
�����������	�
���
�

für Mathematik
in den Naturwissenschaften

Leipzig

Fast and Exact Projected Convolution for

Non-equidistant Grids - Extended Version

(revised version: March 2007)

by

Wolfgang Hackbusch

Preprint no.: 102 2006

Fast and Exact Projected Convolution for
Non-equidistant Grids

Extended Version

Wolfgang Hackbusch
Max-Planck-Institut Mathematik in den Naturwissenschaften

Inselstr. 22, D-04103 Leipzig

Abstract

Usually, the fast evaluation of a convolution integral
∫

R
f(y)g(x − y)dy requires

that the functions f, g are discretised on an equidistant grid in order to apply the
fast Fourier transform. Here we discuss the efficient performance of the convolution in
locally refined grids. More precisely, the convolution result is projected into some given
locally refined grid. Under certain conditions, the overall costs are still O(N log N),
where N is the sum of the dimensions of the subspaces containing f , g and the resulting
function.

AMS Subject Classifications: 44A35, 42A55
Key words: convolution integral, non-uniform grids, discrete convolution

1 Introduction

We consider the convolution integral

ωexact (x) := (f ∗ g) (x) :=

∫
R

f(y)g(x− y)dy (1.1)

for functions f, g of bounded support and note that f ∗ g = g ∗ f.
The computations are restricted to f, g which are piecewise polynomials defined on locally

refined meshes with possible discontinuities at the grid points. A simple example of such a
locally refined mesh is depicted below:

1/20 1/4 1 (1.2a)

The mesh size 1/8 in [1/2, 1], 1/16 in [1/4, 1/2] and 1/16 in [0, 1/4] is a typical refinement
towards x = 0. The depicted mesh can be decomposed into different levels as indicated in

0 1/4

1/2
1

level 1

level 2

level 0

(1.2b)

1

The latter representation uses several levels. Each level � is associated with an equidistant
grid of size

h� := 2−�h (0 ≤ � ≤ L) (1.3)

(in the above figure with h = 1/8). The largest level number appearing in the grid hierarchy
will be denoted by L.

Such a refinement approach is well-known from the adaptive wavelet technique. Grids
like the depicted ones are obtainable from a first coarse grid with mesh size h at level � = 0
after a recursive local refinement by halving certain subintervals. The exact description of
the locally refined mesh will be given in Section 2.

The standard tool for convolutions is the Fast Fourier Transform (FFT), which, however,
applies only for data in a uniform grid. In principle, one can convert the functions f, g from
the refined grid into functions defined on the finest uniform grid of level L (with step size
hL). Since this step increases the data size extremely, the almost linear complexity of FFT
does not help.

Remark 1.1 Another construction of graded meshes is based on a grid
{
θ(i

n
) : i1 ≤ i ≤ i2

}
,

where θ is a smooth monotonous mapping. This corresponds to the substitution y = θ(η)
in f(θ(η)) =: F (η) which is now given on an equidistant grid. However, the integral
(f ∗ g) (x) =

∫
R
f(y)g(x− y)dy =

∫
R
F (η)g(x− θ(η))θ′(η)dη is not a convolution of F with

another function.

In principle, one can approximate f ∗ g via Fourier transform: Also for non-equidistant
grids there are ways to approximate the Fourier transform f̂ and ĝ (see [4]) and the back
transform of f̂ · ĝ would yield an approximation of f ∗ g. A fast algorithm for a generalised
convolution is described in [5]. However, in these approaches the approximation error de-
pends on the interpolation error and we do not guarantee any smoothness of f or g. In
contrary, the use of locally refined meshes indicates a nonsmooth situation. In our approach
we avoid interpolation errors, since the quantities of interest are computed exactly.

To cover the general case, we will allow that the functions f and g involved in the
convolution belong to different locally refined meshes.

Remark 1.2 The convolution ωexact = f ∗ g leads to two difficulties.
a) First, the convolution of piecewise constant functions is no longer piecewise constant

but piecewise linear and globally continuous 1. Hence, the image belongs to another class of
functions.

b) The second difficulty is even more disturbing. For efficiency it is an important fact
that f and g are given on locally refined meshes (instead of an equidistant grid of the smallest
size). As mentioned before, the convolution is piecewise linear, but the intervals in which
it is linear correspond to the smallest step size appearing in the representations of f and
g. Therefore, ωexact not only belongs to another function class, its exact description requires
also much more data than f and g.

1If, more general, f and g are piecewise polynomials of the respective degrees p and q, the convolution is
a piecewise polynomial of degree p + q + 1.

2

However, since the locally refined meshes have the purpose to approximate some functions
fexact and gexact in an adaptive way by f and g, it is only natural to approximate ωexact also by
a simpler function ω in a third given locally refined mesh, e.g., again by piecewise constant
functions. We use the L2-orthogonal projection onto this space to obtain ω from ωexact. The
result ω can be considered as the Galerkin approximation of the convolution operation.

Therefore, the goal of the algorithm is to compute ω as the L2-orthogonal projec-
tion of f ∗ g . Note that we compute the exact L2-orthogonal projection, i.e., there is no
approximation error except the unavoidable projection error.

We return to the situation of Remark 1.1. If f and g are given via a grid of the form{
θ(i

n
) : i1 ≤ i ≤ i2

}
, they can be projected into suitable locally refined grids as requested for

our approach. The results f̃ and g̃ yield the projected convolution ω which returned onto the
desired graded mesh via projection. If the grids are chosen accordingly to the smoothness of
the functions f, g, ω, the additional projection error is not larger than the already involved
approximation error.

Section 2 gives a precise definition of locally refined meshes and of the corresponding
ansatz spaces Sf ,Sg which f and g belong to and of the target space Sω for the projection
ω of ωexact = f ∗ g. In particular, the basis functions Φ�

i are introduced in §2.3. From §2.3
to §5 we restrict the description to the case of piecewise constant functions.

Section 4 introduces several families of coefficients which are essential for the representa-
tion of the projected values. Some of these coefficients will also appear later in the algorithm.

The main chapter of this paper is Section 5 which describes the algorithm. Three disjoint
cases A, B, C must be treated differently (see §§5.1-5.3).

In all three cases mentioned above, we have to perform a discrete convolution of sequences
by means of the FFT technique. Section 6 is devoted to this problem. It starts with the
definition of the notations Nd and Nc for the data size (§6.1). The well-known basic FFT
algorithm for the discrete convolution (§6.2) is modified in §§6.3, 6.5, 6.6 to minimise the
computational work.

The cost of the previous algorithm is analysed in Section 7. There, under certain condi-
tions, the bound

O (N logN)

is derived, where N describes the data size of the factors f, g and the projected convolution
ω = P (f ∗ g).

So far, the case of piecewise constant functions is considered. In Section 8, the generali-
sation to arbitrary piecewise polynomial approximation spaces is discussed.

A variant of the convolution (1.1) is the convolution of periodic functions. Their compu-
tations follows the same lines (see Section 9).

The Appendix contains alternative algorithms, which however turn out to be less efficient
than the algorithms presented in the Section 5.

3

2 Spaces

2.1 The Locally Refined Meshes

The grids depicted in (1.2b) are embedded into infinite grids M� which are defined below.
With h� from (1.3) we denote the subintervals of level � by

I�
ν := [νh�, (ν + 1) h�) for ν ∈ Z, � ∈ N0. (2.1)

This defines the meshes

M� :=
{
I�
ν : ν ∈ Z

}
for � ∈ N0. (2.2)

The (equidistant) grid points of M� are {νh� : ν ∈ Z} .
A finite and locally refined mesh M is a set of finitely many disjoint intervals from various

levels, i.e.,2

M ⊂
⋃

�∈N0

M�, all I, I ′ ∈ M with I �= I ′ are disjoint, #M <∞ . (2.3)

Definition (2.3) corresponds to the representation (1.2a), whereas (1.2b) gives rise to the
following dynamic definition. Let M′

0 ⊂ M0 be a finite part of the infinite grid M0. Certain
intervals I0

ν ∈ M′
0 are refined, i.e., I0

ν is removed from M′
0 and the resulting new subintervals

I1
2ν and I1

2ν+1 of halved size are added to M′
1 ⊂ M1 (initialised by M′

1 := ∅). Recursively,
certain I�

ν ∈ M′
� are replaced by I�+1

2ν , I�+1
2ν+1 ∈ M′

�+1. Let M′′
� be the final value of M′

� after
terminating the refinement process. Then M :=

⋃
�∈N0

M′′
� yields the set from (2.3).

2.2 The Ansatz Spaces

For each interval I = I�
ν ∈ M we can fix a polynomial degree p�

ν ∈ N0. Then a piecewise
polynomial space S corresponding to the mesh M and the polynomial degree distribution{
p�

ν

}
is defined by

S = S (M) =

{
φ ∈ L∞(R) : φ|I�

ν
polynomial of degree ≤ p�

ν if I�
ν ∈ M,

φ(x) = 0 if x /∈ I for all I ∈ M
}
.

Such a space S is a typical result of the hp-adaptive refinement procedure.
The two factors f, g of the convolution as well as the (projected) image ω may be organised

by three different locally refined meshes

Mf , Mg, Mω, (2.4)

which are all of the form (2.3). These give rise to three spaces

Sf := S (Mf
)
, Sg := S (Mg) , Sω := S (Mω) .

We recall that f ∈ Sf and g ∈ Sg are the input data, while the result is the exact L2-
orthogonal projection of f ∗ g onto Sω.

In [2], the underlying problem takes the principal form df/dt = . . . + f ∗ f (here Sf =
Sg = Sω is the appropriate choice of the spaces). In [1], the problem to be solved is a fixed
point equation f = . . .+ f ∗ g. Therefore Sf = Sω holds, while Sg may be chosen differently.

2The sign # denotes the cardinality of a set.

4

2.3 Basis Functions

Functions from S (M) may be discontinuous at the grid points of the mesh. This fact has
the advantage that the basis functions spanning S (M) have minimal support (the support
is just one interval of M). For the case p�

ν > 0 of piecewise non-constant functions, the basis
functions will be described in Section 8.

Here, we consider the case of piecewise constant functions, i.e., p�
ν = 0. The generating

function is

Φ0
0(x) :=

{
1/
√
h if x ∈ (0, h) ,

0 otherwise.
(2.5)

leading to the basis functions of level � = 0 :

Φ0
i (x) := Φ0

0(x− ih) (i ∈ Z) .

For levels � > 0 we have

Φ�
0(x) := 2�/2Φ0

0(2
�x), Φ�

i(x) := Φ�
0(x− ih�) = 2�/2Φ0

i (2
�x) (� ∈ N0, i ∈ Z) . (2.6)

Note that supp(Φ�
i) = I�

i . The space S (M) has the representation

S (M) = span
{
Φ�

i : I�
i ∈ M}

.

In the following, we make use of relations which are well-known from wavelet approaches.
Let S� be the space of piecewise constant functions of level � (on the infinite mesh M� from
(2.2)):

S� := span
{
Φ�

i : i ∈ Z
}

(� ∈ N0) . (2.7)

For fixed �, the basis
{
Φ�

i : i ∈ Z
}

is orthonormal due to the chosen scaling.
The spaces are nested, i.e.,

S� ⊂ S�+1.

In particular, Φ�
i can be represented by means of Φ�+1

j :

Φ�
i =

1√
2

(
Φ�+1

2i + Φ�+1
2i+1

)
. (2.8)

3 Notations and Definition of the Problem

3.1 Representations of f ∈ Sf and g ∈ Sg

Following the definition of Sf , we have Sf = span
{
Φ�

i : I�
i ∈ Mf

}
. We can decompose the

set Mf into different levels: Mf =
⋃Lf

�=0 Mf
� , where Mf

� := Mf ∩ M�. This gives rise to
the related index set

If
� :=

{
i ∈ Z : I�

i ∈ Mf
�

}
(3.1)

and to the corresponding decomposition

Sf =
⋃Lf

�=0
Sf

� with Sf
� = span

{
Φ�

i : i ∈ If
�

}
.

5

Here, Lf is the largest level � with Mf
� �= ∅.

We start from the representation

f =

Lf∑
�=0

f�, f� =
∑
i∈If

�

f �
i Φ

�
i ∈ Sf

� , (3.2)

and, similarly,

g =
Lg∑
�=0

g�, g� =
∑
i∈Ig

�

g�
iΦ

�
i ∈ Sg

� , (3.3)

for the factors f, g of the convolution.

3.2 Projection P�

The L2-orthogonal projection P� onto S� from (2.7) is defined by

P� ϕ :=
∑
i∈Z

〈
ϕ,Φ�

i

〉
Φ�

i (3.4)

with 〈ϕ, ψ〉 =
∫

R
ϕψdx, provided that

{
Φ�

i

}
forms an orthonormal basis3 as it holds for Φ�

i

from (2.6).

3.3 Definition of the Basic Problem

We use the decomposition into scales expressed by f =
∑Lf

�′=0 f�′ and g =
∑Lg

�=0 g� (see (3.2)
and (3.3)). The convolution f ∗ g can be written as

f ∗ g =

Lf∑
�′=0

Lg∑
�=0

f�′ ∗ g� .

Since the convolution is symmetric, we can rewrite the sum as

f ∗ g =
∑
�′≤�

f�′ ∗ g� +
∑
�<�′

g� ∗ f�′ , (3.5)

where �′, � are restricted to the level intervals 0 ≤ �′ ≤ Lf , 0 ≤ � ≤ Lg. Hence, the basic
task is as follows.

Problem 3.1 Let �′ ≤ �, f�′ ∈ S�′ , g� ∈ S�, and �′′ ∈ N0 a further level. Then, the
projection P�′′(f�′ ∗ g�) is to be computed. More precisely, only the restriction of P�′′(f�′ ∗ g�)
to

⋃
i∈Iω

�′′
I�′′
i is needed, since only this part appears in Sω

�′′ .

