0 in S we find

R̃− F =
∑

ηi(R̃i − F ),

∇R̃ =
∑

ηi∇R̃i +
∑

∇ηi(R̃i − F ).

Applying (75) and (78) we deduce∫
S×I

(
|R̃− F |2 + h2|∇R̃|2

)
dz ≤ CE. (79)

This proves the first estimate in (65). Similarly we get

sup
S

dist(R̃, SO(3)) ≤ C

h2
sup
x′∈S

∫
(Bx′,C0h∩S)×I

dist2(∇hy, SO(3)) dz ≤ C

h2
E.

(80)

Here C0 depends only on S (through the Lipschitz constants of the maps Φi

used to flatten the boundary of S).
This essentially finishes the construction of R̃, but we need to address one

more point. As defined, R̃ may not be bounded (unless E ≤ Ch2 in which
case we can use (80)). To remedy this it suffices to replace R̃ by its projection
πρR̃ onto a sufficiently large ball Bρ ⊂ R

3×3, which contains SO(3). Indeed
we have |∇(πρ ◦ R̃)| ≤ |∇R̃| since πρ is a contraction. Moreover

|πρ ◦ R̃− F | ≤ |πρ ◦ R̃− πρ ◦ F | + |πρ ◦ F − F |
≤ |R̃− F | + dist(F, SO(3)).

Moreover, trivially dist(πρ ◦ R̃, SO(3)) ≤ dist(R̃, SO(3)). Hence (79), (80)
also hold with R̃ replaced by φρ ◦ R̃, establishing the first estimate in (65).

Step 4 (estimates for R ∈ L∞(S, SO(3))).
Since SO(3) is a smooth manifold there exists a tubular neighbourhood

U of SO(3) such that the nearest-point projection π : U → SO(3) is smooth.
Let

R(x′) =
{
π(R̃(x′)) if R̃(x′) ∈ U

Id else
.

Then |R(x′) − R̃(x′)| = dist(R̃(x′), SO(3)) if dist(R̃(x′), SO(3)) < δ. Hence
we always have |R − R̃| ≤ C dist(R̃, SO(3)). Now (80) implies the second
estimate in (65), and (79) proves (64).

Step 5 (remaining estimates). The estimates in (66) and (67) follow
from the Poincaré-Sobolev inequality. Indeed in view of the first estimate
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in (65) there exists a Q̄ such that ||R̃ − Q̄||2Lp ≤ Cph
−2E so Q̄ satisfies

(67). Taking p = 2 and using (64) we infer that Q̄ satisfies (66). Finally,
dist2(Q̄, SO(3)) = |Ω|−1

∫
Ω dist2(Q̄, SO(3)) ≤ CE, since Q̄ satisfies (67) and

(66). Hence these two estimates continue to hold with Q̄ replaced by any
rotation with minimal distance from Q̄. �

For future reference we recall that Korn’s inequality holds for Lipschitz
domains (we will only need it for S ⊂ R

2).

Proposition 12 (Korn’s inequality) Suppose that Ω ⊂ R
n is a bounded

Lipschitz domain and let 1 < p <∞. Consider the space

Ep(Ω) :=
{
u ∈ Lp(Ω; Rn) : sym∇u ∈ Lp(Ω; Rn×n)

}
Then

Ep(Ω) = W 1,p(Ω; Rn), (81)

||u||p1,p :=
∫

Ω
|u|p + |∇u|p dx ≤ Cp(Ω)

∫
Ω
|u|p + | sym∇u|p dx, (82)

min
{
||u−Ax− b||p1,p : A+AT = 0, A ∈ Rn×n, b ∈ R

n
}

≤ Cp(Ω)
∫

Ω
| sym∇u|p.

(83)

If Γ ⊂ ∂Ω has positive Hn−1 measure then

||u||p1,p ≤ Cp(Ω,Γ)
∫

Ω
| sym∇u|p, for all u with u|Γ = 0. (84)

Proof. For (81) and (82) see [36], Theorem 1. To establish the assertion
(83) one uses the compact embedding of W 1,p into Lp and the usual argu-
ment by contradiction starting with a sequence with ||uk||1,p = 1,

∫
uk = 0,∫ ∇uk − (∇uk)T = 0 and || sym∇uk||p → 0. Any weak limit u in W 1,p

satisfies sym∇u = 0 and hence is an affine map with skew symmetric gradi-
ent and therefore zero by the normalization above. Together with (82) one
obtains the desired contradiction. Similarly one obtains (84). �
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5 Scaling of in-plane and out-of-plane components
and limiting strain

5.1 Scaling exponents

It follows from Theorem 10 that for energies Eh small compared to h2 the
deformation y(h) is close to the trivial map (x′, x3) → (x′, hx3), up to a rigid
motion. The following lemma provides detailed estimates for the difference
between y(h) and the trivial deformation (cf. Table 1). In view of future
applications it is convenient to consider a general sequence Eh and not to
restrict attention to powers of h.

Lemma 13 (Convergence of scaled out-of-plane and in-plane deformations)
Suppose that

Ih(y(h)) ≤ CEh, (85)
lim
h→0

h−2Eh = 0. (86)

Then there exists a maps R(h) : S → SO(3) and constants R̄(h) ∈ SO(3),
c(h) ∈ R

3 such that
ỹ(h) := (R̄(h))T y(h) − c(h)

and the in-plane and out-of-plane displacements

U (h)(x′) :=
∫

I

(
ỹ

(h)
1

ỹ
(h)
2

)
(x′, x3) −

(
x1

x2

)
dx3, V (h)(x′) :=

∫
I
ỹ

(h)
3 dx3

satisfy

||∇hỹ
(h) −R(h)||L2(Ω) ≤ C

√
Eh, (88)

||R(h) − Id||Lq(S) ≤ Cqh
−1

√
Eh ∀q <∞, ||∇′R(h)||L2(S) ≤ Ch−1

√
Eh.

(89)

Moreover there exists a subsequence (not relabeled) such that

v(h) :=
h√
Eh

V (h) → v in W 1,2(S), v ∈W 2,2(S), (90)

u(h) := min
(
h2

Eh
,

1√
Eh

)
U (h) ⇀ u in W 1,2(S; R2), (91)
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h√
Eh

(R(h) − Id) → A in Lq(Ω; R3×3), ∀q <∞, (92)

h√
Eh

(∇hỹ
(h) − Id)) → A in L2(Ω; R3×3), (93)

A,3 = 0, A ∈W 1,2(S; R3×3), (94)

A = e3 ⊗∇′v −∇′v ⊗ e3, (95)

h2

Eh
sym(R(h) − Id) → A2

2
in Lq(S; R3×3), ∀q <∞ (96)

Corollary 14 In connection with boundary value problems it is also useful
to study the convergence of the first moment

ζ(h)(x′) =
∫

I
x3

[
ỹ(h)(x′, x3) −

(
x′

hx3

)]
dx3 (97)

We have

1√
Eh

ζ(h) ⇀
1
12
Ae3 = − 1

12

(∇′v
0

)
inW 1,2(S; R3). (98)

The analogous assertion holds if Eh = h2. Then ∇hy
(h) → R in L2 and

h−1ζ(h) ⇀ (1/12)(R − Id)e3 in W 1,2.

Note that in the vK scaling Eh ∼ h4 the convergence results (90), (91)
and (98) are consistent with the commonly used ansatz

y(h)(x′, x3) ≈
(
x′

hx3

)
+
(
h2u(x′)
hv(x′)

)
− x3

(
h2∇′v

0

)
. (99)

Indeed it follows from (103) below that, for γ ∈ {1, 2},
h−2(ỹ(h)(x) − [x′ + h2u(x′) − x3h

2∇′v(x′)]) → 0 in L2(Ω; R2),

h−1(ỹ(h)(x) − [hx3 + hv(x′)]) → 0 L2(Ω).

The right hand of (99) side by itself, however, does not lead an almost opti-
mal approximation of the energy since it misses an extension or contraction
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of the vertical fibers in case of non-zero Poisson’s ratio; see (123) below for
an ansatz which includes this phenomenon and leads to an almost optimal
approximation.

Proof of the lemma. Step 1 (normalization) Estimates (88) and (89) fol-
low immediately from Theorem 10 and Remark 11 since one can choose R̄(h)

so that (66) holds with Q̄ = Id. This implies that the average deformation
gradient F̄ (h) = |Ω|−1

∫
Ω ∇hỹ

(h) satisfies |F̄ (h) − Id| ≤ Ch−1
√
Eh and by

applying an additional constant in-plane rotation to of order h−1
√
Eh to

y(h) and R(h) we may assume that in addition to (88) and (89) we have∫
Ω
(y(h)

1,2 − y
(h)
2,1 ) dx = 0. (100)

By choosing c(h) suitably we may also assume that∫
Ω
y(h) −

(
x′

hx3

)
dx = 0. (101)

Step 2 (convergence of A(h) := (h/
√
Eh)(R(h) − Id)). ¿From (89) we get

for a subsequence

A(h) ⇀ A in W 1,2(S; R3×3).

