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Abstract

Given a bounded domain Ω ⊂ R
d and two integro-differential opera-

tors L1, L2 of the form Lju(x) = p. v.
∫
Ω(u(x)− u(y))kj(x, y, x− y)dy

we study the fully nonlinear Bellman equation

max
j=1,2

{
Lju(x) + aj(x)u(x) − f j(x)

}
= 0 in Ω ,(0.1)

with Dirichlet boundary conditions. Here, aj , f j : Ω → R are non-
negative functions. We prove the existence of a nonnegative function
u : Ω → R which satisfies (0.1) almost everywhere. The main difficulty
arises through the nonlocality of Lj and the absence of regularity near
the boundary.
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2 1 INTRODUCTION

1 Introduction

Over the last years there has been an increasing interest in the study of
nonlocal operators generating Markov jump processes. It turns out that
a theory for linear equations, analogous to the one developed in [KS80] for
diffusion operators can be developed for jump processes, see [BK05a, BK05b,
Sil05]. From both points of view, theory and application, it is very interesting
to study fully nonlinear Bellman equations with such operators. Some results
concerning the martingale problem and viscosity solutions have been achieved
using, at least partly, probabilistic methods in [MP91, MP94, MP96]. So
far, analytical methods were successful only in the case of jump-diffusions
[GL84], [AT96], i.e. when a dominating diffusion is present or the equation is
not fully nonlinear, [MR97]. In conclusion, a satisfactory analytical approach
to fully nonlinear nonlocal equations has not been established yet. It is the
aim of this work to make a first step in this direction by employing tools
similar to those used in [EF79, BE79]. For local diffusion operators, results
on Hölder regularity for linear equations were crucial in setting up a theory of
fully nonlinear equations, see [Eva83, CIL92, CC95, Kry97] and it would be
highly desirable to investigate fully nonlinear nonlocal equations in a similar
fashion.

Several kinds of nonlinear equations including nonlocal operators of the same
type as the ones considered in this paper have been studied in the area of
financial mathematics. Since neither the equations nor the techniques are
related to our problem we do not discuss these results here but refer the
interested reader to the references mentioned in the introduction of [JK05].

Let Ω ⊂ R
d be a bounded domain with Cd+1-boundary. The aim of this work

is to show the existence of nonnegative solutions u : Ω → R+ to the following
equation:

max
j=1,2

{Lju(x) + aj(x)u(x) − f j(x)} = 0 in Ω,

u = 0 on ∂Ω,
(1.1)

where L1, L2 are nonlocal integro-differential operators of order α ∈ (1, 2).
Roughly speaking, the operators under consideration are similar to restric-
tions of pseudo-differential operators of order α with variable coefficients and
generators of Markov processes with jumps.
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Let us define an operator L as follows.

Lu(x) = p. v.

∫

Ω

(u(x) − u(y))k(x, y, x− y)dy(1.2)

= lim
ε→0

∫

Ω\Bε(x)

(u(x) − u(y))k(x, y, x− y)dy,

where x ∈ Ω and Ω ⊂ R
d is a bounded domain with Cd+1-boundary. More-

over, k : R
d×R

d× (Rd \{0}) → R is (d+2)-times continuously differentiable
and satisfies the following conditions:

k(x, y, z) = k(y, x,−z) ,(1.3)

|∂β
x∂

γ
y∂

δ
zk(x, y, z)| ≤ Cβ,γ,δ|z|

−d−α−|δ| ,(1.4)

c0|z|
−d−α ≤ k(x, y, z) ≤ C0|z|

−d−α .(1.5)

for all x, y, z ∈ R
d, z 6= 0 and β, γ, δ ∈ N

d
0 with |β| + |γ| + |δ| ≤ d+ 2 where

α ∈ (1, 2) is the order of the operator.

An example for k(·, ·, ·) is given by k(x, y, z) = b(x, y)|z|−d−α and b ∈ Cd+2
b (Rd).

Note that the definition of the operator L depends on Ω. Formally, in the
case Ω = R

d and k(x, y, z) = |z|−d−α one has L = const × (−∆)
α
2 . On one

hand, (−∆)
α
2 is a fractional power of the Laplace operator, on the other hand

it is the generator of so called α-stable processes which explains partly our
motivation. For a bounded domain Ω the operator L has the same form as
the generator of a censored stable process [BBC03].

Our main result reads as follows.

Theorem 1.1 Let Ω ⊂ R
d be a bounded domain with Cd+1-boundary and

α ∈ (1, 2) be fixed. Assume L1 and L2 are defined as in (1.2) for two kernels
k1(·, ·, ·), k2(·, ·, ·) that both satisfy assumptions (1.3) through (1.5). Let a ∈
L∞(Ω; R2) and f ∈ L2(Ω; R2) be nonnegative. Then there exists a nonnegative

function u ∈ H
α/2
0 (Ω) ∩Hα

loc(Ω) satisfying

max
j=1,2

{Lju(x) + aj(x)u(x) − f j(x)} = 0 in Ω,

u = 0 on ∂Ω.
(1.6)

Moreover, for any open set Ω′
⋐ Ω

‖u‖
H

α
2 (Ω)

+ ‖u‖Hα(Ω′) ≤ C ,

where C depends on Ω′, Ω, c0, C0, Cβ,γ,δ, ‖a‖L∞(Ω;R2), ‖f‖L2(Ω;R2).
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Remark 1.2 In the above theorem, we do not focus on weakest possible reg-
ularity assumptions for ∂Ω and kj. Analogously to Bellman equations with
local diffusion operators one expects solutions to be more regular than stated
in Theorem 1.1, see a related remark in [Sil05]. In the case of the integral
operators above solutions will have some limited regularity near the boundary,
even for linear equations with smooth data. This can be seen in the following

example. Let u ∈ H
α
2

0 (−1, 1)∩Hα
loc

(−1, 1), α ∈ (1, 2), be a nonnegative weak
solution of

Lu(x) = 1, x ∈ (−1, 1), u|x=±1 = 0,

where L is as above with kernel k(x, y, z) = |z|−1−α. Then u cannot be in
Cβ([−1, 1]) for β > α. This is proved by contradiction: If u ∈ Cβ([−1, 1]),
then Lu(x) = 1 for all x ∈ (−1, 1) implies that u′(±1) = 0. Hence u(x) =
O(|x+ 1|β) as x→ −1 and

1 = lim
x→−1

Lu(x) = −

∫ 1

−1

|y + 1|−1−αu(y) dy < 0

since u(x) ≥ 0, which is a contradiction. Since u is also a solution of the
Bellman equation for Lj = L and f j ≡ 1, the solutions of the Bellman
equation will in general not be in Cβ(Ω) either.

The paper is organized as follows: Section 2 contains preliminaries such as
definitions of function spaces and notation. In section 3 we discuss the linear
nonlocal operators Lj. We study their mapping properties and estimates of
commutators with localization functions. Bilinear forms corresponding to Lj

are investigated in section 4. Section 5 contains the proof of Theorem 1.1.

2 Preliminaries

In the following 〈., .〉 denotes the duality product between a Banach space X
and its dual X ′ and (., .) denotes the L2-scalar product.

Let Ω = R
d, Ω = R

d
+, or let Ω be a bounded domain with Cd+1-boundary.

ThenHs(Ω), s ∈ [0, d] denotes the usual L2-Sobolev-Slobodeckii space normed
by

‖u‖2
Hm(Ω) =

∑

|α|≤m

‖Dα
xu‖

2
L2(Ω)
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if s = m ∈ N0 and

‖u‖2
Hs(Ω) =

∑

|α|≤[s]

‖Dα
xu‖

2
L2(Ω) +

∑

|α|=[s]

∫

Ω

∫

Ω

|Dαu(x) −Dαu(y)|2

|x− y|d+2(s−[s])
dxdy

if s 6∈ N0, see for example [Ada75]. Moreover, Hs
0(Ω) denotes the closure

of C∞
0 (Ω) in Hs(Ω) for s 6∈ 1

2
+ N0 and H−s(Ω) the dual of H−s

0 (Ω), i.e.
H−s(Ω) = Hs

0(Ω)′.

We note that, if s ∈ (0, 1), s 6= 1
2

and Ω is a bounded domain with a C1-
boundary, then

‖u‖2
Ḣs(Ω)

=

∫

Ω

∫

Ω

|u(x) − u(y)|2

|x− y|d+2s
dxdy

is a norm on Hs
0(Ω), which is equivalent to the norm defined before. Here,

Ḣs(Ω) denotes the corresponding homogeneous space. The fact can be easily
proven by contradiction using that Hs

0(Ω) is compactly embedded in L2(Ω)
and that ‖u‖Ḣs(Ω) = 0 if and only if u ≡ const.