Because of the splitting (3.5), we may assume �′ ≤ � without loss of generality. In the
case of the second sum one has to interchange the rôles of the symbols f and g.

Before we present the solution algorithm in Section 5, we introduce some further notations
in the next Section.

3Otherwise, a Gram matrix has to be inverted.

6

4 Auxiliary Coefficients

4.1 γ-Coefficients

For level numbers �′′, �′, � ∈ N0 and all i, j, k ∈ Z we define

γ�′′,�′,�
i,j,k :=

∫∫
Φ�′′

i (x) Φ�′
j (y) Φ�

k(x− y)dxdy (4.1)

(all integrations over R). We remark that γ�′′,�′,�
i,j,k =

〈
Φ�′′

i ,Φ
�′
j ∗ Φ�

k

〉
is the L2-scalar product

of the basis function Φ�′′
i and the convolution Φ�′

j ∗ Φ�
k.

The connection to the computation of the projection

ω�′′ = P�′′ (f�′ ∗ g�) (4.2)

of the convolution f�′ ∗ g� from Problem 3.1 is as follows. ω�′′ is a function represented by
ω�′′ =

∑�
i∈Z

ω�′′
i Φ�′′

i , where the coefficients ω�′′
i result from

ω�′′
i =

∫
(f�′ ∗ g�)(x) Φ�′′

i (x) dx =

∫
Φ�′′

i (x)

(∑
j∈Z

f �′
j Φ�′

j ∗
∑
k∈Z

g�
kΦ

�
k

)
(x) dx (4.3)

=
∑
j,k∈Z

f �′
j g

�
k

∫∫
Φ�′′

i (x)Φ�′
j (y)Φ

�
k(x− y) dxdy =

∑
j,k∈Z

f �′
j g

�
k γ

�′′,�′,�
i,j,k

(again, orthonormality of the basis {Φ�′′
i } is used).

The recursion formula (2.8) can be applied to all three basis functions in the integrand

Φ�′′
i (x)Φ�′

j (y)Φ�
k(x − y) of γ�′′,�′,�

i,j,k . The resulting formulae for γ�′′,�′,�
i,j,k are given in the next

Remark.

Remark 4.1 For all �′′, �′, � ∈ N0 and all i, j, k ∈ Z we have

γ�′′,�′,�
i,j,k =

1√
2

(
γ�′′+1,�′,�

2i,j,k + γ�′′+1,�′,�
2i+1,j,k

)
(4.4a)

=
1√
2

(
γ�′′,�′+1,�

i,2j,k + γ�′′,�′+1,�
i,2j+1,k

)
(4.4b)

=
1√
2

(
γ�′′,�′,�+1

i,j,2k + γ�′′,�′,�+1
i,j,2k+1

)
. (4.4c)

4.2 Simplified γ-Coefficients

For levels �, �′, �′′ with � ≥ max{�′, �′′} we set

γ�′′,�′,�
ν :=

∫∫
Φ�′′

0 (x)Φ�′
0 (y)Φ�

ν(x− y)dxdy (ν ∈ Z) , (4.5)

i.e., γ�′′,�′,�
ν = γ�′′,�′,�

0,0,ν =
〈
Φ�′′

0 ,Φ
�′
0 ∗ Φ�

ν

〉
. We call these coefficients simplified γ-coefficients,

since only one subindex ν is involved.
Under the condition � ≥ max{�′, �′′}, it suffices to use the quantities γ�′,�′′,�

ν from (4.5) as
shown in the next Lemma.

7

Lemma 4.2 Let � ≥ max{�′, �′′}. Then

γ�′′,�′,�
i,j,k = γ�′′,�′,�

k−i2�−�′′+j2�−�′ for any i, j, k ∈ Z. (4.6)

Proof. Using (2.6), we get by substitution

γ�′′,�′,�
i,j,ν =

∫∫
Φ�′′

i (x)Φ�′
j (y)Φ

�
ν(x− y)dxdy =

∫∫
Φ�′′

0 (x− ih�′′)Φ
�′
0(y − jh�′)Φ

�
k(x− y)dxdy

=

∫∫
Φ�′′

0 (x)Φ�′
0(y)Φ

�
k(x− y + ih�′′ − jh�′)dxdy

=

∫∫
Φ�′′

0 (x)Φ�′
0(y)Φ

�
k(x− y + i2�−�′′h� − j2�−�′h�)dxdy

=

∫∫
Φ�′′

0 (x)Φ�′
0(y)Φ

�
k−i2�−�′′+j2�−�′ (x− y)dxdy = γ�′′,�′,�

k−i2�−�′+j2�−�′′ .

Remark 4.3 In the case of piecewise constant functions, i.e. (2.5), the values of γ�,�,�
ν are

γ�,�,�
0 = γ�,�,�

−1 =
√
h�/2 and γ�,�,�

ν = 0 for ν /∈ {−1, 0}.

4.3 G- and Γ-Coefficients

As stated in (4.3), we have to compute
∑

j,k∈Z
f �′

j g
�
kγ

�′′,�′,�
i,j,k . Performing only the sum over k,

leads us to
G�′′,�′,�

i,j :=
∑
k∈Z

g�
k γ

�′′,�′,�
i,j,k . (4.7)

We can introduce simpler G-coefficients, where the first or second subindex is fixed by
zero.

Remark 4.4 In the case �′′ ≤ �′ ≤ � there holds

G�′′,�′,�
i,j =

∑
k∈Z

g�
k γ

�′′,�′,�
k−i2�−�′′+j2�−�′ = G�′′,�′,�

0,j−i2�′−�′′ , (4.8)

whereas for �′ ≤ �′′ ≤ �

G�′′,�′,�
i,j =

∑
k∈Z

g�
k γ

�′′,�′,�
k−i2�−�′′+j2�−�′ = G�′′,�′,�

i−j2�′′−�′ ,0 . (4.9)

Using the recursions (4.4a,b) from Remark 4.1, one proves the following result.

Remark 4.5 For all �′′, �′, � ∈ N0 and all i, j ∈ Z we have

G�′′,�′,�
i,j =

1√
2

(
G�′′+1,�′,�

2i,j +G�′′+1,�′,�
2i+1,j

)
(4.10a)

=
1√
2

(
G�′′,�′+1,�

i,2j +G�′′,�′+1,�
i,2j+1

)
. (4.10b)

If the first two levels are equal: �′′ = �′ ≤ �, the coefficients are denoted by

Γ�′,�
i := G�′,�′,�

i,0 = G�′,�′,�
0,−i =

∑
k∈Z

g�
k γ

�′,�′,�
k−i2�−�′ . (4.11)

8

5 Algorithm

A general assumption of this Section is the choice of piecewise constant functions.
In Problem 3.1 three level numbers �′′, �′, � appear. Without loss of generality �′ ≤ �

holds. In the following we have to distinguish the following three cases:

(A) �′′ ≤ �′ ≤ �,
(B) �′ < �′′ ≤ �,
(C) �′ ≤ � < �′′.

(5.1)

5.1 Case A: �′′ ≤ �′ ≤ �

Case A is illustrated by the following figure.

f�′

g�

f�′ ∗ g�

ω�′′

In the figure, the difference � − �′ = 2 corresponds to the fact that g� is given on a grid of
step size h� = h�′/4. The given intervals should show the support of the functions f�′ and
g�. The convolution f�′ ∗ g� is a piecewise linear function, where the pieces correspond to the
smaller step size h�. The projection P�′′ of f�′ ∗ g� is required in two intervals. Because of
�′′ ≤ �′ ≤ � the step size h�′′ is equal or larger than the other ones. In the figure, �′′ = �′ − 1
is chosen. Note that in each interval of level �′′ the function ω�′′ is a certain average of 8
pieces of f�′ ∗ g�.

Another illustration of Case A can be given by means of the related basis functions4.

Φ�′
0

Φ�
0

Φ�′
0 ∗ Φ�

0

Φ�′′
0

The convolution Φ�′
0 ∗ Φ�

0 is a piecewise linear function. The projection P�′′ uses the scalar
products of shifts of the basis function Φ�′′

0 shown in the last row.
The following algorithm has to compute the projection of ω�′′ = P�′′ωexact of ωexact :=

f�′ ∗ g�. A straightforward but naive approach would be to compute ωexact first and then
its projection. The problem is that in the case �′ � �, the product f�′ ∗ g� requires
O(2�−�′Nc(f�′) +Nc(g�)) data (the data size Nc(·) is introduced in §6.1). The possibly large
factor 2�−�′ underlines the difficulty described in item b) of Remark 1.2 and spoils efficiency.

4Note that the heights of the basis functions Φ�′
0 , Φ�

0 are not correctly reproduced in the figure.

9

The projection would map the many data into few: each component ω�′′
i of ω�′′ is an average

of 2�−�′′ data of ωexact. The essence of the following algorithm is to incorporate the projection
P�′ before a discrete convolution is performed.

5.1.1 Computation of Γ-Coefficients (Step 1)

Step 1a We start with the sequence Γ�,� = (Γ�,�
i)i∈Z. Formally, Γ�,� is a kind of discrete

convolution
∑

k∈Z
g�

k γ
�,�,�
k−i of the sequences (g�

k)k∈Z and (γ�,�,�
k)k∈Z (see §6.4). But since γ�,�,�

k

is non-zero only for k ∈ {−1, 0} (cf. Remark 4.3), Γ�,� is explicitly available by

Γ�,�
i =

√
h�

2

(
g�

i + g�
i−1

)
for all i ∈ Z. (5.2)

Step 1b Next we compute Γ�′,� = (Γ�′,�
i)i∈Z for �′ = �− 1, �− 2, . . . , 0.

Lemma 5.1 For 0 ≤ �′ < �, the relation

Γ�′,�
i = Γ�′+1,�

2i +
1

2

(
Γ�′+1,�

2i−1 + Γ�′+1,�
2i+1

)
for all i ∈ Z (5.3)

can be used for its computation.

Proof. We use the recursions (4.10a,b) for G�′′,�′,�
i,j :

Γ�′,�
i =

(4.11)
G�′,�′,�

i,0 =
(4.10a)

1√
2

(
G�′+1,�′,�

2i,0 +G�′+1,�′,�
2i+1,0

)
=

(4.10b)

1√
2

(
1√
2

(
G�′+1,�′+1,�

2i,0 +G�′+1,�′+1,�
2i,1

)
+

1√
2

(
G�′+1,�′+1,�

2i+1,0 +G�′+1,�′+1,�
2i+1,1

))
=

(4.9)

1

2

(
G�′+1,�′+1,�

2i,0 +G�′+1,�′+1,�
2i−1,0 +G�′+1,�′+1,�

2i+1,0 +G�′+1,�′+1,�
2i,0

)
=

(4.11)
Γ�′+1,�

2i +
1

2

(
Γ�′+1,�

2i−1 + Γ�′+1,�
2i+1

)
.

Hence, Γ�′,�
i =

∑
k∈Z

g�
k γ

�′,�′,�
k−i2�−�′ (�′ < �) can be computed without referring to the data

g�
k.

5.1.2 Step 2a

Let �′ be any level in the interval [0, �] , i.e., �′ ≤ �. Then for each �′′ = �′, �′ − 1, . . . , 0 the
projection P�′′ (f�′ ∗ g�) is to be computed (see Problem 3.1). Following (4.2) and (4.3), the

coefficients ω�′′
i =

∑
j,k∈Z

f �′
j g

�
kγ

�′′,�′,�
i,j,k are needed. The sequence is denoted by ω�′′ = (ω�′′

i)i∈Z.

For the starting value �′′ = �′ we have

ω�′
i =

∑
j,k∈Z

f �′
j g

�
kγ

�′,�′,�
i,j,k =

(4.6)

∑
j,k∈Z

f �′
j g

�
kγ

�′,�′,�
k−(i−j)2�−�′ =

(4.11)

∑
j∈Z

f �′
j Γ�′,�

i−j for all i ∈ Z.

10

The sum
∑

j∈Z
f �′

j Γ�′,�
i−j describes the discrete convolution of the sequences5 f�′ := (f �′

j)j∈Z

and Γ�′,� := (Γ�′,�
k)k∈Z. Concerning the performance of the discrete convolution

ω�′ = f�′ ∗ Γ�′,� (5.4)

we refer to Section 6.

5.1.3 Step 2b

Given ω�′ from (5.4), we compute ω�′′ for �′′ = �′−1, . . . , 0 by the following recursion formula.

Lemma 5.2 The recursion

ω�′′
i =

1√
2

(
ω�′′+1

2i + ω�′′+1
2i+1

)
for all i ∈ Z (5.5)

holds for all 0 ≤ �′′ ≤ �′.

Proof. Note that

ω�′′
i =

(4.3)

∑
j,k∈Z

f �′
j g

�
k γ

�′′,�′,�
i,j,k =

(4.4a)

1√
2

∑
j,k∈Z

f �′
j g

�
k

(
γ�′′+1,�′,�

2i,j,k + γ�′′+1,�′,�
2i+1,j,k

)

=
1√
2

(∑
j,k∈Z

f �′
j g

�
k γ

�′′+1,�′,�
2i,j,k +

∑
j,k∈Z

f �′
j g

�
k γ

�′′+1,�′,�
2i+1,j,k

)
=

(4.3)

1√
2

(
ω�′′+1

2i + ω�′′+1
2i+1

)
.

5.1.4 Intertwining the Computations for all �′′ ≤ �′ ≤ �

The superindex � in Γ�′,�
i indicates that this sequence at level �′ is originating from the data

g�. Since the further treatment of Γ�′,�
i does not depend on �, we can gather all Γ�′,�

i into

Γ�′
i :=

Lg∑
�=�′

Γ�′,�
i (0 ≤ �′ ≤ Lg) . (5.6)

Hence, their computation is performed by the loop6

for �′ := Lg downto 0 do explanations:
begin if �′ = Lg then ΓLg

i := 0 starting value,

else Γ�′
i := Γ�′+1

2i + 1
2

(
Γ�′+1

2i−1 + Γ�′+1
2i+1

)
; recursion (5.3),

Γ�′
i := Γ�′

i + Γ�′,�′
i Γ�′,�′

i defined in (5.2),
end; all Γ0

i ,Γ
1
i , . . . ,Γ

Lg

i defined.

