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Abstract

In this paper we study the effects of periodically varying heterogeneous media on the
speed of traveling waves in reaction-diffusion equations. Under suitable conditions the
traveling wave speed of the non-homogenized problem can be calculated in terms of
the speed of the homogenized problem. We discuss a variety of examples and focus
especially on the influence of the symmetric and antisymmetric part of the diffusion
matrix on the wave speed.
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1 Introduction

Front propagation is a phenomenon occuring in various scientific contexts. Examples
are: chemical kinetics, spread of epidemics, traveling population fronts in ecology and
in population genetics, transport in porous media, transport of chemical signals through
tissues, propagation of action potentials in coupled nerve cells, shear flows in cylinders,
and reactive flows in composite materials. Several of these processes are modeled by
reaction-diffusion-advection equations.

Many results are available on front propagation in homogeneous media and enviro-
ments. The study of front propagation in heterogeneous media is more recent. Since
heterogeneities occur in every natural environment, an important problem is to under-
stand how these heterogeneities influence the traveling fronts, e.g. their location, profile,
and their speed. In this paper we therefore consider a general ansatz first, and calculate
the speed of traveling fronts of reaction-diffusion equations with rapidly oscillating diffu-
sion and drift coefficients. For an excellent reference on mathematical results of propaga-
tion phenomena in heterogeneous media, especially on existence and stability of traveling
waves, and further references not cited here, compare the survey paper [13].
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The basic typ of equation we are dealing with is the following

uy =V, (A(2)V,u) + f(u) z2=(21,0y2n) ED=RxQCR", ¢t>0. (1)
with inital conditions u(0, z) = u.(2).

Here A(z) is a positive definite matrix, f € C?([0,1]) fulfills £(0) = f(1) = 0 and is either
of bistable or combustion type. The cross section of the cylinder Q C R*~' is bounded
with C1® boundary. For simplicity we will consider waves in direction e; = (1,0, ...,0).

Concerning existence and stability of traveling waves, when A is independent of z1, the
shear flow problem has been studied most. Existence of unique monotone waves for bistable
nonlinearity and a convex cross section €2, as well as for the combustion nonlinearity were
shown in [2], [1]. Global stability in dimensions higher than one where shown in [9],
extending the classical one-dimensional result by Fife and McLeod, [3].

For A depending on all spatial variables, z1, ..., z;,, the existence of a wave for combustion
nonlinearities was shown in [12], and in [11] for bistable nonlinearities, when the matrix
A(z) is close to a constant. In the later case also local stability in one space dimension
could be proved. In [14] it was shown that waves do not exist in the bistable case if
the oscillations of A(z) are too large. The existence of traveling waves for systems in
periodically perforated domains close to the homogenization limit was proved by Heinze
[7]. This technique also covers the case of rapidly oscillating coefficients.

First results on the qualitative behavior of propagating waves, namely variational
principles for the speed of front propagation for KPP-type nonlinearities, respectively
Fisher’s population genetic model, were given by Hadeler and Rothe in [5] and Gértner
and Freidlin in [4].

€T

In the following we choose z = £ and consider the problem

up = V(A(Z)Vu) + f(u), z € R, t>0 (2)

with initial data
u(0, ) = u.(x).

We assume A(z) to be 1-periodic in all variables, thus the cross section  is a unit torus.
We suppose that this equation admits a unique monotone and stable traveling wave in
direction e;. As mentioned before waves to exist in the bistable case if ¢ is sufficiently
small, but their stability has not yet been proven.

The variational characterization given in [8] allows to calculate the deviation of the wave
speed of (2), if existing, from the wave speed of the related homogenized problem. A
similar variational characterization was also given in [6] for A depending on (22, .., 2)
only.

In [8] it was shown that in many cases the acceleration or slowing down of the wave
speed for problem (2) can not be decided upon the first order expansion of the wave
speed. Here we have a more detailed look at the problem and consider the second order
coefficients of the expansion where necessary.



2 The variational characterization of the wave speed

DEFINITION 2.1 (compare [8]). We define a wave u* of (1) with velocity ¢ # 0 in
direction ey connecting the two zeros O and 1 of f by:

e u* is a solution of (1)
. u*(t—}—%,x—e]):u*(t,x) forallt e R, z€R"
o u¥(—o0,z) =0, u*(co,z)=1.