Using the compact Sobolev embedding we deduce (92). Together with (88)
we obtain (93). Since R(h) is independent of x3 we also obtain (94).

Step 3 (convergence of (h2/Eh) sym(R(h)−Id)). Since (R(h))TR(h) = Id
we have A(h) + (A(h))T = −(h/

√
Eh)(A(h))TA(h). Hence A + AT = 0 and

after multiplication by h/
√
Eh we obtain (96) from the strong convergence

of A(h).
Step 4 (convergence of the scaled normal and tangential deviations).

The convergence (90) of the scaled normal component immediately follows
from (93). Moreover v,i = A3i for i = 1, 2. Hence v ∈ W 2,2 as A ∈ W 1,2.
¿From (88) and (96) we see that sym∇′u is bounded in L2. Using Korn’s
inequality (see Proposition 12) and the normalizations (100) and (101) we
obtain (91).

Step 5 (identification of A). By Steps 3 and 4 the matrix A is skew-
symmetric, A31 = v,1 and A32 = v,2. It only remains to identify A12.
Now (91) and (93) imply that (along the subsequence considered) A12 =
limh→0 max(

√
Eh/h, h)u(h)

1,2 and in view of the assumption (86) we see that
A12 = 0. Thus (95) holds and the proof is finished. �
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Proof of the corollary. Let

Y (h) = ỹ(h) −
(
x′

hx3

)
, Ȳ (h) =

∫
I
Y (h) dx3 =

(
U (h)

V (h)

)
, Z(h) = Y (h) − Ȳ (h).

(102)
Then

1
h
Z

(h)
,3 =

1
h
y

(h)
,3 − e3 = (∇hy

(h) −R(h))e3 + (R(h) − Id)e3,

and thus

||h−1Z
(h)
,3 − (R(h) − Id)e3||L2(Ω) ≤ C

√
Eh.

Since
∫
I Z

(h) = 0 and
∫
I x3(R(h) − Id)e3 dx3 = 0 this implies that

||h−1Z(h) − x3(R(h) − Id)e3||L2(Ω) ≤ C
√
Eh. (103)

Now multiply the quantity inside the norm by hx3/
√
Eh and integrate in

x3. This yields

|| 1√
Eh

ζ(h) − 1
12

h√
Eh

(R(h) − Id)e3||L2(S) ≤ Ch.

Together with (92) and (88) we obtain

1√
Eh

ζ(h) → 1
12
Ae3 in L2(S). (104)

On the other hand we have for γ ∈ {1, 2}

ζ(h)
,γ =

∫
I
x3ỹ

(h)
,γ dx3 =

∫
I
x3(∇hỹ

(h) −R(h))eγ dx3,

since R(h) is independent of x3. In view of (88) this shows that (1/
√
Eh)ζ(h)

,γ

is bounded in L2(S) and therefore the convergence in (104) is also weakly in
W 1,2(S). The above reasoning also applies for Eh = h2, if one replaces (92)
by the L2 compactness of R(h). To obtain this compactness it suffices to note
that by (64) and (65) in Theorem 10 there exist R̃(h) with ||R̃(h)||W 1,2 ≤ C
and ||R̃(h) −R(h)||L2 ≤ Ch2. �
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5.2 The limiting strain

We know that ∇hy
(h) can be well approximated by rotations R(h)(x′). Since

W is invariant under rotations the energy of y(h) is essentially controlled
by the deviation of (R(h))T∇hy

(h) from the identity. In view of (88) the
quantities G(h) := (1/

√
Eh)[(R(h))T∇hy

(h) − Id] converge weakly in L2 (for
a subsequence) to G. The following lemma shows that the relevant part of
G (i.e. the symmetric part of the in-plane components) can be identified in
terms of u and v, the limits of the scaled in-plane and out-of-plane displace-
ments. In particular, we show that the relevant components of G are affine
in the thickness variable x3, a fact which is often assumed a priori. The
representation of G immediately yields the lower bound in the definition of
Γ-convergence (see the corollary immediately following the lemma).

We will later apply the lemma below to the sequences ỹ(h), R(h), u(h), v(h)

obtained in Lemma 13 above. In view of future applications we state the
result in a slightly more general (and more self-contained) form, assuming
only (105), (106) and (107) and not the other conclusions of Lemma 13.

Lemma 15 (Identification of scaled limiting strain) Consider y(h) :
Ω → R

3 and R(h) : S → SO(3) and Eh > 0 and set

u(h) := min
(
h2

Eh
,

1√
Eh

)∫
I

(
y

(h)
1

y
(h)
2

)
(x′, x3) −

(
x1

x2

)
dx3,

v(h) :=
h√
Eh

∫
I
y

(h)
3 dx3.

Suppose that

lim
h→0

h−2Eh = 0, (105)

||∇hy
(h) −R(h)||L2(Ω) ≤ C

√
Eh, (106)

u(h) ⇀ u in W 1,2(S; R2), v(h) → v in W 1,2(S), v ∈W 2,2(S). (107)

Then

h√
Eh

(
R(h) − Id

)
→ A = e3 ⊗∇′v −∇′v ⊗ e3 in L2(S; R3×3). (108)
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and

G(h) :=
(R(h))T∇hỹ

(h) − Id√
Eh

⇀ G in L2(Ω; R3×3) (109)

and the 2 × 2 submatrix G′′ given by G′′
αβ = Gαβ for 1 ≤ α, β ≤ 2 satisfies

G′′(x′, x3) = G0(x′) + x3G1(x′) (110)

where

G1 = −(∇′)2v. (111)

Moreover

∇′u+ (∇′u)T + ∇′v ⊗∇′v = 0, if h−4Eh → ∞, (112)

symG0 = 1
2(∇′u+ (∇′u)T + ∇′v ⊗∇′v), if h−4Eh → 1, (113)

symG0 = 1
2(∇′u+ (∇′u)T ), if h−4Eh → 0. (114)

Corollary 16 Let Eh, y(h), R(h), u(h), v(h) be as in the lemma above. Then
we have the following lower semicontinuity results.

(i) If limh→0 h
−4Eh = 0 or limh→0 h

−4Eh = ∞ then

lim inf
h→0

1
Eh

Ih(y(h)) ≥
∫

S

1
24
Q2((∇′)2v) dx′. (115)

(ii) If limh→0 h
−4Eh = 1 then

lim inf
h→0

1
Eh

Ih(y(h)) ≥
∫

S

1
2
Q2(1

2 [∇′u+ (∇′u)T + ∇′v ⊗∇′v])

+
1
24

∫
S
Q2((∇′)2v) dx′. (116)

Remark 17 If in the inequalities (115) or (116) we have equality then we
obtain strong convergence of the nonlinear strain

1√
Eh

(
(∇hy

(h))T∇hy
(h)1/2 − Id

)
→ symG in L2(S; R3×3),

see (165) below.
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Proof of Lemma 15. Step 1. We first assume (108) (for the special
sequence coming from Lemma 13 we know this anyhow) and establish the
main assertion, namely the representation formula for G.

Using the identity sym(Q− Id) = −(Q− Id)T (Q− Id) which holds for
all Q ∈ SO(3) we immediately deduce from (108) that

h2

Eh
sym

(
R(h) − Id

)
→ A2 = −∇′v ⊗∇′v − |∇′v|2e3 ⊗ e3. (117)

By assumption G(h) is bounded in L2, thus a subsequence converges weakly.
To show that the limit matrix G′′ is affine in x3 we consider the difference

quotients

H(h)(x′, x3) = s−1[G(h)(x′, x3 + s) −G(h)(x′, x3)].

Multiply the definition of G(h) by R(h), take the difference quotient and
express the difference quotient acting on y by an integral over y,3. This
yields for α, β ∈ {1, 2}⎛

⎝ h√
Eh

1
s

s∫
0

1
h
ỹ

(h)
α,3(x

′, x3 + σ)dσ

⎞
⎠

,β

= (R(h)H(h))αβ(x′, x3).

In view of (108) and (106) the left hand side converges in W−1,2(S ×
(−1, 1−s)) to Aα3,β(x′) = −v,αβ(x′). We have R(h) → Id boundedly a.e. and
H(h) ⇀ H in L2 and we thus obtain Hαβ = −v,αβ. Since v is independent
of x3 and since s > 0 was arbitrary we conclude that G′′ is affine in x3 and
G1 has the form given in the lemma. In order to prove the formula for G0

it suffices to study

G
(h)
0 (x′) =

∫ 1
2

−1
2

G(h)(x′, x3)dx3.

