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Abstract

We give explicit expressions for entanglement measures of Werner states in arbitrary dimensions

in terms of concurrence and tangle. We show that an optimal ensemble decomposition for a

joint density matrix of a Werner state can achieve the minimum average concurrence and tangle

simultaneously. Furthermore, the same decomposition also attains entanglement of formation for

Werner states.
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Quantum entanglement is playing very significant roles in quantum information process-

ing such as quantum cryptography, quantum teleportation and quantum computation [1].

This motivates an increasing interest in the study of operational detection and quantification

of entanglement for various quantum systems. Despite of a great deal of efforts in recent

years, for the moment only partial solutions are known to detect and quantify entanglement

for generic mixed state.

The crucial entanglement measure concurrence, firstly proposed by Hill and Wootters

[2, 3], has recently been shown to play an essential role in describing quantum phase tran-

sitions in various interacting quantum many-body systems [4], affecting macroscopic prop-

erties of solids significantly [5] and revealing distinct scaling behavior for different types of

multipartite entanglement [6]. The concurrence was then generalized by Uhlmann, Rungta

et al, and by Albeverio and Fei [7] to arbitrary bipartite quantum system. Multi-variable

concurrence vectors are also introduced in [8, 9] and possible multipartite generalizations

are given in [10].

However, even the problem of obtaining only lower bound of concurrence has required

considerable efforts [8, 11]. This problem has been advanced significantly in [12], providing

an algebraic lower bound which can be optimized further by numerical approaches, and

in [13] through an entirely analytical derivation of a complementary tightly lower bound.

In addition, nice analytical results are also given for isotropic states [14] and rotationally

symmetric states [15].

An important class of quantum states are the Werner states [16, 17], which appear in

realistic quantum computing devices and quantum communication environments, e.g. trans-

mitting perfect entangled states through a noisy depolarizing channel. An effective exper-

imental generation of these states has been recently demonstrated in [18]. An analytical

expression has been derived in [17] for entanglement of formation (EOF), which quantifies

the minimally required physical resources to prepare a Werner state. The greatest cross

norm is also obtained for the Werner states [19]. It is believed [20] that there is a novel

connection between the concurrence and their EOF, through a parameter that depicts the

Werner state completely. One expects that the situation would be similar to the case of two

qubits where EOF is an analytic monotone function of concurrence [3]. However, for Werner

states why such a parameter plays the role of concurrence is not yet well understood. There

is also no rigorous and clear proof of this fact in the literatures, for high dimensions.
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In this letter we first find an analytic expression of concurrence for Werner states in

arbitrary dimensions, which complements many of the existing analytic results. We then

show how EOF is exactly related to the concurrence. We demonstrate that, surprisingly, an

optimal ensemble decomposition will achieve concurrence, tangle and EOF simultaneously

for the Werner states. Thus the expected connection is rigorously proved and shown to be

natural.

Werner states. The Werner states are a class of mixed states for d × d systems (two

qudits with d ≥ 2) which are invariant under the transformations U⊗U , for any unitary

transformation U [16, 17]. The density matrix of these states can be expressed as

ρf =
1

d3 − d
(d − f)I + (df − 1)F, (1)

where F is the flip operator (or swap operator) defined by F(φ ⊗ ψ) = ψ ⊗ φ. In the

computational basis |ij〉, F is of the form F =
∑d

i,j |ij〉〈ji|. Here f is a constant f = 〈F〉 ≡
Tr(Fρf ) satisfying −1 ≤ f ≤ 1. Werner states are separable if and only if f ≥ 0, as shown

in [16, 17].