The wave u* is stable with respect to some subset I of initial data if for the solution u of
(1) with u, € I
lim sup |u(t,z) —u*(t,z + Oey)| =0

t—=00 yeRn

holds for some shift 6 € R.

Suppose that there exists a unique monotone and stable traveling wave (u*, ¢) in direction
of e1. Let

K= {1) € C'(R,C%(D))|ow(t,x) > 0,0 < w(t,z) < 1,v(0,.) € Iy,v(t+ 1,2 —e1) = v(t, ’I')}

be the sets of admissible comparison functions. For v € K define

V(A Va(t, ) + F(0(x))
o(t, ) '

P(o(z)) =

In [8] a variational characterization of the wave speed was given for more general situations.
Here we will state a specific version of the result as a lemma.

LEMMA 2.2 [8] Suppose that there ezists a unique stable traveling wave for problem (1)
then the traveling wave speed c is given by

sup inf  Y(w(t,z)) =c= inf sup P (v(t,x)).
vek (tx)e(Rx D) (v(t.)) VEK (¢,.2)e(Rx D) (v(t.))

The proof needs a maximum principle and relates technically to results given by Vol'pert
et al in [10] for monotone systems of ODE’s.
A traveling wave u. for problem (2) with wave speed c. has of course to satisfy

€
ui(t+ =,z —eer) = u*(t,x)
c
in Definition 2.1. Thus the condition for admissible test functions in L = K. changes to
v(t+e,x—eer) =v(t x).

By means of Lemma 2.2 we obtain an asymptotic expansion for ¢.. Here we consider terms
up to second order. The first order expansion of the wave speed was already proved in [8].
We have to calculate cell problems of higher order and thus use different test functions.



3 Asymptotic expansion of c.

THEOREM 3.1 Assume that the homogenized problem of (2) has a unique traveling
front (up to translation) with nonzero speed and that there exists a unique monotone and
stable traveling wave (u.,cc) in direction e; which is a solution of (2). Then the wave
speed c. has the following expansion

Ce = Cy+Ecy + 6262 + 0(83)
where ¢y is the speed of the homogenized problem.

Proof. We consider the test function:

U(ta LE) - UO(S) + eun (Sa Z) + 82'“2(5’ Z) + 83“3(57 Z) + 84'“4(57 Z)

where { = 71+, z = and ug is a solution of the following homogenized problem

Agufy — coug + fug) =
{Uo( : )*0(3 up(co) = 1 3)
with
w(€,2) = xi1(2)uh(€) + ¢1(€)
us(€,2) = xa(2)ut(€) + x1(2)¢} (€) + $a(€)
us(€,2) = xal2)ull(€) + x2(E)1 (€) + x1(2) B (€) |
ui(€,2) = xa(2)ul(€) + x3(2) 87 (€) + x2(€) B3 (€) + hug (€) £ (uo(£)).

Here x;, h solve the following cell problem (unique, 1-periodic, with zero average solutions)
and ¢1, ¢o will be chosen later

V,AV,x1 = -—-V,Ae
V,AV . x2 Ag —e1Ae; —e1 AV, x1 — V. Aerx1

V. AV.x3 = Aox1+ A —erdeixi —e1AV,x2 — V, Aeixe (4)
V., AV.x4s = Aox2 +2A1X1 + Ay *261A€1X2 —e1AV,x3 — V,Aeix3
V,AV,h = X2 — % - %(X? - %)

with
Ay = 7461A(VzX1 +e) = %(Vzm +e1)A(V.xa +er)
A = %@A(szZ +e1x1) (5)

Ay = %@A(sz&' + e1x2).

Since A is positive definite we have Ay > 0. Further on we know v(t+¢,x —cer) = v(t, z).
Near +o0o all derivatives of uy have the same exponential decay rate as uy. Also ¢ and



¢2, which will be specified below, have this decay rate. Hence ;v > 0 for small £ and thus
v € K. Since V = e10¢ + %Vz, an easy computation gives that

V(AVY) + f(v) = coug+ e [Arug + cou| — cod) + Aod] + ¢1.f' (uo)]
+e’ [Awgl) + X1 <A1U[(J4) + a0’ + ¢ f' (o) + U6¢1f"(uo))

4 2 2
+x2 (Aoul! + it /(o) + ut” " (wo) ) + A’ — Bup” 1" (o)

2
+ Ao + () + 5" )| + O

where 3 = §(x2 — X;) = —1 § x]. We have

Thus

Y(v) = co+ % [Avug' + Agd — cod + 1. f' (uo)]
1o

5 [ B (— A — Ao + ot — 1 f(u0))

Ug

+x1 (Alugl) + Ao — cod + &) f (ug) + 11,6¢1f"(11,0))
+A2u§]4) + AL — Bub® " (ug)

2
+ 71]""(7110) + Aoy — cody + ¢>2f’(“0)} +0(%).