(5.7)

5We use the same symbol f�′ for the sequence f�′ := (f �′
j)j∈Z and for the function

∑
j∈Z

f �′
j Φ�′

j from M�.
The reference to the “discrete convolution” shows that here the interpretation as sequence is required.

6In this notation, Γ�′
i stands for the whole sequence Γ�′ = (Γ�′

i)i∈Z. More precisely, the computations have
to be performed for i belonging to the support of Γ�′ .

11

Having available Γ�′
i for all 0 ≤ �′ ≤ Lg, we can compute ω�′ for any �′ (cf. (5.4)). For

a moment, we use the symbols ω�′,�′, ω�′−1,�′, . . . , ω�′′,�′ for the quantities computed in Step
2a,b. Here, the additional second index �′ expresses the fact that the data stem from f�′ (see
(5.4)).

The coarsening ω�′,�′ �→ ω�′−1,�′ �→ . . . �→ ω�′′,�′ can again be done jointly for the different
�′, i.e., we form

ω�′′ :=
Lf∑

�′=�′′
ω�′′,�′

(
0 ≤ �′′ ≤ min{Lω, Lf , Lg}) .

The algorithmic form is

for �′′ := min{Lf , Lg} downto 0 do explanations:
begin if �′′ = min{Lf , Lg} then ω�′′ := 0 starting value,

else ω�′′
i := 1√

2

(
ω�′′+1

2i + ω�′′+1
2i+1

)
; recursion (5.5),

ω�′′ := ω�′′ + ω�′′,�′′ ω�′′,�′′ = f�′′ ∗ Γ�′′ defined in (5.4),
end; all ω0, ω1, . . . , ωmin{Lf ,Lg} defined.

(5.8)

Note that this algorithm yields7

ω�′′ = P�′′

(
Lg∑

�=�′′

�∑
�′=�′′

f�′ ∗ g�

) (
0 ≤ �′′ ≤ min{Lω, Lf , Lg})

involving all combinations of indices with �′′ ≤ �′ ≤ �.

Note that, in addition, the contribution ω�′′ = P�′′
(∑Lg

�=�′′+1

∑�
�′=�′′+1 g�′ ∗ f�

)
corre-

sponding to the second sum in (3.5) has to be computed by the same procedure with g and
f interchanged.

5.2 Case B: �′ < �′′ ≤ �

Case B is illustrated by the following figure.

f�′

g�

f�′ ∗ g�

ω�′′

Differently from Case A, the step size h�′′ used by the projection P�′′ is smaller than the step
size h�′ but larger than h�.

The basis functions related to Case B are shown below4.

7The restriction �′′ ≤ min{Lω, Lf , Lg} follows from �′′ ≤ �′ ≤ �, since �′ ≤ Lf , � ≤ Lg, and �′′ ≤ Lω.

12

Φ�′
0

Φ�
0

Φ�′
0 ∗ Φ�

0

Φ�′′
0

5.2.1 Explanations for �′′ = �′ + 1

We will use a loop of �′′ from �′ + 1 to �. Here we discuss the first value �′′ = �′ + 1 and
assume �′ + 1 ≤ �.

The function f�′ =
∑

j f
�′
j Φ�′

j can be transformed into a function of level �′ + 1 by using
(2.8):

f�′ =
∑

j

f̂ �′+1
j Φ�′+1

j with f̂ �′+1
2j := f̂ �′+1

2j+1 :=
1√
2
f �′

j . (5.9)

Let f̂�′+1 :=
(
f̂ �′+1

j

)
j∈Z

be the sequence of the newly defined coefficients. Since �′′ = �′+1 ≤ �,

the three level numbers �′′, �′ + 1, � satisfy the inequalities of Case A. As in Step 2a of Case
A (see §5.1.2) the desired coefficients of the projection at level �′′ = �′ + 1 are ω�′+1

i =∑
j∈Z

f̂ �′+1
j Γ�′+1,�

i−j , i.e., the discrete convolution ω�′+1 = f̂�′+1 ∗ Γ�′+1,� is to be performed.
In the given formulation, the reinterpretation of f�′ as a function of level �′ + 1 seems

dangerous, since by (5.9) the number of coefficients is doubled. If we repeat this procedure
up to level L, the number of coefficients would be multiplied by 2L−�′. The remedy is a
restriction of (5.9) to those coefficients f̂ �′+1

j which are really needed. The coefficients ω�′+1
i

are required only for i ∈ Iω
� (cf. (3.1)), say for i ∈ {iω1 , . . . , iω2 } . Let the nonzero coefficients

Γ�′+1,�
j lie in iΓ1 ≤ j ≤ iΓ2 . The sum in ω�′+1

i =
∑

j∈Z
f̂ �′+1

j Γ�′+1,�
i−j for i ∈ {iω1 , . . . , iω2} involves

only f̂ �′+1
j -coefficients with iω1 − iΓ2 ≤ j ≤ iω2 − iΓ1 . Hence, the number of f̂ �′+1

j -coefficients is
bounded by iω2 − iω1 + iΓ2 − iΓ1 + 1. A similar number appears for later levels.

Since in the further recursions also ω�′′
i for �′′ = �′ + 2, . . . ,min{Lω, Lg} are to be deter-

mined, the interval [iω1 , i
ω
2] from above is to be increased a bit (using the notation of §6.1, we

have to replace Sc(ω�′+1) by Scc(ω�′+1)).

5.2.2 Complete Recursion

Steps 1a,b in Case A have already produced the coefficients Γ�′
j gathering all Γ�′,�

j (� ≥ �′,
cf. (5.6)). For �′′ = �′ + 1, �′ + 2, . . . , � we represent the function f�′ at these levels �′′ by
computing the coefficients f̂ �′′

j as in (5.9):

f̂ �′
j := f �′

j (starting value), (5.10a)

f̂ �′′
2j := f̂ �′′

2j+1 :=
1√
2
f̂ �′′−1

j (�′ + 1 ≤ �′′ ≤ �) . (5.10b)

13

Note, however, that only those coefficients are to be determined which are really needed in
the next step, which is the discrete convolution

ω�′′ = f̂�′′ ∗ Γ�′′ (�′ + 1 ≤ �′′ ≤ �) (5.10c)

of the sequence f̂�′′ := (f̂ �′′
j)j∈Z with Γ�′′ .

5.2.3 Combined Computations for all �′ < �′′ ≤ �

The algorithm is

f̂ 0
j := 0; explanations:

for �′′ := 1 to min{Lω, Lg} do

begin f̂ �′′−1
j := f̂ �′′−1

j + f �′′−1
j ; starting value (5.10a),

f̂ �′′
2j := f̂ �′′

2j+1 := f̂ �′′−1
j /

√
2; see (5.10b),

ω�′′ := f̂�′′ ∗ Γ�′′ see (5.10c)
end;

(5.11)

The limitation by �′′ ≤ min{Lω, Lg} in line 2 is correct, since for �′′ > Lω no ω�′′ are required,
while for �′′ > Lg the sequence Γ�′′ is not defined (i.e., formally Γ�′′ = 0).

The sum f̂ �′′−1
j + f �′′−1

j in the third line defines f̂ �′′−1
j as coefficients of

∑�′′−1
�′=0 f�′ =∑

j f̂
�′′−1
j Φ�′′−1

j . Therefore the next two lines consider all combinations of �′ < �′′. Since Γ�′′

contains all contributions from � ≥ �′′, ω�′′ is the projection P�′′(
∑

�′,� with �′<�′′≤� f�′ ∗ g�).

5.3 Case C: �′ ≤ � < �′′

The following figure illustrates Case C.

f�′

g�

f�′ ∗ g�

ω�′′

Now the step size h�′′ used by the projection P�′′ is smaller than both h�′ and h�.
The basis functions related to Case C are sketched below4.

Φ�′
0

Φ�
0

Φ�′
0 ∗ Φ�

0

Φ�′′
0

14

5.3.1 Explanations

This case is completely different from the previous cases. The exact convolution

ωexact(x) :=

∫
f�′(y)g�(x− y)dy (x ∈ R)

is a piecewise linear and globally continuous function with possible jumps of the derivative
at the grid points νh� (ν ∈ Z) of the grid at level �. The projection P�′′ωexact =

∑
i ω

�′′
i Φ�′′

i

requires all scalar products

ω�′′
i =

∫
Φ�′′

i (x)ωexact(x)dx .

Note that the whole support of Φ�′′
i belongs to one of the intervals [νh�, (ν + 1)h�], where

ωexact(x) is an affine linear function. Consider, e.g., the interval [0, h�] and note that
supp(Φ�′′

i) ⊂ [0, h�] holds if and only if 0 ≤ i ≤ 2�′′−� − 1. Hence, 2�′′−� functionals of
ωexact|[0,h�] are to be evaluated. Since the space of affine linear functions has dimension 2,
there are not more than 2 linearly independent functionals! It suffices to compute the two
functionals

α0 :=

∫
Φ�′′

0 (x)ωexact(x)dx, β0 :=

∫
Φ�′′

2�′′−�−1
(x)ωexact(x)dx.

Because of α0 =
√
h�′′ ωexact(h�′′/2) and β0 =

√
h�′′ ωexact(h � − h�′′/2), we obtain all func-

tionals by linear interpolation:

ω�′′
i = α0 +

i

2�′′−� − 1
(β0 − α0) for 0 ≤ i ≤ 2�′′−� − 1.

Similarly, values αν and βν have to be computed for each interval [νh�, (ν + 1)h�], where
the evaluation of P�′′ωexact is desired. The computation of the sequences α = (αi)i∈Z

and
β = (βi)i∈Z

corresponds to the previous case �′ ≤ �′′ = �. The only difference is that in the

definition of γ�,�′,�
i,j,k =

∫∫
Φ�

i(x)Φ
�′
j (y)Φ�

k(x − y)dxdy one has to replace Φ�
i by Φ�′′

i2�′′−� for the

computation of αi and by Φ�′′
2�′′−�(i+1)−1

for the computation of βi.

We do not give further details, since we recommend another approach which reduces the
cost by one half.

5.3.2 Pointwise Evaluations

Since ωexact is continuous in R, the point values

δ�
ν := ωexact(νh�) for ν ∈ Z

are well-defined. For each interval [νh�, (ν + 1)h�] we have two functionals δ�
ν and δ�

ν+1, but
since each δ�

ν serves for two adjacent intervals, this approach is cheaper.
The computation of the sequence δ� =

(
δ�
ν

)
ν∈Z

will be described in §5.3.3. Here we

assume that we have the values δ�
ν at the points of interest. Then we get the desired ω�′′

i as
follows. Write the index i as

i = ν2�′′−� + µ with 0 ≤ µ ≤ 2�′′−� − 1.

15

Then

ω�′′
i =

∫
Φ�′′

i (x)ωexact(x)dx =
1√
h�′′

∫ (i+1)h�′′

ih�′′
ωexact(x)dx = h�′′

ωexact

(
(i+ 1

2
)h�′′

)
√
h�′′

=
√
h�′′ ωexact

(
νh� + (µ+ 1

2
)h�′′

)
=
√
h�′′

(
δ�
ν +

µ+ 1
2

2�′′−�

(
δ�
ν+1 − δ�

ν

))
. (5.12)

Obviously, this formula holds for all levels �′′ > � simultaneously. In the particular case
of �′′ = �+ 1, the previous formula becomes

ω�′′
i =

√
h�+1

(
δ�
ν +

µ+ 1
2

2

(
δ�
ν+1 − δ�

ν

))
for i = 2ν + µ, µ ∈ {0, 1} . (5.13)

5.3.3 Computation of δ

We define new γ̌-coefficients

γ̌�
i,j,k :=

∫
Φ�

j(y)Φ
�
k(ih� − y)dy (i, j, k ∈ Z)

(Φ�
i(x) from (4.1) replaced by the Dirac function at ih�), which involves only one level �.

Simple substitutions yield

γ̌�
i,j,k =

∫
Φ�

0(y − jh�)Φ
�
0((i− k)h� − y)dy

=

∫
Φ�

0(y)Φ
�
0((i− k)h� − (y + jh�))dy =

∫
Φ�

0(y)Φ
�
0 ((i− k − j)h� − y) dy

=

∫
Φ�

0(y)Φ
�
k−i+j2�−�′(−y)dy = γ̌�

k−i+j

for the “simplified” coefficient γ̌�
ν := γ̌�

0,0,ν .
The δ-values of f� ∗ g� are

δ�
i = (f� ∗ g�) (ih�) =

∑
j,k∈Z

f �
j g

�
k

∫
Φ�

j(y)Φ
�
k(ih� − y)dy =

∑
j,k∈Z

f �
j g

�
k γ̌

�
i,j,k

=
∑
j∈Z

f �
j Ǧ

�
i,j, where Ǧ�

i,j :=
∑
k∈Z

g�
k γ̌

�
i,j,k.

γ̌�
i,j,k = γ̌�

k−i+j shows Ǧ�
i,j = Ǧ�

i−j,0, so that δ�
i =

∑
j∈Z

f �
j Ǧ

�
i−j,0 becomes a discrete convolu-

tion. Since the γ̌-values are rather simple:

γ̌�
k =

{
1 for k = −1,
0 otherwise,

Ǧ�
i−j,0 = g�

i−j−1 holds, leading to the direct representation

δ�
i =

∑
j∈Z

f �
j g

�
i−j−1. (5.14)

16

The values δ�
i belong to level � in the sense that δ�

i = (f� ∗ g�) (ih�) is evaluated in the
mesh of size h�. We can evaluate the same function at levels �′′ > � :

δ�′′
i = (f� ∗ g�) (ih�′′).

