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Abstract

We consider the action of vector field Vect(S') on the space of an s, - opers on S',
i.e., a space of nth order differential operator A = d“% +Un—2£1% +--- +u1% + ug.
This action takes the sections of Q~("=1/2 to those of Q" +1)/2 where ) is the cotangent
bundle on S'. In this paper we study Euler-Poincaré (EP) flows on the space of sl
opers, In particular, we demonstrate explicitly EP flows on the space of third and
fourth order diffrential operators (or sl3 and sl opers ) and its relation to Drienfeld-
Sokolov, Hirota-Satsuma and other coupled KdV type systems. We also discuss the
Boussinesq equation associated with the third order operator. The solutions of the si,
oper defines an immersion R — RP”~! in homogeneous coordinates. We derive the
Schwarzian KdV equation as an evolution of the solution curve associated to A, We
study the factorization of higher order operators and its compatibility with the action
of Vect(S'). We obtain the generalized Miura transformation and its connection to
the modified Boussinesq equation for sl3 oper. We also study the eigenvalue problem
associated to sly oper. We discuss flows on the special higher order differential operators
for all u; = f(u,uy, ugy - +) and its connection to KdV equation. Finally we explore a
relation between projective vector field equation and generalized Riccati equations.

Mathematics Subject Classifications (2000): 53A07, 53B50, 35Q53, 14G32.

Keywords and Keyphrases: opers, Virasoro action, projective structure, Drienfeld-
Sokolov equation, Hirota-Satsuma equation, coupled KdV equation Boussinesq equa-
tion and Riccati.
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Introduction

The space of linear differential operators on a manifold M considered as a module over
the group of diffeomorphisms is a well known classical text. This space has various
algebraic structures, e.g. the structure of an associative algebra and of a Lie algebra
[11]. In one dimensional case this was studied about a hundred years ago by Wilczynski
[42] and more recently by E. Cartan [6].



It is well known [43] that the Korteweg-de Vries (KdV) equation is the canonical
example of a scalar Lax equation, which is an equation defined by a Lax pair of scalar
differential operators

dA™)
dt = [Pv A(n)]
where e Jn—2

Here P is a differential operator whose coefficients are differential polynomial in
the variables, essentially determined by the requirement that [P, A(”)] be an operator
of order less than n.

The space of differential operators on S' has an interesting geometric and algebraic
structure. This has been studied in various directions in various methods. We have
studied [15-17] this space mainly from the point view of projective connections on the
circle [20,28]. In the late 80th decades, many physicists studied the AGD operators
and its connection to extended classical conformal algebras [4, 35].

Recently [5,9,10], the nth order differential operator is identified with the s, oper
on a smooth curve (here S') is an equivalence class of operators of the form

-1 x ... %
O -1 x --- x
0 o -1 *

with respect to the gauge action of the group N of the upper triangular matrices
with 1’s on the diagonal. It is not difficult to show that each gauge class contains a
unique operator of the form

0 up—2 up-3 ug
-1 0 0 0
g, | 0 -1 0 0
0 0 -1 0

But the above operator is same as our scalar nth order differential operator. This
is also known as projective connections on a circle. Thus sl, opers and projective
connections are equivalent objects . Moreover, the space of sl, opers or space of pro-
jective connections is the phase space of the n-th KdV hierarchy introduced by Adler
and Gelfand-Dickey. Hence the space of nth order differential operators on S' is also
known as AGD space. It is worth to mention that for the classical Lie algebras spoj,
and 09,41 may also be realized by differential operators. as shown by Drinfeld and
Sokolov [7]



Let us focus on the integrable Hamiltonian systems. These systems carry additional
structure, namely, they are bi-Hamiltonian systems, that is, they are Hamiltonian with
respect to two different compatible Hamiltonian operators. Adler [2] proposed a scheme
for deriving such Hamiltonian operators starting from a given Lax operator, and later
Gelfand and Dickey gave a rigorous proof of Adler’s construction. The space of nth
order linear differential operators on S, is also known as Adler-Gelfand-Dickey (AGD)
space [2,12], is connected to the gl(n,R) current algebra, i.e. an algebra of loops
C>(8', gl(n,R)). This automatically reduces to the si(n, R) current algebra when
tup—1 = 0. Gelfand and Dickey [12] established the relation between dual spaces of
Kac-Moody algebras on the circle and the AGD space. The later is a Poisson subspace
of the former [32]. They coincide only for n = 2.

Projective connections on the circle [20] were classified from a geometrical point
of view by Kuiper [28]. Lazutkin and Pankratova [30] were the first to formulate this
analytically. A projective connection on the circle is a linear second order differential
operator, % + u(z), which acts on a periodic functions, known as Hill’s operator.
This is a dual space of the Virasoro algebra. It has a sequence of eigenvalues tending
to infinity. If the eigenvalues are fixed, then the possible functions u form an infinite
dimensional torus. One can imagine this to be a product of one circle for each pair of
consecutive eigenvalues. The Korteweg-de Vries equation evolves in a straight line on
one of the above tori.

The connection between the geodesic flow on the Virasoro-Bott group and the
periodic KdV equation follows from the work of Kirillov [25-27], Segal [39,40] and
Witten [46]. More direct proof was, of course, was given by Ovsienko and Khesin [36].
They showed that the KdV equation is the geodesic flow on the Bott-Virasoro group
with respect to the right invariant L? metric.

It is known [15,18,37] that the solution of A defines an immersion in homogeneous
coordinates. This immersion plays an important role to connect the KdV equation
to the Schwarzian KdV equation. In our earlier paper [15,18], we have explored the
connection between the Schwarzian (generalized) KAV equation and (generalized) KAV
via projective geometry. It is known that the KdV and Schwarzian KdV formed and
Antiplectic pair [44,45]. These are Euler-Poincaré type flows [3, 33, 34], and one of the
flow takes place on an infinite-dimensional Poisson manifold and the other on a slightly
degenerate infinite-dimensional Symplectic manifold.