We choose ¢ and ¢ such that the coefficients of £ and £? for 1(v) are constants. This
requires that ¢; and ¢o are solutions of the following two equations

A — cod + b1 f (uo) = —Ajupy + erug
2
Aoy — cody + daf'(ug) = coug — A2ug4) + ,6’11,62, "(ug) — %f”(uo) — A1¢] + 14},

The solvability conditions imply that

€0

12 —Lyg _ / " by P
c1 [ ug (z)e “o7dr = A; | ug(z)ug (z)e 4o dz, (6)
R R
12 *2—01‘ - ] (4) 72—01‘ / / 72—01‘
ca [ uy(z)e Ao dx = Ay [ up(z)uy’ (z)e Ao de —ci [ uy(z)d)(x)e 4o dx
JRr Jr JR
(7)

2 co

+/ ug(z) <A1¢'1" — Bub? £ (ug) + %f”(uo)) e Ao"dx.
R

5



If the solvability condition (6) is satisfied then ¢ = ¢ + Auj with A € R ; ¢ is uniquely
determined, bounded and satisfies the following equations:

Apd" — cod’ + ¢ f' (ug) = —Arug + crug (8)

and
/ 1L6¢67%$dm =0. 9)
R

Hence the solvability condition (7) can be written (with some effort) as

€0

12 72—0113 o ! (4) 7:—01 I I —4.T
cz/uﬂ (r)e Ao'dr = Ag/uﬂ(x)uo (x)e Ao dx—c1/u0(x)q§ (x)e Ao dx
R R R

2 c
+ [ o) <A1¢"’ " %f”(«@) e W,
R

€0

= AQ/UU( )1184)(T)P’C*(r)lmdm01/1L6(m)¢'(m)e%mdm
R

760 26 _ €0 4
—l—Al/(j) < 2110 () 2A0 ug' (z )—I—A—g "(fr)>e Ao d. (10)

From the solvability conditions (6) and (10) we obtain ¢; and ¢y respectively. Therefore
we have

1/)(7)) =co+e€cy + 6262 + 0(63).

To conclude the result of the theorem, note that the asymptotic expansion of 1 (v) up to
the second order in € is a constant. This ends the proof of Theorem 3.1.

PROPOSITION 3.2 Let > 0 and co = cp,n +EC10 +€2(327(X + 0(63) be the asymptotic
expansion of the wave speed defined in Theorem 3.1 for the matriz «A. Then we have

o0 =Vacy, ca=c and ¢y =

e

where cy, c1 and co are given in Theorem 3.1.

Thus multiplication of the matrix A by a positive constant has no effect on the signs of
cg, c1 and co. This will be used later when we give explicit examples.

Proof. Let (v,cg,4) be the unique solution of

{ aAgv" — v’ + f(v) =0

v(—00; 00;0) = ug(—o00; 00;0).
We know A; = A;(A) for i € {0,1,2}, and thus for all & > 0 we have



By uniqueness, it follows that ¢y, = /acg and for all z € R we have

v(z) = ug(—=).

x
Va
Equality (6) implies that

2 0,0 _0a
C1,a/”’ (z)e oto dT—OzA1/ v ()0 (z)e” 240 dx.
R R

By change of variable we get

Ja /.

which implies ¢1 o = ¢1.

c ‘0 aA ‘0
Lo [ (@)e” A0 de = . /ub(m)uﬁ'(m)e A0 dy
JR

Let ¢, be the unique solution of

aAodn — co.adn + daf (v) = —aA1v" + 1 00"

with
€0,

/ V' poe A0 dz = 0.

JR
Then ¢q () = ﬁ(l)(%) where ¢ is defined by (8) and (9).
After a change of variable the solvability condition (10) for ¢y 4 results in ¢y o = %
REMARK 3.3 If Ay =0 then ¢y =0 and cg is given by

12 7:3‘7013 . (4) — f‘O x
co | up (m)e Modr = Ay | ug(z)uy’ (z)e Ao dx. (11)
R R

This formulation will be used later to calculate the sign of cs.

In the following we first try to get some information about As.