Since f� ∗ g� is linear in I�
i = [ih�, (i+ 1)h�), the obvious recursion is

δ�′′
2i = δ�′′−1

i , δ�′′
2i+1 =

1

2

(
δ�′′−1
i + δ�′′−1

i+1

)
for �′′ > �. (5.15)

5.3.4 Combined Computations for all �′ ≤ � < �′′

for � := 0 to Lω − 1 do

begin if � = 0 then begin f̂ 0
i := 0; δ̂0

i := 0 end else

begin compute f̂ �
i from f̂ �−1

i by (5.10b);

compute δ̂�
i from δ̂�−1

i by (5.15)
end;

if � ≤ Lf then f̂ �
i := f̂ �

i + f �
i ;

if � ≤ Lg then

begin compute δ�
i by the convolution

∑
j∈Z

f̂ �
j g

�
i−j−1;

δ̂�
i := δ̂�

i + δ�
i ;

end;

compute ω�+1
i from δ̂�

i by (5.13)
end;

(5.16)

The quantities f̂ �
i obtained in line 6 of the algorithm are the coefficients of

∑�
�′=0 f�′ =∑

i f̂
�
i Φ

�
i . Therefore the δ�

i from line 8 are the evaluations of
∑�

�′=0 f�′ ∗ g� at ih�. The

quantities δ̂�
i updated in line 9 contain all levels from 0 to the actual �. Hence, the ω�+1

i in

line 11 belong to the projection P�′′
(∑

�′,λ with 0≤�′≤λ≤� f�′ ∗ gλ

)
at level �′′ = � + 1, where �

is the actual value of the loop index.

5.4 Range of Products

In the previous subsections we have reduced the problem to a number of specific discrete con-
volutions (the first example is (5.4)). The resulting products are infinite sequences (cν)ν∈Z

.
The first reasonable reduction would be to determine (cν)

ν2

ν=ν1
only in the support [ν1, ν2]∩Z

of the sequence. But it is essential to go a step further. Even if we need the function f�′ ∗ g�

(see (3.5)) in the whole support S := supp(f�′ ∗g�), the projections P�′′(f�′ ∗g�) are required in
disjoint subsets S�′′ ⊂ S. In terms of the sequences (cν)ν∈Z

this means that we are interested
in the components cν in an index interval [ν ′1, ν

′
2] ∩ Z which is possibly much smaller than

the support [ν1, ν2].
The analysis of the cost in §7 will assume that only the necessary parts are evaluated.

Therefore the restriction of the evaluation to the minimal range of the discrete product
(cν)ν∈Z

is an essential part of the algorithm. The treatment of this information in the fast
discrete convolution will be explained in §6.6.

17

6 Discrete Convolution and Applications

The basic tool for the discrete convolution c := a ∗ b is the well-known FFT. Here, we check
the cost in dependence of the size of the factors a, b and the required part of the product c.
In the following subsection, we first introduce measures of the data size.

6.1 Data Sizes

6.1.1 Definitions of Sd(f�), Nd(f�) and Sc(f�), Nc(f�)

We use a notation like f� ambiguously for the function
∑

i∈Z
f �

i Φ
�
i as well as for the (infinite)

sequence f� =
(
f �

i

)
i∈Z

. In both cases the discrete support of f� is

Sd(f�) :=
{
i ∈ Z : f �

i �= 0
}

with the corresponding cardinality

Nd(f�) := #Sd(f�)

(the subindex “d” indicates “discrete support”).
Unfortunately, the computational cost often depends on the convex hull of Sd(f�), which

is
Sc(f�) = {imin, imin + 1, . . . , imax} with imin := min

i∈Sd(f�)
i, imax := max

i∈Sd(f�)
i, (6.1)

and on the number
Nc(f�) := #Sc(f�) = imax − imin + 1

(here, the subindex “c” indicates “convex hull”).
The definitions from above require a non-empty set Sd(f�). Formally, we set Sc(f�) = ∅

and Nc(f�) = 0 for the uninteresting case of Sd(f�) = ∅.
In the case of discrete convolutions, we often use the symbols a, b, c for the sequences:

c = a∗b. Correspondingly, the supports and sizes are Sc(a) = {i ∈ Z : ai �= 0} , Sd(a), Nc(a),
Nd(a), etc.

6.1.2 Definitions of Sdd(f�), Ndd(f�) and Scc(f�), Ncc(f�)

Next, we define a modification of Sd, Sc and Nc, Nd, which we denote by doubled subscripts:

Sdd(f�) :=
{
i ∈ Z : I�′

i�′
⊂ I�

i for some �′ ≥ � and i�′ ∈ Sd(f�′)
}
.

The intervals I�
i with8 i ∈ Sdd(f�) are those which are either used at level � by f� or refined

into smaller intervals used by f�′, �
′ ≥ �. Therefore, an equivalent definition is that Sdd(f�) is

the smallest set so that
⋃

i∈Sdd(f�)
I�
i contains the support of the function

∑L
�′=� f�′ . Another

explicit definition is

Sdd(f�) =
⋃L

�′=�

{⌊
i2�−�′

⌋
: i ∈ Sd(f�′)

}
. (6.2)

8In fact, the notation Sdd(f�, f�+1, . . . , fL) would be more precise, since this set depends on all data
f�, f�+1, . . . , fL. However, we avoid this long expression.

18

In the case of Figure (1.2b), Sd(f0) is contained in {4, 5, 6, 7} corresponding to [1/2, 1),
while Sdd(f0) is contained in {0, 1, . . . , 7} corresponding to [0, 1).

As above Ndd denotes the cardinality of Sdd, while Scc(f�) – as is (6.1) – is the convex
hull of Sdd and Ndd is its cardinality:

Ndd(f�) := #Sdd(f�), Scc(f�) :=

[
min

i∈Sdd(f�)
i, max

i∈Sdd(f�)
i

]
∩ Z, Ncc(f�) := #Scc(f�).

The characterisation of Sdd(f�) by (6.2) shows that roughly

Ndd(f�) �
L∑

�′=�

2�−�′Nd(f�′). (6.3)

6.1.3 Meaning of Sd(ω�) etc.

In order not to introduce other notations, we use the notations Sd, . . . , Ncc also for the
argument ω� with the following meaning:

Sd(ω�′′) := Iω
�′′ . (6.4)

The function or sequence ω�′′ is obtained, e.g., by the projected convolution P�′′(f�′ ∗ g�).
Although the support may be larger, we only consider the coefficients ω�′′

i for i ∈ Iω
�′′ . If we

redefine ω�′′
i := 0 for i /∈ Iω

�′′, the definition (6.4) coincides with the usual definition. The
further notations Nd(ω�′′), Sc(ω�′′), Nc(ω�′′), Sdd(ω�′′), Ndd(ω�′′), Scc(ω�′′), Ncc(ω�′′) follow as
before from Sd(ω�′′).

6.1.4 Meaning of Nd(f) etc.

The functions f ∈ Sf consists of the level contributions f� whose size is measured either by
Nd(f�) or Nc(f�). The size of f is defined by their sums:

Nd(f) :=
L∑

�=0

Nd(f�), Nc(f) :=
L∑

�=0

Nc(f�), Ndd(f) :=
L∑

�=0

Ndd(f�), Ncc(f) :=
L∑

�=0

Ncc(f�).

In standard applications the supports of f� and f�−1 are neighboured, so that there is
no gap between Sc(f�) and Sc(f�−1). In such a case, (6.3) can be extended to the convex
supports:

Ncc(f�) �
L∑

�′=�

2�−�′Nc(f�′). (6.5)

An immediate conclusion from this inequality is

Ncc(f) �
L∑

�=0

L∑
�′=�

2�−�′Nc(f�′) ≤ 2

L∑
�′=0

Nc(f�′) = 2Nc(f).

19

6.2 Basic Convolution Problem

Let
a := (aν)ν∈Z

, b := (bν)ν∈Z

be given sequences of real or complex numbers with support contained in {0, 1, . . . , n− 1}:

Sd(a) ⊂ {0, 1, . . . , n− 1} , Sd(b) ⊂ {0, 1, . . . , n− 1} ,

i.e., aν = bν = 0 for ν /∈ {0, 1, . . . , n− 1} . The third sequence c := (cν)ν∈Z
is defined as

discrete convolution product:

c := a ∗ b, i.e., cν :=
∑
α∈Z

aαbν−α .

Obviously,
Sd(c) ⊂ {0, 1, . . . , 2n− 2} .

Fix some m ∈ Z with m ≥ 2n−1. By means of the fast Fourier transform one determines

the coefficients âµ, b̂µ of â = (âµ)m−1
µ=0 and b̂ =

(
b̂µ

)m−1

µ=0
such that

aν =

m−1∑
µ=0

âµe
iνµ2π/m, bν =

m−1∑
µ=0

b̂µe
iνµ2π/m for 0 ≤ ν ≤ m− 1.

Since

cν =

m−1∑
α=0

aαbν−α =

m−1∑
α=0

m−1∑
µ=0

âµ e
iαµ2π/m

m−1∑
λ=0

b̂λe
i(ν−α)λ2π/m

=
m−1∑
µ=0

m−1∑
λ=0

âµb̂λ

m−1∑
α=0

ei(αµ+(ν−α)λ)2π/m =
m−1∑
µ=0

m−1∑
λ=0

âµb̂λ e
iνλ2π/m

m−1∑
α=0

eiα(µ−λ)2π/m

︸ ︷︷ ︸
mδµ,λ

= m
m−1∑
µ=0

âµb̂µ e
iνµ2π/m for ν = 0, 1, . . . , 2n− 2,

m products ĉµ := mâµb̂µ (0 ≤ µ ≤ m− 1) and the back transformation cν =
∑m−1

µ=0 ĉµ e
iνµπ/m

(0 ≤ ν ≤ m− 1) are to be computed.

Remark 6.1 a) A reasonable choice of m is m = 2p with the smallest p ∈ N such that
2p ≥ 2n− 1.
b) If cν =

∑m−1
µ=0 ĉµe

iνµπ/m is evaluated for ν /∈ {0, 1, . . . , 2n − 2}, this value is in general
different from the true value cν = 0.
c) The computational cost of the convolution a, b �→ c = a ∗ b is O(n log n), provided that m
is chosen ≤ Cn as, e.g., proposed in Part a).

20

6.3 General Finite Sequences

Let a := (aν)ν∈Z
, b := (bν)ν∈Z

be general sequences with

na := Nc(a) <∞, nb := Nc(b) <∞. (6.6)

Then, for suitable ia, ib ∈ Z, we have Sc(a) = {ia, ia + 1, . . . , ia + na − 1} and Sc(b) =
{ib, ib + 1, . . . , ib + nb − 1}. The support of c := a ∗ b has length Nc(c) ≤ Nc(a) +Nc(b) − 1
and is contained in

Sc(c) = {ic, ic + 1, . . . , ic +Nc(c) − 1} with ic := ia + ib.

To return to the situation of §6.2, we introduce the shifted sequences

a′, b′ with a′ν := aν−ia and b′ν := bν−ib (ν ∈ Z) . (6.7)

Together with
n := max{na, nb}

we can apply §6.2 and obtain c′ := a′ ∗ b′. Then the desired convolution c = a∗ b results from
a back shift:

cµ = c′µ+ic (µ ∈ Z) .

According to n := max{na, nb} and Remark 6.1c, the required work is

O(max{na, nb} log(max{na, nb})).

As we will see from §6.5, this complexity can be improved a little.

6.4 Conjugate Convolution

Sometimes, a sequence c with

cµ :=
∑
ν∈Z

aνbν−µ (µ ∈ Z)

appears. We may interpret this operation c := a∗̄b as conjugate convolution, since

〈a∗̄b, d〉 = 〈a, b ∗ d〉

holds (〈·, ·〉 is the Euclidean scalar product). Note that the operation ∗̄ is not symmetric!
To return to the situation of §6.2, we introduce the sequence b′ with b′ν := b−ν and observe

that c = a ∗ b′.

6.5 Reduced Computational Cost for Nc(b) < Nc(a)

According to the two last subsections, we may assume without loss of generality the basic
situation of §6.2.

21

The cost of the convolution c = a ∗ b given in Remark 6.1c is expressed in terms of n,
which is at least max{na, nb} with

na := Nc(a), nb := Nc(b). (6.8a)

Next we consider the situation that na and nb have quite different sizes. Since the convolution
is symmetric, we may assume without loss of generality that nb ≤ na. Note that we assume

Sc(a) = {0, 1, . . . , na − 1} and Sc(b) = {0, 1, . . . , nb − 1} (6.8b)

as obtained after applying (6.7).
If nb is a small constant, even the naive summation

∑nb−1
α=0 bαaν−α may be performed for

all ν ∈ Sc(c). Obviously, the overall cost is O(na) without any logarithmic factor.
nb ≤ na allows a factorisation na = (q − 1)nb + r (q, r ∈ N) with remainder 1 ≤ r ≤ nb .

Then the data a = (aν)
na−1
ν=0 can be split into q packages

a(1) = (aν)
nb−1
ν=0 , a(2) = (aν)

2nb−1
ν=nb

, . . . , a(q−1) = (aν)
(q−1)nb−1
ν=(q−2)nb

, a(q) = (aν)
na−1
ν=(q−1)nb

,

where the components outside the given ranges are defined by zero. Note that
∑q

�=0 a
(�) = a

and that Nc(a
(�)) ≤ nb for all � = 1, . . . , q. Therefore, the convolutions a(�) ∗ b cost at most

O(nb log nb) for each �. Finally, one has to add the results:

a ∗ b =

q∑
�=0

a(�) ∗ b,

which requires O(na) additions. Here, we use that Nc(a
(�) ∗b) = Nc(a

(�))+Nc(b)−1 ≤ O(nb)
and qnb = na + nb ≤ O(na).