1.1 Motivation

It is readily observable that a sly oper is nothing but a Hill’s operator of the form
2

éi? + u(x) acting from Q /2 to Q1/2, where Q = T'S'. Under the transformation of

coordinates z = z(z) we obtain the following transformation

u > U, o= u(z(x)) (' (2))? + %S(z, T)



where S(z,z) is called the Schwarzian derivative, defined by

zlll 3 Z”
S(Zax) = o 5( )2-

The infinitesimal transformation is turned out to be equivalent with the coadjoint
action of vector fields on its dual. It is given by the action of Lie derivative £ f(z)-L OD

dx

ZI

the space of the Hill’s operator.

The space of sl,, opers has a Vect(S') module structure. In this paper we study sev-
eral evolution equations associated to the flow induced by the action of Vect(S') on the
space of higher order differential operators. This is a different than the Gelfand-Dickey
method. We apply different geometrical technique to study such evolution equatiosn.
This paper is not to point out any limitation of the Gelfand-Dickey formalism by any
mean but it is an attempt to examine the problem from a different point of view, just
to investigate if an alternative formalism is possible. Certainly the Gelfand-Dickey
approach is very novel. But approach yields lots of new coupled KdV type equations,
complex or quaternionic KdV, Schwarzian KdV and Camassa-Holm equations. It also
yields Riccati and generalized Riccati equations geometrically.

In [15-17] we have discussed the prelimineries of the relation between projective
connection and vector fields with the integrable systems. We have studied the Euler-
Poincaré flows on the space of third order differential operators in [14]. In this paper,
we extend our previous results. We will study the evolution defined by the action of a
vector field Vect(S!) on a third order and fourth order differential operators.

We obtain the celebrated Drienfeld-Sokolov equation and other coupled KAV type
systems as an Euler-Poincaré flows on the space of third order differential operators.
It was realized [48] that the classical W3 algebra can be constructed from the second
Hamiltonian structure of the Boussinesq equation. We give a partial realization of clas-
sical W3 algebra. We obtain the modified Boussinesq equation from the factorization
of the third order differential operators. We obtain the Hirota-Satsuma [21] and other
coupled KdV equations [1,22] from the flows on the space of fourth order operators.
We study the Zakharov-Shabat type eigenvalue problem studied by Wadati [41] from
the factorization of fourth order operators.

We also consider the space of differential operators for special values of u;s, where
u1 and ug are expressed in terms of single variable u and its derivatives. These are gen-
eralized projective connections. In this case, the evolution equation defined by action
of Vect(S') leads to KAV equation. We also study the motion of immersion curves and
yields Schwarzian KdV and Camassa-Holm equations. We construct higher Riccati
equations from the stabilizer set of the action of Vect(S!) on projective connections.

1.2 Organization

This paper is organized as follows:
In Section 2, we present a brief introduction to sl, oper, the Adler and Gelfnad-
Dickey structure and smooth immersion in homogeneous coordinates. We give a formal



introduction of sl,, oper ( or projective connection) in Section 3. We describe the action
of Dif f(S') on the space of differential operators in Section 4. In Section 5 we study
Euler-Poincaré flows on the space of third order differential operators and these yield
the Drienfeld-Sokolov type systems. We also study the Boussinesq flow. We study
factorization of third order operators and generalized Miura transformation in Section
6. We study Euler-Poincaré flows on the space of fourth order differential operators or
Sl opers in Section 7. These yield the Hirota-Satsuma, the various coupled KdV type
systems. We discuss Wadati type eigenvalue problem associated to the factorization
of fourth order operator in Section 8. In Section 9 we also consider a special classes of
higher order differential operators. We derive the KdV equation as the Euler-Poincaré
flow on the space of these operators. We also briefly mention about the construction of
dispersionless integrable systems. In Section 10 we discuss flows on the space of curve
associated to immersion of operators considered in Section 9. We explore the connection
between Riccati equation, higher order Riccati equation and modified Riccati equation
with the projective vector field equation.
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Jose Carinena, George Wilson and Valentin Ovsienko. I am particularly grateful to
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thank Professor Dieter Mayer at TU Clausthal and Professor Jiirgen Jost at the Max
Planck Insitute for Mathematics in the Sciences for their gracious hospitality where
the paper was finished for kind hospitality and stimulating atmosphere. This work
has been partially supported by the DFG Research Group ” Zeta functions and locally
symmetric spaces” which is gratefully acknowledged.

2 Background: Opers, AGD structure and im-
mersion

In this section we consider a very special and simple class of opers, known as sl,, opers.

Let X be a smooth algebraic curve and €2 the line bundle of holomorphic differentials

on X. Let us fix the square root Q'/2 of the line bundle Q. A sl,-oper on X is an nth

order differential operator acting from the holomorphic sections of Q= (=1/2 {4 those

of Q+t1)/2 whose (i) principle symbol equal to 1 and (ii) subprinciple symbol is equal
to 0. Suppose z be a local coordinate, then we express this operator as

dm dn72

A(n) = — +up_2

d
do dgn T gy T

This operator are also known as projective connections. We will introduce formally in
the next section.



Remark If we relax the second condition we obtain a gl,, oper on X, locally we can
write this as

dn dnfl dn72
~ dz +tn— dxn—1 + Un=2 gpm=2

i d
Al + e+ ur - + .
dz

Drinfeld and Sokolov introduced a space of matrix differential operators. Their idea
was to replace the operator (1) by the first order order matrix differential operator

0 up—2 up-3 -+ up
y —1 0 0 e 0
il 0 -1 0 0
dx + ) )
0 o —1 - 0

The group of upper triangular matrices with 1’s on the diagonal acts on this space
by gauge transformations

Oy + U(z) — 0, + gU(2)g™" — g7 ' 0sg.

It is not hard to see that this action is free and each orbit contains a unique operator
of the above form. The Poisson structure associated to this orbit is known as Adler-
Gelfand.Dickey Poisson structure.

2.1 Immersion and Solution curve

At first we consider the n = 2 case. In this case, S is the space of Hill’s operators of
the form

@_ &
A = w + u.
Lemma 2.1 There is a one to one correspondence between
(1) the Hill’s equation on S'
Ap =" +urp =0,

where u € C™(SY) and 1 is the unknown function.
(2) smooth orientation preserving immersions g : S' — RP', modulo the equivalence

upto PSL(2,R).