PROPOSITION 3.4 Let B = A" and B; be the corresponding constants defined by (5)
for the matriz AT. Then we have

1. (i)By = Ay, (ii)B1 = Ay, [(iii)By = Ay
2. If A is a symmetric matriz then A1 =0, so ¢1 =0 and As is given by

Ay = %v AV( Xj).

In this case we have As > 0 and cy can be calculated from (11).



The following assertions are equivalent:
(i) Ay =0
g X
(ii) x2 — %+ = const.
(iii) h =0
(iv) (e1 + V.x1)A(e1 + V,x1) = const., which is equal to Ay.

Proof. Let v; be the solutions of the cell problem (4) with the matrix B in place of A.
Case 1.(i)

By

%G]B(Vzllb] + 6]) = %B]AB] — 7{1/)1Ver]
= 74611461 + 7{¢1VzAVzX1 = 7{€1A61 + %X]VzBVzQP]

= 74611461 — %X]szel = 7461A(VZX1 +e1) = Aop.

Case 1.(ii)

%G]AVzXQ = j{l/MVzAVzXQ
= fl/)] (Ag — V,Aeix1 —e1 AV, x1 — e1dey)
= le(ﬁBVz?P] + V.Beiipr) — %613611/)1
= j{Xl(—VzBVzQPQ-l-Bo—@lB@]) —%61361%
= _%1/)2VzszX1 - %61A61X1 - %613611/)1

= —%61sz¢2 - 74611460(1 - %61361% =—B — ?{611461

which implies that A1 = —B;.

Case 1.(iii)

%elAVzX:s = 7{¢1VZAVzX3
= 7{7#1(140)(1 + A1 — V. Aeixa — e1AV.x2 — e1Aeix1)
= 7{¢1X1(A0 —e1der) — 7§X26’1A61 - 7{¢2VZAVZX2
= 7{¢1X1(A0 —e1der) — 7§X26’1A61 + 74%61361
- %Xl(eleﬂpQ + V. Beis).



This implies that

Ay = %61A(VzX3 + €e1x2)
= j{lpge]Bm + le (Aot — erAerypr — e1 BV 1o — V, Beqib)
= j{%@]Be] + %X]VzBVzQP?,
— j{i/;ge]Bm +e1 BV 1p3 = Bo.

2. If A is a symmetric matrix then A = B and 9; = x; and we have

Ay = %elAVzX:s + %X2€1A€1
= 7{¢1X1(A0 —e1dey) — 7{¢2VZAVZX2

= %X%(AU —ejAe; + VZXIAVZXI) - %X%VZXIAVZXI + %VZXQAVZXQ
’ ’ X2 ' XQ
= j{X%(AU —e1der + V. x14AV.x1) + j{Vz(XQ - %)sz(XQ + 2

2
1
= j{X% <A0 —e1Aer + V,x1AV,x1 — V, AV, x2 + EVzAVzX%>

2 2
+$ .06 - av.e - D)

1
= 7{ Xi (elszxl + VaAerxa + VaxaAVax + ivavzx%>

2 2
+$ .00 - Dav.e - D)

2 2
N %X%(_G]Av”“ = VexiAVexa) + %Vz(m - %)sz(m - %).

We multiply the first equation of the cell problem (4) by x} and by integration by parts
we get

%X%(elAVzM + V.x1AV.x1) =0
which implies that

2 2
Ay = $ 9,06 - AV, 0 - XD

Since the matrix A is positive definite we have Ay > 0 and Ay = 0 if and only if

V.0 - 4 <0 (12)

which implies that
2

X2 — % = const. = '7{()(2 — %)

The last equation of the cell problem (4) implies that

2

Vz(ng%):0<:>h:0.



Since A is positive definite, equation (12) is equivalent to

0 = V.AV.(yo— X))
= Ay —ejde; — e AV, x1 — V. Aeixi — V. (Ax1V.x1)
= Ay -— 61A(€] + VzX]) — (61 + sz])AVZX]
= Ap — (e1 + Vox1)A(er + Vaxu).

This is equivalent to
Ay = (e1 + V.x1)A(e1 + V,x1), which is constant.

This ends the proof of Proposition 3.4.

4 Specific cases

To understand the effects of specific types of periodically varying heterogeneous media on
the wave speed we study some cases in more detail.

