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Abstra
tWe 
onsider the a
tion of ve
tor �eld V e
t(S1) on the spa
e of an sln - opers on S1,i.e., a spa
e of nth order di�erential operator �(n) = dndxn +un�2 dn�2dxn�2 + � � �+u1 ddx+u0.This a
tion takes the se
tions of 
�(n�1)=2 to those of 
(n+1)=2, where 
 is the 
otangentbundle on S1. In this paper we study Euler-Poin
ar�e (EP) 
ows on the spa
e of slnopers, In parti
ular, we demonstrate expli
itly EP 
ows on the spa
e of third andfourth order di�rential operators (or sl3 and sl4 opers ) and its relation to Drienfeld-Sokolov, Hirota-Satsuma and other 
oupled KdV type systems. We also dis
uss theBoussinesq equation asso
iated with the third order operator. The solutions of the slnoper de�nes an immersion R �! RP n�1 in homogeneous 
oordinates. We derive theS
hwarzian KdV equation as an evolution of the solution 
urve asso
iated to �(n), Westudy the fa
torization of higher order operators and its 
ompatibility with the a
tionof V e
t(S1). We obtain the generalized Miura transformation and its 
onne
tion tothe modi�ed Boussinesq equation for sl3 oper. We also study the eigenvalue problemasso
iated to sl4 oper. We dis
uss 
ows on the spe
ial higher order di�erential operatorsfor all ui = f(u; ux; uxx � � �) and its 
onne
tion to KdV equation. Finally we explore arelation between proje
tive ve
tor �eld equation and generalized Ri

ati equations.Mathemati
s Subje
t Classi�
ations (2000): 53A07, 53B50, 35Q53, 14G32.Keywords and Keyphrases: opers, Virasoro a
tion, proje
tive stru
ture, Drienfeld-Sokolov equation, Hirota-Satsuma equation, 
oupled KdV equation Boussinesq equa-tion and Ri

ati. 1
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tionThe spa
e of linear di�erential operators on a manifold M 
onsidered as a module overthe group of di�eomorphisms is a well known 
lassi
al text. This spa
e has variousalgebrai
 stru
tures, e.g. the stru
ture of an asso
iative algebra and of a Lie algebra[11℄. In one dimensional 
ase this was studied about a hundred years ago by Wil
zynski[42℄ and more re
ently by E. Cartan [6℄. 2



It is well known [43℄ that the Korteweg-de Vries (KdV) equation is the 
anoni
alexample of a s
alar Lax equation, whi
h is an equation de�ned by a Lax pair of s
alardi�erential operators d�(n)dt = [P;�(n)℄where �(n) = dndxn + un�2 dn�2dxn�2 + � � �+ u0: (1)Here P is a di�erential operator whose 
oeÆ
ients are di�erential polynomial inthe variables, essentially determined by the requirement that [P;�(n)℄ be an operatorof order less than n.The spa
e of di�erential operators on S1 has an interesting geometri
 and algebrai
stru
ture. This has been studied in various dire
tions in various methods. We havestudied [15-17℄ this spa
e mainly from the point view of proje
tive 
onne
tions on the
ir
le [20,28℄. In the late 80th de
ades, many physi
ists studied the AGD operatorsand its 
onne
tion to extended 
lassi
al 
onformal algebras [4, 35℄.Re
ently [5,9,10℄, the nth order di�erential operator is identi�ed with the sln operon a smooth 
urve (here S1) is an equivalen
e 
lass of operators of the form0BBBBB� � � � � � � ��1 � � � � � �0 �1 � � � � �... . . . . . . . . . ...0 o �1 � � � �
1CCCCCAwith respe
t to the gauge a
tion of the group N of the upper triangular matri
eswith 1's on the diagonal. It is not diÆ
ult to show that ea
h gauge 
lass 
ontains aunique operator of the form�x +0BBBBB� 0 un�2 un�3 � � � u0�1 0 0 � � � 00 �1 0 � � � 0... . . . . . . . . . ...0 o �1 � � � 0

1CCCCCABut the above operator is same as our s
alar nth order di�erential operator. Thisis also known as proje
tive 
onne
tions on a 
ir
le. Thus sln opers and proje
tive
onne
tions are equivalent obje
ts . Moreover, the spa
e of sln opers or spa
e of pro-je
tive 
onne
tions is the phase spa
e of the n-th KdV hierar
hy introdu
ed by Adlerand Gelfand-Di
key. Hen
e the spa
e of nth order di�erential operators on S1 is alsoknown as AGD spa
e. It is worth to mention that for the 
lassi
al Lie algebras sp2nand o2n+1 may also be realized by di�erential operators. as shown by Drinfeld andSokolov [7℄ 3



Let us fo
us on the integrable Hamiltonian systems. These systems 
arry additionalstru
ture, namely, they are bi-Hamiltonian systems, that is, they are Hamiltonian withrespe
t to two di�erent 
ompatible Hamiltonian operators. Adler [2℄ proposed a s
hemefor deriving su
h Hamiltonian operators starting from a given Lax operator, and laterGelfand and Di
key gave a rigorous proof of Adler's 
onstru
tion. The spa
e of nthorder linear di�erential operators on S1, is also known as Adler-Gelfand-Di
key (AGD)spa
e [2,12℄, is 
onne
ted to the gl(n;R) 
urrent algebra, i.e. an algebra of loopsC1(S1; gl(n;R)). This automati
ally redu
es to the sl(n;R) 
urrent algebra whenun�1 = 0. Gelfand and Di
key [12℄ established the relation between dual spa
es ofKa
-Moody algebras on the 
ir
le and the AGD spa
e. The later is a Poisson subspa
eof the former [32℄. They 
oin
ide only for n = 2.Proje
tive 
onne
tions on the 
ir
le [20℄ were 
lassi�ed from a geometri
al pointof view by Kuiper [28℄. Lazutkin and Pankratova [30℄ were the �rst to formulate thisanalyti
ally. A proje
tive 
onne
tion on the 
ir
le is a linear se
ond order di�erentialoperator, d2dx2 + u(x), whi
h a
ts on a periodi
 fun
tions, known as Hill's operator.This is a dual spa
e of the Virasoro algebra. It has a sequen
e of eigenvalues tendingto in�nity. If the eigenvalues are �xed, then the possible fun
tions u form an in�nitedimensional torus. One 
an imagine this to be a produ
t of one 
ir
le for ea
h pair of
onse
utive eigenvalues. The Korteweg-de Vries equation evolves in a straight line onone of the above tori.The 
onne
tion between the geodesi
 
ow on the Virasoro-Bott group and theperiodi
 KdV equation follows from the work of Kirillov [25-27℄, Segal [39,40℄ andWitten [46℄. More dire
t proof was, of 
ourse, was given by Ovsienko and Khesin [36℄.They showed that the KdV equation is the geodesi
 