Proof: This proof is very easy, it says that if we choose two independent solutions
’(,[)1 and ’(,[)2, then

z +— (1(z), ¢2(z)) (2)

defines an immersion R — RP' in homogeneous coordinates. This defines a curve
in the projective line RP'. Since the Wronskian of the solution curve is constant
upto multiplication by a matrix in SL(2,R), then the Wronskian ]ty — 1110}, of any
immersion can be written in a form (2) equals one.

O



This picture can be easily extended to the case of n-th order scalar differential
operator. Associating to the equation Ay = 0 we define n independent solutions

(wlad)?a e awn) The map
defines an immersion
g : R— RP"!

in homogeneous cooordinates. Thus we obtain a solution curve associated to L, once
again the Wronskian of the components equals one. Since coefficients are periodic,
hence, if ¢(z) is a solution, then (z + 27) is also a solution. This implies

1/)(',1" + 271—) = sz:b(x)a

where
My = 9 (2m)3p(0) !

is a monodromy matrix. This matrix preserves the skew form given by the Wronskian,
so det(My) =1, i.e. My € SL(n,R). If one chooses a different solution curve then the
new monodromy matrix will appear, this will be the conjugate of M, by an element of
SL(n,R). This means that for each Lax operator we can associate a projective curve
whose monodromy will be an element of the conjugacy class [My]. This curve is unique
up to the projective action of SL(n,R).

3 Formal introduction to sl/,, opers or projective
Connection and Vect(S') module

In this section we give a proper defintion of sl, oper or projective connection. Let 2
denote the cotangent bundle of the circle. This is a (trivial) real line bundle on S*. Tts
n-fold tensor product 2" is the line bundle of differentials of degree n.

Definition 3.1 (Projective Connection) An extended projective connection on the
circle is a class of differential (conformal) operators

A T@Q ") —T(Q)
such that
1. The symbol of A is the identity.

2. fsl(A(n)Sl)SQ = f51 Sl(A(n)SQ) for all s; € I‘(Q*anl),

It is known that the symbol of a n-th order operator from a vector bundle U to V'
is a section of Hom (U,V ® Sym"T), where

(n—1) n+1
2

U=Q 2 V=Q



Since T = Q~', hence we get
Ve Sym"T =2 U,
giving an invariant meaning to the first condition.
n—1
If 55 € T(Q™ "7 ), then s;A(Msy € T(Q) is a one form to integrate.

The consequence of the first condition is that all the differential operators are monic,
that is, the coefficient of the highest derivative is always one. The second condition
says that the term u,, 1 = 0.

The weights # and @ related to the space of operator A is known to
physicists and mathematicians [19,37], but not from the point view of projective con-
nections.

Consider a one parameter family of Vect(S') action on the space of smooth function

a(z) € C®(S") [31]
Lya(z) := f(z)a'(z) + Af'(x) (4)

a(z),
where £ is the Lie derivative with respect to v = f(w)% € Vect(Sh), given by

d

A !
= —+ A .
L3 i= ()5 + A (@) )
It is easy to verify that two Lie derivatives E; (2) 4 and E;\( ) d satisfy
)z )z

A A _ A
Loy Ly ] = Lipg_prgy -

Let us denote F,(S') the space of tensor-densities of degree u
Fy = {a(z)dz* | a(z) € C°(SY).

Thus, we say
Fy € T(Q%Y) Q% = (T*S)®,

where Fo(M) = C*°(M), the space F1(M) coincides with the space differential forms.

Definition 3.2 The action of Vect(S') on the space of Hill’s operator A = INGINT
defined by the commutator with the Lie derivative

[Ly,A]:= L3200 A= Ao L™/2, (6)
Therefore the action of f(a:)% on the space of Hill’s operators satisfies
Ly, A = f" +4f'u+2fu.

This action can be identified with the coadjoint action of Virasoro algebra on its
dual. Similarly we can generalizes this action on A()

Definition 3.3 The Vect(S') action on A" is defined by
[Ly, AM] = £H1/2 6 A _ A() o £=(0=1)/2, (7)



4 Action of Diff(S') on the space of higher or-
der differential operators

In this section, we describe the transformations of the higher order differential ( or
AGD) operators under the action of Dif f(S'). This transformation has been known
since last century. The action of Diff(S') induces a change of variable in the inde-
pendent parameter z.

Let A™ be a scalar differential operator. There exists a natural Dif f(S') action
on this space. In the case of Hill's operator A (or A(?)) this action coincides with the
coadjoint action.

Let us consider a one-parameter family of actions of Diff(S') on the space of
functions on S, given by

oxf = foo  ((e™H))N (8)

Definition 4.1 The action of group Dif f(S') on the space of differential operators
A is defined by
oAM= % 0 Ao (0% )7 (9)

2 2

The result of the Dif f(S!) action on the Hill’s operator is given by

d2
g (A):CE—FU y

where c
u’ =uoo ((e7h))? + 58(0_1).

The action of Dif f(S") transform the solutions of A4 = 0 as densities of degree
n—1
2

It should be noted that the operators A do not preserve their form under the

action of Dif f(S'), z — o(z), due to the appearance of the (n — 1)-th term —in(n —

1)(0" "™ *!. Hence we should think the operators are acting on densities of weight
—1/2(n — 1) rather than on scalar functions, in this case we can always find u,—1 =0
as a reparametrization invariant. Therefore, the action of Dif f(S') on A" is given by

O+t tt_o ()0 24+ +ug(z) — o' "I 2 (0" ity 00" 24 tig)o’ "2 (10)

where

i o = 0" 5 (0(5)) + %n(n D+ 1)S'(x).

In particular for n = 3 we find

1 (z) = o'’

ui(o(z)) + 28(x)

10



iio(z) = 0" ug (0 (x)) + 0’0" u (0(x)) + S' ().