Case 1: A = A(x1).
First we consider the 1-dimensional situation. Let A = a(z1) > 0 be a 1-periodic function
defined in R, then A; = 0 and thus ¢; = 0. An easy computation gives that

1
AOZ%G‘(X'HFU:]—I
and .
AQ—AO/ B0
0

Ay =0<= x1 =0<= a = const.

The last equivalence results from the first equation of the cell problem (4).
The same results are true for A = A(z1) being an n X n matrix with entries just depending
on z1, namely Ay and Ay just depend on the first component a; ; of the matrix A.

Later we will use the formulation given above for A, to determine the sign of ¢, when
f is of exact bistable type.

Case 2: 2-D case.
For simplicity let

A—A@@—(Z Z) (13)

be a positive definite matrix. Since a,b,c,d all depend only on z9, we have x; = x;(x2)
for all 4. Define f._; and g by

1ceb 1e¢ ol
C_b 1r_ bC 1f—fa
fep == ==L and g=a— -+ o2ql (14)
d 4 [y d d (f 12

10



After some computations (details are given in the Appendix) we obtain

o= i) gy (i)
L) (P [ i e
AR R HIIED))

The first term of the right hand side of the equation is positive. To simplify the second
term and to determine the sign of the third term we define ¢* = ¢ — k and b* = b+ k with

po | /1cb
BEV T
1 o*

C*_b* C*b* 1( ;)2
fev=[f"= and g—kf*=¢g"=a— 4o d)
d d d(01%)2

Thus f* = 0 is equivalent to A — AT = const. An easy computation gives that

1 1 T
AU:/ g, A1=/ Aog*/ f* and
0 0 0

We have

+/01 (/Om(Agg*)> r (/0 f*/ﬂ /0 f*) (15)

\V)

11



With this we can see that the first term on the right hand side of (15) is positive and the
third term is negative. The second term is simplified and equal to zero if Ay — g* = C'f*.
To analyze the sign of Agy, we first state a useful corollary.

COROLLARY 4.1 Suppose that there exists a constant C such that Ay — g* = C f* (if
d is constant this is equivalent to ad — be = C'(c — b) + const. for a C' € R) while ¢ — b
is not constant, then A1 = 0 and the sign of Ay is well determined as a function of the
constant C and of fﬂl %”. More precisely

Jy e\
1. IfC* = <2Of—d) then As = 0.

L1
0 d
For d = const. the condition reads C' = f borC = fo

Terb 2
2. I,f02><£° d) then Ay > 0.

11
Jo d

For d = const.: C' < min{— fol b, fol ¢} or C' > max{— fol b, fol ch.

1ctb 2
3. If C? < <£0 - ) then Ay < 0.

1
04d
For d = const.: min{— fo] b, fﬂl c} < C' < max{— fﬂ] b, fﬂl c}.

We omit the proof of this Corollary.

Equality (15) implies that
1) If f* =0, respectively A — AT = const., then we have A; = 0 and A is given by

w3 gy () 2o

1
.0 d
Ay =0 < g* = const. <= g = const.. This means that ¢; = co = 0.

2) If g* = const. then we have Ay = 0 and Ay is given by

e ) 5 ))

Ay =0 if and only if (f* =0 or fo = 0) which means (A — AT = const. or fo b — ),

To understand the effects of the symmetric and antisymmetric part of A on ¢; and co
better, we discuss some examples in more detail.

12



5 Examples

We know from [11] that for bistable nonlinearities f and for small oscillations of A there
exists a traveling wave for (2) but for large oscillations of A there is no traveling wave.
Therefore we have to chose our examples accordingly. By multiplication with positive
constans we can transform large oscillations into a small ones and we know from Propo-
sition 3.2 that this multiplication does not change the sign of ¢; and ¢y but only affects
the absolute value of ¢5. Hence for the sign considerations in our examples we do not take
care of these factors.

In the following let k;, b; and K be real constants and n # m nonzero integers. The con-
stant K is chosen large enough in comparison to the other constants in order to fulfill the
positive definiteness condition for the matrix A.

We know from Proposition 3.4 that b and ¢ play the same role in the computation of Ay
and Ay, so we can exchange b and ¢ in those calculations.