Altogether, the number of operations is q ∗ O(nb lognb) + O(na) = O(na lognb), since
q ∗ O(nb) = O(na). This proves the following Remark.

Remark 6.2 The convolution a ∗ b of two finite sequences a and b of the respective sizes
Nc(a) and Nc(b) can be performed with

O (max{Nc(a), Nc(b)} log (min{Nc(a), Nc(b)}))

operations.

The difference to the straightforward FFT approach with cost

O(max{Nc(a), Nc(b)} log (max{Nc(a), Nc(b)}))

is the minor change from max{Nc(a), Nc(b)} to min{Nc(a), Nc(b)} in the logarithmic
factor. In particular, for Nc(a) = O(1) the logarithmic term vanishes because of
log (min{Nc(a), Nc(b)}) = log(O(1)) = O(1).

22

6.6 Possible Cost Reductions for Lc < Nc(c)

As in §6.5 we assume (6.8a,b), i.e., a, b are sequences of the respective sizes na = Nc(a),
nb = Nc(b) with Sc(a) = {0, 1, . . . , na − 1} and Sc(b) = {0, 1, . . . , nb − 1}. Then the product
c = a ∗ b has the support Sc(c) = {0, 1, . . . , nc − 1} with nc = Nc(c) = Nc(a) +Nc(b) − 1.

Now we assume that we are not interested in all non-zero components (ci)
nc−1
i=0 but only

in those ci with i from a set

{αc, αc + 1, . . . , βc} ⊂ Sc(c).

The length of the new interval {αc, αc + 1, . . . , βc} is denoted by

Lc := βc − αc + 1 ≤ Nc(c).

Without loss of generality we assume Nc(a) ≤ Nc(b). The case Nc(a) ≤ Nc(b) ≤ Lc is not
of interest, since then Lc = O(Nc(c)) is not really different from the unrestricted situation
Lc = Nc(c).

First we consider the case Nc(a) ≤ Lc ≤ Nc(b) and claim that the required cost is

O(Lc log(Nc(a))).

Proof. Assume9 Nc(b) = mLc. We split b into m packages b(1), . . . , b(m) of size
Nc(b

(i)) = Lc . The support of c(i) := a ∗ b(i) has size Nc(c
(i)) ≤ Nc(a) + Lc + 1 ≤ 2Lc + 1 =

O(Lc). The number of indices i with Sc(c
(i)) ∩ [αc, βc] �= ∅ is a fixed number. Hence, in

order to compute c =
∑

i c
(i) restricted to [αc, βc] , only O(1) convolutions c(i) := a ∗ b(i) are

involved. The cost is O(1) · O(max{Nc(a), Lc} log(min{Nc(a), Lc})) = O(Lc log(Nc(a))).

Next, we assume the case Lc ≤ Nc(a) ≤ Nc(b). Now both a and b are split into packages
of size Lc. The cost of c(i,j) := a(i)∗b(j) is O(Lc log(Lc)). There are O(Nc(a)/Lc) combinations
of i and j so that Sc(c

(i,j)) ∩ [αc, βc] �= ∅. This leads to an arithmetical work of

O(Nc(a) log(Lc)).

Gathering the previous results and including the opposite inequality Nc(a) ≥ Nc(b), we
obtain the following estimates.

Lemma 6.3 For all sizes of Lc, Nc(a), and Nc(b) the restriction of a∗b to [αc, βc]∩Z ⊂ Sc(c)
with Lc = βc − αc + 1 ≤ Nc(c) can be computed such that the cost is

O (max (Lc,min (Nc(a), Nc(b))) log (min (Lc, Nc(a), Nc(b)))) .

Corollary 6.4 Since we have assumed that Lc ≤ O(max (Nc(a), Nc(b))), we can state the
result of Lemma 6.3 also in the following form: The cost is bounded by O(A logB), where
B := min (Lc, Nc(a), Nc(b)) , while A is the second largest (also the second smallest) of the
three quantities Lc, Nc(a), Nc(b).

9The case Nc(b)/Lc /∈ N is treated as in §6.5 with one package of smaller size between 1 and Lc − 1.

23

For the practical computation, the sequences a, b should be shortened to sequences a′, b′

with possibly smaller support. This step can lead to a smaller amount of operations than
considered in Lemma 6.3, because the intersection of the index set {αc, αc + 1, . . . , βc} and
the support of a ∗ b might be much smaller than in the worst case. Since

cν :=
∑
α∈Z

aαbν−α =

min{ia+Nc(a)−1,ν−ib}∑
α=max{ia,ν−(ib+Nc(b)−1)}

aαbν−α

for generally situated supports of a and b, the values cν with ν ∈ {αc, αc +1, . . . , βc} depend
only on those components aα with

max{ia, αc − (ib +Nc(b) − 1)} ≤ α ≤ min{ia +Nc(a) − 1, βc − ib}.
Let a′ be the restriction to this index interval. Its length is

Nc(a
′) = min{ia +Nc(a) − 1, βc − ib} − max{ia, αc − (ib +Nc(b) − 1)} + 1

≤ min{Nc(a), Lc +Nc(b) − 1}. (6.9)

Similarly, b can be reduced to b′ with Nc(b
′) ≤ min{Nc(b), Lc +Nc(a

′) − 1}. In (6.9), Nc(b)
may be replaced by Nc(b

′).

6.7 Possible Cost Reductions for Nd(a) � Nc(a)

We recall that the cardinality Nd(a) of the discrete support is the true number of non-zero
entries of a, whereas Nc(a) is the size after convexification. The difference Nc(a) −Nd(a) is
the number of zero components in Sc(a).

Figure 6.1: The basis grid (upper line) is refined at the endpoints. Formally, the gap between
contains zero components.

A typical and realistic example is shown in Figure 6.1. A first uniform grid is refined
close to both endpoints10. The grid points of the left and right fine meshes correspond to
the discrete support Sd(a). The gap in the middle leads to zero values aν = 0. Depending
of the size of the gap, Nd(a) may be much smaller than Nc(a). Unfortunately, the cost of
computing â is described by Nc(a), since, in general, â has no extra zero components.

Let a ∗ b to be computed. If Nc(a) ≤ Nc(b) ≈ Nd(b), the computational cost is mainly
determined by Nc(b) (see Remark 6.2). In this case, improvements exploiting Nd(a) � Nc(a)
are less effective. Therefore, we next suppose the case Nd(a) ≈ Nc(b) � Nc(a).

In the case of one big gap as in Figure 6.1, i.e., aν = 0 for n′ ≤ ν < n′′, we can split the
sequence a = (aν)

na−1
ν=0 into

a = a′ + a′′, where a′ = (aν)
n′−1
ν=0 , a

′′ = (aν)
na−1
ν=n′′ . (6.10)

10Refinement at only one endpoint leads to the optimal case of Nc(a) = Nd(a).

24

Since Nc(a
′) = n′ and Nc(a

′′) = na − n′′, we have

Nc(a
′) +Nc(a

′′) = Nc(a) − g with the gap-length g := n′′ − n′.

Note that in the case that all components aν for ν ∈ [0, n′ − 1] ∪ [n′′, na − 1] are non-zero,
we have Nc(a

′) +Nc(a
′′) = Nd(a).

Instead of a∗b we perform a′ ∗b and a′′ ∗b and form the sum. The overall cost is bounded
by

O (max{Nc(a
′) +Nc(a

′′), Nc(b)} log (min{Nc(a
′) +Nc(a

′′), Nc(b)})) .
Provided that Nc(a

′) +Nc(a
′′) ≈ Nd(a), we obtain the cost

O (max{Nd(a), Nc(b)} log (min{Nd(a), Nc(b)})) .
If the assumptions apply to a and b, even the cost

O (max{Nd(a), Nd(b)} log (min{Nd(a), Nd(b)}))
can be reached. These numbers may improve when we make use of Lemma 6.3.

In the situation that there are two gaps, one can try to split a into a = a′ + a′′ + a′′′, but
now more sequences a′ ∗ b, . . . must be added.

The most unfavourable case is given by examples where the zero components are spread
almost equally among the non-zero components. Then the gap lengths are rather small and
the construction from above does no work.

Nevertheless, even for more than one gap there is hope that Nd(a) � Nc(a) or
Nd(b) � Nc(b) can be exploited. In §6.6 we have seen that either a or b or both must be
split into many packages a(i) or b(j) of smaller length. In the situation of (6.10) it is very
likely that the first package a(1) equals a′, the last package equals a′′ and all other ones meet
the gap, i.e., a(i) = 0. Omitting the latter zero-sequences, we have optimally exploited the
fact that Nd(a) � Nc(a).

7 Analysis of the Computational Costs

7.1 Recursion Formulae

(5.5) and (A.4a,b) are typical examples where sequences on different levels are determined
via11

a
(�)
i := 1√

2

(
a

(�+1)
2i + a

(�+1)
2i+1

)
for all i ∈ Z . (7.1)

Such a recursion starts with a given sequence a(L) and is performed for � = L−1, L−2, . . . , 0.
Let a(L) have the length N := Nc(a

(L)). The length of a(L−1) is N
2

for even N and N+1
2

for odd N. Hence,

Nc(a
(�)) ≤

⌊
Nc(a

(�+1)) + 1

2

⌋
for all 0 ≤ � ≤ L− 1, (7.2)

where the rounding �x� is the largest integer ≤ x.

11The kind of linear combination does not matter.

25

Lemma 7.1 The inequalities (7.2) lead to

Nc(a
(�)) ≤ 2�−LNc(a

(L))) + 1 − 2�−L for 0 ≤ � ≤ L.

The size is almost geometrically decreasing. Performance of (7.1) for all � = L − 1,

L − 2,. . . , 0 (of course restricted to the non-zero components of a
(�)
i) requires O(N + L)

operations (more precisely, 2N +L− 1 for the particular linear combination in (7.1)). Since
usually L ≤ N, we may simplify the complexity to O(N) = O(Nc(a

(L))).

The performance of (7.1) requires two operations for each component a
(�)
i , hence 2Nc(a

(�))
for the whole sequence. The constant 1 in Nc(a

(�)) ≤ 2�−LNc(a
(L))) + 1 seems harmless,

however, in the appendix we may have 2L−� problems of the size Nc(a
(�)), so that the overall

number of arithmetical operations is proportional to 2L−�Nc(a
(�)) ≤ Nc(a

(L)))+2L−�. In this
case, the exponential growth with respect to the level number L is undesirable.

The remedy of this problem is discussed in the following two cases.
Case 1: Nc(a

(L)) ≥ 2L. Then 1 ≤ 2�−LNc(a
(L)), so that

Nc(a
(�)) ≤ 2�−LNc(a

(L))) + 1 ≤ 2 · 2�−LNc(a
(L)) for all 0 ≤ � ≤ L.

Case 2: Nc(a
(L)) < 2L. Then there is a level �1 ∈ [1, L] ∩ N with 1 ≤ 2�−LNc(a

(L))) for
all �1 < � ≤ L and 1 > 2�−LNc(a

(L)) for all 0 ≤ � ≤ �1. For �1 < � ≤ L we have again
Nc(a

(�)) ≤ 2 · 2�−LNc(a
(L)), whereas for 0 ≤ � ≤ �1 the identity Nc(a

(�)) = 1 follows from
Nc(a

(�)) ≤ 2�−LNc(a
(L)) + 1− 2�−L < 2 and the fact that Nc(a

(�)) = 1 implies Nc(a
(�−1)) = 1.

In the latter case we use the algorithm as described below.

Remark 7.2 a) As soon as the recursion (7.1) leads to a sequence a(�1) with only one non-
zero component (i.e., Nc(a

(�1)) = 1), the recursion (7.1) is no more used for the numerical

computation. Instead we know that a
(�1)
i1

�= 0 implies a
(�)
i(�) = a

(�1)
i1
/2(�1−�)/2 for i(�) =

⌊
i1/2

�1−�
⌋

and a
(�)
i = 0 for all other i ∈ Z.

b) In particular, a discrete convolution a(�)∗b yields the sequence c with ci =
a
(�1)
i1

2(�1−�)/2 bi−i(�).
This involves a shift and multiplication by a constant. The cost is, in general, Nc(b), and if
only Lc components are wanted, min{Lc, Nc(b)}.

c) In Case 1 and in the first subcase of Case 2 from above, the convolution a(�) ∗ b
(restricted to Lc ≤ Nc(a

(�)) +Nc(b) components) requires

O (
max

(
Lc,min

(
Nc(a

(�)), Nc(b)
))

log
(
min

(
Lc, Nc(a

(�)), Nc(b)
)))

≤ O (
max

(
Lc,min

(
2�−LNc(a

(L)), Nc(b)
))

log
(
min

(
Lc, 2

�−LNc(a
(L)), Nc(b)

)))
operations. In the second subcase of Case 2, the cost min{Lc, Nc(b)} from Part b) can be
estimated by the same bound:

min{Lc, Nc(b)} ≤ Lc

≤ O (
max

(
Lc,min

(
2�−LNc(a

(L)), Nc(b)
))

log
(
min

(
Lc, 2

�−LNc(a
(L)), Nc(b)

)))
.

26

7.2 Case A

7.2.1 Step 1

Algorithm (5.7) corresponds to the Steps 1a,b in §5.1.1.
The computation of Γ�,�

i in (5.2) costs O(Nc(g�)) operations. In line 4 of (5.7) we need

Γ�′,�′
i for all 0 ≤ �′ ≤ L. This requires

O (Nc(g))

operations. This includes the addition Γ�′
i + Γ�′,�′

i .
The recursion (5.3) is not exactly of the form (7.1), but the cost for its performance is

similar. This proves the following statement.
The computation of Γ�′,�

i for all �′ = �− 1, �− 2, . . . , 0 costs O(Nc(g�)) operations. Lines

3-4 in (5.7) refer to Γ�′
i which is the sum of Γ�′,�

i over all � ≥ �′. This fact increases Nc(g�) to
Ncc(g�), so that the total work is

O (Ncc(g)) . (7.3a)

7.2.2 Step 2

The recursion in line 3 of (5.8) has to be done for the true support of

ω�′′ =

L∑
�′=�′′

P�′′(f�′ ∗ Γ�′).

