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Abstract

Following Aschieri et al. [Classical Quantum Gravity 22 (2005), no. 17, 3511–3532]
construction of deformed algebra of diffeomorphism group the ⋆-deformed V ect(S1)
action on tensor densities of arbitrary degree λ on a circle S1 is studied. We derive
Noncommutative Korteweg-de Vries (KdV) and Noncommutative Burgers equations in
this method.
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1 Introduction

Noncommutative geometry [5] extends the notions of classical differential geometry
from differential manifold to discrete spaces, like finite sets and fractals and noncom-
mutative spaces which are given by noncommutative associative algebras. Noncommu-
tative geometry has recently been involved in a noncommutaive gauge theory related
to strings.

Noncommutative spaces are characterized by the noncommutative coordinates

[xi, xj ] = iθij, (1)
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where θij are real constants. Noncommutative gauge theories are naively realized
from ordinary commutative theories just by replacing all products of the fields with ⋆
product. Thus, several classical integrable models have been generalized to noncommu-
tative spaces [10,17]. Also, under the deformation, the self-dual Yang-Mills equation
is considered to preserve the integrability in the same sense as in commutative cases.
Noncommutative KdV and nonlinear Schrödinger equations are derived from the re-
duction of self dual Yang-Mills equation [12,13] and other methods [11]. There exist a
method, namely the bicomplex method [6,7], to yield noncommutative integrable equa-
tions which have many conserved quantities. Certainly all these equations are derived
formally from the Lax representation by replacing the product by ⋆ product.

It is known that the periodic Korteweg-de Vries (KdV) can be interpreted as
geodesic flow of the right invariant metric on the Bott-Virasoro group [19], which
at the identity is given by L2-metric. This is nothing but the Euler-Poincaré flow [18]
on the coadjoint orbit of Virasoro algebra.

Recently a deformation of the algebra of diffeomorphism is constructed by Aschieri
et. al.[1,2,8,20] for canonically deformed spaces with constant deformation parameter θ.
The algebra remains the same for deformed theory, only the coproduct rule is different
from the undeformed one. In this paper we tacitly accept this formalism to construct
the noncommuative version of periodic KdV and the Burgers equation. Let Fλ(S1)
be spaces of tensor densities of degree λ on the circle S1. It is known that the spaces
Dk

λ,µ(S1) of kth order linear differential operators from Fλ(S1) to Fµ(S1) is a natural

modules over Diff(S1). We study the algebraic deformation of V ect(S1) action on
these spaces of differential operators which leads to ⋆-product formulation of integrable
systems. This article shows another applications of [1,2].

Acknowledgement The author is profoundly grateful to Professor Christian Duval
for several stimulating discussions during the conference on ”Noncommutative Geom-
etry and Quantum Physics” at Kolkata January 2006. He is also grateful to Professor
Valentin Ovsienko for valuable remarks. He expresses grateful thanks to Jürgen Jost
for gracious hospitality at the Max Planck Insitute for Mathematics in the Sciences.

2 Background: construction of KdV and Burg-

ers from the action of V ect(S1) on Hill’s operator

We quickly go through the background materials needed for this paper.
Let Diff+(S1) be the group of orientation preserving diffeomorphism [14,15]. We

represent an element of Diff+(S1) as a diffeomorphism f : R −→ R such that
• f ∈ C∞(R)
• f ′(x) > 0
• f(x+ 2π) = f(x) + 2π.
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The group multiplication is defined by the composition maps, such that (g◦f)(x) =
f(g(x)). The Lie algebra of this group is the algebra V ect(S1) of smooth vector fields
on S1.

Locally an element of Fm(S1) is given by s = g(x)dxm, where g(x) = g(x + 2π).
There is a natural action of Diff(S1) on the sections of Fm(S1). We express this
action by

Lm
f d

dx

s = (fg′ +mf ′g)dx⊗m, (2)

where Lm
f d

dx

is known as Lie derivative with respect to the vector field f d
dx ∈ V ect(S1)

and m stands for conformal weight.
Suppose v = g d

dx ∈ F−1, then we get

Luv = [u, v] = (gf ′ − g′f)
d

dx
. (3)

Therefore F−1 is identified to V ect(S1).

2.1 Construction of the KdV in Lie derivative method

It is known that the space of the Hill’s operator

∆ =
d2

dx2
+ u(x) (4)

stands for the dual space of Virasoro algebra.