Example 1: Let the matrix A = A(z3) in (13) be defined as follows
b= const., d=const. >0, c=kisin(2rnzy)+b
and
a = kysin(2mnxg) + k3 cos(2mnas) + ky sin(2rmas) + ks cos(2nmag) + K

with n # m. Using the fact that for all n # m we have

1 1 1
/ sin(2mnx) cos(2rmz)dx = / sin(27mnz) sin(2rmx)dr = / cos(2mnz) cos(2rmz)dr = 0
0 0 0

an easy computation gives that

kiks
A=K, A = :
0 ’ ! 4mnd
and ,
1 1 2bk1 ko 1 k2 ks
Ay = —— | = (k2 + k% — Sy ' R ) Y i LA S
27 Sin? [n2(2+ 3 p )+m2(4+ 5)+2dmn m=2n

If k1, k3 have the same sign, then A; > 0. Identical oscillations of a and ¢ have no effect
on Aj, and also differences in periodicity of the oscillations are not affecting it, whereas
the right type of “counter-oscillations” with the same periodicity do. We remark that

A1 =0<=k =0 or k3 =0.

If k1 = 0 then A is a symmetric matrix and we have A1 = 0 and

1 1 1
Ay = — ﬁ(k§+k§)+m(kf+k§) > 0.

8dm

13



So the sign of ¢o does not change for different constants ko, ..., k5. The last inequality is
already known from Proposition 3.4;

In this case Ay = 0 if and only if ky = k3 = k4 = ks = 0 (which means the matrix A has
constant entries).

If k3 = 0 in the original situation of this example, then A; = 0, thus ¢; = 0 and

1 [1,,, 2bkik

k2ks
- 8dr? | n? (k3 ]

1 2 2
) + W(k‘* +k:) + méngn

Ay

which can be negative in case the identical oscillations of a and ¢ are strong and/or b is
large. Thus also ¢y can change sign in this case.

Example 2: Let the matrix A be defined like in (13) with
d = const. >0, b= kysin(2rnzy) + ko cos(2mnzs) + by

¢ = kg sin(2mnze) + k4 cos(2mnzs) + by

and
a = ks sin(2mnxy) + kg cos(2mnxsy) + K.

An easy computation gives that

B kiks + koka
AU—K*T,
1 by +b
A = kg (ks — ki) — ks (kg — k) + ———— (kyky — koks)
4drnd
and
by + by b1 + by
Ay = — |2+ k2 —k ki + k3) — k ko + k
2 87r2n2d[5+6 5 (k1 + k3) — ke y (ko + k4)

+k1k3 + koky

3(k? + k2) (k2 + k2
¥ (KT + k3 + k3 + K3 +8(b1 + b2)?) — (ki + F3) (ks + 4)}

16d?

where again K is supposed to be large enough and especially Ay > 0. Since the explicit
expression of As is quite complex, we discuss its sign only when A; = 0 and in some
simplified cases.

Case 1: k1 =ky =0

kiske — kuks 1
3l — Nafis d A
drnd 0 e

by + b
- 2 2 1 2
~ 8dm?n? ks + ko d

Ag=K, A= (k3ks + kake)

We remark that
A1 = 0 <= kgkg = kqks.

14



Here the counter-oscillations of a and ¢ are balanced.
If k3, k4, ks, kg are all positive, then A; changes sign if the counter-oscillations of a and ¢
are imbalanced in a suitable way.

Suppose that A; = 0 and there exists i € {3,4,5,6} such that k; # 0 (for example k3)
then
A  ks(k3 +E3) _b1+52k
27 Rdren2k2 da )

This case fulfill the conditions of Corollary 4.1 namely ad — bc = C'(c — b) + const. with

C'=b — % therefore

1. Ay =0 if and only if k5 = 0 or k5 = 2402k,
This is an example for ¢; = ¢9 = 0 and the matrix A is not constant.

2. Ay > 0 if and only if k5 < min{0, %kg} or ks > max{0, %k:{}
3. Ay < 0 if and only if min{0, 2423} < k5 < max{0, 22 ).

Case 2: ks = 22 (ky + k3) and kg = 222 (ky + k4). Then we have A; = 0 and

Ay = (400 + 52)? (ks = k0)? + (s — B2)?) + 3(K3 + K3) (45 + K)

-1
12872n2d?
— (kv ks + koka) (K2 + k2 + k2 + k2) } .
Depending on the parameters A, changes sign.

If k1ks + koks < 0 then Ay < 0;
Ag = 0 if one of the following assertions holds

1. ky = k9 = k3 = k4 = 0, in this case the matrix A is constant.

2. k1 = ko =0 and by + by = 0, thus ¢ = const.
or

3. ks = k4 =0 and by + by = 0, thus b = const.
Both are examples for ¢; = ¢s = 0 and the matrix A is not constant.