ow on the Bott-Virasoro groupwith respe
t to the right invariant L2 metri
.It is known [15,18,37℄ that the solution of �(n) de�nes an immersion in homogeneous
oordinates. This immersion plays an important role to 
onne
t the KdV equationto the S
hwarzian KdV equation. In our earlier paper [15,18℄, we have explored the
onne
tion between the S
hwarzian (generalized) KdV equation and (generalized) KdVvia proje
tive geometry. It is known that the KdV and S
hwarzian KdV formed andAntiple
ti
 pair [44,45℄. These are Euler-Poin
ar�e type 
ows [3, 33, 34℄, and one of the
ow takes pla
e on an in�nite-dimensional Poisson manifold and the other on a slightlydegenerate in�nite-dimensional Symple
ti
 manifold.1.1 MotivationIt is readily observable that a sl2 oper is nothing but a Hill's operator of the formd2dx2 + u(x) a
ting from 
�1=2 to 
�1=2, where 
 = TS1. Under the transformation of
oordinates x = z(x) we obtain the following transformationu 7! ~u; ~u = u(z(x))(z0(x))2 + 12S(z; x)4



where S(z; x) is 
alled the S
hwarzian derivative, de�ned byS(z; x) = z000z0 � 32(z00z0 )2:The in�nitesimal transformation is turned out to be equivalent with the 
oadjointa
tion of ve
tor �elds on its dual. It is given by the a
tion of Lie derivative Lf(x) ddx onthe spa
e of the Hill's operator.The spa
e of sln opers has a V e
t(S1) module stru
ture. In this paper we study sev-eral evolution equations asso
iated to the 
ow indu
ed by the a
tion of V e
t(S1) on thespa
e of higher order di�erential operators. This is a di�erent than the Gelfand-Di
keymethod. We apply di�erent geometri
al te
hnique to study su
h evolution equatiosn.This paper is not to point out any limitation of the Gelfand-Di
key formalism by anymean but it is an attempt to examine the problem from a di�erent point of view, justto investigate if an alternative formalism is possible. Certainly the Gelfand-Di
keyapproa
h is very novel. But approa
h yields lots of new 
oupled KdV type equations,
omplex or quaternioni
 KdV, S
hwarzian KdV and Camassa-Holm equations. It alsoyields Ri

ati and generalized Ri

ati equations geometri
ally.In [15-17℄ we have dis
ussed the prelimineries of the relation between proje
tive
onne
tion and ve
tor �elds with the integrable systems. We have studied the Euler-Poin
ar�e 
ows on the spa
e of third order di�erential operators in [14℄. In this paper,we extend our previous results. We will study the evolution de�ned by the a
tion of ave
tor �eld V e
t(S1) on a third order and fourth order di�erential operators.We obtain the 
elebrated Drienfeld-Sokolov equation and other 
oupled KdV typesystems as an Euler-Poin
ar�e 
ows on the spa
e of third order di�erential operators.It was realized [48℄ that the 
lassi
al W3 algebra 
an be 
onstru
ted from the se
ondHamiltonian stru
ture of the Boussinesq equation. We give a partial realization of 
las-si
al W3 algebra. We obtain the modi�ed Boussinesq equation from the fa
torizationof the third order di�erential operators. We obtain the Hirota-Satsuma [21℄ and other
oupled KdV equations [1,22℄ from the 
ows on the spa
e of fourth order operators.We study the Zakharov-Shabat type eigenvalue problem studied by Wadati [41℄ fromthe fa
torization of fourth order operators.We also 
onsider the spa
e of di�erential operators for spe
ial values of uis, whereu1 and u0 are expressed in terms of single variable u and its derivatives. These are gen-eralized proje
tive 
onne
tions. In this 
ase, the evolution equation de�ned by a
tionof V e
t(S1) leads to KdV equation. We also study the motion of immersion 
urves andyields S
hwarzian KdV and Camassa-Holm equations. We 
onstru
t higher Ri

atiequations from the stabilizer set of the a
tion of V e
t(S1) on proje
tive 
onne
tions.1.2 OrganizationThis paper is organized as follows:In Se
tion 2, we present a brief introdu
tion to sln oper, the Adler and Gelfnad-Di
key stru
ture and smooth immersion in homogeneous 
oordinates. We give a formal5



introdu
tion of sln oper ( or proje
tive 
onne
tion) in Se
tion 3. We des
ribe the a
tionof Diff(S1) on the spa
e of di�erential operators in Se
tion 4. In Se
tion 5 we studyEuler-Poin
ar�e 
ows on the spa
e of third order di�erential operators and these yieldthe Drienfeld-Sokolov type systems. We also study the Boussinesq 
ow. We studyfa
torization of third order operators and generalized Miura transformation in Se
tion6. We study Euler-Poin
ar�e 
ows on the spa
e of fourth order di�erential operators orSl4 opers in Se
tion 7. These yield the Hirota-Satsuma, the various 
oupled KdV typesystems. We dis
uss Wadati type eigenvalue problem asso
iated to the fa
torizationof fourth order operator in Se
tion 8. In Se
tion 9 we also 
onsider a spe
ial 
lasses ofhigher order di�erential operators. We derive the KdV equation as the Euler-Poin
ar�e
ow on the spa
e of these operators. We also brie
y mention about the 
onstru
tion ofdispersionless integrable systems. In Se
tion 10 we dis
uss 
ows on the spa
e of 
urveasso
iated to immersion of operators 
onsidered in Se
tion 9. We explore the 
onne
tionbetween Ri

ati equation, higher order Ri

ati equation and modi�ed Ri

ati equationwith the proje
tive ve
tor �eld equation.A
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kground: Opers, AGD stru
ture and im-mersionIn this se
tion we 
onsider a very spe
ial and simple 
lass of opers, known as sln opers.LetX be a smooth algebrai
 
urve and 
 the line bundle of holomorphi
 di�erentialson X. Let us �x the square root 
1=2 of the line bundle 
. A sln-oper on X is an nthorder di�erential operator a
ting from the holomorphi
 se
tions of 
�(n�1)=2 to thoseof 
(n+1)=2 whose (i) prin
iple symbol equal to 1 and (ii) subprin
iple symbol is equalto 0. Suppose x be a lo
al 
oordinate, then we express this operator as�(n) = dndxn + un�2 dn�2dxn�2 + � � � + u1 ddx + u0;This operator are also known as proje
tive 
onne
tions. We will introdu
e formally inthe next se
tion. 6