The number of coefficients is bounded by O
(

L∑
�′=�′′

2�′′−�′ (Nc(f�′) +Nc(Γ�′))

)
. Summation

over 0 ≤ �′′ ≤ L yields the bound O
(

L∑
�′=0

(Nc(f�′) +Nc(Γ�′))

)
= O

(
Nc(f) +

L∑
�′=0

Nc(Γ�′)

)
.

As in the previous step, we have O
(∑L

�′=0Nc(Γ�′)
)
≤ O

(∑L
�′=0Ncc(g�′)

)
= O (Ncc(g)) as

in (7.3a).
In line 4 of (5.8), the discrete convolution ω�′′ := f�′′ ∗ Γ�′′ from (5.4) is to be evaluated

for all 0 ≤ �′′ ≤ L. The length Nc(Γ�′) equals O(Ncc(g�′)). Hence, the convolution cost
is O(max {Nc(f�′′), Nc(Γ�′′)} log (min {Nc(f�′′), Nc(Γ�′′)}) . Summation over all �′′ yields the
bound

O(max {Nc(f), Ncc(g)} log (min {Nc(f), Ncc(g))}) . (7.3b)

7.3 Case B

We analyse the cost of (5.11). The number of coefficients involved in line 4 of (5.11) is
Ncc(ω�′′) +Nc(Γ�′′). Since

∑L
�′′=1Ncc(ω�′′) ≤ O(

∑L
�′′=1Nc(ω�′′)) = O(Nc(ω)) (see (6.3)), this

cost is less than the next part.
The convolution in line 5 costs

O
(
max

(
Nc(ω�′′),min{Nc(f̂�′′), Nc(Γ�′′)}

)
log

(
min{Nc(ω�′′), Nc(f̂�′′), Nc(Γ�′′)}

))
≤ O (max (Nc(ω�′′), Nc(Γ�′′)) log (min{Nc(ω), Nc(g)})) .

27

Summation over all 1 ≤ �′′ ≤ L yields the upper bound

O (max (Nc(ω), Nc(g)) log (min{Nc(ω), Nc(g)})) (7.4)

for the cost of algorithm (5.11).

7.4 Case C

The components δ̂�
i are needed for all ω�′′ with �′′ > �. Therefore their number is

O(Ncc(ω�+1)). To obtain these δ�
i -values by the convolution

∑
j∈Z

f̂ �
j g

�
i−j−1, the number

of necessary components f̂ �
i is O(Ncc(ω�+1) + Nc(g�)). Hence, the lines 3-6 and 9-11 of

algorithm (5.16) lead to O(Ncc(ω1)+Nc(g)) operations, while the convolution in line 8 takes
O (max {Ncc(ω�+1), Nc(g�)} log (min {Ncc(ω�+1), Nc(g�)})) operations for each �. The total
sum is bounded by

O ((Ncc(ω) +Nc(g)) log (Nc(g))) . (7.5)

7.5 Overall Costs

Adding (7.3a,b) for Case A, (7.4) for Case B, and (7.5) for Case C, we obtain the final result
for the cost:

O(max {(Ncc(ω) +Nc(f) +Ncc(g))} log (min {Nc(f) +Nc(g))}) . (7.6)

Under the condition (6.5), this bound becomes

O(N logN), where N := Nc(ω) +Nc(f) +Nc(g).

N describes the total data size of the three function f ∈ Sf , g ∈ Sg, ω ∈ Sω.

8 General Polynomial Ansatz Functions

The purpose of this chapter is to explain why the described method can be generalised
to higher polynomial degrees. Details will be given a forthcoming paper. The example of
piecewise linear ansatz functions can be found in [3].

8.1 Basis Functions

Now we allow that the function f restricted to I�
i ∈ M� is represented by a polynomial

of degree p�
i (see §2.2). In this case we need p�

i + 1 basis functions per interval. For this
purpose we replace the index i used for the piecewise constant basis function Φ�

i by the
pair (i, α), where i ∈ Z refers to the interval, while α ∈ {0, 1, . . . , p�

i} distinguishes the
basis functions Φ�

(i,α) with support in I�
i . As before, we need orthonormal basis functions

{Φ�
(i,α) : i ∈ Z, 0 ≤ α ≤ p�

i}. The best choice are the Legendre polynomials ; more precisely,

the standard Legendre polynomials of degree α defined in the reference interval [−1, 1] are
to be mapped onto I�

i by an affine mapping and scaled such that
∫ |Φ�

(i,α)|2dx = 1. In the

following, the choice of the Legendre polynomials as basis functions is required12.

12Other orthonormal sets of basis functions are possible, but the Legendre polynomials are the only ones
with the property that the degree of Φ�

(i,α) is α.

28

8.2 γ-Coefficients

Replacing i, j, k by pairs (i, α) , (j, β) , (k,κ), we define analogously to (4.1)

γ�′′,�′,�
(i,α),(j,β),(k,κ) :=

∫∫
Φ�′′

(i,α)(x) Φ�′
(j,β)(y) Φ�

(k,κ)(x− y)dxdy. (8.1)

Again, simplified γ-coefficients can be defined by setting i = j = 0, however their simplicity
is reduced by the fact that they depend on the triple α, β,κ :

γ�′′,�′,�
ν,(α,β,κ) :=

∫∫
Φ�′′

(0,α)(x) Φ�′
(0,β)(y) Φ�

(ν,κ)(x− y)dxdy.

As in Lemma 4.2 we can prove the following relation.

Lemma 8.1 Let � ≥ max{�′, �′′}. Then

γ�′′,�′,�
(i,α),(j,β),(k,κ) = γ�′′,�′,�

k−i2�−�′′+j2�−�′ ,(α,β,κ)
for any i, j, k ∈ Z . (8.2)

Some of these coefficients need not be computed since they vanish.

Lemma 8.2 γ�′′,�′,�
ν,(α,β,κ) = 0 for all ν ∈ Z follows from each of the following conditions:

a) �′′ ≥ max{�, �′} and α > β + κ + 1,
b) �′ ≥ max{�, �′′} and β > α + κ + 1,
c) � ≥ max{�′, �′′} and κ > α + β + 1.

Proof. a) Since Φ�′
(0,β) and Φ�

(ν,κ) are of degree β and κ, the convolution Φ�′
(0,β) ∗ Φ�

(ν,κ) is

locally – in particular, in any support of Φ�′′
(0,α) – a polynomial of degree ≤ β + κ + 1.

Because Φ�′′
(0,α) is orthogonal to any polynomial of degree smaller than α, we get γ�′′,�′,�

ν,(α,β,κ) =〈
Φ�′′

(0,α),Φ
�′
(0,β) ∗ Φ�

(ν,κ)

〉
= 0.

b) Define Φ̌�
(ν,κ)(x) := Φ�

(ν,κ)(−x). Then
∫

Φ�′′
(0,α)(x) Φ�

(ν,κ)(x− y)dx =
(
Φ�′′

(0,α) ∗ Φ̌�
(ν,κ)

)
(y)

is locally a polynomial of degree ≤ α + κ + 1. Since γ�′′,�′,�
ν,(α,β,κ) =

〈
Φ�′

(0,β),Φ
�′′
(0,α) ∗ Φ̌�

(ν,κ)

〉
, we

argue as in part a).
c) The last case follows from the symmetry Φ�′

(0,β) ∗ Φ�
(ν,κ) = Φ�

(ν,κ) ∗ Φ�′
(0,β).

8.3 Recursion Formulae

The support of Φ�
(i,κ) is the interval I�

i = [ih�, (i+ 1)h�). Its restriction Φ�
(i,κ)|I�+1

2i
to the

first subinterval I�+1
2i = [ih�, (i+ 1/2)h�) is a polynomial of degree κ and can therefore be

written as a linear combination of the basis functions Φ�+1
(2i,α) (0 ≤ α ≤ κ) in I�+1

2i :

Φ�
(i,κ)(x) =

κ∑
α=0

ξκ,αΦ�+1
(2i,α)(x) for x ∈ I�+1

2i = [ih�, (i+ 1/2)h�) .

29

Remark 8.3 a) By symmetry reasons the representation in the other part I�+1
2i+1 is

Φ�
(i,κ)(x) =

κ∑
α=0

(−1)α+κ ξκ,αΦ�+1
(2i+1,α)(x) for x ∈ I�+1

2i+1 = [(i+ 1/2)h�, (i+ 1)h�) ,

so that altogether we obtain the representation

Φ�
(i,κ) =

κ∑
α=0

ξκ,α

(
Φ�+1

(2i,α) + (−1)α+κ Φ�+1
(2i+1,α)

)
. (8.3)

b) The coefficients ξκ,α depend neither on i nor on �.

The identity (8.3) is the generalisation of (2.8), where ξ0,0 = 1/
√

2.
The representations of f =

∑
�′ f�′ and g =

∑
� g� require a further sum over all degrees:

f�′ =
∑
j∈If

�′

pf,�′
j∑

β=0

f �′
(j,β)Φ

�′
(j,β) ∈ Sf

�′, g�′ =
∑
k∈Ig

�

pg,�
j∑

κ=0

g�
(k,κ)Φ

�′
(k,κ) ∈ Sg

� (8.4)

(cf. (3.2), (3.3)). The local polynomial degrees pf,�′
j and pg,�

j are part of the new definition

of Sf
�′ and Sg

� . Similarly, Sω
� involves polynomial degrees pω,�′′

i . For convenience, we replace

the individual degrees pf,�′
j , pg,�

j , pω,�′′
i by their maximum p.

The projected convolution takes the form ω =
∑
�′′
ω�′′ with ω�′′ =

∑
i∈Iω

�′′

∑p
α=0 ω

�′′
(i,α)Φ

�′
(i,α).

The coefficients satisfy

ω�′′
(i,α) =

∑
(j,β)

∑
(k,κ)

f �′
(j,β)g

�
(k,κ) γ

�′′,�′,�
(i,α),(j,β),(k,κ)

(cf. (4.3)).
Again summation over k and κ defines the coefficients

G�′′,�′,�
(i,α),(j,β) =

p∑
κ=0

∑
k∈Z

g�
(k,κ) γ

�′′,�′,�
(i,α),(j,β),(k,κ)

and allows to obtain ω�′′ from

ω�′′
(i,α) =

p∑
β=0

∑
j∈Z

f �′
(j,β)G

�′′,�′,�
(i,α),(j,β).

The only difference to the piecewise constant case is (a) the additional sum the degree

index (β or κ) and (b) other recursion formulae. For instance, the recursion G�′′,�′,�
i,j =

1√
2

(
G�′′+1,�′,�

2i,j +G�′′+1,�′,�
2i+1,j

)
from (4.10a) now becomes

G�′′,�′,�
(i,α),(j,β) =

α∑
δ=0

ξα,δ

(
G�′′+1,�′,�

(2i,δ),(j,β) + (−1)δ+αG�′′+1,�′,�
(2i+1,δ),(j,β)

)
.

30

8.4 Algorithm, Cost

The generalisation of the algorithm is straightforward. Even the estimation of the cost
follows the same lines provided that the maximal degree p can be considered as a constant.

9 Convolution of Periodic Functions

Let 2π be the period of the functions f and g. Then the corresponding periodic convolution
is defined by

ωexact (x) := (f ∗ g) (x) :=

∫ 2π

0

f(y)g(x− y)dy for all x ∈ [0, 2π)

instead of (1.1). The computation of the projected periodic convolution is very similar to
the convolution in R. We only list the items which are to be changed.

The step size h of the coarsest grid must be restricted to the discrete set {2π/m : m ∈ N} .
In the following we assume that m denotes the integer such that h = h0 = 2π/m.

The set of basis functions is now finite. The index i of Φ�
i is restricted to the set{

0, 1, . . . , 2�m− 1
}
. Furthermore, the location index i must be understood modulo 2�m.

This holds in particular for the index ν−α in the following discrete periodic convolution (of
period 2�m):

c := a ∗ b, i.e., cν :=
2�m−1∑
α=0

aαbν−α for all 0 ≤ ν ≤ 2�m− 1.

Also intervals in Z/
(
2�mZ

)
are to be understood in the period sense. If

0 ≤ imin ≤ imax < 2�m,

[imin, imax] is a usual interval embedded into Z2�m containing imax − imin + 1 elements. In the
case 0 ≤ imax < imin < 2�m, the union

{
imin, imin + 1, . . . , 2�m− 1

} ∪ {0, 1, . . . , imax} of two
standard intervals can be interpreted as one interval

{
imin − 2�m, imin − 2�m+ 1, . . . , imax

}
modulo 2�m containing imax − imin + 2�m + 1 elements. This fact is important for a new
definition of the convexified set Sc(·). We define Sc(·) as the smallest interval (in the periodic
sense) containing the set Sd(·). In the example depicted in Figure 6.1, the grid at level 1
leads to Sc(·) = Sd(·)!

For the basic discrete convolution problem (see §6.2) we can always use the fixed value13

2�m (depending on the level number �, but not depending on n). The former condition
2�m ≥ 2n − 1 is not required. However, if 2�m ≥ 2n − 1 holds (and hopefully there are
many discrete convolution problems with rather small n), the discrete convolution can be
performed as be in the non-period fashion. Therefore, the estimates of the cost are the same
as before.

132�m replaces m in §6.2.