We have for α, β ∈ {1, 2}
(G(h))αβ(x′) =

(∇′ỹ(h) − Id)αβ√
Eh

− (R(h) − Id)αβ√
Eh

+

[
(R(h) − Id)T

∇hỹ
(h) −R(h)

√
Eh

]
αβ

(118)

First suppose h−4Eh → 1, i.e. Eh ≈ h4. Using the convergence of u(h),
(117), (108) and the hypothesis (106) we see that

(symG
(h)
0 )αβ →

[
sym∇′u− A2

2

]
αβ

in L1(S) (119)
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and using again (117) we obtain (113). Similarly we obtain (114).
To derive (112) multiply (118) by h2/

√
Eh and use again the weak con-

vergence of u(h) and (117), as well the hypotheses (106) and (108).
Step 2. We now prove (108). Since R(h) is independent of x3 we have

for α, β ∈ {1, 2}

(R(h) − Id)αβ =
∫

I
(R(h) −∇hy

(h))αβ dx3 + max
(√

Eh,
Eh

h2

)
u

(h)
α,β,

(R(h) − Id)3β =
∫

I
(R(h) −∇hy

(h))3β dx3 +

√
Eh

h
v

(h)
,β .

Thus

h√
Eh

(
R(h) − Id

)
αβ

→ 0,
h√
Eh

(
R(h) − Id

)
3β

→ v,β in L2(S). (120)

Using the fact that R(h) takes values in SO(3) we deduce that ||R(h)
β3 ||L2 ≤

C
√
Eh/h. To get control on R

(h)
33 we use that fact that for Q ∈ SO(3) we

have

|1 −Q33| = |detQ−Q33| ≤ C

2∑
α,β=1

|(Q− Id)αβ | + C(|Q13Q31| + |Q23Q32|).

Substituting Q = R(h) and using (120) and the generalized dominated con-
vergence theorem (with L1 convergent majorant rather than constant majo-
rant) we easily deduce that (h/

√
Eh)(R(h)

33 − 1) → 0 in L2. To control R(h)
13

we thus the fact that the first and third row of R(h) are orthogonal. This
yields

|R(h)
13 +R

(h)
31 | ≤ C(|R(h)

11 − 1| + |R(h)
33 − 1| + |R(h)

12 |)

and together with (120) and the convergence of R(h)
33 this gives the desired

convergence for R(h)
13 . The same argument applies to R(h)

23 and this finishes
the proof. �

Proof of Corollary 16. To show (115) and (116) we use a careful Taylor
expansion. Let ω : [0,∞) → [0,∞) denote a modulus of continuity of D2W
near the identity and consider the good set Ωh := {x ∈ Ω : |G(h)(x)| < h−1}.
Its characteristic function χh is bounded and satisfies χh → 1 in L1(Ω). Thus
we have χhGh ⇀ G in L2(Ω). By Taylor expansion

1
Eh

χhW (Id+
√
EhG(h)) ≥ 1

2
Q3(χhG

(h)) − ω(h−1
√
Eh)|G(h)|2.
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Thus using (105)

lim inf
h→0

1
Eh

Ih(y(h))

= lim inf
h→0

1
Eh

∫
Ω
W ((R(h))T∇hy

(h)) dx

≥ lim inf
h→0

[
1
2

∫
Ω
Q3(χhG

(h)) dx+
1
Eh

∫
Ω
(1 − χh)W (∇hy

(h)) dx
]

≥ 1
2

∫
Ω
Q3(G) dx ≥ 1

2

∫
Ω
Q2(G′′) dx. (121)

Here we used the fact that Q3 is a positive semidefinite quadratic form and
therefore the functional v → ∫

ΩQ3(v) is weakly lower semicontinuous in L2.
Now by (110)∫ 1/2

−1/2
Q2(G′′)(x′, x3) dx3 = Q2(G0(x′)) +

1
12
Q2(G1(x′)). (122)

Together with the representations (111), (113) and (114) this implies (115)
and (116) and the proof of Corollary 16 is finished. �

6 von Kármán like theories: Γ-convergence

Proof of Theorem 4. We now return to the situation were the energy scaling
is given by powers of h rather than more general functions. The situation
of Theorem 4 corresponds to the choice

Eh = h2α−2,

and the borderline case Eh = h4 corresponds to the exponent α = 3.
With these choices part i) of Theorem 4 follows immediately from Lemma 13

and Lemma 15.
To prove part ii) of the theorem we consider the cases α = 3, α < 3 and

α > 3 separately.

6.1 Upper bound, α = 3

We assume first that u and v are smooth and we make the ansatz

ŷ(h)(x′, x3) =
(
x′

hx3

)
+
(
h2u

hv

)
− h2x3

⎛
⎝v,1

v,2

0

⎞
⎠+ h3x3d

(0) +
h3

2
x2

3d
(1),

(123)
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Then

∇hŷ
(h) = Id+

(
h2∇′u −h(∇′v)T

h∇′v 0

)
− h2x3

(
(∇′)2v 0

0 0

)
+ h2d(0) ⊗ e3 + h2x3d

(1) ⊗ e3 + O(h3)
(124)

Using the identities (I + A)T (I + A) = I + 2 symA + ATA and (e3 ⊗ a′ −
a′ ⊗ e3)T (e3 ⊗ a′ − a′ ⊗ e3) = a′ ⊗ a′ + |a′|2e3 ⊗ e3 for a′ ∈ R

2 we obtain for
the nonlinear strain

(∇hŷ
(h))T∇hŷ

(h)

= Id+ 2h2(sym∇′u− x3(∇′)2v) + h2(∇′v ⊗∇′v + |∇′v|2e3 ⊗ e3)
+2h2 sym[(d(0) + x3d

(1)) ⊗ e3] + O(h3). (125)

Taking the square root and using the frame indifference (3) of W and Taylor
expansion we get

h−4W (∇hŷ
(h)) = h−4W ([(∇hŷ

(h))T∇hŷ
(h)]1/2) → 1

2
Q3(A+ x3B),

where

A = sym∇′u+ 1
2∇′v ⊗∇′v + 1

2 |∇′v|2e3 ⊗ e3 + sym d(0) ⊗ e3,

B = −(∇′)2v + sym d(1) ⊗ e3.

For a symmetric 2× 2 matrix A′′ let c = LA′′ ∈ R
3 denote the vector which

realizes the minimum in the definition of Q2, i.e.

Q2(A′′) = Q3(A′′ + c⊗ e3 + e3 ⊗ c).

Since Q3 is positive definite on symmetric matrices, c is uniquely determined
and the map L is linear. We now take

d(0) = −1
2 |∇′v|2e3 + L(∇′u+ (∇′u)T + ∇′v ⊗∇′v) (126)

d(1) = −2L((∇′)2v). (127)

This finishes the proof of Theorem 4 ii) for α = 3 and smooth u, v. For gen-
eral u,v it suffices to consider suitable smooth approximations u(h), v(h), d(0,h),
d(1,h).
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6.2 Upper bound, α > 3

This is simpler. We take u = 0 and

ŷ(h)(x′, x3) =
(
x′

hx3

)
+
(

0
hα−2v

)
− hα−1x3

⎛
⎝v,1

v,2

0

⎞
⎠+

hα

2
x2

3d
(1). (128)

In this case the term in the nonlinear strain involving ∇′v becomes of higher
order and we obtain h−2+2αW (∇hŷ

(h)) → Q3(x3B), where B is as above,
and we conclude easily.

6.3 Upper bound, 2 < α < 3

In analogy with the case α = 3 we could make the ansatz

ŷ(h)(x′, x3) =
(
x′

hx3

)
+
(
h2(α−2)u

hα−2v

)
− hα−1x3

⎛
⎝v,1

v,2

0

⎞
⎠

+
h2α−3

2
x3d

(0) +
hα

2
x2

3d
(1). (129)

Proceeding as above we obtain the desired conclusion at least for α > 5/2.
This ansatz can, however, not work for α close to 2. Indeed we obtain for
the strain in the midplane

[(∇hŷ
(h))T∇hŷ

(h)]ij(x′, 0) = h4(α−2)(∇u)T∇u for i, j ∈ {1, 2}

and this leads to an energy contribution of order h8(α−2) which is larger than
the desired estimate h2α−2 if α < 7/3.