Remark If we relax the se
ond 
ondition we obtain a gln oper on X, lo
ally we 
anwrite this as ��(n) = dndxn + un�1 dn�1dxn�1 + un�2 dn�2dxn�2 + � � � + u1 ddx + u0:Drinfeld and Sokolov introdu
ed a spa
e of matrix di�erential operators. Their ideawas to repla
e the operator (1) by the �rst order order matrix di�erential operatorddx +0BBBBB� 0 un�2 un�3 � � � u0�1 0 0 � � � 00 �1 0 � � � 0... . . . . . . . . . ...0 o �1 � � � 0
1CCCCCAThe group of upper triangular matri
es with 10s on the diagonal a
ts on this spa
eby gauge transformations�x + U(x) 7�! �x + gU(x)g�1 � g�1�xg:It is not hard to see that this a
tion is free and ea
h orbit 
ontains a unique operatorof the above form. The Poisson stru
ture asso
iated to this orbit is known as Adler-Gelfand.Di
key Poisson stru
ture.2.1 Immersion and Solution 
urveAt �rst we 
onsider the n = 2 
ase. In this 
ase, S is the spa
e of Hill's operators ofthe form �(2) = d2dx2 + u:Lemma 2.1 There is a one to one 
orresponden
e between(1) the Hill's equation on S1 � =  00 + u = 0;where u 2 C1(S1) and  is the unknown fun
tion.(2) smooth orientation preserving immersions g : S1 �! RP 1 , modulo the equivalen
eupto PSL(2;R).Proof: This proof is very easy, it says that if we 
hoose two independent solutions 1 and  2, then x 7�! ( 1(x);  2(x)) (2)de�nes an immersion R �! RP 1 in homogeneous 
oordinates. This de�nes a 
urvein the proje
tive line RP 1 . Sin
e the Wronskian of the solution 
urve is 
onstantupto multipli
ation by a matrix in SL(2;R), then the Wronskian  01 2 �  1 02 of anyimmersion 
an be written in a form (2) equals one.2 7



This pi
ture 
an be easily extended to the 
ase of n-th order s
alar di�erentialoperator. Asso
iating to the equation � = 0 we de�ne n independent solutions( 1;  2; � � � ;  n). The map x 7�! ( 1(x);  2(x); � � � ;  n(x)) (3)de�nes an immersion g : R �! RP n�1in homogeneous 
ooordinates. Thus we obtain a solution 
urve asso
iated to L, on
eagain the Wronskian of the 
omponents equals one. Sin
e 
oeÆ
ients are periodi
,hen
e, if  (x) is a solution, then  (x+ 2�) is also a solution. This implies (x+ 2�) =M  (x);where M =  (2�) (0)�1is a monodromy matrix. This matrix preserves the skew form given by the Wronskian,so det(M ) = 1, i.e. M 2 SL(n;R). If one 
hooses a di�erent solution 
urve then thenew monodromy matrix will appear, this will be the 
onjugate of M by an element ofSL(n;R). This means that for ea
h Lax operator we 
an asso
iate a proje
tive 
urvewhose monodromy will be an element of the 
onjuga
y 
lass [M ℄. This 
urve is uniqueup to the proje
tive a
tion of SL(n;R).3 Formal introdu
tion to sln opers or proje
tiveConne
tion and V e
t(S1) moduleIn this se
tion we give a proper de�ntion of sln oper or proje
tive 
onne
tion. Let 
denote the 
otangent bundle of the 
ir
le. This is a (trivial) real line bundle on S1. Itsn-fold tensor produ
t 
n is the line bundle of di�erentials of degree n.De�nition 3.1 (Proje
tive Conne
tion) An extended proje
tive 
onne
tion on the
ir
le is a 
lass of di�erential (
onformal) operators�(n) : �(
�n�12 ) �! �(
n+12 )su
h that1. The symbol of �(n) is the identity.2. RS1(�(n)s1)s2 = RS1 s1(�(n)s2) for all si 2 �(
�n�12 ):It is known that the symbol of a n-th order operator from a ve
tor bundle U to Vis a se
tion of Hom (U; V 
 SymnT ), whereU = 
� (n�1)2 V = 
n+12 :8



Sin
e T = 
�1, hen
e we get V 
 SymnT �= U;giving an invariant meaning to the �rst 
ondition.If s2 2 �(
�n�12 ), then s1�(n)s2 2 �(
) is a one form to integrate.The 
onsequen
e of the �rst 
ondition is that all the di�erential operators are moni
,that is, the 
oeÆ
ient of the highest derivative is always one. The se
ond 
onditionsays that the term un�1 = 0.The weights �(n�1)2 and (n+1)2 related to the spa
e of operator �(n) is known tophysi
ists and mathemati
ians [19,37℄, but not from the point view of proje
tive 
on-ne
tions.Consider a one parameter family of V e
t(S1) a
tion on the spa
e of smooth fun
tiona(x) 2 C1(S1) [31℄ L�va(x) := f(x)a0(x) + �f 0(x)a(x); (4)where L�v is the Lie derivative with respe
t to v = f(x) ddx 2 V e
t(S1), given byL�v := f(x) ddx + �f 0(x): (5)It is easy to verify that two Lie derivatives L�f(x) ddx and L�g(x) ddx satisfy[L�g(x) ddx ;L�f(x) ddx ℄ = L�(fg0�f 0g) ddx :Let us denote F�(S1) the spa
e of tensor-densities of degree �F� = fa(x)dx� j a(x) 2 C1(S1):Thus, we say F� 2 �(

�) 

� = (T �S1)
�;where F0(M) = C1(M), the spa
e F1(M) 
oin
ides with the spa
e di�erential forms.De�nition 3.2 The a
tion of V e
t(S1) on the spa
e of Hill's operator � � �(2) isde�ned by the 
ommutator with the Lie derivative[Lv;�℄ := L3=2v Æ��� Æ L�1=2: (6)Therefore the a
tion of f(x) ddx on the spa
e of Hill's operators satis�es[LV ;�℄ = f 000 + 4f 0u+ 2fu0:This a
tion 
an be identi�ed with the 
oadjoint a
tion of Virasoro algebra on itsdual. Similarly we 
an generalizes this a
tion on �(n)De�nition 3.3 The V e
t(S1) a
tion on �n is de�ned by[Lv;�(n)℄ := L(n+1)=2v Æ�(n) ��(n) Æ L�(n�1)=2v : (7)9



4 A
tion of Diff(S1) on the spa
e of higher or-der di�erential operatorsIn this se
tion, we des
ribe the transformations of the higher order di�erential ( orAGD) operators under the a
tion of Diff(S1). This transformation has been knownsin
e last 
entury. The a
tion of Diff(S1) indu
es a 
hange of variable in the inde-pendent parameter x.Let �(n) be a s
alar di�erential operator. There exists a natural Diff(S1) a
tionon this spa
e. In the 
ase of Hill's operator � (or �(2)) this a
tion 
oin
ides with the
oadjoint a
tion.Let us 
onsider a one-parameter family of a
tions of Diff(S1) on the spa
e offun
tions on S1, given by ���f = f Æ ��1((��1)0)�: (8)De�nition 4.1 The a
tion of group Diff(S1) on the spa
e of di�erential operators�(n) is de�ned by ���(n) := ��n+12 Æ�(n) Æ (���n�12 )�1: (9)The result of the Diff(S1) a
tion on the Hill's operator is given by��(�) = 
 d2dx2 + u�;where u� = u Æ ��1((��1)0)2 + 
2S(��1):The a
tion of Diff(S1) transform the solutions of �(n) = 0 as densities of degreen�12 It should be noted that the operators �(n) do not preserve their form under thea
tion of Diff(S1), x! �(x), due to the appearan
e of the (n� 1)-th term �12n(n�1)(�00=�0n+1: Hen
e we should think the operators are a
ting on densities of weight�1=2(n � 1) rather than on s
alar fun
tions, in this 
ase we 
an always �nd un�1 = 0as a reparametrization invariant. Therefore, the a
tion of Diff(S1) on �n is given by�nx+un�2(x)�n�2x +� � �+u0(x) �! �0�(n+1)=2(�nx+~un�2�n�2x +� � �+~u0)�0�(n�1)=2; (10)where ~un�2 = �02un�2(�(x)) + 112n(n� 1)(n+ 1)S 0(x):In parti
ular for n = 3 we �nd~u1(x) = �02u1(�(x)) + 2S(x)10