For Case 2, 2.,3. we have a = const. and b or c is constant which means that ad — bc =
C'(¢ — b) + const. with C' = ¢ or C' = —b (i.e. the constant one), so we know from
Corollary 4.1 that there is no influence on the wave speed up to the second order.

In particular, if the matrix A has exact antisymmetric oscillations, i.e. k3 = —k; and
k4 = —ko, then Ay < 0.
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For large by + by and (ki # ks or ky # k4) we also have Ay < 0.

Note here that the symmetric part of the matrix A has an effect towards Ay being positive
and the antisymmetric part has an effect towards As being negative.

6 The exact bistable case

Here we are back to the general n-dimensional case. In this section, for exact bistable
nonlinearity f, we determine the value of ¢; as a function of Ay and Ay, and if Ay =0
(e.g. when A is a symmetric matrix) we determine the value of ¢y as a function of Ay and
Ajy. The nonlinearity f of equations (2) and (3) is assumed to be of the form

Flo) = ul—w)u ) pe (0,1)\ {5}

For a unique solution of equation (3), we fix a point, for example uy(0) = % An easy
computation gives that

[A 1
co = —0(1 —2u) and wup(x) = ————.
2 Rz

1+e

Consider the three terms

12 —%x R ved r(4) L
In= [ uy'e 4o7dx, I1= [ uguye “o"dr and Iy = [ uyuy’'e “o dz.
R R R

We have

. V24, .
Iy, = /uf)?e*‘%wdx— ! / ¢ — j e Ao%dy
R 240 Jr (1+e V?40)4

9] f2 2“

\/2A0 / (14 1t)

dt

00 tl 21

00 tl 21
dt
\/2A(] / 1+1¢)3 \/2A(] /

Using the fact that for all integers n > 2 we have

oo t]*?ﬂ 1 o M oo t]72“
o (1+1) n o (1+1)

dt.

we obtain L
2u(1 — 0o ¢l—2u
I, = p(l — ) / t gt
3v2A4, (1+1t)2

A similarly easy computation gives that

< V24, o 12
I = Mo~ A0  dy = 1—)(12u% —12u + 1 / dt.
1 /W!of’ z 60A%M( ) (124 p+1) . T
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Hence

A 2 Ai o0
= 127 — 12 1) = —=(3¢; — Ap).
¢ 20Ao( Iz pt1) 10A%(CU 0)
Like in the computation of Iy and I; we obtain that
_ o, 1 —p) oo pl=2u
= [ wule T mam — PUZB) g2 — —1/ .
2 ,/ﬂ% 00 QOA% ( lu’)( M M )' 0 (1 +t)2
which implies that
Iy - ¢y < 0.

Conclusion. For the exact bistable nonlinearity we have

= 1-2u)2 2],
“7 504, <( 2 3)

For p = % + \/g we have ¢; = 0. If A} # 0 then ¢; can change sign depending on the

exact value of the parameter p, so the nonlinearity has an effect on the wave speed which
means slowing it down or speeding it up. For the effect of A; on the sign of ¢; compare
the discussion and details given previously.

If Ay =0 then ¢; = 0 and ¢ is given by

Ag
g = —"7——
27 3040v24,

As(1 —2p)? 3
COC2:2(307140M) <(12,U,)2§>

(1 2p) (8% — 8 — 1)

which implies that

In this case we see that the sign of cgco depends only on the sign of Ay since (1—2pu)% — % <
0. The nonlinearity has an effect on the wave speed but the wave speed slows down or
speeds up depending only on the diffusivity (and not on the nonlinearity).

In particular if A is a symmetric matrix then A; =0, ¢; =0 and A3 > 0. Since 0 < u < 1
in this case we have c¢ycg < 0. For any A = A(z;) with a1 ; non-constant we have cocg < 0
in any space dimension.

7 Discussion

In this paper we studied the effects of periodically varying heterogeneous media on the
speed of traveling waves of reaction diffusion equation. The speed of the wave can be
expanded in terms of the space periodicity. Since the first order expansion often cannot
clarify the influence of the medium on the speed of the front, in particular if the diffusion
matrix A is symmetric, we have analyzed also the second order expansion where necessary

ce =co+cre + e’ + O(€%) .