It is evident that the Werner states are invariant under the action of the LOCC “twirling”

superoperator T
T (ρf ) =

∫

dU U ⊗ UρfU
† ⊗ U † = ρf . (2)

where dU refers to the standard Haar measure on the unitary matrix group. Consider an

arbitrary initial pure d ⊗ d quantum state of the standard Schmidt form

|ψ〉 =
∑

ij

Φij|ij〉 =
∑

i

√
µi|aibi〉 =

(
UA ⊗ UB

) ∑

i

√
µi|ii〉, (3)

where |ai〉 and |bi〉 are orthonormal bases of the subsystems HA and HB, respectively. The

state |ψ〉 is thus specified by its Schmidt vector ~µ ≡ (µ1, µ2, . . . , µd) and the unitary operators

UA and UB. For convenience of later use, we use the symbol Φ to denote the pure state |ψ〉,
where Φ is the matrix with entries Φij, which contains all the information for |ψ〉. In fact,

any two-qudit ρ reduces to a Werner state

T (ρ) = ρf(ρ), (4)

under the twirling superoperator while keeping f(ρ) = 〈F〉 = Tr(Fρ) invariant. This can

easily be seen from

Tr
(
FT (ρ)

)
= Tr

(
T (F)ρ

)
= Tr(Fρ). (5)
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As for the pure state Eq. (3), one has

T (|ψ〉〈ψ|) = ρf , (6)

with f given by

f = Tr(|ψ〉〈ψ|F) =
∑

ij

ΦijΦ
∗
ji. (7)

Entanglement measures in terms of concurrence and tangle. The (generalized)

definition [7] of concurrence C(|ψ〉) for a pure state |ψ〉 is as follows: C(|ψ〉) =
√

2(1 − Trρ2
A),

where the reduced density matrix ρA is given by ρA = trB(|ψ〉〈ψ|). This can then be extended

to mixed states by the “convex roof construction”,

C(ρ) ≡ min
{pi,|ψi〉}

∑

i

piC(|ψi〉), (8)

where ρ =
∑

i pi|ψi〉〈ψi|, pi ≥ 0 and
∑

i pi = 1. For any pure product state |ψ〉, C(|ψ〉)
vanishes according to the definition. Consequently, a state ρ is separable if and only if

C(ρ) = 0. A separable state can then be represented as a convex combination of product

states [16].

Another entanglement measure called tangle, was first proposed in [21]. Its generalization

to generic mixed states and further properties were explored in [14, 22]. The tangle τ(ρ)

is by definition the squared concurrence for pure states, and can be similarly extended to

mixed states

τ(ρ) ≡ min
{pi,|ψi〉}

∑

i

piC
2(|ψi〉), (9)

where C2(|ψi〉) stands for
(
C(|ψi〉)

)2
.

For the pure state |ψ〉 of (3), we have:

τ(Φ) = C2(Φ) = 2
(
1 −

∑

i

µ2
i

)

= 4
∑

i<j

µiµj = C2(~µ) = τ(~µ), (10)

which varies smoothly from 0, for pure product states, to 2(d−1)/d for maximally entangled

pure states.

Concurrence and tangle for Werner states. To derive the tangle and concurrence

for Werner states, we will use a technique developed in [14, 17, 23]. The EOF is defined to
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be E(ρ) ≡ min{pi,|ψi〉}

∑

i piE(|ψi〉) for all possible ensemble realizations ρ =
∑

i pi|ψi〉〈ψi|,
where pi ≥ 0 and

∑

i pi = 1. Here E(|ψ〉) = S(ρA) with S(ρA) the entropy S(ρA) ≡
−

∑d

i=1 µi log2 µi = H(~µ), where µi are all the eigenvalues of ρA and ~µ is the Schmidt vector

(µ1, µ2, . . . , µd). The EOF of Werner states is derived in [17] as being given by

E(ρf ) = H2

(1

2
(1 −

√

1 − f 2)
)
, (11)

by an elegant extremization procedure. Here H2(.) is the binary entropy function. Since

E(ρf ) is a monotonically increasing function of −f , as seen from Eq. (11), it is expected

[20] that −f plays the role of concurrence, similarly as in the two qubits case [3].