~u0(x) = �03u0(�(x)) + �0�00u1(�(x)) + S 0(x):For n = 4 we obtain: ~u2(x) = �02u2(�(x)) + 5S(x)~u1(x) = �03u1(�(x)) + 2�0�00u2(�(x)) + 5S 0(x):~u0(x) = �04(�(x))u0(�(x)) + 32�02�00u1(�(x)) + 32�002u2(�(x))+32�02u2(�(x))S(x) + 32S 00(x) + 32S2(x):This means, u2 transforms as a potential of the Hill's operator [
f. 23℄, u1 transformsas a 
ubi
 di�erential and u0 has the sense of quarti
 di�erential.Let us 
on
entrate on third order operator, this has been poped up in various pla
esin literatures [14 ,38℄.Proposition 4.2 A di�eomorphism � transform a third order operator into the oper-ators of the form (14) with 
oeÆ
ients:u�1 = u1 Æ �(�0)2 + 2S(�) u�0 = u0 Æ �(�0)3;where S is the S
hwarzian derivative.Corollary 4.3 The proje
tion from the spa
e of nth order operators to the spa
e ofSturm -Liouville operators:dndxn + un�2 dn�2dxn�2 + � � � + u0 �27�! dndxn + un�2 dn�2dxn�2is Diff(S1)-equivariant.Proposition 4.4 The a
tion of ve
tor �eld f(x) ddx 2 V e
t(S1) asso
iates to �(3) a�rst order operator [Lf(x) ddx ;�(3)℄ = u1f ddx + (u01f2 + u0f ) (11)where u1f = (fu01 + 2f 0u1 + 2f 000u0f = fu00 + 3f 0u0:Proof: By dire
t 
omputation.2Thus, equation (11) is an element of the Lie algebra of �rst order di�erential op-erators on S1. This Lie algebra is in fa
t the semidire
t produ
t of V e
t(S1) by themodule of fun
tions C1(S1).Corollary 4.5 The 
oadjoint a
tion on u1 and u0 is given byad�u1 = �u1 + u1� + 2�3 (12)ad�u0 = �u0 + 2u0�: (13)11



5 Euler-Poin
ar�e 
ows and 
oupled KdV equa-tionsLet G be a Lie group and g be its 
orresponding Lie algebra and its dual is denotedby g�.The dual spa
e g� to any Lie algebra g 
arries a natural Lie-Poisson stru
ture:ff; ggLP (�) :=< [df; dg℄; � >for any � 2 g� and f; g 2 C1(S1).Lemma 5.1 The Hamiltonian ve
tor �eld on g� 
orresponding to a Hamiltonian fun
-tion f , 
omputed with respe
t to the Lie-Poisson stru
ture is given byd�dt = ad�df� (14)Proof: It follows from the following identitiesiXfdgj� = LXf gj� = ff; ggLP (�)=< [dg; df ℄; � >=< dg; ad�df� > :This implies that Xf = ad�df�. Thus the Hamiltonian equation d�dt = Xf yields ourresult.2We write E(�) = 12 < �; I� > for the quadrati
 energy form on g. E(�) is usedto de�ne the Riemannian metri
. We identify the Lie algebra and its dual with thisquadrati
 form. This identi�
ation is done via an inertia operator.Let I be an inertia operator I : g �! g�and then � 2 g� evolve by d�dt = (I�1�):�; (15)where right hand side denote the 
oadjoint a
tion of g on g�. This equation is 
alledthe Euler-Poin
ar�e equation.De�nition 5.2 The Euler-Poin
ar�e equation on g� 
orresponding to the HamiltonianH(�) = 12 < I�1�; � > is given by d�dt = �ad�I�1��:It 
hara
terizes an evolution of a point � 2 g�.Proposition 5.3 Let 
G be infnite dimensional Lie group equipped with a right invari-ant metri
. A 
urve t �! 
(t) in 
G is a geodesi
 of this metri
 i� u(t) = d
tR
�1t _
(t)satisfes ddtu(t) = �ad�u(t)u(t): (16)12



5.1 Coupled KdV type equationsUsing the Euler-Poin
ar�e framework we study the EP 
ow 
onne
ted to third order dif-ferential operators. The 
oupled KdV equation is a generi
 example of multi-
omponentsystems. The 
lassi
al Boussinesq system is 
onne
ted to the 
KdV system throughnonsingular transformation.Proposition 5.4 The Euler-Poin
ar�e 
ow on the spa
e of third order di�erential op-erators yields following the Hamiltonian stru
ture� 2�3 + 2u� + uxvx + 3v� � :This gives rise to (A) the Drienfeld-Sokolov equationut + 2vxxx + 2uvx + uxv = 0 ;vt + 4vvx = 0 : (17)for H = 12 R v2 dx(B) another 
oupled KdV equationut + 2uxxx + 3uux = 0 ;vt + (uv)x + 2vux = 0 : (18)for Hamiltonian H = 12 R u2 dx.Proof: By dire
t 
omputation.25.2 The Boussinesq equationThere is an interesting 
onne
tion between the Hamiltonian stru
ture of the Boussinesqequation ut = vx; vt = 13uxxx + 83uux;named after the Fren
h mathemati
ian Joseph Boussinesq des
ribed in the 1870 modelequation for the propagation of long waves on the surfa
e of water with small amplitude.The Hamiltonian stru
ture of the Boussinesq equation is given byO = (
1 j 
2) = 0� 2 �3 + u1� + �u1 2�u0 + u0��u0 + 2u0� h 1A ;where h = 13�5 + 53(u1�3 + �3u1)� (u1xx� + �u1xx) + 163 u1�u1:13



We obtain only �rst 
olumn matrix 
1 of the Hamiltonian operator, and these onlylead to the partial 
onstru
tion of W3 algebra [45℄:fu1(x); u1(y)g = [2�3 + 2u1(x)� + u01(x)℄Æ(x � y);fu0(x); u1(y)g = [3u0(x)� + u00(x)℄Æ(x � y):Unfortunately, the other part 
an not be obtained immediately in this way. These
ond 
olumn matrix 
2 
an be obtained from slightly di�erent route. The elementa12 is an adjoint of a21. The a22 element is the total derivative of Boussinesq equationand some other higher order derivates. We must admit that this is the limitation of ourmethod. In fa
t, Gelfand-Di
key method will be more appropriate than our method.Similarly, one 
an 
ompute n = 4 
ase. Here one must obtain a third order timederivative equation.6 Fa
torization of �(3) operators and general-ized Miura transformationIn this se
tion we will show that the a
tion of ve
tor �eld on S1 is 
ompatible with thefa
torization of the higher order linear operators.If we assume that �(3) is fa
torizable:�(3) = (�2 + u)(� + w):It is 
ompatible if and only if w = 0.Let K[u℄ be the algebra of di�erential polynomials in u, that is, polynomial within�nite set of variables ui, i � 0, su
h that we write u = u0,ux = u(1) et
.Let us extend our base �eld K[u℄. Let us fa
torize�(3) = (�2 + u)� = (� + v)(� � v)� (19)over a di�erential �eld K[v℄. This extension is given byu = �(vx + v2); (20)and this extension is not Galois extension. The equation (20) is 
alled Miura map.This fa
torization was 
onsidered by Kupershmidt and Wilson [29℄. In a remarkablepaper, they gave simpler de�nition of Adler-Gelfand-Di
key bra
ket on the spa
e ofdi�erential operators when the operator �(n) is fa
torizable.�(n) = (� + pn�1)(� + pn�2) � � � (� + p1)(� + p0);where pk = !kv1 + !2kv2 + � � �+ !(n�1)k; 0 � k � n� 2; ! = e2�i=n;and pn�1 = �Pn�2i=0 pi.We 
onsider a spe
ial 
ase of above s
heme.14