For n = 4 we obtain:

iy (z) = 0" us(o(z)) + 58 (z)
i (z) = 0" uy (0(2)) + 20" 0" uz (o (2)) + 5S' ().

io(2) = o' (o(2)uolo(2)) + 500 s ((2)) + S0 ualor(2)

2 3 3

20 us(o())S(x) + 28" (x) + 28%(a).

2

This means, ug transforms as a potential of the Hill’s operator [cf. 23], u; transforms
as a cubic differential and ug has the sense of quartic differential.

Let us concentrate on third order operator, this has been poped up in various places
in literatures [14 ,38].

Proposition 4.2 A diffeomorphism o transform a third order operator into the oper-
ators of the form (14) with coefficients:
ul = uj o o(0’)? +28(0) ug = ug o o(0’)?,

where S is the Schwarzian derivative.

Corollary 4.3 The projection from the space of nth order operators to the space of
Sturm -Liouville operators:

dm dn—2 I, dm dn—2
T A )

is Dif f(S1)-equivariant.

Proposition 4.4 The action of vector field f(z)L € Vect(S') associates to AB) ¢
first order operator
Lo, AP = iJr(@ﬂ ) (11)
OFS Var T2 0f
where
ulf = (fu'l + 2f’u1 + 2f”l

ugr = fug + 3f'uo.

Proof: By direct computation.
O

Thus, equation (11) is an element of the Lie algebra of first order differential op-
erators on S'. This Lie algebra is in fact the semidirect product of Vect(S!') by the
module of functions C*°(S!).

Corollary 4.5 The coadjoint action on uy and ug is given by
ad*uy = Ouy + u10 + 20° (12)
ad*ug = dug + 2ug0. (13)

11



5 Euler-Poincaré flows and coupled KdV equa-
tions

Let G be a Lie group and g be its corresponding Lie algebra and its dual is denoted
by g*.
The dual space g* to any Lie algebra g carries a natural Lie-Poisson structure:

{f,9}rp(p) =<ldf,dg],pn >
for any p € g* and f,g € C>®(S!).

Lemma 5.1 The Hamiltonian vector field on g* corresponding to a Hamiltonian func-
tion f, computed with respect to the Lie-Poisson structure is given by

dp

dt

Proof: It follows from the following identities

= adgpt (14)

ix;dgly = Lx,gly = {f,9}rr(p)
=< [dg, df], p >=<dg,adgp > .
This implies that X; = ad’&f,u. Thus the Hamiltonian equation dd—‘t‘ = X yields our
result.
(|

We write E(u) = 3 < p,Iu > for the quadratic energy form on g. E(u) is used
to define the Riemannian metric. We identify the Lie algebra and its dual with this
quadratic form. This identification is done via an inertia operator.

Let I be an inertia operator

I:g—g¢g*
and then u € g* evolve by
du —1
e _ 15
pril G ON (15)

where right hand side denote the coadjoint action of g on g*. This equation is called
the Euler-Poincaré equation.

Definition 5.2 The Euler-Poincaré equation on g* corresponding to the Hamiltonian
H(p) =% <I7'pu,pu> is given by

dp

E = —ady;,luu.

It characterizes an evolution of a point u € g*.

Proposition 5.3 Let QG be infnite dimensional Lie group equipped with a right invari-
ant metric. A curve t — c(t) in QG is a geodesic of this metric iff u(t) = dctRc;1é(t)

satisfes
d k
%u(t) = —ad,yu(t). (16)

12



5.1 Coupled KdV type equations

Using the Euler-Poincaré framework we study the EP flow connected to third order dif-
ferential operators. The coupled KdV equation is a generic example of multi-component
systems. The classical Boussinesq system is connected to the cKdV system through
nonsingular transformation.

Proposition 5.4 The Euler-Poincaré flow on the space of third order differential op-
erators yields following the Hamiltonian structure

20° + 2ud + u,
vz + 3v0 '

This gives rise to (A) the Drienfeld-Sokolov equation

Ut + 20500 + 20V, +uzv = 0
vy + 4dvv, = 0. (17)

for H=1% [v?dx
(B) another coupled KdV equation

Ut + 2Uppr + 3uu, = 0,
v+ (uv)g + 2vuy = 0. (18)

for Hamiltonian H = %qu dx.

Proof: By direct computation.
O

5.2 The Boussinesq equation

There is an interesting connection between the Hamiltonian structure of the Boussinesq

equation
1
Ut = Vg, Ut = SUggz + 5 UlUy,

3 3
named after the French mathematician Joseph Boussinesq described in the 1870 model
equation for the propagation of long waves on the surface of water with small amplitude.
The Hamiltonian structure of the Boussinesq equation is given by

203 + u10 + Ouy ‘ 20ug + ug0
O=(c1]ey)= ;
8u0 + 2UO8 h

where 1 . 16
h= 585 + g(u183 + 83’&1) — (Ulmma + 8U1mc) + ?ulaul.

13



We obtain only first column matrix c¢; of the Hamiltonian operator, and these only
lead to the partial construction of Ws5 algebra [45]:

{u1(z),u1(y)} = 20" + 2u1(2)0 + u) (2)]0(z — y),

{uo(2),u1(y)} = [Buo(2)0 + ug(#)]0(z — y).

Unfortunately, the other part can not be obtained immediately in this way. The
second column matrix cs can be obtained from slightly different route. The element
a1 is an adjoint of as;. The a9y element is the total derivative of Boussinesq equation
and some other higher order derivates. We must admit that this is the limitation of our
method. In fact, Gelfand-Dickey method will be more appropriate than our method.

Similarly, one can compute n = 4 case. Here one must obtain a third order time
derivative equation.

6 Factorization of A®) operators and general-
ized Miura transformation

In this section we will show that the action of vector field on S! is compatible with the
factorization of the higher order linear operators.
If we assume that A®) is factorizable:

AB) = (82 + u) (0 + w).
It is compatible if and only if w = 0.
Let K[u] be the algebra of differential polynomials in u, that is, polynomial with

infinite set of variables u, i > 0, such that we write u = u%uy = ulV) etc.
Let us extend our base field K[u]. Let us factorize

AB) = (82 + u)d = (0 +v)(d — v)d (19)
over a differential field K[v]. This extension is given by
u = —(vy +v?), (20)
and this extension is not Galois extension. The equation (20) is called Miura map.