It can be shown easily that the Lie derivative Lf d
dx

satisfies

[Lm
f d

dx

,Lm
g d

dx

] = Lm
[f,g] d

dx

. (5)

Definition 2.1 The action of V ect(S1) on the space of Hill’s operator ∆ is defined by

the commutation with the Lie derivative

[Lf(x) d
dx
,∆] := L

3

2

f(x) d
dx

◦ ∆ − ∆ ◦ L
−

1

2

f(x) d
dx

. (6)

The result of this action is a scalar operator, i.e. the operator of multiplication by
a function:

[Lf(x) d
dx
,∆] =

1

2
(f ′′′ + 4uf ′ + 2u′f). (7)

This can be viewed as a coadjoint action of V ect(S1) on its dual.

The coadjoint operator corresponding to KdV equation is given by

O =
1

2
(∂3 + 2u∂ + 2∂u).
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Thus it is easy to see that the KdV equation

ut = 6uux + uxxx (8)

follows from the Hamiltonian equation

ut = O
δH

δu
(9)

for H =< u, u >=
∫
S1 u

2 dx.

Remark Let us consider the action of the Hamiltonian vector field O = ad∗u on an
operator L = ∂2

x + u. This yields the Lax flow

dL

dt
= [L,P ] P = ∂3 + 2u∂ + 2∂u. (10)

In this case we obtain ut = uxxx+4uux, and it is different from (8) by a scale factor.

2.2 Construction of the Burgers in Lie derivative method

Consider an operator

∆1 =
d

dx
+ u(x), (11)

acting on F
−

1

2

∈ Γ(Ω−
1

2 ), square root of the tangent bundle on S1, defined as

∆1 =
d

dx
+ u(x) : F 1

2

−→ F
−

1

2

. (12)

Definition 2.2 The V ect(S1)- action on ∆1 is defined by the commutator with the

Lie derivative

[Lf(x) d
dx
,∆1] := L

1

2

f(x) d
dx

◦ ∆1 − ∆1 ◦ L
−

1

2

f(x) d
dx

. (13)

The result of this action is also a scalar operator, i.e., the operator of multiplication
by a function.

Lemma 2.3

[Lf(x) d
dx
,∆1] =

1

2
f ′′(x) + uf ′(x) + u′f(x). (14)

Proof: By direct computation.
2

Hence the implectic operator is

OBurgers =
1

2

d2

dx2
+ u

d

dx
+ u′(x). (15)

Therefore using the Hamiltonian equation (9) we obtain the Burgers equation

ut = uxx + 4uux for H =

∫
S1

u2 dx. (16)
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3 Noncommutative framework

In this Section we discuss briefly some salient features of noncommutative quantization,
concept of derivatives on quantum spaces and deformation of vector fields and its action
on noncommutative spaces. We recapitulate this material from the papers of J. Wess
and his coworkers [1,2, 8, 20].

The Moyal ⋆ product is defined by

F ⋆ G(x) = exp(
i

2
θij∂xi∂xj |xi=xj=x

= F (x)G(x) +
i

2
θ∂iF (x)∂jG(x) + O(θ2) (17)

This algebra is realized on the linear space of functions of commuting variables, and
the space of this algebra is denoted by Aθ.

We give the definition of Moyal bracket:

{F,G}Moyal :=
F ⋆ G−G ⋆ F

2
. (18)

The ⋆ product of two functions is again a function. The ⋆ product defines asso-
ciativity: f ⋆ (g ⋆ h) = (f ⋆ g) ⋆ h, but noncommutativity algebra Aθ and reduces to
ordinary product in the limit θij −→ 0. The modification of the product makes the
ordinary coordinate ”noncommutative”, i.e.

[xi, xj ]⋆ := xi ⋆ xj − xj ⋆ xi = iθij. (19)

These are the defining relations for the generators of the algebra Aθ.
The pointwise product of two functions can be defined via trace map on the tensor

product of vector spaces of commuting variables. Thus we define a bilinear map m
which maps the tensor product to the space of functions

m : F ⊗F → F m(F (x) ⊗G(x)) := F (x)G(x). (20)

This bilinear map can be extended to the space of noncommutating variables with
the help of an abelian twist

µ = exp(
i

2
θij∂i ⊗ ∂j). (21)

This allows us to define ⋆-product in the form that makes use of the tensor product of
vector spaces F :

mt(F (x) ⊗G(x)) := F ⋆ G = m ◦ exp(
i

2
θij∂i ⊗ ∂j)(F (x) ⊗G(x)), (22)

where twist is explicitly given by

µ =
∑ 1

n!
(
i

2
)nθi1j1 · · · θinjn∂i1 · · · ∂in ⊗ ∂j1 · · · ∂jn (23)
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It is clear from the definition that for the noncommutative case we twist the bilinear
map m with the Poisson bivector.