If A is symmetric, then A; = 0, thus ¢; = 0 and Ay > 0.
Generally, if Ay =0 then ¢; =0 and ¢ is given by (11).
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If A= A(xy) then Ay = ¢; = 0 and Ay and A, are depending only on the first component
a1,1, of the matrix A. For an exact bistable f we have cyca < 0.

In two dimensions and for A = A(zy) we obtained the following results. If A — AT =
const. then ¢; = 0 and Az > 0. So no sign change of ¢y is possible. For constant as o and
identical oscillations of @11 and ag; there is no effect on A; and thus not on ¢;. The right
type of counter-oscillations with the same periodicity do have an effect on the wave speed.

In the n-dimensional setting and for exact bistable f, the nonlinearity does influence
the wave speed if A; # 0. In case A1 = 0, thus ¢; = 0, then f does not influence the sign
of ¢o. Explicit formulas for ¢y, ¢ in the expansion of the wave speed could be given.

8 Appendix

Here we compute Ag, A; and A, for the two-dimensional situation as given in section 4,
case 2. Let A, f. , and g be given like in (13) and (14). We have for all 1 € {1,2, 3,4},

Xi = Xi(22). Define f. and f, by

c 1[y% b1t
fe==—=24 and f,=-— =04
4 df d d deE
From the first equation of the cell problem (4) we have
1
- 1y S
VA(VX1+€1)=Oz>x’1:f£+_@:7fc
d dﬂl
JO d
! 1 be lerlb !
Ag=[ a+bx)=[ (a— =)+ 20 2Jod_ [ o
0 0 d 11 0
0 d

We have fol x1 =0 and x1(1) = x1(0) which implies that

/0f+/01/0f

VA(VXQ + G]X]) = Ay — 6]A(VX] + 6]),

The equation satisfied by o is

after integration we get

Xy = %/ﬂm(Aoql@/ fb—Xl"‘—&//fr
Clifoﬁ / /fp I ](fio )_

0 d
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Using this expression we get from (5)

A = /O]axﬁbx’g:/o])m(ﬁ%%ﬂﬁgf)/lelbj;Jr/o]g/Om(Aog)
. . . . Jo d.
f—//< IR

fﬂd/ /fcb
'/O]fb'/:(Ao—g)ﬂL/O]g<—'/0$fc+'/01/0$fc>
[ [ )
.oiolﬁ//fc foﬁf [
/Ulfb/ﬂm(Ao—g)+/01(A0—9)/0mfc_/01(140—9)/0mfcb-

Here we have used fol fo [y fo=0.
Now we integrate the third equation of the cell problem (4) we get for x3

D

c 1 [*

X5 = —x2+ - / (Aox1 + A1 — axi1 — bxh)
a2t a,
- /1((; 1/I(A T A b’))
T — —=X2 — 5 X —ax1 — 0x .
df(fé L, \gxe g ), Hoa 1 1 9
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Therefore we get

1 1 be b [*
Ay = /ax2+bx§,=/ [GXQEXQJrE/ (Aox1 + A1 — ax1 — bxy)
Jo Jo Jo

1bp 1 T
Jo d ¢ 1 _ ot
T /0 [3)(2 3 /0 Agx1 + Ay —ax: sz}

0d
1 f 1 :1; /
= / —Ag+g+ =5+ +/.fb/(A0X1+A1(1X1bX2)
JO OE JO JO
1 T ) T T 1 T
- /x2</ (o)t [ pern | fb)/<on1+A1axl)/ i
0 0 0 3 Jo 0 0 0

A e A Y ETACSY
ey
(1)13 / /fp b] (/o (Ao —g) — /fc-i-b/ fb)
—'/0]<A0X1+A1—< +%—$r( ) )/fb
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—'/0</A0 9)[——//f+/f+/Ao 9) — df()]fz//og
g e s [ s L e g
%folf’/ o] g [ dm/ /fb+fb//f+f b//fb]

+/(A0—9)/ fc/fb

AL Lol b
o ”(‘_/“dﬁ%/‘f il Hofflfz-/m )

) L) o[

([ q)[l b [ +dfof(;§/fcbfc,,/oﬂ/jfcb]
rodr[]lfi 1 ! ]1 ‘
i SRS [ 3( [o) [aewe g [reo [ 5 0e

——(/ fc> [ fc/ | fc+—/wfc'/owfb—;be/o]/oxfc]

- /jé(/omo 0) g5 ([ ] a)

- ( o o] [ SET /;fc,,)
r[r<61l< ) f&5< f>>
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