This factorization was considered by Kupershmidt and Wilson [29]. In a remarkable
paper, they gave simpler definition of Adler-Gelfand-Dickey bracket on the space of
differential operators when the operator A(™ is factorizable.

A = (94 pp_1)(O + pns) - (0 +p1)(D+po),
where

k (n—=1)k

pkzwkvl—i-vaQ—i—---—i—w , 0>k>n—2; w=62m/n,

-2
and pp—1 = — Z?:U Di-

We consider a special case of above scheme.
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Proposition 6.1
Lo(d+v)(0—v)0 = (0 +ud + du)d.

Outline of Proof: It is not difficult to show that the action of vector field Vect(S")
on (0+w) is

Thus,
(£, (0 +v)](0 —v)d = (0° + dv)(d —v)d
= 0" — (vy +0%)0* — (vy +0%)'0
= (8% 4+ ud + Ou)o.
|

Modified Boussinesq equation Before finishing this section we briefly discuss
the quadratic Miura transformation associated to a third order differential operator.
Let us consider the factorization of a third order differential operator

A=0+p+q)(0-p)(0—q)
=0 + (202 + px + 9"+ pa+0*)0 +pa(p + q)
Thus the Miura type transformation is given by
u=2qy +ps +p° +pg+ ¢,

Therefore, the modified Boussinesq equation is given as

= 0(—2¢> — 2pq + p* + 2¢; + pa)
a = 0(¢* — 2pq — 2p* — ¢z — 2py) - (21)

7 Fourth order operators and integrable sys-
tems

In this section we study several integrable systems associated to the fourth order dif-
ferential operator. Let us assume

9 3
(4) — 4 2 2 n . 22
A 0" +uo +u$8+(—100u +1g¥ +v) (22)

It should be worth to say that for all conformal class of fourth order operators the
coefficients of 8% and 0 must be related. In this section we study flows generated by

various forms of such operators.
The Vect(S') action on L is defined by the commutation with the Lie derivative

(4)1 . 5/2 _ —3/2
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Proposition 7.1 The action of vector field f(z)L € Vect(S') associates to AB) ¢
second order operator

2

d 3
_ _ /_ e "
a =ufo +ufda: + ( uf-l-vf) (23)

10

where
Uf:(ful+2flu+5fl’l

vp = fo' +4f.

Proof: By direct computation.
O

Corollary 7.2 The Hamiltonian operator associated to the action of Vect(S') on u

and u are given as
ad*u = Ou + ud + 59° (24)

ad*v = dv + 3v0. (25)

This Hamiltonian operator is almost similar to the Hamiltonian in Section 5.1.
Therefore Euler-Poincaré flow yields here also Drinfeld-Sokolov equation.

7.1 Fifth order coupled integrable system

In this section we construct fifth order system. Let us consider following fourth order

differential operator
AW = ' + ud? + uyd +v. (26)

Proposition 7.3 The infinitesimal transformations of u and v under the Vect(S')
action are given by
up — 5"+ 2fu+ fu' (27)

Uf fl/l/l f/l/ 2 ! FII JU F’ U’ F (28)
Proof: By direct computation.

O

Corollary 7.4 The Hamiltonian operator associated to the action of Vect(S') on u

and u are given as
ad*u = u + ud + 50° (29)

ad*v = 2(85 + ud® + u'9?) + 4vd + o' (30)

16



Proposition 7.5 The Euler-Poincaré flow with respect to the Hamiltonian structure

50% 4+ 2ud + u,
3(0° 4+ ud® + u'9%) + vy + 400

(A) yields the Drienfeld-Sokolov equation

Up + DVppe + 20V, + uzv = 0

3
v + E(vmmx + WUgpe + UgVze) + HVV, = 0. (31)

for H=1% [v?dx
(B) yields a fifth order coupled equation equation

U + DUggy + 3uu, = 0
U + SUggrrs + SUUpze + Uz + Suzv + 2uv, = 0, (32)

for H = qu dx.

Proof: By direct computation
|

Remark It may be worth to say that the Equations (31) and (32) can be generalized
simply by considering

AW = 9" 4 (u+ N)D? + ud + (v + )
instead of (26). This would induce slightly different Hamiltonian structure

0= 5% + 2(u + N0 + u,
T\ 3(0° +ud® + A0+ u0?) + vy +4(v+ p)d
7.2 Hirota-Satsuma type equation

In this section we consider a factorizable fourth order differential operator of the fol-
lowing form

AW = (8% + u) (8 +v). (33)

Lemma 7.6 The Hamiltonian operators associated to the action of Vect(S') on A4 =
(0% + u) (0 + v) yields
ad*u = du + ud + 59° (34)

ad*v = Ov + vd + 50° (35)

respectively.
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Let us introduce a complex variable
p=u-+iv. (36)
Therefore, we combine Eqns. (34) and (35) to obtain new Hamiltonian operator

ad*p = Op + pd + 50° (37)

Proposition 7.7 The Euler-Poincaré flow with respect to the Hamiltonian structure
ad*p = dp + pd + 59* P =1u-+iv
yields complex KdV or Hirota-Satsuma equation
Pt + Prae + 3ppe = 0 (38)
for

1 1
H=§/p2dgc£§/(u2+v2)dx.

We can also construct another coupled KdV equation from this pair of Hamiltonian
operators.

Proposition 7.8 The Euler-Poincaré flow with respect to the Hamiltonian structure

50% 4+ 2u0 + u,
50% 4+ 200 + v,

yields the following coupled equation

Ut + DUgpy + Uty =
v + SUggr + 2uzv + uvy = 0, (39)

forH:%fugdas.

8 Wadati type eigenvalue problem and general-
ized Miura map

In this section we study Zakharov-Shabat type eigenvalue [47] problem associated to
the factorization of fourth order operators. We follow Wadati’s technique [8,41] We

will discuss two different cases.

Case I The operator (33) gives rise to the following eigenvalue problem

(0—p)(@+p)(0—aq)(0+ ) =\, (40)
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where
u=py — p’, and v =g, —q¢°.