Proposition 6.1 L Æ (� + v)(� � v)� = (�3 + u� + �u)�:Outline of Proof: It is not diÆ
ult to show that the a
tion of ve
tor �eld V e
t(S1)on (� + v) is [Lf(x) ddx ; � + v℄ = (�2 + �v)f:Thus, [L; (� + v)℄(� � v)� = (�2 + �v)(� � v)�= �4 � (vx + v2)�2 � (vx + v2)0�= (�3 + u� + �u)�:2Modi�ed Boussinesq equation Before �nishing this se
tion we brie
y dis
ussthe quadrati
 Miura transformation asso
iated to a third order di�erential operator.Let us 
onsider the fa
torization of a third order di�erential operator� = (� + p+ q)(� � p)(� � q)= �3 + (2qx + px + p2 + pq + q2)� + pq(p+ q)Thus the Miura type transformation is given byu = 2qx + px + p2 + pq + q2:Therefore, the modi�ed Boussinesq equation is given aspt = �(�2q2 � 2pq + p2 + 2qx + px) ;qt = �(q2 � 2pq � 2p2 � qx � 2px) : (21)7 Fourth order operators and integrable sys-temsIn this se
tion we study several integrable systems asso
iated to the fourth order dif-ferential operator. Let us assume�(4) = �4 + u�2 + ux� + ( 9100u2 + 310u00 + v): (22)It should be worth to say that for all 
onformal 
lass of fourth order operators the
oeÆ
ients of �2 and � must be related. In this se
tion we study 
ows generated byvarious forms of su
h operators.The V e
t(S1) a
tion on L is de�ned by the 
ommutation with the Lie derivative[Lf(x) ddx ;�(4)℄ := L5=2f(x) ddx Æ L� L Æ L�3=2f(x) ddx :15



Proposition 7.1 The a
tion of ve
tor �eld f(x) ddx 2 V e
t(S1) asso
iates to �(3) ase
ond order operator[Lf(x) ddx ;�(4)℄ = uf d2dx2 + u0f ddx + ( 310u00f + vf ) (23)where uf = (fu0 + 2f 0u+ 5f 000vf = fv0 + 4f 0v:Proof: By dire
t 
omputation.2Corollary 7.2 The Hamiltonian operator asso
iated to the a
tion of V e
t(S1) on uand u are given as ad�u = �u+ u� + 5�3 (24)ad�v = �v + 3v�: (25)This Hamiltonian operator is almost similar to the Hamiltonian in Se
tion 5.1.Therefore Euler-Poin
ar�e 
ow yields here also Drinfeld-Sokolov equation.7.1 Fifth order 
oupled integrable systemIn this se
tion we 
onstru
t �fth order system. Let us 
onsider following fourth orderdi�erential operator �(4) = �4 + u�2 + ux� + v: (26)Proposition 7.3 The in�nitesimal transformations of u and v under the V e
t(S1)a
tion are given by uf 7�! 5f 000 + 2f 0u+ fu0 (27)vf 7�! 32f 00000 + 32uf 000 + 32u0f 00 + 4vf 0 + v0f (28)Proof: By dire
t 
omputation.2Corollary 7.4 The Hamiltonian operator asso
iated to the a
tion of V e
t(S1) on uand u are given as ad�u = �u+ u� + 5�3 (29)ad�v = 32(�5 + u�3 + u0�2) + 4v� + v0 (30)
16



Proposition 7.5 The Euler-Poin
ar�e 
ow with respe
t to the Hamiltonian stru
ture� 5�3 + 2u� + ux32 (�5 + u�3 + u0�2) + vx + 4v� �(A) yields the Drienfeld-Sokolov equationut + 5vxxx + 2uvx + uxv = 0 ;vt + 32(vxxxxx + uvxxx + uxvxx) + 5vvx = 0 : (31)for H = 12 R v2 dx(B) yields a �fth order 
oupled equation equationut + 5uxxx + 3uux = 0vt + 3uxxxxx + 3uuxxx + 3uxuxx + 8uxv + 2uvx = 0 ; (32)for H = R u2 dx.Proof: By dire
t 
omputation2Remark It may be worth to say that the Equations (31) and (32) 
an be generalizedsimply by 
onsidering �(4) = �4 + (u+ �)�2 + ux� + (v + �)instead of (26). This would indu
e slightly di�erent Hamiltonian stru
tureO = � 5�3 + 2(u+ �)� + ux32(�5 + u�3 + ��3 + u0�2) + vx + 4(v + �)� �7.2 Hirota-Satsuma type equationIn this se
tion we 
onsider a fa
torizable fourth order di�erential operator of the fol-lowing form �(4) = (�2 + u)(�2 + v): (33)Lemma 7.6 The Hamiltonian operators asso
iated to the a
tion of V e
t(S1) on �(4) =(�2 + u)(�2 + v) yields ad�u = �u+ u� + 5�3 (34)ad�v = �v + v� + 5�3 (35)respe
tively. 17



Let us introdu
e a 
omplex variablep = u+ iv: (36)Therefore, we 
ombine Eqns. (34) and (35) to obtain new Hamiltonian operatorad�p = �p+ p� + 5�3 (37)Proposition 7.7 The Euler-Poin
ar�e 
ow with respe
t to the Hamiltonian stru
turead�p = �p+ p� + 5�3 p = u+ ivyields 
omplex KdV or Hirota-Satsuma equationpt + pxxx + 3ppx = 0 (38)for H = 12 Z p2 dx � 12 Z (u2 + v2) dx:We 
an also 
onstru
t another 
oupled KdV equation from this pair of Hamiltonianoperators.Proposition 7.8 The Euler-Poin
ar�e 
ow with respe
t to the Hamiltonian stru
ture� 5�3 + 2u� + ux5�3 + 2v� + vx �yields the following 
oupled equationut + 5uxxx + 3uux = 0vt + 5uxxx + 2uxv + uvx = 0 ; (39)for H = 12 R u2 dx.8 Wadati type eigenvalue problem and general-ized Miura mapIn this se
tion we study Zakharov-Shabat type eigenvalue [47℄ problem asso
iated tothe fa
torization of fourth order operators. We follow Wadati's te
hnique [8,41℄ Wewill dis
uss two di�erent 
ases.Case I The operator (33) gives rise to the following eigenvalue problem(� � p)(� + p)(� � q)(� + q) = �4 ; (40)18