Simplification through symmetry. Before getting through possible extremization proce-

dures, we first recall some formulations of the convex roof construction of entanglement

measures [17, 24]. We denote by K the whole set of states in a given quantum system and

by M the set of all pure states in K. Then the elements of K are convex linear combinations

of a finite number elements of M . Let G be a compact group of symmetries acting on K

by transformations αU : ρ 7→ UρU †, U being an element of G, and assume that a pure-state

measure E defined on M is invariant under G. We define a projection P : K → K by

Pρ =
∫

dUUρU † with dU , as before, the standard Haar measure on G, and a function ε on

PK by

ε(ρ) = min{E(|ψ〉) : |ψ〉 ∈ M,P|ψ〉〈ψ| = ρ}. (12)

For ρ ∈ PK, it is proved that [17]

coE(ρ) = coε(ρ), (13)

where cof at the right hand side stands for the convex hull construction for a given function

f restricted to the pure states satisfying P|ψ〉〈ψ| = ρ, as shown in Eq. (12). When we

take the concurrence as the entanglement measure, coE(ρ) at the left hand side of Eq. (13)

corresponds to

C(ρ) = coC(ρ)

= min

{
∑

i

piC(|ψi〉)
∣
∣
∣
∣
∣
ρ =

∑

i

pi|ψi〉〈ψi|
}

,

(14)

where the infimum is taken over all possible convex combinations with pi ≥ 0 and
∑

i pi = 1.
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According to the above results, in order to derive concurrence or tangle for the Werner

states one thus needs only to consider all the pure states σ satisfying Pσ = ρ and achieving

minimal admissible concurrence or tangle for σ. Finally one computes their convex hull.

Here and later by “minimal admissible”, we mean the minimal value of concurrence or

tangle among all possible ensemble decompositions of the density matrix.

Extremization for pure states. With a given f and the corresponding Werner state ρf ,

we are going to find the desired pure states σ with coefficient matrix Φ satisfying Pσ = ρf

and minimize C2(Φ). The task amounts to the following problem:







minimize C2(Φ)

subject to
∑

ij ΦijΦ
∗
ji = f,

∑

ij |Φij|2 = 1.

(15)

The key point of our idea is to apply the concavity properties of both τ(Φ) and C(Φ) with

respect to the reduced density matrix ρA = trB(|ψ〉〈ψ|), as proved in [14], i.e.

g(λ1Φ1 + λ2Φ2) ≥ λ1g(Φ1) + λ2g(Φ2), (16)

where λ1, λ2 ≥ 0, λ1 + λ2 = 1 and where g can be τ(Φ) as well as C(Φ). By using this

property, we will derive tight lower bounds for τ(Φ) resp. C(Φ), and then find a condition

under which the bound is achieved. Thus an essential step for the minimization problem

Eq. (15) is to find such a condition under which the tight lower bound is achieved.

From Eq. (3), one has the reduced density matrix ρA = ΦΦ†. The U ⊗ U transforma-

tions will neither change the degree of entanglement of a state nor the constraint condi-

tion
∑

ij ΦijΦ
∗
ji = f . In fact, it corresponds to a local unitary transformation in ρA, i.e.,

ρA −→ UρAU †. Thus one can choose conveniently Φ such as to make ρA diagonal. The

eigenvalues of ρA are then µi = ρA
ii =

∑

k |Φik|2. From Eq. (10), the tangle is of the form

τ(Φ) = 2
(

1 −
∑

i

( ∑

k

|Φik|2
)2

)

. (17)

It is helpful to look at the eigenvalues of ρA as a distribution of d random variables

S =
( ∑

k

|Φ1k|2 ,
∑

k

|Φ2k|2 , . . . ,
∑

k

|Φdk|2
)

, (18)
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which is a convex combination of the distributions

Sij = (0, . . . , 0
︸ ︷︷ ︸

i−1

, |Φij|2 , 0, . . . , 0
︸ ︷︷ ︸

j−i−1

, |Φji|2 , 0, . . . , 0
︸ ︷︷ ︸

d−j

)/pij,

with probability pij = |Φij|2 + |Φji|2 , (19)

Sii = (0, . . . , 0
︸ ︷︷ ︸

i−1

, 1, 0, . . . , 0
︸ ︷︷ ︸

d−i

),

with probability pii = |Φii|2 , (20)

where
∑

i≤j pij = 1 and i < j ≤ d. Hence

S =
∑

i≤j

pijSij. (21)