This may be deconposed again into two pairs of first-order equations

0+ ) = A

{ (- 06— N (41)
(04 p)x = A

{ O )t — ax (42)

By introducing two sets of functions (11 = +¢, p_ = 1p—¢) and ({4 = E+x, €- =
¢ — x), we obtain

(/n A g O (/n
P I ¥-
£+ 0 Ap £+
- p —A -

which is the Zakharov-Shabat type eigenvalue problem. This was first introduced
by Wadati to construct the Zakharov-Shabat eigenvalue problem from the factorization
of the Strum-Liouville operator.

The time evolution of 1, ¢, & and x is given by

WYy = 50 + 2ud + uy
= 50 + 2(qz — ¢2)0 + (quz — 2942) (43)

similarly we obtain the same for ¢, £ and x

¢r = 50° — 2(qu + ¢*)0 — (qux + 294:) (44)
£ = 58% + 2(py — p2)0 + (pua — 2pps) (45)
Xt = 50 — 2(py + )0 — (Pux + 20P2). (46)

In general, for application purposes all these equations (43 - 46) are expressed in
matrix of polynomials in A, ¢ and v and its derivatives.

Case II Let us factorize A4 of the following type:
O + ud? 4+ ugd + v = (8% + 0l — m) (9% — 10 — m),

where | and m satisfy a pair of generalzed Miura system or coupled Riccti equation
like system, given as

u=—(y +1>+3m),m?> — (Im+m') =v. (47)

v=(m?— (Im+m'). (48)
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Thus, the above operator gives rise to the eigenvalue problem

(8% 4+ 0l —m) (8% — 10 — m)p = A% (49)

This can be decomposed into the pair of second-order equations
(0% + 0l — m)yp = A (50)
(0% =10 — m)p = Mp. (51)

Let us define two new wave functions

by =Y+
Yo=Y -9, (52)
Therefore, the eigenvalue problem becomes
A+m =3 19-11 ¥
P0) - ) () e
P -0 — %l’ m—A— %l’ P (53)

Once again one can resolve the second order by invoking additional variables.

8.1 Construction of complex coupled system

Let us consider a new sixth order operator as the product of two different Lax operators
of the Boussinesq type ( or third order)

A®) = (3 + w10+ urg + v1)(0° + u20 + Uy + v2). (54)

Lemma 8.1 The Hamiltonian operators associated to the action of Vect(S') on A6
ad*u; = 20 + 2u10 + U1y ad*vy = viz + 3010 (55)
ad*ug = 20° 4 2u0 + ug,  ad*vy = voy + 3020 (56)

respectively.

By introducing
P = uy + tusg, q = v + 1vg,

we can combine these two pairs of operators. Thus, we would get

_( 20° +2pd + py

Proposition 8.2 The Fuler-Poincaré flow with respect to the Hamiltonian structure
(57) yields complex coupled KdV type equation

Dt = Praz + 3PPz P =uy + iuy (58)
Gt =qzp+3qpz P =v1+ive (59)

1 1
Hzi/deQSEE/(U%-FU%)dQS.
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Remark Similarly one can derive quaternionic KdV equation from the Euler-Poincaré
flows associated to the eighth order differential operator

A®) = (8% + u1)(8° + u) (8 + u3) (0% + u4).

By introducing P = u; + tug + jus + kus, one would obtain quaternionic KdV in terms
of variables P.

9 Special A™ operators and integrable flows

In this section we will study A operators with specific values of ug, uq, ug etc.
Let us start with a third order equation of the following type:

" +urf +ugf =0. (60)

To go further, consider solving (14) for u;. We obtain

l(f’)2 + %(mfg)')x + (ug — lu'l)f2 =0.

(=5 ;

If we assume ug = %U/u then the above equation is solvable for ug. After rescalling we
assume vy = 4u and uy = 2u'.

Thus, the special or factorizable differential operators of order n = 3,4 are given as
AB) = 33 1 4ud, + 2/, (61)

AW =9 1 902 4 3u" + 1008, + 10ud?. (62)

Proposition 9.1 The action of a vector field f(m)% € Vect(SY) on AB) and AW
yield first order and second order operators

[‘Cf(x)dia AC = (f" 4+ af'u + 2fu")0 + 2(f" + Af'u + 2fu")’

(£ 00y s AD] = (f" + 4 f'u+ 2f)0” +5(f" + 4f'u +2fu')d

+(0% 4 6u)(f" + 4f'u + 2fu))

respectively.

Proof: By direct computation.

Definition 9.2 A vector field is called projective vector field which keeps fized a given
projective connection A

,AM] =0, (63)
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Corollary 9.3 A projective vector field v = f% € T(Q7") satisfies

f"+Aaf'u+2fd = 0. (64)
Proposition 9.4 The equation ‘9%?) = [L,, A™)] generates the evolution as
ou

1
E — §f”’+2f’u+fu’.

Proof: We prove it by direct computation.
(|

We have argued that the action [£,, A(")], can be considered as a coadjoint action
of Vect(S') on A™. Hence, we say

1 1
4= §f’” +2f'u+ fu' = (585 + 2u0y + ug)f.

The operator (%83 + 2ud; + uy) is called the Poisson operator.

Proposition 9.5 The Hamiltonian flow generated by action of Vect(S') on the space
of AGD or conformal operators for the Hamiltonian H (u) = %fsl u?(z) dz, yields KdV
equation.

9.1 Action of Vect(S!) and dispersionless class of systems

In this section we consider a special class of integrable systems, the dispersionless KAV
or Riemann equation.
Dispersionless equations can be obtained as a quasi-classical limit of integrable ones.

In this case we introduce scaling % — e%, a% — Ea% and take the limit ¢ — 0.

In the quasi-classical limit KdV equation
Ut = Ugge + Uy
becomes dispersionless KdV, defined as
U = 3Uly. (65)
This is the prototype for the hyperbolic systems and it has a Lax representation.

This equation can be derived easily from our method. We consider the special nth
order operators.