Thus instead of the ansatz (129) which only leads to an approximate
isometry of the midplane we will first construct an exact isometry

ȳε : S → R
3, ȳε(x′) =

(
x′ + ε2uε(x′)

εv(x′)

)
. (130)

We then consider the normal νε := ȳε,1∧ȳε,2 and as for the nonlinear bending
theory we make the ansatz

ŷ(h)(x′, x3) = ȳε(x′) + εhx3νε(x′) + ε
h2

2
x2

3d(x
′), where ε = hα−2. (131)

Assume for the moment that v belongs toW 2,∞ (then also u ∈W 2,∞(S; R2)
in view of (199) below). Then the existence of ŷ(h)

ε and uniform W 2,∞
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bounds on uε are established in Section 8 (see Theorem 25 and the explicit
expressions (187), (190) and (194) below). Assume in addition that d is
Lipschitz. Keeping in mind that (νε),j · νε = 0 we find

∇ŷ(h) = Qε

(
Id+ hx3

[
(∇′yε)T∇′νε +QT

ε εd⊗ e3
])

+ O(h2ε), (132)

where

Qε(x′) = (∇′ȳε, νε) ∈ SO(3). (133)

Now

∇′νε = −ε
(

(∇′)2v 0
0 0

)
+ O(ε2), Qε = Id+ O(ε) (134)

and thus, using frame indifference, we get

h2−2αW (∇ŷ(h)) = ε−2h−2W (QT
ε ∇ŷ(h))

→ 1
2
x2

3Q3

(( −(∇′)2v 0
0 0

)
+ d⊗ e3

)

=
1
2
x2

3Q2((∇′)2v),

where in the last equality we used the choice

d = −2L((∇′)2v). (135)

This finishes the proof of the upper bound for 2 < α < 3 for v ∈W 2,∞. The
general case is treated in the following subsection. �

6.4 Approximation of W 2,2 data for 2 < α < 3

In general we only have v ∈ W 2,2(S) and standard mollification arguments
would destroy the crucial constraint det(∇′)2v = 0. Pakzad [61] showed (us-
ing earlier work of Kirchheim [43]) that for convex domains S there nonethe-
less exist approximations vk ∈ C2 which satisfy det(∇′)2vk = 0 and converge
to v in W 2,2. Since the limit functional is continuous with respect to this
convergence a standard argument in Γ-convergence shows that it suffices to
construct the upper bound for v ∈ C2 and this we have already achieved.

For general domains S we face two difficulties. First, the construction of
the isometry ȳε requires that |ε∇v| < 1 (see Theorem 25) but for Lipschitz
domains we do not always have a global Lipschitz bound for v. Second, we
do not have a bound for the term h∇′νε in the supremum norm and hence
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Taylor expansion may not be justified. The second difficulty will be handled
by a truncation argument for Sobolev functions as in [31].

To overcome the first difficulty we use Theorem 37 and Proposition 30.
Thus for each admissible pair (u, v) there exist vk ∈W 2,2 ∩W 1,∞ such that
det(∇′)2vk = 0 and vk → v in W 2,2 and an admissible pair (uk, vk) with
uk → u in W 2,q for all q < 2 (cf. (199)). In particular IvK(uk, vk) →
IvK(u, v). Thus by a standard density and diagonalization argument in
Γ-convergence we may suppose that v ∈W 1,∞(S).

Applying Theorem 25 to V = εvε we find a W 2,2 map Φε : S → R
2 such

that

ȳε =
(

Φε

εvε

)
(136)

is an isometric immersion. Moreover Φε = Id+ ε2uε and

||uε||W 2,2(S) ≤ C (137)

Next we replace ȳε by a W 2,∞ map which agrees with ȳε except on a
very small set. We use the following truncation result, which is a special
case of results by Liu [50] and Ziemer [81].

Proposition 18 (Approximation by W k,∞ maps) Let S be a bounded
Lipschitz domain in R

n, let 1 < p < ∞, k ∈ N and λ > 0. Suppose that
u ∈W k,p and let

|u|k(x) :=
∑
|α|≤k

|∇αu|(x).

Then there exists uλ ∈W k,∞ such that

||uλ||W k,∞ ≤ C(p, k, S)λ,

|{x ∈ S : uλ(x) �= u(x)}| ≤ C(p, k)
λp

∫
|u|k≥λ/2

|u|pk (138)

||uλ||W k,p ≤ C(p, k, S)||u||W k,p (139)

In particular,

lim
λ→∞

λp|{x ∈ S : uλ(x) �= u(x)}| = 0 (140)

and

lim
λ→∞

||uλ − u||W k,p = 0. (141)

40



Remark 19 One can also include boundary conditions as follows (see [31],
Proposition A.2 for the details). Let Γ be a closed subset of ∂S which satisfies
Hn−1(B(x, r) ∩ Γ) ≥ crn−1 for all x ∈ Γ and all r ∈ (0, r0). If u ∈W 2,p(S)
and u = ∇u = 0 on Γ (in the sense of trace) then the approximation uλ can
be chosen such that uλ = ∇uλ = 0 on Γ.

We now make the specific choice

ε = hα−2, λ =
ε

h
= hα−3. (142)

We apply Proposition 18 to each component of Yε = ȳε − id and set ȳλ
ε =

Y λ
ε + id and νε,λ = ȳλ

ε,1 ∧ ȳλ
ε,2. As before we set d = −2L((∇′)2v) and we

choose Lipschitz approximations dh satisfying

dh → d inL2, hdh → 0 inW 2,∞. (143)

Finally we denote the set of bad points by

Eλ =
{
x ∈ S : ȳλ

ε �= ȳε

}
=

3⋃
i=1

{
x ∈ S : (Y λ

ε )i �= (Yε)i
}
. (144)

As before we consider the ansatz

ŷ(h)(x′, x3) = ȳλ
ε (x′) + hx3νε,λ(x′) + εh2x

2
3

2
dh(x′), (145)

We have

∇hŷ
(h) = Q(h) + εhx3a

(h) + εhx3b
(h),

where

Q(h) = (∇′ȳλ
ε , ν

λ
ε ), a(h) = (ε−1∇′νλ

ε , 0), |b(h) − dh ⊗ e3| ≤ h|∇′dh|.

We claim that

Q(h) → Id uniformly, (146)

a(h) →
(

(∇′)2v 0
0 0

)
in L2, εha(h) → 0 in L∞, (147)

b(h) → d⊗ e3 in L2, εhb(h) → 0 in L∞. (148)
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In S\Eλ we have Q(h) ∈ SO(3) and thusW (∇hŷ
(h)) = W (Q(h)T∇hŷ

(h)).
One can then use (146)–(148) in connection with the dominated convergence
theorem to conclude that (cf. Proposition 20 below)

lim sup
h→0

1
h2(α−2)

∫
(S\Eλ)×I

W (∇hŷ
(h))

≤ lim sup
h→0

∫
(S\Eλ)×I

1
(εh)2

W (Q(h)T∇hŷ
(h))

=
∫

Ω

1
2
Q3

(
x3

(
(∇′)2v 0

0 0

)
+ x3d⊗ e3

)
=

1
24

∫
S
Q2((∇′)2v)(149)

We now first prove (146)–(148) and then bound the energy contribution
on Eλ. We first derive L∞ bounds for ∇′uλ

ε and vλ. By the definition of ȳλ
ε

we have

||ε2uλ
ε ||W 2,∞ ≤ Cλ, ||εvλ||W 2,∞ ≤ Cλ. (150)

Proposition 18 yields

||uλ
ε ||W 2,2 ≤ ||uε||W 2,2 ≤ C, ||vλ||W 2,2 ≤ ||v||W 2,2 ≤ C.

Hence by the Brezis-Wainger inequality

||∇′uλ
ε ||L∞ ≤ C ln

λ

ε2
≤ C ln

1
hα−1

≤ Cε−1/2

and similarly

||∇′vλ||L∞ ≤ Cε−1/2.

The normal νλ
ε can be expanded as

νλ
ε =

(
0
1

)
+ ε

(∇′vλ

0

)
+ ε2

(
0

divuλ
ε

)
+ ε3B1(∇′vλ,∇′uλ

ε ) + ε4B2(∇′uλ
ε ,∇′uλ

ε ),

where B1 and B2 are bilinear forms whose precise expression does not mat-
ter. Taking into account the L∞ bounds for ∇′uλ

ε and ∇′vλ we see that
|Q(h) − Id| ≤ Cε1/2, which proves (146). Differentiating the expression for
νλ

ε we see using (150) that

||∇′νλ
ε ||L∞ ≤ C(ε

λ

ε
+ ε2

λ

ε2
+ ε3ε−1/2 λ

ε2
) ≤ Cλ. (151)
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and ∣∣∣∣
∣∣∣∣∇′νλ

ε − ε

(
(∇′)2vλ 0

0 0

)∣∣∣∣
∣∣∣∣
L2

≤ C(ε2 + ε3ε−1/2 + ε4ε−1/2) ≤ Cε2.

Since hλ = ε goes to zero as h goes to zero this implies (147). Finally (148)
follows immediately from the properties of dh. This finishes the proof of
(149).

It only remains to estimate the contribution from Eλ. We claim that

1
h2

|Eλ| =
λ2

ε2
|Eλ| → 0, as h→ 0, (152)

|dist(Q(h), SO(3))| ≤ Cλ|Eλ|1/2 ≤ Cε. (153)

To prove the first inequality we use (138) for each component of uε and
for v separately. With the notation |v|2 = |v| + |∇′v| + |(∇′)2v| this yields

λ2

ε2
|Eλ| ≤ C

1
ε2

∫
|εv|2≥λ/2

|εv|22 dx′ +
1
ε2

∫
S
|ε2uε|22 dx′

≤ C

∫
|v|2≥1/(2h)

|v|22 dx′ + Cε2,

and (152) follows. To prove (153) we first recall that |(∇′)2ȳλ
ε | ≤ Cλ.