We use bold letters like v for vector valued functions such as v = (v1, v2) ∈
Hs(Ω; R2). We say that a vector is nonnegative if all of its components are
nonnegative. Moreover, if f : Ω → R, then f+(x) := max(f(x), 0), f−(x) =
min(f(x), 0).

Finally, if f ∈ L1(Rd), then the Fourier transform of f is defined by

f̂(ξ) = Fx 7→ξ[f ](ξ) =

∫

Rd

e−ix·ξf(x)dx, ξ ∈ R
d,

and the inverse Fourier transform is denoted by F−1.

3 Properties of the integral operators

In this section we study properties of the integral operator L as defined by
(1.2) and the operator L defined as follows.

Lu(x) = p. v.

∫

Rd

(u(x) − u(y))k(x, y, x− y)dy(3.1)

= lim
ε→0

∫

Rd\Bε(x)

(u(x) − u(y))k(x, y, x− y)dy .
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Note that L equals L when Ω = R
d. For both, L and L we require the kernel

k to belong to the following class:

Definition 3.1 The class Kα(R), R,α ≥ 0, consists of all functions k : R
d×

R
d×
(
R

d \ {0}
)
→ R which are (d+2)-times continuously differentiable such

that k(x, x,−z) = k(x, x, z), k(x, y, z) = k̃(z) if |x|, |y| ≥ R, and

(3.2) |∂β
x∂

γ
y∂

δ
zk(x, y, z)| ≤ C|z|−d−α−|δ| for all x, y, z ∈ R

d, z 6= 0

for all |β|+ |γ|+ |δ| ≤ d+ 2 and some constant C > 0. Finally, for k ∈ Kα,
‖k‖Kα denotes the least constant such that (3.2) holds for all |β|+ |γ|+ |δ| ≤
d+ 2 and

|k|Kα := sup
x,y,z∈Rd,z 6=0

|z|d+α|k(x, y, z)|.

Remark 3.2 Obviously, Kα(R) equipped with ‖·‖Kα is a Banach space. The
weaker norm | · |Kα

will be used, when “freezing coefficients” in Lemma 3.7.

Remark 3.3 There are many other classes of kernels similar to Kα(R) one
could consider in the following and obtain similar results. In particular, the
smoothness assumptions w.r.t. to x, y are not optimal and the assumption
k(x, y, z) = k̃(z) if |x|, |y| ≥ R could be weakened considerably.

Lemma 3.4 Let k ∈ Kα(R), α ∈ (1, 2), R > 0, and let L be as in (3.1).
Then for all u ∈ Hα(Rd) the right-hand side of (3.1) converges in L2(Rd)
and

‖Lu‖L2(Rd) ≤ C
(
|k|Kα +Rd‖k‖Kα

)
‖u‖Hα(Rd) + C‖k‖Kα‖|u‖

H
α
2 (Rd)

for all u ∈ Hα(Rd). Here C depends only on d and α.

Proof: First of all, let

Lεu(x) :=

∫

Rd\Bε(x)

(u(x) − u(y))k(x, y, x− y)dy.

Then

Lεu(x) =

∫

Rd\Bε(x)

(u(x) − u(y) + ∇u(x) · (y − x))k(x, x, x− y)dy

+

∫

Rd\Bε(x)

(u(x) − u(y))(k(x, y, x− y) − k(x, x, x− y))dy

≡ LA
ε u(x) + LB

ε u(x)
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where we have used that
∫

Rd\Bε(x)

(x− y)k(x, x, x− y)dy =

∫

Rd\Bε(0)

hk(x, x, h)dh = 0

since k(x, x,−z) = k(x, x, z). From the form above it can be easily checked
that limε→0 Lεu(x) exists for all x ∈ R

d and converges in L2(Rd) if u ∈
C∞

0 (Rd). Note that by the assumptions on k we have

|k(x, y, x− y) − k(x, x, x− y)| ≤ C‖k‖Kα|x− y|−d−α+1

and α < 2. Hence it is sufficient to prove that

‖Lεu‖L2(Rd) ≤ C(|k|Kα +Rd‖k‖Kα)‖u‖Hα(Rd) + C|k|Kα‖u‖
H

α
2 (Rd)

uniformly in ε > 0 and for all u ∈ C∞
0 (Rd).

Concerning LB
ε we obtain by direct estimates

∥∥LB
ε u
∥∥2

L2(Rd)

≤ C‖k‖2
Kα

∫

Rd

∫

Rd

|u(x) − u(y)|2

|x− y|d+α
dy

∫

Rd

|x− y|−d−α+2(1 + |x− y|)−2dydx

≤ C‖k‖2
Kα‖u‖2

H
α
2
2

(Rd)

where we have used that

|k(x, y, x− y) − k(x, x, x− y)| ≤ C‖k‖Kα|x− y|−d−α+1(1 + |x− y|)−1.

For LA
ε we use Fourier transformation:

LA
ε u(x) =

∫

Rd\Bε(0)

(u(x) − u(x+ h))k(x, x, h)dh

=

∫

Rd

eix·ξ

∫

Rd\Bε(0)

(1 − eih·ξ)k(x, x, h)dh û(ξ)
dξ

(2π)d

=

∫

Rd

eix·ξpε(x, ξ)û(ξ)
dξ

(2π)d
= pε(x,Dx)u,

where

pε(x, ξ) :=

∫

Rd\Bε(0)

(1 − eih·ξ)k(x, x, h)dh

=

∫

Rd\Bε(0)

(1 − cosh · ξ)k(x, x, h)dh
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since k(x, x,−h) = k(x, x, h). Therefore

|pε(x, ξ)| ≤ |k|Kα|ξ|α
∫

Rd

(
1 − cos s ·

ξ

|ξ|

)
|s|−d−αds ≤ C|k|Kα|ξ|α

since 0 ≤ 1 − cos s · ξ
|ξ|

≤ Cmin(1, s2), 0 ≤ k(x, x, h) ≤ |k|Kα|h|−d−α, and
1 < α < 2. In the same way one proves that

(3.3) |∂β
xpε(x, ξ)| ≤ C‖k‖Kα|ξ|α

for all |β| ≤ d+ 1.

Now, if k(x, y, z) = k̃(z) for all x, y ∈ R
d, then pε(x, ξ) = pε(ξ) and

‖LA
ε u‖

2
2 =

1

(2π)d

∫

Rd

|pε(ξ)û(ξ)|
2dξ

≤ C|k|2Kα

1

(2π)d

∫

Rd

|ξ|2α|û(ξ)|2dξ ≤ C|k|2Kα‖u‖2
Hα(Rd)

Moreover, if k(x, x, z) = 0 for |x| ≥ R, then

F
[
LA

ε u
]
(ξ) =

∫

Rd

p̂ε(ξ − η, η)û(η)
dη

(2π)d
,

where p̂ε(ξ, η) := Fx 7→ξ[p(., η)] satisfies

∣∣ξβ p̂ε(ξ, η)
∣∣ ≤ CRd‖k‖Kα|η|α for all |β| ≤ d+ 1

because of (3.3) and therefore

|p̂ε(ξ, η)| ≤ CRd‖k‖Kα|η|α(1 + |ξ|)−d−1.

Thus
‖LA

ε u‖L2(Rd) ≤ CRd‖k‖Kα‖u‖Hα(Rd)

in that case by Young’s inequality.

Finally, the general case follows easily from the two cases above by decom-
posing k(x, y, z) = k′(x, y, z) + k̃(z), where k′ ∈ Kα(R) is supported in
{(x, y) ∈ R

2d : |x| ≤ R or |y| ≤ R}.

Now, we use the result above to obtain mapping properties of L in the case
of a bounded domain Ω.
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Lemma 3.5 Let L be as in (1.2), where k ∈ Kα(R), α ∈ (1, 2), R > 0 and
Ω ⊂ R

d is a bounded domain. Then for all u ∈ Hα
loc

(Ω) ∩ L2(Ω) the right-
hand side of (1.2) converges in L2(Ω′). Moreover, for all Ω,Ω′,Ω′′ satisfying
Ω′

⋐ Ω′′
⋐ Ω

‖Lu‖L2(Ω′) ≤ C‖k‖Kα

(
‖u‖Hα(Ω′′) + ‖u‖L2(Ω)

)
,

where C is independent of u and k.

Proof: Let ψ ∈ C∞
0 (Ω) such that ψ ≡ 1 on Ω′′. Moreover, let

Lεu(x) :=

∫

Ω\Bε(x)

(u(x) − u(y))k(x, y, x− y)dy

for x ∈ Ω′ and 0 < ε ≤ dist(Ω′, ∂Ω′′). Then

Lεu(x) =

∫

Rd\Bε(x)

((ψu)(x) − (ψu)(y))k(x, y, x− y)dy

− u(x)

∫

Ωc

k(x, y, x− y) dy −

∫

Ω\Bε(x)

(1 − ψ(y))u(y)k(x, y, x− y)dy

=: Lε(ψu)(x) + I1(x) + I2(x) .