For comutational purposes it is customary to use following notation [1,2]

mt =
∑

i

µi
1 ⊗ µi

2 m−1
t =

∑
i

µ̄i
1 ⊗ µ̄i

2, (24)

where i is the multi-index notation.

One can compute the commutator of coordinates

mt(xµ ⊗ xν) ≡ xµ ⋆ xν = xµxν +
i

2
θij

mt(xν ⊗ xµ) = xνxµ −
i

2
θij,

and thus it is consistent with equation (19).

Remark The space of relativistic theory is four-dimensional Minkowski space-time,
with coordinates xµ. The Poincaré algebra acts on xmu. To construct noncommutative
field theory in a Lorentz invariant way one invokes the concept of Poincaré symmetry
[3,4,16], and modified bilinear map is defined as

mt = m ◦ e−
i
2
θijPi⊗Pj ,

where Pi are the generators of translation in standard Poincaré algebra. In fact, earlier
Drinfeld [9] has shown that there exits a transformation of the structure maps of a
Hopf algebra, which is an equivalence relation among Hopf algebras H, preserving the
category of representations. This transformations H → Ht is generated by an intertible
twist element

mt =
∑

i

µi
1 ⊗ µi

2 ∈ H ⊗H.

Lax approach to Moyal-type quantization The most trivial way to express
the noncommutative KdV or any other integrable system to replace the Lax equation
by noncommutative Lax equation

dL

dt
= [L,P ]⋆ = L ⋆ P − P ⋆ L, (25)

where the Moyal ⋆–product is defined by (17).
Thus it is fairly straight forward to see that the Noncommutative KdV equation

satisfies
ut = uxxx + 2(u ⋆ ux + ux ⋆ u). (26)

This method is adopted by some string theorists [12,13,17]. Dimakis and Müller-
Hoissen [6,7] of course started from a different point of view ( bicomplex method) but
finally they relied on the same procedure.
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3.1 Deformation of the algebra of diffeomorphism

There is a natural way to introduce derivatives [21,22] on Aθ based on ⋆-product
formulation. It defines ∂∗ν acting on f ∈ Aθ

∂∗i ⊲ f := (∂if).

Therefore, the derivatives act as the usual derivatives. But the Leibniz rule will change
in general. Wess et. al. have derived it in the ⋆-product formalism and use the fact
that f ⋆ g is a function again

∂i(f ⋆ g) = (∂if) ⋆ g + f ⋆ (∂ig) + f(∂i⋆)g, (27)

and this exhibits Leibniz rule when ⋆–operation is x independent.

In an interesting paper Aschieri et.al. [1] studied a deformation of the algebra of
diffeomorphisms for canonically deformed spaces with constant deformation parameter
θ. They studied the algebra generated by vector fields which exhibit Hopf algebraic
structure.

The star product of partial derivative and function is given by

∂ν ⋆ f = f∂ν + (∂νf) +
i

2
(∂νθ

ij)(∂if)∂j. (28)

We can generalize the higher order differemtial operatorsD =
∑

k d
ν1,ν2···νk∂ν1

· · · ∂νk

to operators on noncommutative space acting on Aθ, the elements are

D∗ =
∑

k

dν1,ν2···νk∂∗ν1
· · · ∂∗νk

, (29)

where the coefficient function dν1,ν2···νk is an element of Aθ.

3.2 Diffeomorphism and noncommutative space

Let us consider a formalism of the action of infinitesimal diffeomorphism on Aθ. Dif-
feomorphisms are generated by vector fields acting on a differential manifold. The
infinite-dimensional Lie algebra of diffeomorphisms is isomorphic to the set of the first-
order differential operators V ect(M), defined as

ξ = ξi(x)
∂

∂xi
.

The commutators of two operators ξ and η yields the Lie bracket formula for V ect(M)

[ξ, η] = (ξi∂iη
k − ηi∂iξ

k)
∂

∂xk
. (30)

This new approach to noncommutative gravity has been proposed in [1]. This
approach is based on the twist deformation of the diffeomorphism group in the real
4–dimensional space.