Exploiting the concavity property of τ(Φ), we get

τ(S) ≥
∑

i≤j

pijτ(Sij) =
∑

i<j

pijτ(Sij), (22)

where we have used τ(Sii) = 0. On the other hand, the function f in Eq. (7) can be similarly

expressed as

f =
∑

i≤j

pijfij, (23)

where

fij = (ΦijΦ
∗
ji + ΦjiΦ

∗
ij)/pij

= 2Re(ΦijΦ
∗
ji)/pij, for i < j (24)

fii = 1. (25)

We now look for a lower bound of τ(Sij) for a given fij. Set x = Φij/
√

pij, y = Φji/
√

pij,

Minimizing τ(Sij) is equivalent to







minimize τ(Sij) = 4|xy|2 = 4|x|2(1 − |x|2)

subject to 2Re(xy∗) = fij,

|x|2 + |y|2 = 1.

(26)

Since 4|x|2(1 − |x|2) is a monotonically increasing function of |x|2 taking values from 0 to

1/2, minimizing τ(Sij) is equivalent to minimizing |x|2 for given fij. This kind of problem
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was solved in [17], and the solution is |x|2min = (1 −
√

1 − f 2
ij)/2. Thus τ(Sij) ≥ 4|x|2min(1 −

|x|2min) = f 2
ij. From Eq. (22), one has further

τ(S) ≥
∑

i<j

pijτ(Sij) ≥
∑

i<j

pijf
2
ij ≥

( ∑

i<j

pijfij

)2

=
(
f −

∑

i

pii

)2
=

(

f −
∑

i

|Φii|2
)2

, (27)

where we have used the convexity property of f 2
ij in the third inequality of Eq. (27).

Case 1: f ≥ 0

τ(S) itself vanishes if there is only one nonzero eigenvalue 1 of ρA, say

ρA
ii =

∑

k

|Φik|2 = 1. (28)

The minimum (f −
∑

i |Φii|2)2 will be 0 if one chooses in addition

|Φii|2 = f. (29)

The two equations Eqs. (28) and (29) can always be satisfied by a suitable choice of Φ. Thus

the minimal admissible value for τ(S) is 0.

Case 2: f < 0

It is clear that any choice of nonzero Φii will increase the value of (f − ∑

i |Φii|2)2.

Therefore for an optimal solution one should have all Φii = 0, if possible. On the other

hand, the equalities in Eq. (27) hold, if there is one single item in the summation, due to

the concavity property of τ(S) (the first inequality in Eq. (27)) and the convexity of f 2

(the third inequality in Eq. (27)). This is because all the inequalities will become equalities

τ(S) = τ(Sij) = f 2
ij = f 2 when pij = 1. Therefore we have two nonzero components left,

say Φij and Φji. Hence one has

ΦijΦ
∗
ji + ΦjiΦ

∗
ij = 2Re(ΦijΦ

∗
ji) = f,

|Φij|2 + |Φji|2 = 1,

and thus

Φij = eiθ1

(
(1 −

√

1 − f 2)/2
) 1

2 ,

Φji = eiθ2

(
(1 +

√

1 − f 2)/2
) 1

2 ,
(30)
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where θ1,2 are arbitrary real numbers satisfying θ1 − θ2 = (2n + 1)π, with n being any

integer. With these choices of Φij and Φji in Eq. (30), one gets the minimal admissible value

of τmin(S) = f 2.

Combining all the above results, we have

τmin(Φ) =







f 2, for f < 0

0, for f ≥ 0
(31)

for Φ satisfying P |Φ〉〈Φ| = ρf .

Since C(Φ) is also concave and is a monotonously increasing function of τ(Φ), we have

similar expressions as in Eqs. (22) and (27),

C(S) ≥
∑

i≤j

pijC(Sij) =
∑

i<j

pijC(Sij)

≥
∑

i<j

pij|fij| ≥
∣
∣
∣
∣

∑

i<j

pijfij

∣
∣
∣
∣

=

∣
∣
∣
∣
f −

∑

i

pii

∣
∣
∣
∣
=

∣
∣
∣
∣
f −

∑

i

|Φii|2
∣
∣
∣
∣
. (32)

The above analysis for minimizing tangle τ(S) can naturally be extended to the minimization

of C(S). It is evident that the solution of Eq. (26) also achieves the minimal admissible

value

Cmin(Φ) =







|f | = −f, for f < 0

0, for f ≥ 0
(33)

for Φ satisfying P |Φ〉〈Φ| = ρf .