Lemma 3.4 can be applied in order to estimate the L2(Rd)-norm of Lεu(x)
since ψu ∈ Hα(Rd). For x ∈ Ω′ and y ∈ Ωc the function k(x, y, x − y)
is bounded. For x ∈ Ω′ and y ∈ Ω one has |(1 − ψ(y))k(x, y, x − y)| ≤
C(Ω′, ψ)|k|Kα . These observations together imply

‖I1(x)‖L2(Ω′) + ‖I2(x)‖L2(Ω′) ≤ C|k|Kα‖u‖L2(Ω) ,

which proves the lemma.

The following lemma will be an essential ingredient throughout the article
since it shows that the commutator of L and L with a suitably smooth cut-off
function ϕ is an operator of lower order. It is the basis for “localizing” the
nonlocal operators L.

Lemma 3.6 Let k ∈ Kα(R), α ∈ (1, 2), R > 0 and let Ω be a bounded
domain. Let L be as in (1.2) and L be as in (3.1). Let ϕ ∈ C

β
b (Rd) with

β > α. Then

‖[L, ϕ]u‖L2(Ω) ≤ C|k|Kα‖ϕ‖Cβ(Ω)‖u‖H
α
2 (Ω)

,

‖[L, ϕ]v‖L2(Rd) ≤ C|k|Kα‖ϕ‖Cβ

b
(Rd)‖v‖H

α
2 (Rd)

,
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for all u ∈ Hα
loc

(Ω) ∩ H
α
2 (Ω), v ∈ Hα(Rd). Here [A,ϕ]u = A(ϕu) − ϕ(Au)

with A = L,L. Moreover,

(3.4)

∫

Ω

(
[L, ϕ]u(x)

)
v(x)dx = −

∫

Ω

u(x)
(
[L, ϕ]v(x)

)
dx

for all u, v ∈ H
α
2

0 (Ω) after an extension of [L, ϕ] from C∞
0 (Ω) to H

α
2 (Ω).

Proof: For u as in the statement of the lemma, we have

[L, ϕ]u(x) = p. v.

∫

Ω

k(x, y, x− y)(ϕ(x) − ϕ(y))u(y)dy

= p. v.

∫

Ω

(u(x) − u(y))k′(x, y, x− y)dy + u(x)Lϕ(x)

for almost all x ∈ Ω, where

k′(x, y, z) = k(x, y, z)(ϕ(y) − ϕ(x)).

By the same arguments as in the proof of Lemma 3.4 one see that ‖Lϕ‖L∞(Ω) ≤
C|k|Kα‖ϕ‖Cβ . Moreover, since ϕ ∈ Cβ(Ω), β > α > 1,

|k′(x, y, x− y)| ≤ C|k|Kα‖ϕ‖Cβ |x− y|−d−α+β′

(1 + |x− y|).

Hence as in the proof of Lemma 3.4

‖[ϕ,L]u‖2
L2(Ω)

≤ C|k|2Kα‖ϕ‖2
Cβ

∫

Ω

∫

Ω

|u(x) − u(y)|2

|x− y|d+α
dydx

∫

Rd

|h|−d−α+2β′

(1 + |h|)−2β′

dh

≤ C|k|2Kα‖ϕ‖2
Cβ‖u‖

2

H
α
2 (Ω)

.

The proof for L is the same. The last statement easily follows from the ex-
plicite form of [L, ϕ].

Lemma 3.7 Let kj ∈ Kα(R), α ∈ (1, 2), R > 0, j = 1, 2, satisfy

kj(x, y, z) ≥ c0|z|
−d−α for all x, y, z ∈ R

d, z 6= 0.

Moreover, let Lj, j = 1, 2, be the associated operators defined as in (3.1).
Then there are C,C ′ > 0 such that

(3.5) ‖u‖2
Hα(Rd) ≤ C

∫

Rd

L1u(x)L2u(x)dx+ C ′‖u‖2
L2(Rd)

for all u ∈ Hα(Rd). Finally, λ+Lj : Hα(Rd) → L2(Rd) is invertible for every
λ ≥ λ0 for some λ0 > 0.
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Proof: First we assume that kj(x, y, z) = kj(z) do not depend on x, y. Then

F [Lju](ξ) = lim
ε→0

(
pj

ε(ξ)û(ξ)
)
,

where

0 ≤ pj
ε(ξ) =

∫

Rd\Bε(0)

(1 − cosh · ξ)kj(h)dh ≤ C‖kj‖Kα|ξ|α,

cf. proof of Lemma 3.4. Hence limε→0 (pj
ε(ξ)û(ξ)) = pj(ξ)û(ξ) in L2(Rd),

where pj(ξ) = limε→0 p
j
ε(ξ) satisfies

pj(ξ) ≥ c0

∫

Rd

(1 − cosh · ξ)|h|−d−αdh

= c0|ξ|
α

∫

Rd

(
1 − cos s ·

ξ

|ξ|

)
|s|−d−αds ≥ c′0|ξ|

α

Therefore

‖u‖2
Hα(Rd) = C

∫

Rd

(1 + |ξ|2)αû(ξ)û(ξ)dξ

≤ C

∫

Rd

|ξ|αû(ξ)|ξ|αû(ξ) + C ′‖u‖2
L2(Rd)

≤ C

∫

Rd

p1(ξ)û(ξ)p2(ξ)û(ξ) + C ′‖u‖2
L2(Rd)

= C

∫

Rd

L1u(x)L2u(x)dx+ C ′‖u‖2
L2(Rd),

where we have used

c′0|ξ|
α|Re û(ξ)| ≤ pj(ξ)|Re û(ξ)|

and the same for Im û(ξ). Note that the constants C,C ′ above depend only
on c0, d, and α. Moreover, in the present case it is easy to see that λ+Lj is
invertible for λ > 0 and its inverse is given by

(
λ+ Lj

)−1
f = F−1

[
(λ+ pj(ξ))−1f̂(ξ)

]
for f ∈ L2(Rd)

and satisfies

(3.6) λ
∥∥∥
(
λ+ Lj

)−1
f
∥∥∥

L2(Rd)
+
∥∥∥
(
λ+ Lj

)−1
f
∥∥∥

Hα(Rd)
≤ C‖f‖L2(Rd)

for all f ∈ L2(Rd) uniformly in λ ≥ 1.
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Next we consider the case that kj ∈ Kα(R0) such that
∣∣∣kj − k̃j

∣∣∣
Kα

≤ ε ≤ 1

for some k̃j(z) ∈ Kα(R) independent of x, y satisfying the assumptions of
the lemma with the same c0 with ε > 0 to be chosen later. Denoting the
operators associated by k̃j by L̃j we obtain

‖u‖2
Hα(Rd) ≤ C

∫

Rd

L̃1u(x)L̃2u(x)dx+ C ′‖u‖2
L2(Rd)

≤ C

∫

Rd

L1u(x)L2u(x)dx+ C ′‖u‖2
L2(Rd)

+(ε+Rd
0)C

′′‖u‖2
Hα(Rd) + C ′′′ max

j=1,2
‖kj − k̃j‖

2
Kα‖u‖2

H
α
2 (Rd)

,

where we applied Lemma 3.4 to L = L̃j − Lj. Choosing ε = ε(c0, d, α) > 0
and R0 = R0(c0, d, α) > 0 small enough we obtain

‖u‖2
Hα(Rd) ≤ C

∫

Rd

L1u(x)L2u(x)dx

+C ′‖u‖2
L2(Rd) + C ′′ max

j=1,2
‖kj − k̃j‖

2
Kα‖u‖2

H
α
2 (Rd)

for all kj ∈ Kα(R0) as above. Furthermore, since λ− L̃j is invertible and

‖(L̃j − Lj)(λ− Lj)−1f‖L2(Rd)

≤ C(ε+Rd
0)‖(λ− Lj)−1f‖Hα(Rd) + C‖(λ− Lj)−1f‖

H
α
2 (Rd)

≤ C
(
ε+Rd

0 + |λ|
1

2

)
‖f‖L2(Rd)

due to Lemma 3.4 and (3.6), the L(L2)-norm of
(
L̃j − Lj

)
(λ − Lj)−1 is

arbitrarily small if ε, R0 > 0 are chosen sufficiently small and λ ≤ λ0 is
sufficiently large. Hence λ+ Lj is invertible and satisfies

(3.7) λ
∥∥∥
(
λ+ Lj

)−1
f
∥∥∥

L2(Rd)
+
∥∥∥
(
λ+ Lj

)−1
f
∥∥∥

Hα(Rd)
≤ C‖f‖L2(Rd)

for all f ∈ L2(Rd), λ ≥ λ0.