Together with (151) this yields |∇′ dist(∇hŷ
(h), SO(3))| ≤ Cλ. Moreover

dist(∇hŷ
(h), SO(3)) = 0 on (S \Eλ)× I. Now every point in Ω has distance

at most C|Eλ|1/2 from the set (S \ Eλ) × I and this yields (153).
Using (153) and the L∞ bounds for hεa(h) and hεb(h) and the behaviour

of W in a neighbourhood of SO(3) we see that

W (∇hŷ
(h)) ≤ Cε2 + C(εh)2(|a(h)|2 + |b(h)|2).

Together with the L2 convergence of a(h) and b(h) and the fact that |Eλ| → 0
we obtain from (152)

lim sup
h→0

1
(hε)2

∫
Eλ×I

W (∇hŷ
(h)) dx ≤ lim sup

h→0

1
h2

|Eλ| = 0.

Combining this with (149) we obtain the desired upper bound. �
In the estimate (149) above we have made use of the following version

of the dominated convergence theorem.
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Proposition 20 Suppose that for δ → 0 we have

Gδ → G inL2(Ω), δGδ → 0 inL∞. (154)

Then
δ−2W ((Id+ δGδ) → 1

2
Q3(G) inL1(Ω). (155)

Proof. For a subsequence we have Gδ → G a.e. Hence, for this subse-
quence,

δ−2W ((Id+ δGδ) → 1
2
Q3(G) a.e. (156)

In view of the L∞ convergence we also have

δ−2W ((Id+ δGδ)) ≤ Cδ−2|δGδ |2 ≤ |Gδ |2. (157)

Since the right hand side converges in L1(Ω) the generalized dominated con-
vergence theorem implies that (155) holds along the subsequence considered.
Since the limit is unique we have convergence of the full sequence. �

7 von Kármán like theories: convergence of mini-
mizers

The convergence of minimizers follows from the Γ-convergence result and a
Poincaré like inequality related to the rigidity estimates.

7.1 A priori estimates and application of Γ-convergence

Proof of Theorem 2. By (66) there exist R̄(h) ∈ SO(3) and c(h) ∈ R
3 such

that

Y (h)(x) := (R̄(h))T y(h) − c(h) −
(
x′

hx3

)
(158)

satisfies

||Y (h)||2L2(Ω) + ||∇hY
(h)||2L2(Ω) ≤ Ch−2I(h)(y(h)). (159)

Using the test function x → (x′, hx3) and the conditions (16) and (17) on
the total force and total moment of f (h) we obtain the trivial bound

inf J (h) ≤ 0. (160)
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Using once more the conditions on f (h) and the fact the y(h) is a β-minimizing
sequence (see (18) we deduce that

I(h)(y(h)) = J (h)(y(h)) +
∫

Ω
(R(h))T f (h) · (R(h))T y(h) dx

= J (h)(y(h)) +
∫

Ω
(R(h))T f (h) · Y (h) dx

≤ Chβ + Chα−1
(
I(h)(y(h))

)1/2
.

Since β = 2α− 2 this immediately yields

I(h)(y(h)) ≤ Chβ. (161)

Now all the assertions of Theorem 2 follow from Theorem 4 and Lemma 13
except for the strong convergence of u(h) in (32). This will be addressed in
the following subsection.

7.2 Strong convergence of the in-plane components

To establish strong convergence of the in-plane components we first show
that

h1−α dist(∇hỹ
(h), SO(3)) → | symG| in L2(Ω). (162)

Indeed, since y(h) is a β-minimizing sequence in the sense of (18) we must
have equality in (121) and all the limits inferior can be replaced by limits.
Thus

lim
h→0

∫
Ω
Q3(χhG

(h)) dx =
∫
Q3(G) dx,

lim
h→0

h2−2α

∫
Ω
(1 − χh)W (∇hỹ

(h)) dx = 0, (163)

where χh is the characteristic function of the set {|G(h)| < h−1}. Since Q3

is positive definite on symmetric matrices the first identity yields

χh symG(h) → symG in L2(Ω; R3×3). (164)

Thus by the definition (109) of G(h) (recall that Eh = h2α−2)

h1−αχh dist(∇hỹ
(h), SO(3)) = h1−αχh dist(Id+ hα−1G(h), SO(3))

= χh| symG(h)| + χhO(hα−1|G(h)|2) → | symG| in L2(Ω),
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since supχhh
α−1|G(h)| ≤ hα−2 → 0. Together with (163) and the coercivity

condition (5) on W we deduce (162). We remark in passing that using the
pointwise estimate |(F TF )1/2 − Id)| ≤ C dist(F, SO(3)) and (164) we can
deduce in the same way the convergence of the nonlinear strain, i.e.,

h1−α
(
[(∇hỹ

(h))T∇hỹ
(h)]1/2 − Id

)
→ symG in L2(S; R3×3). (165)

From (162) we deduce in particular that h2−2α dist2(∇hỹ
(h), SO(3)) is

equiintegrable. Using a refined version of Theorems 9 and 10 (see Proposi-
tions 21 and 22 below) we deduce that

|G(h)|2 = h2−2α|∇hỹ
(h) −R(h)|2 is equiintegrable. (166)

In connection with (164) this implies that

symG(h) → symG in L2(Ω; R3×3).

Since R(h) → Id in L2 and |R(h)| =
√
n we also deduce (using e.g. Egoroff’s

theorem) from (166) that

(R(h) − Id)G(h) → 0 in L2(Ω; R3×3).

Thus by the definition (109) of G(h) and the convergence of symG(h)

h1−α sym(∇hỹ
(h) −R(h)) = h1−α sym(R(h)G(h)) → symG in L2(Ω; R3×3).

(167)

Now by (96)

h4−2α sym(R(h) − Id) → A2

2
in L2(Ω; R3×3).

Hence h4−2α sym(∇hy
(h) − Id) converges in L2 if α ≤ 3, while for α > 3 the

expression h1−α sym(∇hy
(h) − Id) converges in L2. Recalling the definition

of u(h) (see (91) and Table 1) we see that sym∇′u(h) converges strongly in
L2(S; R2×2), for all α > 2. Finally Korn’s inequality and weak convergence
of ∇′u(h) in L2 imply strong convergence of ∇′u(h). This finishes the proof
of Theorem 2 �

In the proof of strong convergence we used the following equiintegrable
version of the rigidity estimate in thin sets.
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Proposition 21 Suppose that α > 2 and

dist(∇hy
(h), SO(3)) ≤ hα−1(M + f2)

with M ∈ R, M ≥ 0 and f2 ∈ L2(Ω). Let R(h) be the map constructed in
the proof of Theorem 10. Then

|∇hy
(h) −R(h)| ≤ hα−1(G1 +G2) (168)

with

||G1||Lp(Ω) ≤ CM, for some p > 2, ||G2||L2(Ω) ≤ C||f2||L2(Ω). (169)

In particular, if

h2−2α dist2(∇hy
(h), SO(3)) is equiintegrable

then

h2−2α|∇hy
(h) −R(h)|2 is equiintegrable.

To prove this we use a refined version of Theorem 9 which can be proved
in essentially the same way as the original result, see [34].

Proposition 22 Let U be a bounded Lipschitz domain in R
n, n ≥ 2, and let

1 < p1 < p2 <∞. Then there exist constants C(p1, p2, U) with the following
properties. If v ∈W 1,1(U ; Rn) and

dist(∇v, SO(n)) ≤ f1 + f2, with fi ∈ Lpi(U) (170)

then there exist gi ∈ Lpi(U) and R ∈ SO(n) such that

|∇v −R| ≤ g1 + g2, ||gi||Lpi (U) ≤ C(p1, p2, U)||fi||Lpi (U). (171)

The constants C(p1, p2, U) are invariant under dilations of U .

Proof of Proposition 21. We only show the interior estimate. The esti-
mates near ∂S are obtained in a similar way by first flattening a sufficiently
small piece of ∂S as in the proof of Theorem 10. Thus let K ⊂ S be compact
and suppose that dist(K,∂S) ≥ Ch. Let L′ denote the set of points x′ in
the lattice (hZ)2 for which the lattice cell

Sx′,h = x′ + (0, h)2
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intersects K, i.e.

L′ = {x′ ∈ (hZ)2 : Sx′,h ∩K �= ∅}.

Let f1 ≡ M , f = M + f2, fix x′ ∈ L′ and write F (h) = ∇hy
(h). By

Proposition 22 applied to fiχSx′,h×I there exist g1,x′ and g2,x′ and a rotation
Rx′,h such that

|F (h)(z) −Rx′,h| ≤ hα−1(g1,x′(z) + g2,x′(z)), for z ∈ Sx′,h × I,

(172)∫
Sx′,h×I

|g1,x′ |p dz ≤ CMph2,

∫
Sx′,h×I

|g2,x′ |2 dz ≤ C

∫
Sx′,h×I

|f2|2 dz.

(173)

Strictly speaking we apply Proposition 22 to Sx′,h×hI, rescale the functions
fi in x3 accordingly and then unscale again.