Proposition 9.6 The action of a constant vector field u% € Vect(S') on AWM yields
a UNLQUE erpression

AN =
#%aA ]_NU’

for all values of n.
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Proof: It is not difficult to check that the only expression which survives when the
vector field p € Vect(S') (for ;= constant) acts on A™) is pa’.
O

Proposition 9.7 The Euler-Poincaré flow with respect to the Hamiltonian structure
O =u,
yields dispersionless KdV equation

Ut = UlUyg,

for H =3 [o u? da.

10 Flows on the space of curve
In the earlier Section we have seen how an immersion associated to A yields a curve
Y : R — RP"!

in the projective space.

Let us write ¢ in terms of an inhomogeneous coordinates. We lift ¢ to a curve on
R". This we may denote by ¢) = n(x)(1,4). We choose the factor 7(z) so that the
Wronskian of the components of the new curve equals 1.

It turns out that there is a unique choice of n(z) with such a property, and this is

given by )
77(33) :W’r(wllaawizfl)iﬁ (66)
In particular, for n = 2 case,
b= (1) = (02,9 2) (67)

is the solution curve [13]. It retains the unitarity of the Wronskian.

Corollary 10.1 The three dimesional spaces of solutions to projective wvector field
equation is spanned by ?. 1po, 13, and they form a sl(2,R) algebra.

Proposition 10.2 (Kirillov) If f is a projective vector field, satisfies (62), then the
square root of f is an element of scalar density of weight —%, denoted by . Then (f, 1))
satisfies super algebra.
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The stabilizer of the action of this superalgebra on pairs A is given by (16) and

d2
AY = (5 +upp = 0. (68)

This gives us a geometrical explanation that if 1y, 1o satisfy (68) then 1119, 4%, and
Y? satisfy (64).

Let us study now the fourth order equation

" 4 10uf" + 100 1 + (9u2 +3u")f =0. (69)

By direct computation one can show:

Proposition 10.3 The equation f™ + 10uf” + 10u'f + (9u? + 3u")f = 0 traces out
a four dimensional spaces of solutions spanned by

{1/)?7 Q,b%z,bg, T/MP%, 1/)3}

Lemma 10.4 The equation f" +2u'f +4uf' = 0 traces out a three dimesional spaces
of solutions.

Proof: If 4; and vy are the solutions of

d2
da?

Ay = (o= +u)yp =0,
then it is easy to see that 1;1; € T'(Q7!) satisfies the above equation. Hence the solu-

tions space is spanned by 2, 12 and 1)1)s.

O
Substituting (67) in equation (L, +u)yp; = 0 (for i = 1,2), we obtain
1 wm 3¢//2

The right hand side is invariant under PSL(2,R)(= SL(2,R/=£1) group. If we sub-
stitute this expression in the Euler-Poincaré equation, we obtain the evolution equation
of the solution curve on the projective space

3 .
Q[)t = wzzz - 51[)1121/)1 1-
This equation is called the Schwarzian KdV (or Ur KdV by G. Wilson [44-45]). One

can check directly that this equation is SL(2,R) invariant.
Thus we obtain the following theorem
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Theorem 10.5 The solutions of an operator A™ define an immersion
R — RP™ !

in homogeneous coordinates. The evolution equation of the solution curve is a Hamil-
tonian flow, and it is given by the Schwarzian KdV equation.

The Schwarzian KdV has a bihamiltonian structure [44]
Hy =4u, Dy =24, 'O¢h ',

1
H2 = U2a D2 = _§¢x7283 - 3¢xm¢x7382 + (31/)xx2¢x74 - z,ba:a:xi/)xi?))a

10.1 Flows on the space of immersion and Schwarzian
Camassa-Holm equation

Let 11 and 1) are the solutions to the second order, homogeneous, linear Schrodinger

equation
d2

@—i—m(u))zp =0 m=U— Ugg, (71)

Ay = (
with potential m(u).

Substituting (67) in equation (% +m)y; = 0 (for i =1,2), we obtain

1 1/)/// 3¢//2
m:a(w—adﬂ). (72)
Therefore, we obtain
1 1/)/// 3 ¢//2
u=(1-08% 1[§(W_§¢l2 )] (73)
If we substitute this expression in the Hamiltonian equation,
0H
= 0=
u ou

we obtain the evolution equation of the solution curve on the projective space

(1 - 82)¢t = ¢xmx - g¢xx2¢x_l-

This equation is called the Schwarzian CH. Once again, one can check directly that
this equation is SL(2, R) invariant.

Remark: The CH and Schwarzian CH equations are Euler-Poincaré type flows,
and one of the flow takes place on an infinite-dimensional Poisson manifold and the
other on a slightly degenerate infinite-dimensional Symplectic manifold. They form an
Antiplectic pair.

We note that, if we interchange the roles of independent and dependent variables,
then the Schwarzian derivative becomes
3,.2
__ToTeds — 2Tee

4
Ly

(74)
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Remark Whenever a Lie group G acting on a space M ~ ® x X, where ® represents
the independent variables and X the dependent variables. There exist an induced
action on the associated jet bundles J"M, which is called the nth prolongation of
G, denoted by pr"G. Let I(¢,z(™) be a scalar valued function depending on the
independent and dependent variables nd their derivatives, which is invariant under
pr"G. Then I(¢,z(™) is known as differential invariant of the group G. For the SL(2)
group action, Eqn. (74) is one of the two fundamental differential invariants, other one
is x.

Let us substitute

1
w=—
e
in equation (74). We obtain the Harry Dym type equation
wy = wlw(wd, " (w™ ")) glg- (75)

10.2 Riccati chain and stabilizer orbit

Let us consider the stabilizer equation of the odd part of Kirillov’s superalgebra which
coincides with the Hill’s equation

adjzz + WJJ = 07

where a is a constant.
Let us make a change of variables

Yz Yoz 0}
= — then p, = — — —%..

a'l,b’ px a'l/) a¢2
Thus after substituting this into Hill’s equation, we obtain the celebrated Riccati equa-
tion

»(z)

P +ap? +u=0. (76)

Thus it is readily clear that the Riccati equation under Cole-Hopf transformation is
connected to the stabilizer orbit of the ”Fermionic” part of the Kirillov’s superalgebra.