Now, let kj ∈ Kα(R) be as in the assumptions of the lemma. Then we can
choose finitely many balls Br(xl), l = 1, . . . , N , r ≤ R0 such that BR(0) ⊆⋃N

l=1B r
2
(xl) and

(3.8) |kj(x, y, z) − kj(xl, xl, z)| ≤ ε|z|−d−α for all x, y ∈ Br(xl),
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where ε and R0 are as above. Furthermore, let ϕl, l = 0, . . . , N , be smooth
functions such that (ϕl)

2, l = 0, . . . , N is a partition of unity on R
d with

suppϕl ⊂ Br(xl) and ϕl ≡ 1 on B r
2
(xl) for j = l, . . . , N and let ψl ∈

C∞
0 (Br(xl)) be such that ψl ≡ 1 on suppϕl. Moreover, let

kl
j(x, y, z) := ψl(x)ψl(y)kj(x, y, z) + (1 − ψl(x)ψl(y))kj(xl, xl, z)

for l = 1, . . . , N , and k0
j (x, y, z) = k̃j(z), where k̃j(z) = kj(x, y, z) for

|x|, |y| ≥ R. Then |kl
j − kl

j(xl, xl, .)|Kα ≤ ε by (3.8). Let Lj
l denote the oper-

ator with kernel kl
j. Hence we can use the statement for the cases proved so

far to conclude that

‖u‖2
Hα(Rd) ≤ CN

N∑

l=0

‖ϕ2
ju‖

2
Hα(Rd)

≤ CN

N∑

l=0

(∫

Rd

L1
l (ϕ

2
l u)L

2
l (ϕ

2
l u)dx+ (1 + max

j=1,2
‖kj‖Kα)‖ϕ2

l u‖H
α
2 (Rd)

)

≤ CN

(
N∑

l=0

∫

Rd

ϕlL
1
l (ϕlu)ϕlL2

l (ϕlu)dx+ (1 + max
j=1,2

‖kj‖Kα)‖u‖
H

α
2 (Rd)

)

≤ CN

(
N∑

l=0

∫

Rd

ϕlL
1(ϕlu)ϕlL2(ϕlu)dx+ (1 + max

j=1,2
‖kj‖Kα)‖u‖

H
α
2 (Rd)

)

≤ CN

(
N∑

l=0

∫

Rd

ϕ4
l L

1u(x)L2u(x)dx+ (1 + max
j=1,2

‖kj‖Kα)‖u‖
H

α
2 (Rd)

)

≤ CN

(∫

Rd

L1u(x)L2u(x)dx+ (1 + max
j=1,2

‖kj‖Kα)‖u‖
H

α
2 (Rd)

)
,

where we have used the Lemma 3.6 and

ϕl(x)L
j
l (ϕlu)(x) = ϕl(x)L

j(ϕlu)(x) + gj,l(x)u(x)

for a bounded function gj,l(x). Using ‖u‖
H

α
2
≤ Cε‖u‖L2 +ε‖u‖Hα for suitable

small ε finishes the proof.

Finally, we prove the invertibility of λ + Lj. First of all by (3.5) for L1 =
L2 = Lj and (Lju, u) = E j(u, u) ≥ 0

‖λ+ Lju‖2
L2(Rd) =

∫

Rd

Lju(x)Lj(x)dx+ 2λ(Lju, u) + λ2‖u‖2
L2(Rd)

≥
1

C
‖u‖2

Hα(Rd) +

(
λ2 −

C ′

C

)
‖u‖2

L2(Ω).
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This implies that the range of λ + Lj is closed and λ + Lj is injective for
every λ ≥ λ0 for some λ0 > 0 large enough. Hence λ+Lj is a semi-Fredholm
operator for every λ ≥ λ0. Therefore it is sufficient to prove that λ + Lj

is invertible for some λ ≥ λ0 because of the homotopy invariance of the
Fredholm index.

Using the cut-off functions above, we construct an approximate resolvent
Rλ : L2(Rd) → Hα(Rd) by

R
j
λf =

N∑

l=1

ϕ2
l (λ+ Lj

l )
−1f, f ∈ L2(Rd),

Then we calculate similarly as above that

(λ+ Lj)Rλf =
N∑

l=1

ϕl(λ+ Lj)ϕl(λ+ Lj
l )

−1f + SRλf

=
N∑

l=1

ϕl(λ+ Lj
l )ϕl(λ+ Lj

l )
−1f + S ′Rλf

=
N∑

l=1

ϕ2
l (λ+ Lj

l )(λ+ Lj
l )

−1f + S ′′Rλf

=
N∑

l=1

ϕ2
l f + S ′Rλf = f + S ′′Rλf,

where S, S ′, S ′′ : H
α
2

0 (Rd) → L2(Rd) are bounded operator by Lemma 3.6.
Because of (3.7), we obtain by interpolation

‖(λ+ Lj
l )

−1f‖
H

α
2 (Rd)

≤ C|λ|−
1

2‖f‖L2(Rd),

uniformly in λ ≥ λ0, f ∈ L2(Rd) for some λ0 > 0. Thus we see that

S ′′Rλ = O(|λ|−
1

2 ) in L(L2(Rd)) as λ → ∞. Hence λ + Lj is invertible for
sufficiently large λ ≥ λ0 > 0.

Lemma 3.8 Let kj ∈ Kα(R), α ∈ (1, 2), j = 1, 2, R > 0 and let Lj be
defined as in (3.1) with k replaced by kj. Then

∣∣(L1u,L2v) − (L2u,L1v)
∣∣ ≤ C

(
‖u‖

H
α
2 (Rd)

‖v‖Hα(Rd) + ‖u‖Hα(Rd)‖v‖H
α
2 (Rd)

,
)

where C depends on k1, k2 but is independent of u, v ∈ Hα(Rd).
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Proof: First, we consider the case that kj(x, y, z) = kj(z) is independent
of x, y ∈ R

d. Then the statement is trivial since kj(−z) = kj(z), L
1 and L2

commute and therefore

(L1u,L2v) = (L2L1u, v) = (L1L2u, v) = (L2u,L1v)

for all u, v ∈ C∞
0 (Rd). Note that Lju = F j[pj(ξ)û(ξ)] as seen in the proof of

Lemma 3.7. More generally, if kj(z) is a complex valued function satisfying
kj(−z) = kj(z) and |kj(z)| ≤ C|z|−d−α, then

(L1u,L2v) = (L̄2L1u, v) = (L1L̄2u, v) = (L̄2u, L̄1v)

where L̄j denotes the operator with kj(z) replaced by kj(z). (This will be
needed in the following.)

Secondly, let kj(x, y, z) = 0 if |x| + |y| ≥ R. As in the proof of Lemma 3.4.

Lju = p. v.

∫

Rd

(u(x) − u(y))kj(x, x, x− y)dy

+

∫

Rd

(u(x) − u(y))(kj(x, y, x− y) − kj(x, x, x− y))dy

≡ Lj
1u+ Lj

2u,

where ‖Lj
2u‖L2(Rd) ≤ C‖u‖

H
α
2 (Rd)

. Hence it is sufficient to consider the case

that kj(x, y, z) is independent of y. Moreover, we assume for simplicity that
R < π. Then we can use a Fourier series expansion in [−π, π]d to decompose
kj as

kj(x, z) =
∑

l∈Zd

eix·lk
j
l (z) for all x ∈ [−π, π]d, z 6= 0,

where kj
l (−z) = k

j
l (z), k

j
l (z) = k

j
−l(z) since kj(x, z) is real, and

|kj
l (z)| ≤ C(1 + |l|)−d−2‖kj(., z)‖Cd+2(Rd)

≤ C(1 + |l|)−d−2‖kj‖Kα|z|−d−α.

Furthermore, let ψ ∈ C∞
0 (Rd)) such that ψ ≡ 1 in BR(0), suppψ ⊆ [−π, π]d,

and ψ(−x) = ψ(x). Hence

Lju(x) =
∑

l∈Zd

ϕl(x)L
j
lu(x),
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where Lj
l denotes the operator defined as in (3.1) with kernel kj

l (x− y) and
ϕl(x) = ψ(x)eix·l. Now

(L1u,L2v) =
∑

l∈Zd

(ϕlL
1
l u,L

2v)

=
∑

l∈Zd

(L1
l u,L

2(ϕ−lv)) +
∑

l∈Zd

(L1
l u, [L

2, ϕ−l]v)),

where
∑

l∈Zd

∣∣(L1
l u, [L

2, ϕ−l]v))
∣∣ ≤ C

∑

l∈Zd

(1 + |l|)−d−2‖u‖Hα(Rd)‖ϕ−l‖Cβ(Rd)‖v‖H
α
2 (Rd)

≤
∑

l∈Zd

(1 + |l|)−d−2+β‖u‖Hα(Rd)‖v‖H
α
2 (Rd)

≤ C‖u‖Hα(Rd)‖v‖H
α
2 (Rd)

by Lemma 3.6 with β ∈ (α
2
, 1). Using the latter argument again, we calculate

(L1u,L2v) =
∑

l,l′∈Zd

(L1
l (ϕ−l′u),L

2
l′(ϕ−lv)) +R(u, v)

=
∑

l,l′∈Zd

(L2
−l′(ϕ−l′u),L

1
−l(ϕ−lv)) +R(u, v)

=
∑

l,l′∈Zd

(ϕl′L
2
l′u, ϕlL

1
l v) +R′(u, v),

= (L2u,L1v) +R′(u, v)

where

|R(u, v)| + |R′(u, v)| ≤ C
(
‖u‖Hα(Rd)‖v‖H

α
2 (Rd)

+ ‖u‖
H

α
2 (Rd)

‖v‖Hα(Rd)

)
.