Using the definition of R = R(h) in the proof of Theorem 10 and arguing
as done there we see that this implies

|R(h)(x′) −Rx′,h|2 ≤ Ch2α−2 1
h2

∫
Sx′,h×I

|F (h) −Rx′,h|2 dz

≤ Ch2α−2

(
M2 +

1
h2

∫
Sx′,h×I

|f2|2 dz
)
.

By (74) we have for x̃′ ∈ Sx′,h

|R(h)(x̃′) −R(h)(x′)|2 ≤ Ch2α−2 1
h2

∫
Sx′,2h×I

|f |2 dz

≤ Ch2α−2

(
M2 +

1
h2

∫
Sx′,2h×I

|f2|2 dz
)
.

Thus

|F (h)(z) −R(h)(z′)|2
h2α−2

≤ C

(
M2 + g2

1,x′ + g2
2,x′ +

1
h2

∫
Sx′,2h×I

|f2|2 dz
)
,

(174)

for z ∈ Sx′,h × I. Hence

|F (h) −R(h)| ≤ hα−1(G1 +G2) in K,
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where

G1 = C
(
M +

∑
x′∈L′

g1,x′χSx′,h

)
,

G2 = C
(∑

x′∈L′
g2,x′χSx′,h +

∑
x′∈L′

(
1
h2

∫
Sx′,2h×I

|f2|2 dz
)1/2

χSx′,h

)
.

From this one easily deduces (169). The assertion about equiintegrability is
an immediate consequence. �

8 Construction of isometries from infinitesimal isome-
tries

8.1 Construction of isometries

In this section we always deal with maps or functions defined on a bounded
Lipschitz domain S ⊂ R

2. To simplify the notation we write ∇ instead of
∇′ for the two-dimensional gradient. Given a map V ∈ W 2,2(S) we seek to
construct an isometric immersion

y : S → R3, of the form y =
(

Φ
V

)
.

We thus need to solve the equation

(∇y)T∇y = (∇Φ)T∇Φ + ∇V ⊗∇V = Id.

The main result of this section is that (for simply connected domains) the
condition det∇2V = 0 is necessary and sufficient for this, see Theorem 25
below. The same condition is sufficient and necessary to obtain a linearized
isometric immersion, i.e. a solution of

∇W + (∇W )T + ∇V ⊗∇V = 0, (175)

where W : S → R
2, see Proposition 30 below.

To put these results in perspective we first review some general properties
of isometric immersions for the convenience of the reader. These properties
are classical for smooth maps, but we will need them for W 2,2 maps. For a
general W 2,2 map y : S → R

3 we define the induced metric by gij = y,i · y,j

and we set n = y,1 ∧ y,2 and

Aij = −y,ij · n. (176)

If y is an isometric immersion, i.e. if gij = δij , then n is a unit normal to
the image of y and A is the second fundamental form.
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Proposition 23 Suppose that S ∈ R
2 is a bounded Lipschitz domain and

y ∈W 2,2(S; R3) is an isometric immersion. Then

y,ij = Aijn, (177)

Ai1,2 = Ai2,1, for i = 1, 2, (178)

in the sense of distributions. Moreover

detA = 0. (179)

Proof. Since gij = δij we have |n| = 1. Differentiation of gij yields
y,ij · y,k = 0. Thus y,ij is parallel to n and this proves (177). To establish
(178) first note that for smooth y we have the identity

Ai1,2 −Ai2,1 = y,i1 · n,2 − y,i2 · n,1 (180)

By approximation this identity holds in the sense of distributions if y ∈W 2,2.
By (177) the vector y,ij is parallel to n (a.e.), but n,k is perpendicular to n,
since |n| = 1. This proves (178).

Finally to establish (179) we start from the identity

g11,22 + g22,11 − 2g12,12 = 2y,12 · y,12 − 2y,11 · y,22. (181)

This holds pointwise for smooth y and by approximation it holds in the
sense of distribution for y ∈W 2,2. For an isometric immersion the left hand
side vanishes and together with (177) this proves (179). �

Remark 24 If y is smooth then one can deduce from (179) that locally ∇y
is either a constant or is constant on a smooth curve. In the latter case one
can further conclude that the smooth curve is a line defined by the kernel
of A. It turns out that the latter conclusion is still true for y ∈ W 2,2 (see
Theorem 35 below). The proof, however, requires a much finer analysis
[43, 61]) (for even weaker conditions see Pogorelov’s work [67, 68]). The
following arguments do not require this geometric property, except for the
fine regularity estimates in Subsection 8.3.

Now we come the the announced result on the construction of isometric
immersions from linearized isometric immersions.

Theorem 25 Let S ∈ R
2 be a bounded, simply connected domain with Lip-

schitz boundary. Suppose that V ∈ W 2,2(S) and ||∇V ||L∞ < 1. Then there
exists Φ ∈W 1,2(S) with detΦ > 0 and

(∇Φ)T∇Φ = Id−∇V ⊗∇V (182)
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if and only of

det∇2V = 0. (183)

Moreover Φ is unique up to a rigid motion. If (183) holds and ||∇V ||L∞ ≤
1/2 then Φ can be chosen such that U := Φ − id satisfies

||∇2U ||L2 ≤ C||∇V ||L∞ ||∇2V ||L2 , (184)

||U ||W 2,2 ≤ C||∇V ||L∞ ||∇2V ||L2 + C||∇V ||2L2 . (185)

Remark 26 If S is not simply connected then the condition det∇2V = 0
is not sufficient. Consider e.g. the annulus S = {x : 1/2 < |x| < 1} and
the map V = ε|x|. Let r = |x|, Θ = x/r. Then, using the notation be-
low in (189), (190) one easily computes that ∇θ = hF = (1/r)((

√
1 − ε2 −

1)/(
√

1 − ε2))Θ⊥. Hence in polar coordinates (r, α) we get that θ(r, α) −
θ(r, 0) = ((1/

√
1 − ε2)−1)α. We see that θ is well defined only if 1/

√
1 − ε2 ∈

Z.

We will see in Proposition 31 that for V ∈ W 2,2 the condition (183)
actually implies that V ∈ C1(S). If S is of class C1,α then ∇V is continuous
up to the boundary, see Theorem 33 below.

Proof of Theorem 25. Let g = Id−∇V ⊗∇V and let F = g1/2, i.e.

F = Id− λ̂(|∇V |2)∇V ⊗∇V, where λ̂(s) =
1 −√

1 − s

s
. (186)

Then we need to show that there exists a rotation

eiθ :=
(

cos θ − sin θ
sin θ cos θ

)
, with ∇Φ = eiθF. (187)

The following result gives a necessary and sufficient condition for this.
We associate to F a vector field

hF :=
1

detF
F T curlF = (cof F−1) curlF, (188)

where

(curlF )p = Fp2,1 − Fp1,2.
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Proposition 27 ([26], Prop. 3.1) Let S be a bounded, simply connected
domain with Lipschitz boundary. Suppose that F ∈ W 1,1(S; R2×2), detF >
0 and |F−1| ≤ C. Then F can be written in the form F = e−iθ∇Φ with
Φ ∈W 2,1(S; R2×2) and θ ∈W 1,1(S; R2×2) if and only if

curlhF = 0 (189)

in the sense of distributions. Moreover in this case

∇θ = hF . (190)

From (190) we easily read off the estimate (184) for ∇2Φ = ∇2U . To
estimate the lower derivatives of U we use the fact that θ is only defined up
to a constant. Hence we may suppose

∫
θ = 0 and thus ||θ||L2 ≤ ||∇θ||L2 .

Therefore (187) yields

||∇U ||L2 = ||∇Φ − Id||L2 ≤ C||θ||L2 +C||F − Id||L2 ≤ C||∇θ||L2 + C|||∇V |2||L2 .
(191)

To control the last term we use the estimate

||f2||L2 ≤ C||f2||L1 + C||∇f2||L1 ≤ C||f ||2L2 + C||f ||L2 ||∇f ||L2 (192)

for f = |∇V |2. Together with the previous estimate for ∇θ this yields

||∇U ||L2 ≤ C||∇V ||L∞ ||∇2V ||L2 + C||∇V ||2L2 . (193)

Finally using the freedom to add a constant to U we obtain (185).
To prove Theorem 25 it only remains to show that the condition curlF =

0 is equivalent to det∇2V = 0. To check this we write

a = ∇V, λ = λ̂(|a|2), λ̂(s) =
1 −√

1 − s

s
.

Then F = Id− λa⊗ a and using a1,2 = a2,1 we get

(curlF )p = − curl(λapa) = −ap∇λ ∧ a− λ∇ap ∧ a,
where we used the notation α ∧ β = α1β2 − α2β1. Thus

(F T curlF )j
= −aj∇λ ∧ a− λ∇aj ∧ a+ λaj|a|2∇λ ∧ a+ λ2ajap∇ap ∧ a
= ajg ∧ a− λ∇aj ∧ a,
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where

g = −∇λ+ |a|2λ∇λ+ λ2 1
2∇|a|2 = ∇(−λ+ 1

2λ
2|a|2).