31

References

[1] M.V. Fedorov, H.-J. Flad, G.N. Chuev, L. Grasedyck, and B.N. Khoromskij: Low-rank
wavelet solver for the Ornstein-Zernike integral equation. Max-Planck-Institut für Math-
ematik in den Naturwissenschaften. Preprint 59/2005, Leipzig 2005 (to appear in Com-
puting).

[2] W. Hackbusch: On the efficient evaluation of coalescence integrals in population balance
models. Computing 78 (2006) 145-172.

[3] W. Hackbusch: Fast and exact projected convolution of piecewise linear functions on
non-equidistant grids. Preprint 110, Max-Planck-Institut für Mathematik, Leipzig, 2006.

[4] D. Potts: Schnelle Fourier-Transformationen für nichtäquidistante Daten und Anwen-
dungen. Habilitation thesis, Universität zu Lübeck, 2003.

[5] D. Potts, G. Steidl, and A. Nieslony: Fast convolution with radial kernels at nonequispaced
knots. Numer. Math. 98 (2004) 329-351.

32

In the Sections of the appendix we give alternative approaches to the Cases A-C, which
however need more work than the algorithms given in the main part.

A Appendix: Second Variant of Step 2b in Case A

A.1 Algorithm

In §5.1.3, the convolution is first evaluated at level �′ and then coarsened to levels �′′ ≤ �′.
Therefore, ω�′ has to be computed in its whole support Sc(ω�′). The following variant tries
to compute ω�′, ω�′−1, . . . individually, so that their evaluation requires only the necessary
part. However, it will turn out that the costs are higher than for the variant presented in
§5.1.3.

The second variant uses another organisation of the j-sum in ω�′′
i =

∑
j,k∈Z

f �′
j g

�
k γ

�′′,�′,�
i,j,k .

First, we give the example �′′ = �′ − 1 in detail, before we describe the general procedure.

A.1.1 Example �′′ = �′ − 1

We split the sequence f�′ =
(
f �′

j

)
j∈Z

into two subsequences f�′,0 =
(
f �′

2j

)
j∈Z

and f�′,1 =(
f �′

2j+1

)
j∈Z

. Then the summation over j in ω�′−1
i =

∑
j,k∈Z

f �′
j g

�
k γ

�′−1,�′,�
i,j,k becomes

ω�′−1
i =

∑
j,k∈Z

f �′
2j g

�
k γ

�′−1,�′,�
i,2j,k +

∑
j,k∈Z

f �′
2j+1 g

�
k γ

�′−1,�′,�
i,2j+1,k .

For the first γ-factor we use

γ�′−1,�′,�
i,2j,k =

(4.6)
γ�′−1,�′,�

k−i2�−(�′−1)+(2j)2�−�′ = γ�′−1,�′,�
k−(i−j)2�−(�′−1) =

(4.6)
γ�′−1,�′,�

i−j,0,k .

The second γ-factor is treated similarly:

γ�′−1,�′,�
i,2j+1,k = γ�′−1,�′,�

k−i2�−(�′−1)+(2j+1)2�−�′ = γ�′−1,�′,�
k−(i−j)2�−(�′−1)+2�−�′ = γ�′−1,�′,�

i−j,1,k .

Summation over k yields∑
k∈Z

g�
k γ

�′−1,�′,�
i,2j,k =

∑
k∈Z

g�
k γ

�′−1,�′,�
i−j,0,k = G�′−1,�′,�

i−j,0

and
∑

k∈Z
g�

k γ
�′−1,�′,�
i,2j+1,k = G�′−1,�′,�

i−j,1 . The final result is

ω�′−1
i =

∑
j∈Z

f �′
2j G

�′−1,�′,�
i−j,0 +

∑
j∈Z

f �′
2j+1G

�′−1,�′,�
i−j,1 .

Hence, introducing the notations G�′−1,�′,�
ν :=

(
G�′−1,�′,�

i,ν

)
i∈Z

with ν ∈ {0, 1}, we can represent

the sequence ω�′−1 =
(
ω�′−1

i

)
i∈Z

by the sum of two discrete convolutions:

ω�′−1 = f�′,0 ∗G�′−1,�′,�
0 + f�′,1 ∗G�′−1,�′,�

1 .

33

In order to get the coefficients of G�′−1,�′,�
0 , G�′−1,�′,�

1 . We use (4.10a) and (4.11):

G�′−1,�′,�
i,0 =

1√
2

(
G�′,�′,�

2i,0 +G�′,�′,�
2i+1,0

)
=

1√
2

(
Γ�′,�

2i + Γ�′,�
2i+1

)
, (A.1)

G�′−1,�′,�
i,1 =

1√
2

(
G�′,�′,�

2i,1 +G�′,�′,�
2i+1,1

)
=

(4.9)

1√
2

(
G�′,�′,�

2i−1,0 +G�′,�′,�
2i,0

)
=

1√
2

(
Γ�′,�

2i−1 + Γ�′,�
2i

)
.

Note that the coefficients Γ�′,�
i are known from Step 1b (see §5.1.1).

A.1.2 General Recursion

Let �′′ ∈ {�′ − 1, �′ − 2, . . . , 0}. We split the sequence f�′ =
(
f �′

j

)
j∈Z

into 2�′−�′′ subsequences

f�′,ν =
(
f �′

2�′−�′′ j+ν

)
j∈Z

for 0 ≤ ν ≤ 2�′−�′′ − 1. (A.2)

Summation over the indices 2�′−�′′j + ν (ν fixed) yields∑
j,k∈Z

f �′
2�′−�′′ j+ν

g�
k γ

�′′,�′,�
i,2�′−�′′j+ν,k

=
∑
j,k∈Z

f �′
2�′−�′′ j+ν

g�
k γ

�′′,�′,�
i−j,ν,k =

∑
j∈Z

f �′
2�′−�′′j+ν

G�′′,�′,�
i−j,ν

by the same arguments as before. The right-hand side is the discrete convolution f�′,ν∗G�′′,�′,�
ν ,

where G�′′,�′,�
ν is the sequence

(
G�′′,�′,�

i,ν

)
i∈Z

. Summation over ν produces the final result:

ω�′′ :=
(
ω�′′

i

)
i∈Z

=
2�′−�′′∑
ν=0

f�′,ν ∗G�′′,�′,�
ν . (A.3)

The necessary coefficients G�′′,�′,�
i,ν are recursively computable via

G�′′,�′,�
i,ν = 1√

2

(
G�′′+1,�′,�

2i,ν +G�′′+1,�′,�
2i+1,ν

)
for 0 ≤ ν ≤ 2�′−�′′−1 − 1, (A.4a)

G�′′,�′,�
i,ν = 1√

2

(
G�′′+1,�′,�

2i−1,ν−2�′−�′′−1 +G�′′+1,�′,�
2i,ν−2�′−�′′−1

)
for 2�′−�′′−1 ≤ ν ≤ 2�′−�′′ − 1. (A.4b)

For the first step �′′ = �′ − 1, the right-hand side in (A.4a,b) can be expressed by the known

coefficients Γ�′,�
i (see (A.1)).

A.2 Cost of the Second Version of Step 2b

Step 2a has to be reinterpreted. In the case of the second version of Step 2b the product
ω�′ := f�′ ∗ Γ�′,� is needed in only L�′ components (L�′ ≤ Nc(ω�′) replaces Lc from §6.6).
According to Lemma 6.3 and Remark 7.2c, the cost is14

�−1∑
�′=0

O
(

max
(
L�′ ,min

(
Nc(f�′), 2

�′−�Nc(g�))
))

· log
(
min

(
L�′ , Nc(f�′), 2

�′−�Nc(g�))
)))

≤ O
(

�−1∑
�′=0

max (L�′ , Nc(f�′)) log (min (L�′ , Nc(f�′)))

)
.

14We have replaced min
(
Nc(f�′), 2�−�′Nc(g�))

)
by the upper bound Nc(f�′) because of shorter notation.

34

Before we perform (A.3), i.e., ω�′′ :=
∑2�′−�′′

ν=0 f�′,ν ∗G�′′,�′,�
ν , we have to compute G�′′,�′,�

ν for
all 0 ≤ �′′ ≤ �′ ≤ � by means of (A.4a,b). Since the range of ν doubles when �′′ → �′′ − 1,
the cost for computing the G-quantities is �′ · (2�′−�Nc(g�))

)
for all 0 ≤ �′′ ≤ �′− 1. Summing

over all 1 ≤ �′ ≤ � yields
O (�Nc(g�)) .

Next, we consider the discrete product f�′,ν ∗ G�′′,�′,�
ν . Note that Nc(f�′,ν) = 2�′′−�′Nc(f�′)

and Nc(G
�′′,�′,�
ν) = O (

2�′′−�Nc(g�)
)

(cf. Remark 7.2c). According to Remark 6.2, the convolu-

tion cost is O (
max

(
2�′′−�′Nc(f�′), 2

�′′−�Nc(g�)
)
log

(
min

(
2�′′−�′Nc(f�′), 2

�′′−�Nc(g�)
)))

. Since

for fixed levels �′, �′′ there are 2�′−�′′ different values of ν, the convolutions for all ν require
O (

max
(
Nc(f�′), 2

�′−�Nc(g�)
)
log

(
min

(
Nc(f�′), 2

�′−�Nc(g�)
)))

operations15. Summation over
0 ≤ �′′ ≤ �′ introduces an addition factor (�′ + 1) . Further summation over 0 ≤ �′ ≤ � leads
to15

O
(

max

(
�∑

�′=0

(�′ + 1)Nc(f�′), (�+ 1)Nc(g�)

)
log (min (Nc(f�′), Nc(g�)))

)
.

B Second Variant in Case B

In this variant, we need to compute the coefficients G�′′,�′,�
ν,j for few ν and all j ∈ Z. In Step

1 we start with �′′ = � and proceed with �′′ = �+ 1, �+ 2, . . . , �′ − 1 in Step 2.

B.1 Step 1: Start

The first part is the computation of Γ�′′,�
i = G�′′,�′′,�

i,0 = G�′′,�′′,�
0,−i (�′′ = �, �+1, . . . , 1, cf. (4.11)).

Since these quantities are already known from Step 1b in §5.1.1 (there the index �′′ is called
�′), this part does not require additional cost.

Note that different from Case A, the first loop involves the index �′′ = �, � + 1, . . . , 1,
while �′ = �′′ − 1, . . . , 0 is the second loop. Together, we cover all situations �′ < �′′ ≤ � for
a fixed �.

B.2 Step 2

The coefficients G�′′,�′′,�
i,j = Γ�′′,�

i−j are known from Step 1. Now we want to compute G�′′,�′,�
i,j

for coarser levels �′ = �′′ − 1, . . . , 0. We can write any index i ∈ Z as i′2�′′−�′ + ν with
ν ∈ {0, 1, . . . , 2�′′−�′ − 1}. Since

G�′′,�′,�
i,j = G�′′,�′,�

i′2�′′−�′+ν,j
= G�′′,�′,�

ν,j−i′ ,

15Note that the argument of log (min (. . .)) contains the maximum over the summation index.

35

the data G�′′,�′,�
i,j can be organised by 2�′′−�′ sequences16 Ǧ�′′,�′,�

ν := (G�′′,�′,�
ν,−j)j∈Z, ν = 0, . . . ,

2�′′−�′ − 1. For their computation use the following formulae for �′ = �′′ − 1, . . . , 0 :

G�′′,�′,�
ν,j =

1√
2

(
G�′′,�′+1,�

ν,2j +G�′′,�′+1,�
ν,2j+1

)
for 0 ≤ ν ≤ 2�′′−�′−1 − 1, (B.1a)

G�′′,�′,�
ν+2�′′−�′−1,j

=
1√
2

(
G�′′,�′+1,�

ν,2j−1 +G�′′,�′+1,�
ν,2j

)
for 0 ≤ ν ≤ 2�′′−�′−1 − 1. (B.1b)

Together, the coefficients G�′′,�′,�
ν,j are defined for all 0 ≤ ν ≤ 2�′′−�′ − 1 and all j ∈ Z.

For a proof of (B.1a,b) use G�′′,�′,�
ν,j = 1√

2

(
G�′′,�′+1,�

ν,2j +G�′′,�′+1,�
ν,2j+1

)
(cf. (4.10b)) and

G�′′,�′+1,�

ν+2�′′−�′−1,2j
=
∑
k∈Z

g�
kγ

�′′,�′+1,�

ν+2�′′−�′−1,2j,k
=

(4.6)

∑
k∈Z

g�
kγ

�′′,�′+1,�

k−ν−2�′′−�′−1+(2j)2�′′−�′−1

=
∑
k∈Z

g�
kγ

�′′,�′+1,�

k−ν+(2j−1)2�′′−(�′+1) = G�′′,�′+1,�
ν,2j−1 ,

G�′′,�′+1,�

ν+2�′′−�′−1,2j+1
=
∑
k∈Z

g�
kγ

�′′,�′+1,�

k−ν−2�′′−�′−1+(2j+1)2�′′−�′−1 =
∑
k∈Z

g�
kγ

�′′,�′+1,�

k−ν+(2j)2�′′−�′−1 = G�′′,�′+1,�
ν,2j .

B.3 Step 3

The projection P�′′ (f�′ ∗ g�) has the coefficients ω�′′
i which are split into 2�′′−�′ subsequences

(indexed again by i with fixed ν):

ω�′′
2�′′−�′ i+ν

=
∑
j,k∈Z

f �′
j g

�
k γ

�′′,�′,�
2�′′−�′ i+ν,j,k

for 0 ≤ ν ≤ 2�′′−�′ − 1 and i ∈ Z.