Similar calculations as above can be used to prove the statement in the
case that k1(x, y, z) = k1(z) is independent of x, y and k2(x, y, z) = 0 if
|x| + |y| ≥ R.

Finally, general kj ∈ Kα(R) can be decomposed in

kj(x, y, z) = k̃j(z) + k′j(x, y, z),

where k′j(x, y, z) = 0 if |x|+|y| ≥ R. Applying the cases proved so far finishes
the proof.
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4 Bilinear forms associated to the integral

operators

Let Ω be a bounded domain, Ω = R
d or Ω = R

d
+. In this section we study

the bilinear form associated to the integral operator L, which is

(4.1) E(v, w) =
1

2

∫

Ω

∫

Ω

(
v(y) − v(x)

)(
w(y) − w(x)

)
k(x, y, x− y) dx dy,

where v, w ∈ H
α
2

0 (Ω), k : R
d × R

d ×
(
R

d \ {0}
)
→ (0,∞) is a measurable

function such that k(x, y, z) = k(y, x,−z), and

(4.2) c0|z|
−d−α ≤ k(x, y, z) ≤ C0|z|

−d−α

for almost all x, y, z ∈ R
d.

Straight from the definition we get that E is a coercive bounded symmetric

bilinear form on H
α
2

0 (Ω):

|E(v, w)| ≤ C‖v‖
H

α
2 (Ω)

‖w‖
H

α
2 (Ω)

|E(v, v)| ≥ C ′‖v‖2

H
α
2 (Ω)

(4.3)

for all v, w ∈ H
α
2

0 (Ω), where C,C ′ depend only on d, s, α and c0. Note that
for these properties of the bilinear form less conditions on the kernel k are
required than for the kernel of the operator L. As an immediate consequence
of the lemma by Lax-Milgram we obtain:

Corollary 4.1 Let E and k be as above. Then for every f ∈ H−α
2 (Ω) there

is a unique u ∈ H
α
2

0 (Ω) such that

(4.4) E(u, ϕ) = 〈f, ϕ〉 for all ϕ ∈ H
α
2

0 (Ω).

Note that the result above is still valid if k(x, y, x−y) is replaced by a function

k̃(x, y), symmetric in x, y, satisfying

c0|x− y|−d−α ≤ |k̃(x, y)| ≤
1

c0
|x− y|−d−α.

The special form of the kernel is used for the following connection between
the bilinear form E and the integral operator L:
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Lemma 4.2 Let k ∈ Kα(R), R > 0, α ∈ (1, 2), and let E and L be defined
as in (4.1) and (1.2), respectively. Then

E(v, ϕ) =

∫

Ω

Lv(x)ϕ(x)dx for all ϕ ∈ C∞
0 (Ω)

provided that v ∈ Hα
loc

(Ω)∩H
α
2 (Ω) if Ω is a bounded domain or Ω = R

d
+ and

v ∈ Hα(Ω) if Ω = R
d. Moreover, if ψ ∈ C1

b (Ω), then

(4.5) E(v, ψw) = E(ψv,w) + ([ψ,L]v, w) for all v, w ∈ H
α
2

0 (Ω).

Proof: Using the symmetries of the kernel k we easily calculate

E(v, ϕ) = lim
ε→0

1

2

∫

{|x−y|≥ε}

(v(y) − v(x))(ϕ(y) − ϕ(x))k(x, y, x− y)d(x, y)

= lim
ε→0

∫

Ω

∫

Ω\Bε(x)

(v(x) − v(y))k(x, y, x− y)dyϕ(x)dx

=

∫

Ω

Lv(x)ϕ(x)dx,

where we used Lemma 3.5 in order to exchange the order of limε→0 and
integration with respect to x.

Finally, since C∞
0 (Ω) is dense in H

α
2

0 (Ω), it is sufficient to prove (4.5) for
v, w ∈ C∞

0 (Ω) for which the statement immediately follows from the first
part and Lemma 3.6.

Using the latter relation we obtain the following result on higher regularity
of solutions of (4.4):

Lemma 4.3 Let u ∈ H
α
2

0 (Ω) be the solution of (4.4) and f ∈ H−α
2 (Ω). If

Ω = R
d and additionally f ∈ L2(Rd), then u ∈ Hα(Rd) and ‖u‖Hα(Rd) ≤

C‖f‖L2(Rd). Moreover, if Ω is a bounded domain or Ω = R
d
+ and additionally

f ∈ L2
loc

(Ω), then u ∈ Hα
loc

(Ω) and for every Ω′
⋐ Ω′′

⋐ Ω

‖u‖Hα(Ω′) ≤ C(Ω′,Ω′′)
(
‖f‖L2(Ω′′) + ‖f‖

H−
α
2 (Ω)

)
.

Proof: First let Ω = R
d. Moreover, let v ∈ Hα(Rd) be the unique solution

of (1 +L)v = f + u, which exists due to Lemma 3.7. Recall the definition of
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the operator L 3.1. By Lemma 4.2 v solves

(v, ϕ) + E(v, ϕ) = (f + u, ϕ) = (u, ϕ) + E(u, ϕ).

Hence u = v ∈ Hα(Rd) by the coerciveness of E .

Next let Ω be a bounded domain or let Ω = R
d
+. Then for every ψ, η ∈ C∞

0 (Ω)
with ψ ≡ 1 on supp η ,

E(u, ηϕ) =

∫

Ω

(ψu)(x)L(ηϕ)(x)dx−

∫

Ω

u[ψ,L](ηϕ)dx

=

∫

Rd

(ψu)(x)L(ηϕ)(x)dx−

∫

Ω

u[ψ,L](ηϕ)dx+

∫

Rd

guϕdx ,

where

g(x) =
ψ(x)

ϕ(x)

{
L(ηϕ)(x) − L(ηϕ)(x)

}
= −ψ(x)η(x)

∫

Ωc

k(x, y, x− y) dy .

Note that g ∈ L∞(Rd) depends only on ψ, η and k. We obtain further

E(u, ηϕ) =

∫

Rd

ηu(x)Lϕdx−

∫

Ω

u[ψ,L](ηϕ)dx

−

∫

Rd

ψu[η,L]ϕdx+

∫

Rd

guϕdx

= ERd(ηu, ϕ) + I(u, ϕ) +

∫

Rd

guϕdx

for all ϕ ∈ C∞
0 (Rd). Here

I(u, ϕ) = −

∫

Ω

u[ψ,L](ηϕ)dx−

∫

Rd

ψu[η,L]ϕdx ,

and we make use of the notation: ERd(v, w) =
∫

Rd v(x)L(w)(x)dx. Alto-
gether, v = ηu solves

ERd(ηu, ϕ) = 〈f, ηϕ〉 + I(u, ϕ) +

∫

Rd

guϕdx,

where the right-hand side defines a bounded functional on L2(Rd) because of
(3.4). Thus ηu ∈ Hα(Rd) and

‖ηu‖Hα(Rd) ≤ C(ψ, η)
(
‖ηf‖L2(Rd) + ‖u‖

H
α
2 (Ω)

)
.

Since η ∈ C∞
0 (Ω) is arbitrary, this implies the statement of the lemma.
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5 Proof of Theorem 1.1

The strategy of our main proof is as follows. An equivalent formulation to
(1.6) is the following:





L1u(x) + a1(x)u(x) − f 1(x) ≤ 0 in Ω,
L2u(x) + a2(x)u(x) − f 2(x) ≤ 0 in Ω,(

L1u+ a1u− f 1
)(
L2u+ a2u− f 2

)
= 0 in Ω,

u = 0 on ∂Ω.

(5.1)

where the first three lines are supposed to hold almost everywhere in Ω.
We define penalty functions βε : R → R as smooth versions of the function
t 7→ t+. More precisely, for ε > 0 we assume that βε satisfies

βε ∈ C∞(R), βε

∣∣
(−∞,0]

≡ 0 , βε monotone ,(5.2)

βε(t) ≤ t ∀t > 0 |βε(t) − t| ≤ ε2 ∀ t > 0 .(5.3)

As a consequence of the definition we obtain

(5.4) rβε(t) ≤ βε(rt) + ε2(1 + r) ∀r, t ≥ 0 .