Remark: It is shown in [25] that different entanglement measures will produce the same

ordering for pure states if they reduce to the entropy of entanglement for pure states. How-

ever, the concurrence and tangle do not belong to that class. In fact, they will generally lead

to different orderings when compared with EOF for pure states, since there are no simple

monotonous function relations among them and the EOF E(Φ) (except for an apparent con-

nection E(Φ) = H2

(
1
2
(1−

√

1 − C(Φ)2)
)

holding only for 2⊗N systems as easily seen from

the definition). This means that a state Φ achieving a minimal E(Φ) may not automatically

produce a minimal τ(Φ) or C(Φ). In our case of Werner states, it occurs by chance that the

solution Eq. (30) achieves minima for all of the three entanglement measures.

With the above derived results, we can now calculate the concurrence and tangle. This
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is the content of the following Theorem.

Theorem: The concurrence C(ρf ) resp. tangle τ(ρf ) for the Werner states ρf of Eq. (1)

are given by






C(ρf ) = −f,

resp.

τ(ρf ) = f 2.

(34)

for f < 0 and C(ρf ) = τ(ρf ) = 0 for f ≥ 0.

Proof: It is evident that both concurrence and tangle will be 0 according to the convex hull

construction of Eqs. (31) and (33) for f ≥ 0. We focus on the case where −1 ≤ f < 0, which

implies that the Werner states are entangled. For any pure state σ of Eq. (3) satisfying

Pσ = ρf , we have already found that the minimal admissible values for τ(σ) and C(σ) are

given by Eqs. (31) and (33). The optimal choice for σ = |Φ〉〈Φ| is given by Eq. (30).

Now we can compute the convex hull of the function C(σ) (or τ(σ) = C2(σ)) through

the results of Eqs. (12), (13) and (14)). We have:






∂C(σ)
∂f

= −1 < 0, ∂2C(σ)
∂f2 = 0,

∂C2(σ)
∂f

= 2f < 0, ∂2C2(σ)
∂f2 = 2 > 0.

(35)

Thus both C(σ) and C2(σ) are monotonically convex functions of f . For the Werner states

ρf , which is a convex combination of the states σ, one has naturally the results of Eqs. (34)

according to the convex hull construction.

It is shown in [17] that any pure state in the optimal decomposition that achieves EOF

has the form of Eq. (30). The solution can also be rephrased to have Schmidt rank 2 and

Schmidt coefficients µ1 = (1 +
√

1 − f 2)/2 and µ2 = (1 −
√

1 − f 2)/2. Thus the optimal

decomposition for achieving concurrence and tangle also achieves EOF at the same time.

This shows that all of the three entanglement measures share a common important feature,

namely to give the same values for every pure state in the optimal ensemble decomposi-

tion. In addition, the relation shown in Eq. (11) that EOF is a monotonically increasing

function of the concurrence holds naturally, since every pure state in the optimal ensemble

decomposition has the same Schmidt number 2. This is similar to the two qubits case [2, 3]

where every pure state in an optimal ensemble decomposition does have the same value of

concurrence or EOF. Our results thus give the first rigorous proof for the common “belief”

that, for Werner states, −f plays exactly the role of concurrence.
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In summary, we have given an entirely analytic derivation of the concurrence and tangle

for the Werner states. Our results show that the concurrence, tangle and entanglement of

formation have the same optimal decomposition. This is very different from the isotropic

case [14, 23], where the tangle and EOF have a similar behavior while the concurrence

behaves in a completely different manner. This implies that the Werner states have a more

subtle entanglement structure than the isotropic states, though basically they are partial

transpositions of each other, with respect to one subsystem in some parameter ranges [17].

Since concurrence is a good entanglement measure and can reveal many important physical

features of the systems involved, our results would shed new light on a deeper understanding

of entanglement.
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