7



Let us study the realization of vector fields on Aθ. The action of vector fields
ξ = ξν∂ν on functions f ∈ Aθ is given as

ξ ⊲ f := ξν ⋆ (∂νf).

The ⋆-product of two vector fields (for θ = constant) ξ = ξν∂ν and φ = φµ∂µ is
defined as

ξ ⋆ φ = (ξν ⋆ (∂νφ
µ))∂µ + (ξν ⋆ φµ)∂ν∂µ.

It can be shown from the associativity condition

(ξ∗ ⋆ η∗) ⋆ f = ξ∗ ⋆ (η∗) ⋆ f) = ξ∗ ⋆ (ηf) = ξηf

that the deformed vector fields also satisfy

[ξ∗, η∗]⋆ ≡ ξ∗ ⋆ η∗ − η∗ ⋆ ξ∗ = (ξ × η)∗. (31)

4 Moyal action of V ect(S1) on the space of tensor

densities on S1

In this Section we describe the construction of NCKdV equation. Since deformation by
quantization does not incorporate the dynamics, so we have to take slightly different
approach to construct the noncommutative version of KdV and Burgers equations.
We follow the Lie derivative method. In this way we bypass all the difficulties of the
construction of coadjoint orbits.

A function f(x) is a primary field with conformal weight h if under the diffeomor-
phism x→ τ(x) it transforms as

f(x) 7−→ f̃(τ(x)) = φ−h ⋆ f(x),

where φ(x) = dτ
dx .

We will compute the infinitesimal action of V ect(S1) on Ωm
∗ (M). It is known that

infinitesimal change of coordinates are realized by vector fields. Let hǫ(x) be a one-
parameter family of diffeomorphisms of the circle, such that

hǫ(x) = x+ ǫ ⋆ f(x) +O(ǫ2).

Thus the infinitesimal action yields

g(hǫ(x))(d(hǫ(x)))
⊗m
⋆ = g(x+ ǫ ⋆ f +O(ǫ2))d(x+ ǫ ⋆ f +O(ǫ2))⊗m

⋆

= (g(x) + ǫ ⋆ gx ⋆ f +O(ǫ2))(dx + ǫ ⋆ df +O(ǫ2)⊗m
⋆

= g(x)(dx)⊗m
⋆ + ǫ ⋆ (gx ⋆ f +mg ⋆ fx)(dx)

⊗m
⋆ +O(ǫ2).

Hence,
δg = (gx ⋆ f +mg ⋆ fx)(dx)⊗m

⋆ .
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One parameter family of V ect(S1) acts on the space of smooth functions C∞(S1)
with respect to the ⋆ product by

L⋆
(m)

f(x) d
dx

g(x) = gx ⋆ f +mg ⋆ fx. (32)

This equation implies a one parameter family of V ect(S1) action with respect to
⋆-product on the space of smooth functions C∞(S1). This definition exactly coincides
with the definition of Aschieri et. al. [1]. This cane be checked easily.

Let us combine the ordinary Lie derivative Lf(x) d
dx

with the twist. For simplicity

we assume conformal weight λ = 0. Thus we obtain

L⋆f(x) d
dx

(g) = µ̄i
1(f(x)∂x)(µ̄i

2)(g)) = µ̄i
1(f(x))∂x(µ̄i

2)(g))

= f(x) ⋆ ∂x(g)).

Thus we have lifted the algebra of diffeomorphisms to the ⋆–product realization. It

is not hard to proof that the Lie derivative L⋆
(m)

f(x) d
dx

on the noncommutative space

satisfies

[L⋆
(m)

f(x) d
dx

,L⋆
(m)

g(x) d
dx

]⋆ = L⋆
m
[f(x),g(x)]⋆

d
dx

. (33)

There is a natural action of deformed vector fields on ⋆-deformed tensor densities
on S1. We find that almost all the properties of the vector fields can be lifted to the
noncommutative space.

4.1 Construction of Noncommutative integrable systems

The Hill’s operator acting on a noncommmutating spaces that maps F
−

1

2

to F 3

2

trans-

forms according to
∆̃ = φ−3/2 ⋆∆ ⋆ φ−1/2.

Thus, the Hill’s operator maps

∆⋆ : F⋆
−

1

2

−→ F⋆
3

2

, (34)

where F⋆
n+1

2

is the space of ⋆-deformed tensor densities of degree n+ 1/2.