There are some interesting featues of the Riccati equation. If one solution of a
some Riccati equation is known then we can get immediately general solutions of the
whole family of Riccati equations obtained from the original one under the change of

variables
. a(z)p+b(z)

~c(z)p+d(z)
It is also interesting to notice that for Riccati equation knowing any three solutions
p1, P2, p3 we can construct all other solutions p using a simple formula known as cross
ratio:

(77)

b—p1 _ apa —P1 (78)
b —Pp2 p3 — P2

with an arbitrary constant .
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10.2.1 Higher order Riccati and projective vector field equation

We wish to explore the connection between the projective vector field equation and
second order Riccati equation.
Let us assume

Ja
v= = (79)
f
where f satisfies projective vector field equation. Equation (79) implies
ff = Vs + B0, + 07,

and after substituting the results above in the projective vector field equation, it takes
the following form
Vg + 300, 4+ 02 + duv + 2uy = 0, (80)

which is particular case of second order Riccati equation. The coefficients are fixed by
the projective vector field equation.

Proposition 10.6 1. The projective vector field equation is equivalent to a partic-
ular form of second order Riccati equation v, + 3vvg +v° 4+ 4uv + 2v, = 0, where

x

— [
v="F.

2. Suppose p(x) = py be the solution of the Riccati equation. Then the second order
Riccati satisfies v(z) = 2p;.

Proof: By direct computation one can check this result.
(|

Above proposition is the Riccati analogue of the relation between projective vector
field equation and its partner equation vy, + u(z)y = 0.

Therefore, above result yields the correspondences between solutions of second order
Riccati and ordinary Riccati equation. At this stage we must give the definition of
Riccati chains. In fact, all the higher order Riccati equations satisfy most of the
properties of the Riccati equation .

Definition 10.7 Let L be the following differential operator

d

The n-order equation of the Riccati chain is given by the following formula

n—1

L"(z) + Y aj() (L o(z)) + ao(z) =0, (81)
j=1

where n is an integer characterzing the order of the Riccati equation in the chain and
aj(z), j=0,1,--- N are arbitrary functions.
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The lowest-order equations in the chain after the ordinary Riccati equation are:

n =2, Vgz + 30(2)vy +0° () + a1 (2)v(z) + ag(z) =0 (82)

n =3, Vae+40050 + 302+ 6020y + o (1) vy +0* (2) +0v? (2) + oy (2)v(2) + o () = 0
(83)
Thus, our second Riccati coincides with n = 2 member of the Riccati chain when

a1 = 4u and ag(z) = 2uy.

10.3 Finite-gap potential and generalized Schwarzian equa-
tion
Let us consider a polynomial generalized potential

w(z, ) = A"+ u A" o, (84)
Hence, the projective vector field equation becomes

frzz + 4u(z, X) fz + 2ug (2, N) f = 0. (85)

A generalized potential u(z,\) is called N-phase potential if (84) has a solution
which is a polynomial in A of degree N, i.e.,

F@, ) =M+ AN 4 fy

It is easy to transform the projective vector field equation to

fll le W7"2
7+4U—F: 72 (86)
where the constant part can be fixed by the Wronskian of its partner equation
" +u(x)p = 0.

Proposition 10.8 Let 1)1 and 1o be the solutions of 4" + u(x)y = 0. Let us define

_ i FWr
l 2¢1¢2

where Wr = by, — 1patp} is the Wronskian. Then q; maps the Riccati equation

(87)

Vig + 02 +u(z) =0

to
FI" 4 ouf? = L (f) = W
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Proof: By substituting v; into the Riccati equation one obtains the proof.
O

Suppose we assume Wr(i1,12) = A. Thus corresponding to (86) we obtain the
following modified Schwarzian derivative equation

1911 392 2 2
A) = 2 ZJT 262 88
u(w\) = 352 = 10+ X% (88)

This equation is called the modified Schwarzian equation by Kartashova and Shabat
[24]. This equation has a profound application in integrable systems.

Then Eqn. (88) has unique asymptotic solution represented by formal Laurent
series, such that

oo
g(z, ) =1+ A lgi (@),
=1

where coefficients g; are different polynomials in all uq,-- -, u,.

11 Conclusion and Outlook

The space of differential operators has a nice geometrical structure. It is known that
Lie derivative action of a vector field on the space of second order differential operators
on a circle exactly coincides with the coadjoint action, and this action yields KdV
equation. Thus, we became curious to study the flows associated to the space of higher
order differential operators or opers.

This paper has focused on to study Euler-Poincaré flows associated to the action of
Vect(S') on the space of higher order differential operators. At first we have studied
the action of Vect(S') on the space of third order differential operators and EP flows
yield Drinfeld-Sokolov and coupled KdV type system. This method is very geometrical
based on projective connections on S'. But one of the shortcomings of this construction
is that the Boussinesq equation can not be derived explicitly.

We have explicitly demonstrated this action on the space of fourth order differential
operators. We have constructed various coupled KdV type system, and the notable
one is the Hirota-Satsuma or complex KdV equation. In this paper we also studied the
eigenvalue problem of the fourth order differential operator. In one particular case we
boiled down to the Zakharov-Shabat type eigenvalue problem.

We have also considered a conformal class of operators such that all the coefficients
can be expressed in terms of a polynomial and derivatives of a single dependent variable
u. This is a generalized projective connection. We have shown that the EP flow is
associated to the space of such conformal operators is always the KAV equation. A
nth order differential operator induces an immersion in projective space. In this paper
we briefly study EP flow on the space of projective curve, and this yields Schwarzian
KdV equation. Finally we have studied the famous Riccati equations and its deep
connection to projective vector field equation.
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There are several problems popped up in this article. One of them is to study EP
flows on other kind of opers, in this paper we have considered only s/, opers. Another
way to generalize is to study such Euler-Poincaré flows on super spaces. In this case we
have to consider the Lie derivative action of supervector field Vect(S'') on the space
of differential operators on a supercircle S'I'. But the computation must be much more
tedious than here.
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