Since
∑

k∈Z
g�

k γ
�′′,�′,�
2�′′−�′ i+ν,j,k

=
∑

k∈Z
g�

k γ
�′′,�′,�
k−(2�′′−�′ i+ν)2�−�′′+j2�−�′ =

∑
k∈Z

g�
k γ

�′′,�′,�
k−ν2�−�′′+(j−i)2�−�′ =∑

k∈Z
g�

k γ
�′′,�′,�
ν,j−i,k = G�′′,�′,�

ν,j−i , we have

ω�′′
2�′′−�′ i+ν

=
∑
j∈Z

f �′
j G

�′′,�′,�
ν,j−i for 0 ≤ ν ≤ 2�′′−�′ − 1 and i ∈ Z.

Hence, the subsequence ω�′′,ν :=
(
ω�′′

2�′′−�′ i+ν

)
i∈Z

is the discrete convolution f�′ ∗ Ǧ�′′,�′,�
ν with

Ǧ�′′,�′,�
ν :=

(
G�′′,�′,�

ν,−j

)
j∈Z

:

ω�′′,ν := f�′ ∗ Ǧ�′′,�′,�
ν

(
0 ≤ ν ≤ 2�′′−�′ − 1

)
. (B.2)

Together, the sequences ω�′′,ν , 0 ≤ ν ≤ 2�′′−�′ − 1, represent all coefficients of ω�′′ =
P�′′ (f�′ ∗ g�).

16The definition uses −j in (G�′′,�′,�
ν,−j)j∈Z in order to obtain a standard discrete convolution in (B.2).

36

B.4 Combining the Computations for all �′ < �′′ ≤ �

Again, we use the already computed Γ�′′
i from (5.6) instead of Γ�′′,�

i , to treat all levels � =
�′′, �′′ + 1, . . . , L at once. The further algorithm is

for �′′ := 1 to L do explanations:
for �′ := �′′ − 1 downto 0 do

begin G�′′,�′′
0,j := Γ�′′

−j ; starting value,

for ν := 0 to 2�′′−�′−1 do

begin G�′′,�′
ν,j = 1√

2

(
G�′′,�′+1

ν,2j +G�′′,�′+1
ν,2j+1

)
; recursion (B.1a),

G�′′,�′,�
ν+2�′′−�′−1,j

= 1√
2

(
G�′′,�′+1,�

ν,2j−1 +G�′′,�′+1,�
ν,2j

)
recursion (B.1b),

end;
for ν := 0 to 2�′′−�′ do ω�′′,ν := f�′ ∗ Ǧ�′′,�′

ν see (B.2).
end;

The resulting sequences ω�′′ contain all contributions P�′′(f�′ ∗ g�) with �′ < �′′ ≤ �.

B.5 Corresponding Cost

As already mentioned, Step 1 does not require additional cost.
In Step 2 we have to perform (B.1a,b) for �′ = �′′−1, , . . . , 0 and 0 ≤ ν ≤ 2�′′−�′ −1. With

�′ → �′−1 the length of Ǧ�′′,�′,�
ν =

(
G�′′,�′,�

ν,−j

)
j∈Z

is halved, but since the range 0 ≤ ν ≤ 2�′′−�′−1

doubles, we have
∑2�′′−�′−1

ν=0 Nc(Ǧ
�′′,�′,�
ν) ≤ ∑2�′′−�′−1

ν=0 O (
2�′−�Nc(g�)

)
= O (

2�′′−�Nc(g�)
)

(cf.
Lemma 7.1 and Remark 7.2c). Summation over 1 ≤ �′′ ≤ � yields the bound Nc(g�) for the
data size. The number of operations needed for their computation is proportional:

O (Nc(g�)) . (B.3)

In Step 3 the discrete convolutions ω�′′,ν := f�′ ∗ Ǧ�′′,�′,�
ν are to be performed for all

0 ≤ ν ≤ 2�′′−�′−1. We need L�′′ components of ω�′′. Since ω�′′ is split into 2�′′−�′ subsequences
ω�′′,ν , in the average we have to compute 2�′−�′′L�′′ components of ω�′′,ν . The corresponding
cost is

�∑
�′′=1

�′′−1∑
�′=0

2�′′−�′ · O
(

max
(
2�′−�′′L�′′,min

(
Nc(f�′), 2

�′−�Nc(g�)
))

· log
(
min

(
2�′−�′′L�′′ , Nc(f�′), 2

�′−�Nc(g�)
)))

≤
�−1∑
�′=0

�∑
�′′=�′+1

O
(
max

(
L�′′ , 2

�′′−�Nc(g�)
)

log
(
min

(
L�′′ , Nc(f�′), 2

�′′−�Nc(g�)
)))

=
�−1∑
�′=0

O
(

max

(
�∑

�′′=�′+1

L�′′ , Nc(g�)

)
log

(
min

(
max

�′′
L�′′ , Nc(f�′), Nc(g�)

)))

≤ O
(

max

(
�∑

�′′=1

�′′L�′′ , �Nc(g�)

)
log (Nc(g�))

)
(B.4)

(cf. Lemma 6.3 and Remark 7.2c).

37

C Second Variant in Case C

C.1 Computation of δ

C.1.1 Definitions

We define new γ̌-coefficients17

γ̌�,�′,�
i,j,k :=

∫
Φ�′

j (y)Φ�
k(ih� − y)dy (0 ≤ �′ ≤ �, i, j, k ∈ Z)

(Φ�
i(x) replaced by the Dirac function at ih�). Simple substitutions yield

γ̌�,�′,�
i,j,k =

∫
Φ�′

0 (y − jh�′)Φ
�
0((i− k)h� − y)dy

=

∫
Φ�′

0 (y)Φ�
0((i− k)h� − (y + jh�′))dy =

∫
Φ�′

0 (y)Φ�
0

(
(i− k − j2�−�′)h� − y

)
dy

=

∫
Φ�′

0 (y)Φ�
k−i+j2�−�′(−y)dy =: γ̌�′,�

k−i+j2�−�′ ,

defining simplified coefficients γ̌�′,�
k with one subindex. The values can be given explicitly:

γ̌�′,�
k =

{
2−(�−�′)/2 for − 1 ≥ k ≥ −2�−�′,
0 otherwise.

Instead one may use the recursion

γ̌�,�
k =

{
1 for k = −1,
0 otherwise,

(C.1a)

γ̌�′,�
k =

1√
2

(
γ̌�′+1,�

k + γ̌�′+1,�

k+2�−�′−1

)
for �′ < �, (C.1b)

which follows from

γ̌�′,�
k−i+j2�′−� = γ̌�,�′,�

i,j,k =
1√
2

(
γ̌�,�′+1,�

i,2j,k + γ̌�,�′+1,�
i,2j+1,k

)
=

1√
2

(
γ̌�′+1,�

k−i+j2�−�′ + γ̌�′+1,�

k−i+j2�−�′+2�−�′−1

)
,

so that for i = j = 0 the identity γ̌�′,�
k = 1√

2

(
γ̌�′+1,�

k + γ̌�′+1,�

k+2�−�′−1

)
is derived.

The δ-values are

δi = (f�′ ∗ g�) (ih�) =
∑
j,k∈Z

f �′
j g

�
k

∫
Φ�′

j (y)Φ�
k(ih� − y)dy =

∑
j,k∈Z

f �′
j g

�
k γ̌

�,�′,�
i,j,k

=
∑
j∈Z

f �′
j Ǧ

�,�′,�
i,j ,

where we have introduced
Ǧ�,�′,�

i,j :=
∑
k∈Z

g�
k γ̌

�,�′,�
i,j,k .

17As for γ�′′,�′,�
i,j,k we write γ̌�,�′,�

i,j,k with three superindices. However, the first one is not really needed because
of �′′ = �.

38

C.1.2 Step 1: �′ = �

For �′ = � we have to compute Ǧ�,�,�
i,j :=

∑
k∈Z

g�
k γ̌

�,�,�
i,j,k =

∑
k∈Z

g�
k γ̌

�,�
k−i+j. Using (C.1a) we

obtain
Ǧ�,�,�

i,j = Ǧ�,�,�
i−j,0 = Ǧ�,�,�

0,j−i = g�
i−j−1 (i, j ∈ Z) .

C.1.3 Step 2: �′ = �− 1, . . . , 0

For �′ < �, the recursion

Ǧ�,�′,�
i,j =

1√
2

(
Ǧ�,�′+1,�

i,2j + Ǧ�,�′+1,�
i,2j+1

)
holds again (cf. (4.10b)). Note that for i = µ2�−�′ + ν (0 ≤ ν ≤ 2�−�′ − 1)

Ǧ�,�′,�
i,j =

∑
k∈Z

g�
k γ̌

�,�′,�
i,j,k =

∑
k∈Z

g�
k γ̌

�′,�
k−i+j2�−�′ = Ǧ�,�′,�

i−j2�−�′ ,0 = Ǧ�,�′,�
ν+(µ−j)2�−�′ ,0 = Ǧ�,�′,�

ν,j−µ ,

so that the recursion becomes

Ǧ�,�′,�
ν,j = 1√

2

(
Ǧ�,�′+1,�

ν,2j + Ǧ�,�′+1,�
ν,2j+1

)
for 0 ≤ ν ≤ 2�−�′−1 − 1, (C.2a)

Ǧ�,�′,�
ν,j = 1√

2

(
Ǧ�,�′+1,�

ν−2�−�′−1,2j−1
+ Ǧ�,�′+1,�

ν−2�−�′−1,2j

)
for 2�−�′−1≤ν≤2�−�′ − 1. (C.2b)

Write the index i as

i = µ2�−�′ + ν with 0 ≤ ν ≤ 2�−�′ − 1, µ ∈ Z.

The computation of

δµ2�−�′+ν =
∑
j,k∈Z

f �′
j g

�
k γ̌

�,�′,�
µ2�−�′+ν,j,k

=
∑
j∈Z

f �′
j Ǧ

�,�′,�
µ2�−�′+ν,j

=
∑
j∈Z

f �′
j Ǧ

�,�′,�
ν,j−µ (C.3)

needs a discrete convolution to obtain the subsequence δ(ν) :=
(
δµ2�−�′+ν

)
µ∈Z

. Performing the

convolutions for all 0 ≤ ν ≤ 2�−�′ − 1, we have completed the whole sequence δ = (δν)ν∈Z
.

We remark that we need the values δν and only δν+1 for those ν ∈ Z for which I�
ν contains

one of the intervals I�′′
i with �′′ > � and i ∈ Iω

�′′ (cf. (3.1)).

39

C.1.4 Combining the Computations for all �′ ≤ � < �′′

for � := 0 to L− 1 do explanations:
begin for �′ := � downto 0 do

begin if �′ = � then begin Ǧ�,�,�
0,−i = g�

i−1; δ := 0 end starting values,

else for ν := 0 to 2�−�′−1 − 1 do case of �′ < �,

begin Ǧ�,�′,�
ν,j = (Ǧ�,�′+1,�

ν,2j + Ǧ�,�′+1,�
ν,2j+1)/

√
2; see (C.2a),

Ǧ�,�′,�
ν+2�−�′−1,j

= (Ǧ�,�′+1,�
ν,2j−1 + Ǧ�,�′+1,�

ν,2j)/
√

2 see (C.2b),

end;
for ν := 0 to 2�−�′ − 1 do
begin compute δ(ν) from (C.3); add δ(ν) to δ see (C.3),

end end;
for �′′ := �+ 1 to L do
for all i = ν2�′′−� + j with 0 ≤ j ≤ 2�′′−� − 1 do

ω�′′
i =

√
h�′′

(
δν +

i+ 1
2

2�′′−� (δν+1 − δν)
)

see (5.12).

end;

C.2 Corresponding Cost

First, we have to compute the Ǧ-coefficients. For �′ = �, the Ǧ�,�,�
0,j are given by g� proving

Nc(Ǧ
�,�,�
0,∗) = Nc(g�), where we denote the sequence by Ǧ�,�′,�

ν,∗ :=
(
Ǧ�,�′,�

ν,j

)
j∈Z

(we remark that

only �′′ = � appears). The computations start with the recursion (C.2a,b). The length is
Nc(Ǧ

�,�′,�
ν,∗) ≤ 2�′−�Nc(g�)+ 1 (cf. Lemma 7.1). The number of different ν-values is 2�−�′. This

leads to ≤ O(Nc(g�)) operations (cf. Remark 7.2c). Summation over all 0 ≤ �′ ≤ � yields
the upper bound

(�+ 1)Nc(g�) (C.4)

The subsequence δ(ν) :=
(
δµ2�−�′+ν

)
µ∈Z

requires one convolution in (C.3) and is to be

evaluated for L�,ν indices. The sum of the latter numbers is

2�−�′−1∑
ν=0

L�,ν =: L(�) ≤
Lω∑

�′′=�+1

Ncc(ω�+1)/2 + 2.

Proof. Nc(ω�′′) is the number of indices i where ω�′′
i is to be evaluated. The related intervals

are I�′′
i , i ∈ Iω

�′′ . The intervals I�′′
i for all i ∈ Iω

�′′ and all � < �′′ ≤ Lω intersect at most∑Lω

�′′=�+1Ncc(ω�+1)/2 + 1 intervals of M�. The number of grid points is by one larger.

The convolution cost for all 0 ≤ �′ ≤ � and 0 ≤ ν ≤ 2�−�′ is

�∑
�′=0

2�−�′−1∑
ν=0

O
(

max
(
L�,ν ,min

(
Nc(f�′), Nc(Ǧ

�,�′,�
ν,∗)

))
· log

(
min

(
L�,ν , Nc(f�′), Nc(Ǧ

�,�′,�
ν,∗)

)))

=

�∑
�′=0

O
(

max
(
L(�),min

(
2�−�′Nc(f�′), Nc(g�)

))
· log

(
min

(
L(�), Nc(f�′), 2

�′−�Nc(g�)
)))

= O
(
(�+ 1) max

(
L(�), Nc(g�)

)
log

(
min

(
L(�),

�
max
�′=0

Nc(f�′), Nc(g�)
)))

. (C.5)

40