Definition 4.1 The ⋆ -product action of V ect(S1) on the space of Hill’s operator ∆
is defined by the commutation with the Lie derivative

[L⋆f(x) d
dx
,∆⋆]⋆ := L

3

2

⋆f(x) d
dx

⋆∆⋆ − ∆⋆ ⋆ L
−

1

2

⋆f(x) d
dx

. (35)

Lemma 4.2

[L⋆f(x) d
dx
,∆]⋆ =

1

2
fxxx + 2u ⋆ fx + ux ⋆ f (36)

Proof: As we learned from the previous Section that the action of vector field on
noncommutative spaces is similar to that commutative case. Thus by using Eqn. (35)
we obtain this result by direct computation.

2

9



4.1.1 Action of vector fields and Burgers equation

We apply the ⋆–product deformed first order differential operator ∆⋆1 on F⋆
n+1

2

to

derive the ⋆-deformed Burgers operator.

The operator ∆⋆1 satisfies

∆⋆1 = ν
d

dx
+ u(x) : F⋆

−
1

2

−→ F⋆
1

2

. (37)

Definition 4.3 The ⋆-product action of V ect(S1) on ∆1 is defined by the commutator

with the Lie derivative

[L⋆f(x) d
dx
,∆1]⋆ := L

1

2

⋆f(x) d
dx

⋆∆⋆1 − ∆⋆1 ⋆ L
−

1

2

⋆f(x) d
dx

, (38)

where LHS denotes the Lie derivative action of vector fields on ∆1.

The result of this action is a scalar operator, i.e. the operator of multiplication by
a function.

Lemma 4.4

[Lf(x) d
dx
,∆1]⋆ = ν

1

2
f ′′(x) + u ⋆ fx(x) + ux ⋆ f(x). (39)

Proof: We obtain this result by direct computation from equation (32).
2

4.1.2 Construction of Noncommutative KdV and Burgers equations

In this Section we construct the Noncommutative integrable systems from the knowl-
edge of our previous sections.

At first we recall the time dependent noncommutative Schrödinger equation

∂ψ

∂t
= Ĥ ⋆ ψ,

where ψ is a wave-function and Ĥ is the Hamiltonian operator. Now if we try to
implement the above scheme by replacing the Ĥ by the noncommutative Hamiltonian
operators of ncKdV and ncBurgers equations then we immediately run into difficulties,
since infinite time derivatives hidden inside the ⋆–product. Some Physicists [12,13,17]
avoided this difficulty by formulating the entire theory in terms of the ⋆ deformed Lax
equation

Lt = [B,L]⋆ ≡ B ⋆ L− L ⋆ B.

Certainly they sacrificed the geometry in this process.

We use some kind of “operator technique”. Let us define the noncommutative flow
by

ut = [L⋆ δH
δu
,∆i⋆]⋆. (40)
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Thus for H =
∫
S1 u

2 dx equation (38) boils down to

ut = [L⋆2u(x),∆i⋆]⋆, (41)

where ∆i⋆ stands for ∆⋆ or ∆1⋆. In this way we overcome the problem of the
absence of Hamiltonian theory on noncommutative space-time.

Equation (41) certainly yields ncKdV and ncBurgers.

Proposition 4.5 The Noncommutative KdV equation and the Noncommutative Burg-

ers equations are given as

ut = uxxx + 4u ⋆ ux + 2ux ⋆ u. (42)

ut = uxx + 2u ⋆ ux + 2ux ⋆ u (43)

respectively.

5 Conclusion

In this article we explore the derivation of the Noncommutative KdV and the Noncom-
mutative Burgers equation from a geometric point of view. We have studied the Moyal
deformed action of V ect(S1) on the spaces of ⋆- deformed tensor product densities F⋆

λ

of degree λ on the circle S1 to derive the noncommutative KdV and Burgers equation.
Using Lie derivative method we have tacitly avoided any connection to coadjoint orbit
and quantization of Lie-Poisson structures. But certainly we have faced difficulties for
not having a (noncommutative) Hamiltonian formalism. The lifting of vector fields
and its action on tensor densities to noncommutative spaces is smooth but the main
problem lies in the construction of appropriate noncommutative Hamiltonian formal-
ism. Nevertheless, in this paper we have presented a far more geometrical method
using diffeomorphism to study the ⋆-product deformed noncommutative KdV and the
Noncommutative Burgers equations.

6 References

1. P. Aschieri, C. Blohmann, F. Meyer, P. Schupp and J. Wess, A gravity theory
on noncommutative spaces. Classical Quantum Gravity 22 (2005), no. 17, 3511–
3532.
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