We will obtain the solution u of (1.6) as a limit of approximating solutions
uε = (u1

ε, u
2
ε) → (u, u) that satisfy the following equations:

L1u1
ε + a1u1

ε − f 1 + ε−1βε

(
u1

ε − u2
ε

)
= 0 a.e. in Ω ,(5.5)

L2u2
ε + a2u2

ε − f 2 + ε−1βε

(
u2

ε − u1
ε

)
= 0 a.e. in Ω ,(5.6)

u1
ε, u

2
ε = 0 on ∂Ω ,(5.7)

where (5.7) is understood in the sense of traces. Note that this step of our
proof is similar to the one in [EF79]. We shall also mention [Hel01] where
a similar strategy was applied to a local Bellman equation with additional
nonlinearities.

Definition 5.1 For j = 1, 2 and functions v, w ∈ H
α
2 (Ω) set

E j(v, w) =
1

2

∫

Ω

∫

Ω

(
v(y) − v(x)

)(
w(y) − w(x)

)
kj(x, y, x− y) dx dy .
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We say, a function uε ∈ H
α
2

0 (Ω; R2) is a weak solution of the system (5.5)-
(5.7) if the following set of equations holds true for all test functions ϕ ∈
C∞

0 (Ω; R2):

E1(u1
ε, ϕ

1) +

∫

Ω

(
a1u1

ε − f 1 + ε−1βε(u
1
ε − u2

ε)
)
ϕ1 dx = 0 ,(5.8)

E2(u2
ε, ϕ

2) +

∫

Ω

(
a2u2

ε − f 2 + ε−1βε(u
2
ε − u1

ε)
)
ϕ2 dx = 0 .(5.9)

Remark 5.2
(
E j, C∞

0 (Ω)
)

is closable in L2(Ω). Let F be the closure of
C∞

0 (Ω) under the scalar product E j(·, ·) + (·, ·)L2(Ω). By the assumption (4.2)

F = H
α
2

0 (Ω). Moreover, we note that

E j(u+, u−) =
1

2

∫

Ω

∫

Ω

(u+(x) − u+(y))(u−(x) − u−(y))kj(x, y, x− y)dxdy ≥ 0

since the integrand is nonnegative. In particular, this yields E j(u, u+) ≥ 0
and E j(u+, u+) ≤ E j(u, u). Therefore the tuple

(
E j,F) is a regular Dirichlet

form on L2(Ω) [FŌT94]. Therefore, there exists an associated symmetric
Hunt process taking values in Ω.

We start by proving the existence of solutions to the approximating problem.

Lemma 5.3 Consider a, f ,Ω as in Theorem 1.1. Then, for any ε > 0 there

exists a solution uε ∈ H
α
2

0 (Ω; R2) satisfying (5.8), (5.9).

Proof: Since the operators u 7→ ε−1βε(u
1−u2), u 7→ ε−1βε(u

2−u1) are com-
pact perturbations of L1 and L2 the existence of uε = (u1

ε, u
2
ε) satisfying (5.8),

(5.9) can be proved by various means. Here, we apply the existence result

of Leray-Lions, see Theorem 5.12.1 in [Mor66]. For u,v ∈ H
α
2

0 (Ω; R2) define

A(u,v) =
(
A

1(u,v),A2(u,v)
)
∈ H−α

2 (Ω; R2) where for all ϕ ∈ H
α
2

0 (Ω; R2)

〈A1(u,v), ϕ1〉 = E1(v1
ε , ϕ

1) +

∫

Ω

(
a1u1

ε + ε−1βε(u
1
ε − u2

ε)
)
ϕ1 dx ,(5.10)
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and analogously for 〈A2(u,v), ϕ2〉. Since 〈A(v,v),v〉 ≥ C‖v‖2

H
α
2
0

(Ω;R2)
−

c
ε
‖v‖2

L2(Ω;R2) for some constant C > 0 the coercivity condition

lim
‖v‖→∞

〈A(v,v),v〉

‖v‖
= +∞

holds true. It is now easy to check conditions (i) through (iv) of Theorem
5.12.1 in [Mor66]. (ii) is fulfilled because the E i are coercive. (i), (iii) and
(iv) can be checked by using three tools: the definition of A(u,v), growth

condition (5.3) and the compact embedding H
α
2

0 (Ω) →֒ L2(Ω). Therefore, we
can apply theorem and obtain the existence of uε.

It will be crucial to our consideration to prove that uε is uniformly bounded

in H
α
2

0 (Ω; R2). This result will derive with the help of the following lemma.

Lemma 5.4 Let f 1, f2 ∈ Hm(Ω) and a1, a2 ∈ Cm
b (Rd) be nonnegative func-

tions, where m = [d
2
] + 1. Assume uε = (u1

ε, u
2
ε) ∈ H

α
2

0 (Ω; R2) solves (5.8),
(5.9). Then

1. uε ∈ C
α−1

2 (Ω).

2. For each j = 1, 2 we have uj
ε(x) > 0 for all x ∈ Ω unless uj

ε ≡ 0.

Proof: First we consider the case of a half-space Ω = R
d
+. We will prove

that uj
ε ∈ H

α
2

0 (R+;Hm(Rd−1)) by approximating tangential derivatives by
difference quotients. Then

uj
ε ∈ H

α
2

0 (R+;Hm(Rd−1)) →֒ C
α−1

2 (R+;Hm(Rd−1)) →֒ C
α−1

2 (Rd
+),

by [Sim90, Corollary 26].

We denote τi,sf(x) = f(x + sei), ∆+
i,hf(x) = τi,hf(x) − f(x), ∆−

i,hf(x) =
f(x) − τi,−hf(x), h > 0, i = 1, . . . , d − 1, where ei is the i-th canonical
unit vector. Replacing ϕj by −h−s∆−

i,hϕ
j in (5.8), (5.9), we obtain that

vh = h−s∆+
i,huε, s ∈ [0, 1] solves

E1(v1
h, ϕ

1) = −E1
i,h(τi,hu

1
ε, ϕ

1) −
(
f 1 − a1u1

ε − ε−1βε(u
1
ε − u2

ε), h
−s∆−

i,hϕ
1
)

E2(v2
h, ϕ

2) = −E2
i,h(τi,hu

2
ε, ϕ

2) −
(
f 2 − a2u2

ε − ε−1βε(u
2
ε − u1

ε), h
−s∆−

i,hϕ
2
)
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for all ϕ ∈ C∞
0 (Ω), where E j

i,h is the bilinear form with kernel h−s(kj(x +
hei, y + hei, z) − kj(x, y, z)), where we note that by (1.4) the latter kernel is
bounded by C|z|−d−α uniformly in h > 0. First let s ∈ (1

2
, α

2
). Then choosing

ϕ = vh and using (4.3) we conclude

‖vh‖
2

H
α
2 (Rd

+
)
≤ C

(
‖f‖L2(Rd

+
) + ‖uε‖L2(Rd

+
)

)(
‖h−s∆−

i,hvh‖L2(Rd
+

) + ‖vh‖H
α
2 (Rd

+
)

)

Now we use that

‖h−s∆±
i,hw‖L2(Rd

+
) ≤ C‖w‖Hs(Rd

+
) ≤ C‖w‖

H
α
2 (Rd

+
)
,

which is obtained by an easy interpolation argument. Hence

sup
i=1,...,d−1

∥∥∥h−2s
(
∆+

i,h

)2
uε

∥∥∥
L2(Rd

+
)
≤ ‖vh‖H

α
2 (Rd

+
)
≤ C

(
‖f‖L2(Rd

+
) + ‖uε‖L2(Rd

+
)

)
,

which implies that uε is uniformly bounded in

L2(R+;B2s
2,∞(Rd−1)) →֒ L2(R+;H1(Rd−1)),

cf. [BL76, Theorem 6.2.5]. Using this bound we choose s = 1 in the definition
of vh and obtain

‖vh‖
2

H
α
2 (Rd

+
)
≤ C

(
‖f‖H1(Rd

+
) +
(
‖a‖C1

b
(Rd) + 1

)
‖uε‖L2(R+;H1(Rd−1))

)
‖vh‖H

α
2 (Rd

+
)

Hence vh = h−1∆+
i,huε, h > 0, is uniformly bounded in H

α
2 (Rd

+; R2) and

therefore ∂xi
uε ∈ H

α
2 (Rd

+; R2). Repeating these arguments m-times shows
that Dα

x′uε ∈ H
α
2 (Rd

+; R2) for all α ∈ N
n−1
0 , |α| ≤ m.

In order to prove the statement for a bounded domain Ω, it is sufficient to
show that for every x ∈ Ω and for some open neighborhood U of x uε is in
C

α−1

2 (Ω ∩ U). Let U0 be an open neighborhood of x and F : R
d → R

d be a

Cd+1-diffeomorphism which maps U0 ∩Ω onto Rd
+ ∩ V0 for some open set V0.