A short calculation shows that g = 0. Indeed writing s = |a|2 we have

λ2|a|2 = (λ̂)2(s) s

= s
(1 −√

1 − s)2

s2
=

2 − s− 2
√

1 − s

s
= 2λ− 1.

Since detF = 1 − λ|a|2 and ∇aj = a,j we get

(hF )j = − λ

1 − λ|a|2 a,j ∧ a (194)

and the following proposition shows that curlhF = 0 if and only if det∇2V =
0. �

Proposition 28 Let S be a domain in R
2 and suppose that V ∈ W 2,2(S)

and φ ∈ C1(R) with φ and φ′ bounded. Define h : S → R
2 by

hj := φ(|∇V |2))∇V,j ∧∇V.
Then

curlh = ψ(|∇V |2) det∇2V, (195)

where

ψ(s) = −4sφ′(s) − 2φ(s) = −4
√
s(
√
sφ)′. (196)

Remark 29 If in addition |∇V |2 ≤M a.e. then it suffices that φ be C1 on
[0,M ] since such φ can be extended to R in such a way that φ and φ′ remain
globally bounded.

Proof. If suffices to show the result for V ∈ C3 since the general case
follows by approximation. As before let a = ∇V and note that α ∧ β =
−β⊥ · α. Since a,12 = a,21 we have

curlh
=
[
φ(|a|2)(a⊥ · a,1)

]
,2
−
[
φ(|a|2)(a⊥ · a,2)

]
,1

= φ(|a|2)(a⊥,2 · a,1 − a⊥,1 · a,2)

+2φ′(|a|2)
[
(a · a,2)(a⊥ · a,1) − (a · a,1)(a⊥ · a,2)

]
.
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Now

a,1 · a⊥,2 = −a,2 · a⊥,1 = − det∇a = − det∇2V,

and using the linearity of the determinant in rows we compute

det
(
a⊥ · a,1 a⊥ · a,2

a · a,1 a · a,2

)
=

2∑
i,j=1

a⊥i aj det
(
ei · a,1 ei · a,2

ej · a,1 ej · a,2

)

= (a⊥1 a2 − a⊥2 a1) det
(
a1,1 a1,2

a2,1 a2,2

)
= −2|a|2 det∇2V.

This finishes the proof, once it is noted that ψ(s) has no zeroes on [0, 1) for
φ(s) = −(λ/(1 − sλ). �

Proposition 30 Suppose that S is a simply connected, bounded Lipschitz
domain. Let V ∈W 2,2(S). Then the equation

∇W + (∇W )T + ∇V ⊗∇V = 0 (197)

admits a solution W ∈W 1,2(S; R2) if and only if

det∇2V = 0. (198)

If (198) holds then W ∈W 2,2(S; R2) and

Wi,jk = −V,iV,jk. (199)

In particular det∇2Wi = 0, for i = 1, 2. Moreover W is uniquely determined
up to an affine map with skew-symmetric gradient. In particular one can
choose W such that

||∇2W ||L2 ≤ C||∇V ||L∞ ||∇2V ||L2 , (200)

||W ||W 2,2 ≤ C||∇V ||L∞ ||∇2V ||L2 + C||∇V ||2L2 . (201)

Proof. Let

e = −1
2
∇V ⊗∇V. (202)

For a smooth V we have

e11,22 + e22,11 − 2e12,12 = det∇2V, (203)

54



and by approximation this identity holds in the sense of distributions if
V ∈ W 2,2. Now an L2 map e : S → R

2×2
sym is the symmetrized gradient of a

W 1,2 function W , i.e.
2e = (∇W )T + ∇W, (204)

if and only if
e11,22 + e22,11 − 2e12,12 = 0, (205)

see e.g. [52], Chapter 1, §17, equation (25) (note that in Love’s notation
exx = e11, eyy = e22, but exy = 2e12, see his equation (24) or [17], p. 372).
Hence the condition det∇2V = 0 is sufficient and necessary for the existence
of W . Now (204) implies that

Wi,jk = eij,k + eik,j − ejk,i (206)

and after a short calculation this yields (199), which in turn implies (200).
Using the equation (197) for W and the estimate (192) with f = |∇V |2 we
see that

|| sym∇W ||L2 ≤ C||∇V ||2L2 + C||∇V ||L2 ||∇2V ||L2 . (207)

Now (201) follows from Korn’s inequality. �

8.2 Simple regularity estimates

In general functions in W 2,2(S) just fail to be in C1. The situation is,
however, better for isometric immersions. We begin with a scalar result.

Proposition 31 Suppose that V ∈ W 2,2(S) and det∇2V = 0. Then V ∈
C1(S). If Bρ(x) ⊂ BR(x) ⊂ S we have more precisely

oscBρ ∇V ≤ C(ln
R

ρ
)−1/2||∇2V ||L2(BR), (208)

where oscBρ f := diam f(Bρ).

Proof. Following Kirchheim [43] we consider the map f δ(x1, x2) =
(∇V )(x1, x2) + δ(−x2, x1) and compute

det∇f δ = det
(

V,11 V,12 − δ
V,12 + δ V,22

)
= δ2 > 0.

Since the map f δ in addition belongs W 1,2 it it is monotone and hence con-
tinuous by a result of Vodopyanov and Goldstein [79] ( see also [75], [39] and
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[28], Theorem 5.14). In fact f δ is monotone in the sense of Lebesgue (i.e.
∂f δ(B(x, r)) = f δ(∂B(x, r)) and in particular oscB(x,ρ) f

δ ≤ oscB(x,r) f
δ ≤

osc∂B(x,r) f
δ, for r ∈ (ρ,R). Now we can apply the Sobolev embedding the-

orem W 1,2(∂B(x, r)) ↪→ C0,1/2(∂B(x, r)) for a.e. r ∈ (ρ,R), take squares,
divide by r and integrate from ρ to R to obtain the desired logarithmic mod-
ulus of continuity for f (see e.g. [55], (4.3.17), p. 110). Since the constants
involved are independent of δ we obtain the assertion for f by taking the
limit δ → 0. �

Now each component of an isometric immersion satisfies det∇2yi = 0
(see Proposition 23). Hence we obtain the following corollary.

Corollary 32 Let S, V , Φ and U be as in Theorem 25. Then V , Φ und U
are C1 in S. Moreover, for any compactly contained subset S′ we have

||∇U ||L∞(S′) ≤ C(S′)||∇V ||L∞(S)||∇2V ||L2(S). (209)

8.3 Refined regularity estimates

For sufficiently smooth domains the continuity estimates in Proposition 31
hold up to the boundary.

Theorem 33 Suppose that S is a C1,α domain (for some α > 0) and that
V ∈W 2,2(S) with det∇2V = 0. Then V ∈ C1(S̄) and for sufficiently small
ρ,R with 0 < ρ < R we have

oscBρ∩S ∇V ≤ C(ln
R

ρ
)−1/2||∇2V ||L2(BR∩S), (210)

In particular

||∇V ||L∞(S) ≤
1
|S|
∣∣∣∣
∫

S
∇V dx

∣∣∣∣+ C||∇2V ||L2(S). (211)

Remark 34 The result does not hold for Lipschitz domains. Consider for
example the truncated cone {(x1, x2) : x1 ∈ (0, 1/2), |x2 | < x1} and V (x) =
v(x1) with v′(0) = ∞ and

∫ 1
0 t|v′′(t)|2 < ∞. One may take e.g. v′(t) =

| ln t|α, 0 < α < 1/2. A slight modification shows that even C1 domains are
not sufficient. One needs a certain logarithmic modulus of continuity of the
normal.

Proof. See [60].
In the setting of Theorem 25 we thus obtain for C1,α domains the esti-

mates
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||∇V ||L∞(S) ≤ C||V ||W 2,2(S) (212)

||∇U ||L∞(S) + ||∇2U ||L2(S) ≤ C||V ||2W 2,2(S). (213)

The proof of Theorem 33 uses the fact that the gradient of an isometric
immersion is either locally constant or constant along a line segment which
touches ∂S at both ends. This is classical for smooth maps. For C2 maps it
follows as a special case of more general results of Hartman and Nirenberg
[38]. Pogorelov [67, 68] has established the result under very weak hypothe-
ses. He only requires that the surface is C1 and that the image of the Gauss
map (which maps each point on then surface to its normal) has measure zero
on S2. Pakzad recently gave a shorter proof (using results of Kirchheim) for
W 2,2 isometric immersions. For later use we state both the scalar version
(for functions with det∇2V = 0) of this result and the version for isometric
immersions.

Theorem 35 [43, 61] Let S be a bounded Lipschitz domain. Suppose that
V ∈W 2,2(S) with det∇2V = 0. Consider the open set

S1 = {x ∈ S : ∇V is constant in a neighbourhood of x}. (214)

Then through every point x ∈ S \S1 there exists a line segment which inter-
sects ∂S at both ends and on which ∇V is constant.

The same characterization holds for an isometric immersion inW 2,2(S; R3).