where u = px � p2; and v = qx � q2:This may be de
onposed again into two pairs of �rst-order equations� (� + q) = ��(� � q)� = � (41)� (� + p)� = ��(� � p)� = �� (42)By introdu
ing two sets of fun
tions ( + =  +�;  � =  ��) and (�+ = �+�; �� =� � �), we obtain �0BB�  + ��+�� 1CCA = 0BB� � qq �� 00 � pp �� 1CCA0BB�  + ��+�� 1CCAwhi
h is the Zakharov-Shabat type eigenvalue problem. This was �rst introdu
edby Wadati to 
onstru
t the Zakharov-Shabat eigenvalue problem from the fa
torizationof the Strum-Liouville operator.The time evolution of  , �, � and � is given by t = 5�3 + 2u� + ux= 5�3 + 2(qx � q2)� + (qxx � 2qqx) ; (43)similarly we obtain the same for �, � and ��t = 5�3 � 2(qx + q2)� � (qxx + 2qqx) (44)�t = 5�3 + 2(px � p2)� + (pxx � 2ppx) (45)�t = 5�3 � 2(px + p2)� � (pxx + 2ppx): (46)In general, for appli
ation purposes all these equations (43 - 46) are expressed inmatrix of polynomials in �, q and v and its derivatives.Case II Let us fa
torize �(4) of the following type:�4 + u�2 + ux� + v = (�2 + �l �m)(�2 � l� �m);where l and m satisfy a pair of generalzed Miura system or 
oupled Ri

ti equationlike system, given as u = �(lx + l2 + 3m);m2 � (lm+m0)0 = v: (47)v = (m2 � (lm+m0)0: (48)19



Thus, the above operator gives rise to the eigenvalue problem(�2 + �l �m)(�2 � l� �m) = �2 : (49)This 
an be de
omposed into the pair of se
ond-order equations(�2 + �l �m) = �� (50)(�2 � l� �m)� = � : (51)Let us de�ne two new wave fun
tions + =  + � � =  � � ; (52)Therefore, the eigenvalue problem be
omes�2�  + � � = � �+m� 12 l0 l� � 12 l0�l� � 12 l0 m� �� 12 l0 ��  + � � : (53)On
e again one 
an resolve the se
ond order by invoking additional variables.8.1 Constru
tion of 
omplex 
oupled systemLet us 
onsider a new sixth order operator as the produ
t of two di�erent Lax operatorsof the Boussinesq type ( or third order)�(6) = (�3 + u1� + u1x + v1)(�3 + u2� + u2x + v2): (54)Lemma 8.1 The Hamiltonian operators asso
iated to the a
tion of V e
t(S1) on �(6)ad�u1 = 2�3 + 2u1� + u1x ad�v1 = v1x + 3v1� (55)ad�u2 = 2�3 + 2u2� + u2x ad�v2 = v2x + 3v2� (56)respe
tively.By introdu
ing p = u1 + iu2; q = v1 + iv2;we 
an 
ombine these two pairs of operators. Thus, we would getO = � 2�3 + 2p� + pxqx + 3q� � (57)Proposition 8.2 The Euler-Poin
ar�e 
ow with respe
t to the Hamiltonian stru
ture(57) yields 
omplex 
oupled KdV type equationpt = pxxx + 3ppx p = u1 + iu2 (58)qt = qxp+ 3qpx p = v1 + iv2 (59)for H = 12 Z p2 dx � 12 Z (u21 + u22) dx:20



Remark Similarly one 
an derive quaternioni
 KdV equation from the Euler-Poin
ar�e
ows asso
iated to the eighth order di�erential operator�(8) = (�2 + u1)(�2 + u2)(�2 + u3)(�2 + u4):By introdu
ing P = u1+ iu2+ ju3+ku3, one would obtain quaternioni
 KdV in termsof variables P .9 Spe
ial �(n) operators and integrable 
owsIn this se
tion we will study �(n) operators with spe
i�
 values of u2, u1, u0 et
.Let us start with a third order equation of the following type:f 000 + u1f 0 + u0f = 0: (60)To go further, 
onsider solving (14) for u1. We obtain(ff 00 � 12(f 0)2 + 12(u1f2)0)x + (u0 � 12u01)f2 = 0:If we assume u0 = 12u01, then the above equation is solvable for u0. After res
alling weassume u1 = 4u and u0 = 2u0.Thus, the spe
ial or fa
torizable di�erential operators of order n = 3; 4 are given as~�(3) = �3x + 4u�x + 2u0; (61)~�(4) = �4x + 9u2 + 3u00 + 10u0�x + 10u�2x: (62)Proposition 9.1 The a
tion of a ve
tor �eld f(x) ddx 2 V e
t(S1) on ~�(3) and ~�(4)yield �rst order and se
ond order operators[Lf(x) ddx ; ~�(3)℄ = (f 000 + 4f 0u+ 2fu0)� + 2(f 000 + 4f 0u+ 2fu0)0[Lf(x) ddx ; ~�(4)℄ = (f 000 + 4f 0u+ 2fu0)�2 + 5(f 000 + 4f 0u+ 2fu0)�+(�2 + 6u)(f 000 + 4f 0u+ 2fu0)respe
tively.Proof: By dire
t 
omputation.De�nition 9.2 A ve
tor �eld is 
alled proje
tive ve
tor �eld whi
h keeps �xed a givenproje
tive 
onne
tion ~�(n) [Lf(x) ddx ; ~�(n)℄ = 0: (63)21



Corollary 9.3 A proje
tive ve
tor �eld v = f ddx 2 �(
�1) satis�esf 000 + 4f 0u+ 2fu0 = 0: (64)Proposition 9.4 The equation � ~�(n)�t = [Lv; ~�(n)℄ generates the evolution as�u�t = 12f 000 + 2f 0u+ fu0:Proof: We prove it by dire
t 
omputation.2We have argued that the a
tion [Lv;�(n)℄, 
an be 
onsidered as a 
oadjoint a
tionof V e
t(S1) on �(n). Hen
e, we say~u = 12f 000 + 2f 0u+ fu0 = (12�3x + 2u�x + ux)f:The operator (12�3x + 2u�x + ux) is 
alled the Poisson operator.Proposition 9.5 The Hamiltonian 
ow generated by a
tion of V e
t(S1) on the spa
eof AGD or 
onformal operators for the Hamiltonian H(u) = 12 RS1 u2(x) dx, yields KdVequation.9.1 A
tion of V e
t(S1) and dispersionless 
lass of systemsIn this se
tion we 
onsider a spe
ial 
lass of integrable systems, the dispersionless KdVor Riemann equation.Dispersionless equations 
an be obtained as a quasi-
lassi
al limit of integrable ones.In this 
ase we introdu
e s
aling ��t ! � ��t , ��x ! � ��x and take the limit �! 0.In the quasi-
lassi
al limit KdV equationut = uxxx + 3uuxbe
omes dispersionless KdV, de�ned asut = 3uux: (65)This is the prototype for the hyperboli
 systems and it has a Lax representation.This equation 
an be derived easily from our method. We 
onsider the spe
ial nthorder operators.Proposition 9.6 The a
tion of a 
onstant ve
tor �eld � ddx 2 V e
t(S1) on ~�(n) yieldsa unique expression [L� ddx ; ~�(n)℄ = �u0for all values of n. 22