Moreover, let ψ ∈ C∞
0 (U0) with ψ ≡ 1 on some neighborhood U1 ⋐ U0 of x,

let V1 be an open set such that V1∩Rd
+ = F (U1∩Ω) and let F ∗g(x) = g(F (x))

denotes the pull-back of g by F . Now we obtain for ϕj ∈ C∞
0 (Rd

+), j = 1, 2,

that vj
ε := F ∗,−1(ψuε) ∈ H

α
2

0 (Rd
+) solves

Ẽ1(v1
ε , ϕ

1) = E1(ψu1
ε, F

∗(ϕ1))

= E1(u1
ε, ψF

∗(ϕ1)) + ([L1, ψ]u1
ε, F

∗(ϕ1))

= (f 1 − a1u1
ε − ε−1βε(u

1
ε − u2

ε), ψF
∗(ϕ1)) + ([L1, ψ]u1

ε, F
∗(ϕ1))
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and a similar expression for v2
ε where

Ẽ j(u, v) =

∫

R
d
+

∫

R
d
+

(u(x) − u(y))(v(x) − v(y))k̃j(x, y, x− y)dxdy

k̃j(x, y, z) = kj(F (x), F (y), A(x, y)z) detDF (x) detDF (y),

A(x, y) =

∫ 1

0

DF ((1 − s)y + sx)ds.

Moreover, L̃j denotes the associated integral operator. It is not difficult to
prove that k̃j ∈ Kα(R′) for some R′ = R′(R,F ). Now all terms on the
right-hand side of the equation above define a functional on L2(Rd

+) due to
Lemma 3.6. Hence vj

ε ∈ L2(R+;H1(Rd−1)) by the arguments in the case R
d
+.

In particular this implies that

∂xi
gj(x) ≡ ∂xi

F ∗,−1
[
ψ
(
f j − ajuj

ε − ε−1βε(u
j±1
ε − uj∓1

ε )
)]

∈ L2(Rd
+ ∩ V1)

for i = 1, . . . , d − 1 since vj
ε(x) = F ∗,−1(uj

ε)(x) for x ∈ V1. Now choosing
another ψ ∈ C∞

0 (U1) such that ψ ≡ 1 on an open neighborhood U2 ⋐ U1 of
x one obtains that

Ẽ j(vj
ε, ϕ

j) = (gj, ϕj) − (ηuj
ε, [L

j, ψ]F ∗(ϕj)) + ([Lj, ψ](1 − η)uj
ε, F

∗(ϕj))

for all ϕ ∈ C∞
0 (Rd

+), where η ∈ C∞
0 (U1) with η ≡ 1 on suppψ, ∂xi

F ∗,−1(ηuj
ε) =

∂xi
(F ∗,−1(η)vj

ε) ∈ L2(Rd
+), and [ψ,Lj](1 − η) is a Hilbert Schmidt operator.

Hence choosing ϕj = h−2∆2
i,hv

j
ε one obtains by the same arguments as in

the half-space case that ∂xi
vj

ε ∈ H
α
2

0 (Rd
+), i = 1, . . . , d − 1. Repeating this

argument on a sequence of open neighborhoods Uk+1 ⋐ Uk of x one proves

that ∂α
x′vj

ε ∈ H
α
2

0 (Rd
+) for all α′ ∈ N

d−1
0 , |α| ≤ m. This implies the Hölder

continuity of uε in a neighborhood of x.

We prove the second part of the lemma by contradiction. Without loss of
generality let infx∈Ω u

1
ε(x) ≤ infx∈Ω u

2
ε(x). Now assume that u1

ε attains its
minimum at x0 ∈ Ω and that infx∈Ω u

1
ε(x) ≤ 0. Then

L1
εu

1
ε(x0) = p. v.

∫

Ω

(u1
ε(x0) − u1

ε(y))k1(x0, y, x0 − y)dy < 0

unless u1
ε ≡ 0 since k1(x, y, z) > 0 for z 6= 0. Hence, if u1

ε 6≡ 0,

0 > L1
εu

1
ε(x0) = f 1(x0) − a1(x0)u

1
ε(x0) − ε−1βε(u

1
ε(x0) − u2

ε(x0)) ≥ 0

since a1, f1 ≥ 0, u1
ε(x0) ≤ 0, and βε(u

1
ε(x0) − u2

ε(x0)) = 0, which is a contra-
diction. Hence u1

ε(x) > 0 in Ω unless u1
ε ≡ 0. Therefore infx∈Ω u

j
ε(x) = 0.
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Using the same argumentation as above shows that u2(x) > 0 in Ω unless
u2 ≡ 0.

Before we can show that the limit u of uε solves equation (1.6) we need to
establish bounds that are uniform in ε > 0.

Lemma 5.5 Let f ∈ L2(Ω; R2) and a ∈ L∞(Rd; R2) be nonnegative. Assume

uε = (u1
ε, u

2
ε) ∈ H

α
2

0 (Ω; R2) is nonnegative and solves (5.8), (5.9). Then

‖uε‖
H

α
2
0

(Ω;R2)
+ ε−

1

2‖u1
ε − u2

ε‖L2(Ω) ≤ C
(
‖f‖L2(Ω;R2) + 1

)
,(5.11)

where c > 0 is a constant independent of ε ∈ (0, 1].

Proof: Choosing ϕ = (u1
ε, u

2
ε) as a test function in (5.8), (5.9) and applying

(1.5) proves

E(uj
ε, u

j
ε) + ε−1

∫

Ω

βε(u
j
ε − uj±1

ε )uj
ε dx ≤

∫

Ω

f juj
ε dx ,(5.12)

where 1 ± 1 = 2, 2 ± 1 = 1. Note that (5.3) implies for almost all x

βε

(
uj

ε(x) − uj±1
ε (x)

)
uj

ε(x) ≥ βε

(
uj

ε(x) − uj±1
ε (x)

)(
uj

ε(x) − uj±1
ε (x)

)

≥
1

2

(
uj

ε(x) − uj±1
ε (x)

)2
+
−
ε4

2
.

Applying this inequality to (5.12) and using Hölder’s inequality for term on
the right hand side in (5.12) one obtains (5.11).

Lemma 5.6 Consider Ω, f and a as in Theorem 1.1. Then for every Ω′
⋐ Ω

there is a constant C(Ω,Ω′) such that for all ε ∈ (0, 1] and nonnegative

solutions uε ∈ H
α
2

0 (Ω) ∩Hα
loc

(Ω) of (5.8), (5.9)

‖uε‖Hα(Ω′;R2) ≤ C(Ω′)
(
‖f‖L2(Ω;R2) + 1

)
.(5.13)

Proof: Let ψ ∈ C∞
0 (Ω) be such that ψ ≡ 1 on Ω′. Set vε = ψuε =

(ψu1
ε, ψu

2
ε) ∈ Hα(Rd; R2). Then vε is a solution of

L1v1
ε + a1v1

ε − f̃ 1
ε + ε−1βε

(
v1

ε − v2
ε

)
= 0 a.e. in R

d ,(5.14)

L2v2
ε + a2v2

ε − f̃ 2
ε + ε−1βε

(
v2

ε − v1
ε

)
= 0 a.e. in R

d ,(5.15)
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where f̃ j
ε is defined by

f̃ j
ε (x) = ψ(x)f j(x) + [Lj, ψ]uj

ε(x) + ψ(x)uj
ε(x)

∫

Rd\Ω

kj(x, y, x− y) dy

+ ε−1βε(ψ(uj
ε − uj±1

ε )) − ψ(x)ε−1βε(u
j
ε − uj±1

ε ) for x ∈ Ω

and f̃ j
ε (x) = Ljvj

ε(x) for x 6∈ Ω. Note that L1v1
ε(x) ∈ L2(Rd \ Ω) since

supp vj
ε ⊆ suppψ ⋐ Ω and that

ε−1
∣∣ψ(x)βε(u

j
ε − uj±1

ε ) − βε(ψ(x)(uj
ε − uj±1

ε ))
∣∣ ≤ ‖ψ‖L∞(Rd) + 1

due to (5.4). Moreover, ψ(x)
∫

Rd\Ω

kj(x, y, x − y) dy ≤ C(ψ) where C(ψ) de-

pends on ψ and on the constants appearing in the conditions on kj. Together
with Lemma 3.6 and Lemma 5.5 we obtain

‖f̃ j
ε‖L2(Rd) ≤ C(ψ)

(
‖f j‖L2(Ω) + ‖uj

ε‖H
α
2 (Ω)

+ 1
)
≤ C(ψ)

(
‖f‖L2(Ω;R2) + 1

)
,

which allows us to interpret (5.14), (5.15) as a global version of (5.5), (5.6).
We will show that with some positive constant C independent of ε > 0 the
following estimate holds:

‖ψuε‖Hα(Rd;R2) = ‖vε‖Hα(Rd;R2) ≤ C
(
‖f‖L2(Ω,R2) + 1

)
.(5.16)

Since ψ ∈ C∞
0 (Ω) can be chosen arbitrarily, (5.13) follows. In order to prove

(5.16) let us multiply both sides of (5.14) by L2(v1
ε − v2

ε)(x) and integrate
over R

d. We obtain
(
L1v1

ε ,L
2v1

ε

)
+ ε−1

(
βε(v

1
ε − v2

ε),L
2(v1

ε − v2
ε)
)

=
(
L1v1

ε ,L
2v2

ε

)
+
(
f̃ 1

ε − a1v1
ε ,L

2(v1
ε − v2

ε)
)
.