Remark 36 The statement for isometric immersions follows from that for
scalar functions as follows. By Proposition 23 the second fundamental form
A is curl-free and thus can be locally written as A = ∇f . Since A is sym-
metric we also have locally f = ∇V . Hence det∇2V = detA = 0. Thus if
f is not locally constant, it is constant on a line segment. Now (177) and
Lemma 39 imply that for each component yi the gradient ∇yi is constant on
that segment.

The above characterization can also be used to approximate W 2,2 func-
tions which satisfy det∇2V = 0 by functions in W 2,2 ∩W 1,∞ which satisfy
the same constraint. The idea is that each component of the set {|∇V | < k}
is bounded by line segments on which ∇V is constant and by pieces of ∂S.
If k is sufficiently big then by local regularity there is one large component
U of {|∇V | < k} and we obtain a good approximation by replacing V by
a constant in the regions between ∂U and ∂S. The precise statement is as
follows.
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Theorem 37 ([60]) Suppose that S is a bounded Lipschitz domain. Let
V ∈ W 2,2(S) with det∇2V = 0. Then there exist an increasing sequence of
open sets Sk ⊂ S and Vk ∈W 2,2(S) such that

Vk = V inSk, ∇2Vk = 0 a.e. inS \ Sk, (215)

|∇Vk| ≤ k inS, (216)
∞⋃

k=1

Sk = S (217)

In particular det∇2Vk = 0, ||∇2Vk||L2(S) ≤ ||∇2V ||L2(S) and Vk → V in
W 2,2(S).

Remark 38 ([60]) If Γ ⊂ ∂S is a finite union of intervals and ∇V = 0
on Γ (in the sense of trace) then we can achieve that Vk = V and ∇Vk =
∇V = 0 on Γ. In fact there exists an subset of S whose boundary includes
Γ on which Vk = V .

In Remark 36 we have used the fact that if ∇u and ∇v are parallel in
an L2 sense in S and if v is constant on a line so is u. The following lemma
gives a precise statement.

Lemma 39 Let Γ = {(x1, x2) : x2 = h(x1), x1 ∈ (0, a)} be a Lipschitz
graph and let

U = {(x1, x2) : h(x1) < x2 < h(x1) + b, x1 ∈ (0, a)} (218)

be a strip above Γ. Suppose that u ∈W 1,1(U), bk, vk ∈W 1,2(U) and

∇u =
∑

k

bk∇vk. (219)

If the functions vk are constant on Γ (in the sense of trace) then u is constant
on Γ.

Proof. We may assume that h = 0, since otherwise we can consider
the functions ũ, b̃k, ṽk given by ũ(x1, x2) = u(x1, h(x1), x2) etc. We may
also suppose that the vk vanish on Γ since otherwise we can first subtract
suitable constants. So suppose h = 0 and let ū(x1) = u(x1, 0) denote the
trace of u on Γ. We claim that∫

Γ
ūϕ̄′ dx1 = 0, ∀ϕ̄ ∈ C∞

0 (0, a). (220)
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This immediately applies the assertion. To prove (220) fix ϕ̄ and consider
ψ ∈ C∞

0 ([0, 1)) with ψ = 1 on [0, 1/2]. Set ϕδ(x) = ¯ϕ(x1)ψ(x2/δ). Then for
sufficiently small δ > 0 the function ϕδ vanishes on ∂U \ Γ. Thus∫

U
∇u ∧∇ϕδ dx =

∫
U
(uϕδ

,2),1 − (uϕδ
,1),2 dx =

∫
Γ
ūϕ̄′ dx1. (221)

On the other hand we have∫
U
∇u ∧∇ϕδ dx =

∫
U
∇vk ∧ bk∇ϕδ dx

=
∫

U
∇vk ∧∇(bkϕδ) dx−

∫
U
∇vk ∧ ϕδ∇bk dx.

Now the first term vanishes. To see this, approximate the bk by smooth
functions and use that vk vanishes on Γ and the calculation in (221). The
second term goes to zero as δ → 0. Hence (220) holds. �

9 Conclusions

We have shown that variational methods and rigidity estimates yield rigor-
ous convergence proofs of 3D energy-minimizing solutions to solutions of a
hierarchy of plate theories as the plate thickness tends to zero. Unlike in
heuristic derivations of such plate theories, no a priori assumptions whatso-
ever on the structure of the 3D solutions are made. The different theories in
the hierarchy are distinguished by the relation between the strength of the
applied force and the thickness.

9.1 vK theory revisited

It is instructive to see how our results address the criticisms raised by Trues-
dell and Antman against the usual derivations of von Kármán’s plate theory.
This were [76]:

(i) approximate geometry

(ii) assumptions on the way the stresses vary over the cross-section

(iii) commitment to some specific linear constitutive relation

(iv) neglect of some components of the strain

(v) an apparent confusion of the referential and the spatial descriptions
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The first and last criticisms in particular refer to the fact that nonlinear
elasticity is invariant under the full group SO(n) of rotations while von
Kármán’s theory is based on geometrically linear elasticity which is only
invariant under the tangent space of skew-symmetric matrices. Since the
three-dimensional elastic energy is invariant under rotations, large rotations
could in principal occur and these would not be compatible with the use of
geometrically linear theory. This point is addressed by our rigidity estimate,
Theorem 10. In the energy scaling regime in which von Kármán theory is
valid (i.e. Eh ∼ h4) the three-dimensional deformation gradient is very well
approximated by a constant rotation (see (66)), which we may assume to be
the identity. This is the reason why geometrically linear theory works. The
crucial expression sym∇′u+(1/2)∇′v⊗∇′v which represents the membrane
strain in vK theory is derived rigorously in Lemma 15, see (113). At the
heart of the matter is a second order estimate for the deviation of the local
deformation gradient from a constant rotation (see (96) and (88), where the
constant rotation is taken as the identity and where Eh = h4).

Point (iii) is again essentially addressed by (66). This allows one to use
a Taylor expansion of the energy and therefore only the linearization of the
full elastic energy matters and we get a linear constitutive relation in the
limiting model. One subtle point is that from smallness of the energy one
can only prove that the gradient is close to the identity in L2, while Taylor
expansion requires an L∞ estimate. Here lies the strength of the variational
character of Γ-convergence. For the lower bound we can ignore the very
small set were the gradient may not be uniformly close the identity (see
(121)). For the upper we only need to construct a test function and this we
can choose so that uniform convergence holds.

Point (ii) is also taken care of by Lemma 15. It shows that the relevant
components of the limiting strain are affine in x3. Since the limiting stress-
strain relation is linear, the same holds for the stress.

Finally (iv) emerges naturally in our analysis. Again Lemma 15 shows
that certain components of the limiting strain can be predicted from the
limiting in-plane and out-of-plane deformations. Minimization over the re-
maining components leads a lower bound for the energy and the construction
of test functions for the upper bound shows that this lower bound is already
sharp. Hence for (almost) minimizing sequences in the sense of (18) the
remaining components of the strain are essentially slaved to the ones which
enter directly into the theory.
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9.2 Extensions

The approach discussed here can be extended to many other settings and a
lot of work is currently in progress. Let us just mention shells [49, 33], rods
[57, 58, 64], other boundary conditions and stability [35], heterogeneous films
and multilayers [74] and multiwell problems [11, 74, 15, 16, 46, 59]. We also
believe that the estimates developed here should be useful for the numerical
analysis of thin elastic bodies.

9.3 Theories which involve membrane and bending energy

A wide open problem is the question whether one can in a rigorous way jus-
tify theories which are two-dimensional but still involve the small thickness
parameter h. There are many cases of interest with boundary conditions
that do not fall into any of the categories. A typical case involves boundary
conditions that cause part of the shell to stretch, but another part to bend
with no stretching. This apparently can also happen near a singularity.

The theories derived in the limit h → 0 (see Table 1) also often show
certain degeneracies. In such cases membrane theory exhibits no resistance
to compression, leading to undesirable instabilities. While membrane theory
is thus too soft, Kirchhoff’s bending theory is often too stiff. It captures the
bending energy correctly but only isometric immersions have finite energy.
Practitioners often use theories which involve both membrane and bending
contributions to the energy (and thus retain the small parameter h), i.e.,
geometrically nonlinear versions of the von Kármán theory. The question
whether any one of these theories has a rigorous asymptotic status is unclear.
There have been some attempts to extend the concept of Γ-convergence to Γ-
expansion in order to capture not only the limit, but also higher order terms,
but so far this approach has been mostly successful for linear problems
[4]. It seems that these Γ-expansions tend to separate the regimes more
than is desirable; each successive term in the Γ-expansion can only make
an arbitrarily small perturbation to the preceeding theory. In ongoing work
Braides and Truskinovsky [12] are studying a number of nonlinear examples
where such a Γ-expansion would be very desirable. The issue of simplified
theories which still contain the small parameter is of particular interest in
the force range 1 ≤ α < 2, as we already discussed in Section 2.2.
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