Proof: It is not diÆ
ult to 
he
k that the only expression whi
h survives when theve
tor �eld � 2 V e
t(S1) (for � = 
onstant) a
ts on �(n) is �u0.2Proposition 9.7 The Euler-Poin
ar�e 
ow with respe
t to the Hamiltonian stru
tureO = uxyields dispersionless KdV equation ut = uux;for H = 12 RS1 u2 dx.10 Flows on the spa
e of 
urveIn the earlier Se
tion we have seen how an immersion asso
iated to �(n) yields a 
urve : R �! RP n�1in the proje
tive spa
e.Let us write  in terms of an inhomogeneous 
oordinates. We lift  to a 
urve onRn. This we may denote by ~ = �(x)(1;  ). We 
hoose the fa
tor �(x) so that theWronskian of the 
omponents of the new 
urve equals 1.It turns out that there is a unique 
hoi
e of �(x) with su
h a property, and this isgiven by �(x) =Wr( 01; � � � ;  0n�1)� 1n : (66)In parti
ular, for n = 2 
ase, � ( 1;  2) = ( 0� 12 ;  0� 12 ) (67)is the solution 
urve [13℄. It retains the unitarity of the Wronskian.Corollary 10.1 The three dimesional spa
es of solutions to proje
tive ve
tor �eldequation is spanned by  21 ;  1 2;  22 , and they form a sl(2;R) algebra.Proposition 10.2 (Kirillov) If f is a proje
tive ve
tor �eld, satis�es (62), then thesquare root of f is an element of s
alar density of weight -12 , denoted by  . Then (f;  )satis�es super algebra.
23



The stabilizer of the a
tion of this superalgebra on pairs ~�(n) is given by (16) and� = ( d2dx2 + u) = 0: (68)This gives us a geometri
al explanation that if  1,  2 satisfy (68) then  1 2,  21 , and 21 satisfy (64).Let us study now the fourth order equationf 0000 + 10uf 00 + 10u0f 0 + (9u2 + 3u00)f = 0: (69)By dire
t 
omputation one 
an show:Proposition 10.3 The equation f 0000 + 10uf 00 + 10u0f 0 + (9u2 + 3u00)f = 0 tra
es outa four dimensional spa
es of solutions spanned byf 31 ;  21 2;  1 22 ;  32g:Lemma 10.4 The equation f 000+2u0f +4uf 0 = 0 tra
es out a three dimesional spa
esof solutions.Proof: If  1 and  2 are the solutions of� = ( d2dx2 + u) = 0;then it is easy to see that  i j 2 �(
�1) satis�es the above equation. Hen
e the solu-tions spa
e is spanned by  21 ,  22 and  1 2.2Substituting (67) in equation ( d2dx2 + u) i = 0 ( for i = 1; 2), we obtainu = 12( 000 0 � 32  002 02 ): (70)The right hand side is invariant under PSL(2;R)(= SL(2;R=�1) group. If we sub-stitute this expression in the Euler-Poin
ar�e equation, we obtain the evolution equationof the solution 
urve on the proje
tive spa
e t =  xxx � 32 xx2 x�1:This equation is 
alled the S
hwarzian KdV (or Ur KdV by G. Wilson [44-45℄). One
an 
he
k dire
tly that this equation is SL(2;R) invariant.Thus we obtain the following theorem24



Theorem 10.5 The solutions of an operator �(n) de�ne an immersionR �! RP n�1in homogeneous 
oordinates. The evolution equation of the solution 
urve is a Hamil-tonian 
ow, and it is given by the S
hwarzian KdV equation.The S
hwarzian KdV has a bihamiltonian stru
ture [44℄H1 = 4u; D1 = �2 x�1� x�1;H2 = u2; D2 = �12 x�2�3 � 3 xx x�3�2 + (3 xx2 x�4 �  xxx x�3)�:10.1 Flows on the spa
e of immersion and S
hwarzianCamassa-Holm equationLet  1 and  2 are the solutions to the se
ond order, homogeneous, linear S
hr�odingerequation � = ( d2dx2 +m(u)) = 0 m = u� uxx; (71)with potential m(u).Substituting (67) in equation ( d2dx2 +m) i = 0 ( for i = 1; 2), we obtainm = 12( 000 0 � 32  002 02 ): (72)Therefore, we obtain u = (1� �2)�1[12( 000 0 � 32  002 02 )℄ (73)If we substitute this expression in the Hamiltonian equation,ut = O ÆHÆuwe obtain the evolution equation of the solution 
urve on the proje
tive spa
e(1� �2) t =  xxx � 32 xx2 x�1:This equation is 
alled the S
hwarzian CH. On
e again, one 
an 
he
k dire
tly thatthis equation is SL(2;R) invariant.Remark: The CH and S
hwarzian CH equations are Euler-Poin
ar�e type 
ows,and one of the 
ow takes pla
e on an in�nite-dimensional Poisson manifold and theother on a slightly degenerate in�nite-dimensional Symple
ti
 manifold. They form anAntiple
ti
 pair.We note that, if we inter
hange the roles of independent and dependent variables,then the S
hwarzian derivative be
omesS = �x�x��� � 32x2��x4� : (74)25



Remark Whenever a Lie group G a
ting on a spa
eM ' ��X, where � representsthe independent variables and X the dependent variables. There exist an indu
eda
tion on the asso
iated jet bundles JnM , whi
h is 
alled the nth prolongation ofG, denoted by prnG. Let I(�; x(n)) be a s
alar valued fun
tion depending on theindependent and dependent variables nd their derivatives, whi
h is invariant underprnG. Then I(�; x(n)) is known as di�erential invariant of the group G. For the SL(2)group a
tion, Eqn. (74) is one of the two fundamental di�erential invariants, other oneis x.Let us substitute w = 1x�in equation (74). We obtain the Harry Dym type equationwt = w2[w(w��1� (w�1)t)�℄�: (75)10.2 Ri

ati 
hain and stabilizer orbitLet us 
onsider the stabilizer equation of the odd part of Kirillov's superalgebra whi
h
oin
ides with the Hill's equation a xx + u = 0;where a is a 
onstant.Let us make a 
hange of variablesp(x) =  xa ; then px =  xxa �  2xa 2 :Thus after substituting this into Hill's equation, we obtain the 
elebrated Ri

ati equa-tion px + a p2 + u = 0: (76)Thus it is readily 
lear that the Ri

ati equation under Cole-Hopf transformation is
onne
ted to the stabilizer orbit of the "Fermioni
" part of the Kirillov's superalgebra.There are some interesting featues of the Ri

ati equation. If one solution of asome Ri

ati equation is known then we 
an get immediately general solutions of thewhole family of Ri

ati equations obtained from the original one under the 
hange ofvariables p̂ = a(x)p+ b(x)
(x)p+ d(x) : (77)It is also interesting to noti
e that for Ri

ati equation knowing any three solutionsp1, p2, p3 we 
an 
onstru
t all other solutions p using a simple formula known as 
rossratio: p� p1p� p2 = �p3 � p1p3 � p2 (78)with an arbitrary 
onstant �. 26



10.2.1 Higher order Ri

ati and proje
tive ve
tor �eld equationWe wish to explore the 
onne
tion between the proje
tive ve
tor �eld equation andse
ond order Ri

ati equation.Let us assume v = fxf (79)where f satis�es proje
tive ve
tor �eld equation. Equation (79) impliesfxxxf = vxx + 3vvx + v3;and after substituting the results above in the proje
tive ve
tor �eld equation, it takesthe following form vxx + 3vvx + v3 + 4uv + 2ux = 0; (80)whi
h is parti
ular 
ase of se
ond order Ri

ati equation. The 
oeÆ
ients are �xed bythe proje
tive ve
tor �eld equation.Proposition 10.6 1. The proje
tive ve
tor �eld equation is equivalent to a parti
-ular form of se
ond order Ri

ati equation vxx+3vvx+v3+4uv+2vx = 0, wherev = fxf .2. Suppose p(x) = p1 be the solution of the Ri

ati equation. Then the se
ond orderRi

ati satis�es v(x) = 2p1.Proof: By dire
t 
omputation one 
an 
he
k this result.2Above proposition is the Ri

ati analogue of the relation between proje
tive ve
tor�eld equation and its partner equation  xx + u(x) = 0.Therefore, above result yields the 
orresponden
es between solutions of se
ond orderRi

ati and ordinary Ri

ati equation. At this stage we must give the de�nition ofRi

ati 
hains. In fa
t, all the higher order Ri

ati equations satisfy most of theproperties of the Ri

ati equation .De�nition 10.7 Let L be the following di�erential operatorL = ddx + v(x):The n{order equation of the Ri

ati 
hain is given by the following formulaLnv(x) + n�1Xj=1 �j(x)(Lj�1v(x)) + �0(x) = 0; (81)where n is an integer 
hara
terzing the order of the Ri

ati equation in the 
hain and�j(x), j = 0; 1; � � �N are arbitrary fun
tions.27



The lowest-order equations in the 
hain after the ordinary Ri

ati equation are:n = 2; vxx + 3v(x)vx + v3(x) + �1(x)v(x) + �0(x) = 0 (82)n = 3; vxxx+4vvxx+3v2x+6v2vx+�2(x)vx+v4(x)+�2v2(x)+�1(x)v(x)+�0(x) = 0(83)Thus, our se
ond Ri

ati 
oin
ides with n = 2 member of the Ri

ati 
hain when�1 = 4u and �0(x) = 2ux.10.3 Finite-gap potential and generalized S
hwarzian equa-tionLet us 
onsider a polynomial generalized potentialu(x; �) = �n + u1�n�1 + � � � + un: (84)Hen
e, the proje
tive ve
tor �eld equation be
omesfxxx + 4u(x; �)fx + 2ux(x; �)f = 0: (85)A generalized potential u(x; �) is 
alled N -phase potential if (84) has a solutionwhi
h is a polynomial in � of degree N , i.e.,f(x; �) = �N + f1�N�1 + � � �+ fN :It is easy to transform the proje
tive ve
tor �eld equation tof 00f + 4u� f 02f2 = Wr2f2 (86)where the 
onstant part 
an be �xed by the Wronskian of its partner equation 00 + u(x) = 0:Proposition 10.8 Let  1 and  2 be the solutions of  00 + u(x) = 0. Let us de�nevi =  1 2 �Wr2 1 2 ; (87)where Wr =  1 02 �  2 01 is the Wronskian. Then qi maps the Ri

ati equationvix + v2i + u(x) = 0to ff 00 + 2uf2 � 12(f 0)2 =Wr2:28



Proof: By substituting vi into the Ri

ati equation one obtains the proof.2Suppose we assume Wr( 1;  2) = �. Thus 
orresponding to (86) we obtain thefollowing modi�ed S
hwarzian derivative equationu(x; �) = 12 gxxg � 34 g2xg2 + �2g2: (88)This equation is 
alled the modi�ed S
hwarzian equation by Kartashova and Shabat[24℄. This equation has a profound appli
ation in integrable systems.Then Eqn. (88) has unique asymptoti
 solution represented by formal Laurentseries, su
h that g(x; �) = 1 + 1Xl=1 ��lgl(x);where 
oeÆ
ients gl are di�erent polynomials in all u1; � � � ; un.11 Con
lusion and OutlookThe spa
e of di�erential operators has a ni
e geometri
al stru
ture. It is known thatLie derivative a
tion of a ve
tor �eld on the spa
e of se
ond order di�erential operatorson a 
ir
le exa
tly 
oin
ides with the 
oadjoint a
tion, and this a
tion yields KdVequation. Thus, we be
ame 
urious to study the 
ows asso
iated to the spa
e of higherorder di�erential operators or opers.This paper has fo
used on to study Euler-Poin
ar�e 
ows asso
iated to the a
tion ofV e
t(S1) on the spa
e of higher order di�erential operators. At �rst we have studiedthe a
tion of V e
t(S1) on the spa
e of third order di�erential operators and EP 
owsyield Drinfeld-Sokolov and 
oupled KdV type system. This method is very geometri
albased on proje
tive 
onne
tions on S1. But one of the short
omings of this 
onstru
tionis that the Boussinesq equation 
an not be derived expli
itly.We have expli
itly demonstrated this a
tion on the spa
e of fourth order di�erentialoperators. We have 
onstru
ted various 
oupled KdV type system, and the notableone is the Hirota-Satsuma or 
omplex KdV equation. In this paper we also studied theeigenvalue problem of the fourth order di�erential operator. In one parti
ular 
ase weboiled down to the Zakharov-Shabat type eigenvalue problem.We have also 
onsidered a 
onformal 
lass of operators su
h that all the 
oeÆ
ients
an be expressed in terms of a polynomial and derivatives of a single dependent variableu. This is a generalized proje
tive 
onne
tion. We have shown that the EP 
ow isasso
iated to the spa
e of su
h 
onformal operators is always the KdV equation. Anth order di�erential operator indu
es an immersion in proje
tive spa
e. In this paperwe brie
y study EP 
ow on the spa
e of proje
tive 
urve, and this yields S
hwarzianKdV equation. Finally we have studied the famous Ri

ati equations and its deep
onne
tion to proje
tive ve
tor �eld equation.29



There are several problems popped up in this arti
le. One of them is to study EP
ows on other kind of opers, in this paper we have 
onsidered only sln opers. Anotherway to generalize is to study su
h Euler-Poin
ar�e 
ows on super spa
es. In this 
ase wehave to 
onsider the Lie derivative a
tion of superve
tor �eld V e
t(S1j1) on the spa
eof di�erential operators on a super
ir
le S1j1. But the 
omputation must be mu
h moretedious than here.12 Referen
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