(5.17)

The main idea is to use Lemma 3.7 in order to estimate the first term on the
left hand side from below. For the other terms we note that

ε−1
(
βε(v

1
ε − v2

ε),L
2(v1

ε − v2
ε)
)

= ε−1
(
(v1

ε − v2
ε)+,L

2(v1
ε − v2

ε)
)

+ ε−1
(
βε(v

1
ε − v2

ε) − (v1
ε − v2

ε)+,L
2(v1

ε − v2
ε)
)

≥ −
(
1, |L2(v1

ε − v2
ε)|
)
≥ −C|Ω|

1

2‖vε‖Hα(Rd;R2) .

Here we used (u+,L
2u) = E2(u+, u) ≥ 0, cf. Remark 5.2, and assumption

(5.3). Furthermore,

(
f̃ 1

ε − a1v1
ε ,L

2(v1
ε − v2

ε)
)

≤ C
{
‖f‖L2(Rd;R2) + 1 + ‖a‖L∞(Rd;R2)‖vε‖L2(Rd;R2)

}
‖vε‖Hα(Rd;R2) .
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The remaining term
(
L1v1

ε ,L
2v2

ε

)
seems to be of the same order as

(
L1v1

ε ,L
2v1

ε

)
;

but it is not. In fact, by trivial additions and subtractions we can use equa-
tion (5.14), (5.15) and obtain

(
L1v1

ε ,L
2v2

ε

)

=
(
L1v1

ε + a1v1
ε − f̃ 1

ε ,L
2v2

ε

)
−
(
a1v1

ε − f̃ 1
ε ,L

2v2
ε

)

=
(
L1v1

ε + a1v1
ε − f̃ 1

ε ,L
2v2

ε + a2v2
ε − f̃ 2

ε

)
︸ ︷︷ ︸

=0

−
(
a1v1

ε − f̃ 1
ε ,L

2v2
ε

)

−
(
L1v1

ε + a1v1
ε − f̃ 2

ε , a
2v2

ε − f̃ 2
ε

)

≤ C
{
‖fε‖L2(Rd;R2) + ‖a‖L∞(Rd;R2)‖vε‖L2(Rd;R2)

}
‖vε‖Hα(Rd;R2)

+ C
{
‖a‖2

L∞(Rd;R2)‖vε‖
2
L2(Rd;R2) + ‖f̃ε‖

2
L2(Rd;R2)

}
.

Altogether, using Lemma 3.7 equality (5.17) implies

‖v1
ε‖

2
Hα(Rd;R2) ≤ C

{
‖a‖2

L∞(Rd;R2)‖vε‖
2
L2(Rd;R2) + ‖f̃ε‖

2
L2(Rd;R2)

}

+ C
{
‖vε‖L2(Rd;R2) + ‖a‖L∞(Rd;R2)‖vε‖L2(Rd;R2) + 1

}
‖vε‖Hα(Rd;R2).

Multiplying (5.15) by L1(v2
ε − v1

ε) and applying the same strategy proves the
same estimate for v2

ε . An application of Young’s inequality on the right hand
side and using (5.11) finally gives

‖vε‖Hα(Rd;R2) ≤ C
(
‖a‖L∞(Rd;R2)‖vε‖L2(Rd;R2) + ‖f̃ε‖L2(Rd;R2) + 1

)
,

≤ C
(
‖f‖L2(Ω;R2) + 1

)

which proves (5.16). The proof of the lemma is complete.

Lemma 5.7 Consider Ω, f and a as in Theorem 1.1. For any sequence

(uεn
), εn →n→∞ 0, of nonnegative solutions uεn

∈ H
α
2

0 (Ω) ∩Hα
loc

(Ω) to (5.8),
(5.9) and any Ω′

⋐ Ω there exists a subsequence {uεk
} ⊂ {uεn

} such that

∥∥u1
εk
− u2

εk

∥∥
Hα(Ω′)

→k→∞ 0, where εk →k→∞ 0 .

Proof: For simplicity, we write ε instead of εn. Let uε ∈ H
α
2

0 (Ω; R2) ∩
Hα

loc(Ω,R
2) be a sequence of nonnegative solutions to (5.8), (5.9). Let Ω′

⋐ Ω.



28 5 PROOF OF THEOREM 1.1

We start off analogously to the proof of Lemma 5.6. We set vε = ψu and
note that vε solves (5.14), (5.15) where f̃ε is uniformly bounded in L2. As we
did above, let us multiply both sides of (5.14) by L2(v1

ε −v
2
ε)(x) and integrate

over R
d. Equality (5.17) can be written as

(
L1v1

ε ,L
2(v1

ε − v2
ε)
)

= −ε−1
(
βε(v

1
ε − v2

ε),L
2(v1

ε − v2
ε)
)

+
(
f̃ 1

ε − a1v1
ε ,L

2(v1
ε − v2

ε)
)
.

(5.18)

Using assumption (5.3) we observe that

− ε−1
(
βε(v

1
ε − v2

ε),L
2(v1

ε − v2
ε)
)

= −ε−1
(
(v1

ε − v2
ε)+,L

2(v1
ε − v2

ε)
)

+ ε−1
(
(v1

ε − v2
ε)+ − βε(v

1
ε − v2

ε),L
2(v1

ε − v2
ε)
)

≤
(
ε, |L2(v1

ε − v2
ε)|
)
≤ Cε‖v1

ε − v2
ε‖Hα ≤ Cε ,

where we used Lemma 5.6 and (u+,L
2u) = E2(u+, u) ≥ 0.

In order to estimate the right-hand side of (5.18) let g = f 1 − a1v1
ε . Then for

every ε′ > 0 there is some gε′ ∈ C∞
0 (Ω) such that ‖gε′ − g‖L2 ≤ ε′. Then

∣∣(gε′ ,L
2(v1

ε − v2
ε)
)∣∣ =

∣∣E2(gε′ , v
1
ε − v2

ε)
∣∣ ≤ C‖gε′‖H

α
2
‖v1

ε − v2
ε‖H

α
2
≤ C(ε′)o(1)

as ε→ 0 for a subsequence because of Lemma 5.6 and Rellich’s theorem. On
the other hand,

∣∣(g − gε′ ,L
2(v1

ε − v2
ε)
)∣∣ ≤ C(ψ)ε′

(
‖f‖L2(Ω;R2) + 1

)

by Lemma 5.6. Together, we obtain for a subsequence

(
L1v1

ε ,L
2(v1

ε − v2
ε)
)
≤ C(ε′)o(1) + Cε′ as ε→ 0.(5.19)

Working with (5.15) instead of (5.14) analogously leads to

(
L2v2

ε ,L
1(v2

ε − v1
ε)
)
≤ C(ε′)o(1) + Cε′ as ε→ 0.(5.20)

Together with Lemma 3.8 estimate (5.20) implies for a subsequence

(
L1v2

ε ,L
2(v2

ε − v1
ε)
)
≤ C(ε′)o(1) + Cε′ as ε→ 0,(5.21)

where we again use Lemma 5.6 and Rellich’s theorem. Summation of (5.19)
and (5.21) implies together with Lemma 3.7

‖v1
ε − v2

ε‖Hα ≤ C
(
L1(v1

ε − v2
ε),L

2(v1
ε − v2

ε)
)
≤ C(ε′)o(1) + Cε′.(5.22)
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By first choosing ε′ > 0 small and then letting ε → 0 for a suitable subse-
quence shows that ‖v1

ε − v2
ε‖Hα is arbitrarily small if ε > 0 is small enough.

Remember that vε = ψuε where ψ ∈ C∞
0 (Ω) satisfies ψ ≡ 1 on Ω′. Therefore,

the proof of Lemma 5.7 is complete.

Proof of Theorem 1.1: First of all, during the approximation we can
assume with loss of generality that f , a are smooth. Otherwise, we replace for
each ε > 0 f , a by fε, aε which are smooth and converge strongly in L2(Ω; R2),
L∞(Ω; R2), resp., to a, f as ε→ 0. Now for any ε > 0 by Lemma 5.3 there is

a solution uε ∈ H
α
2

0 (Ω; R2) of the approximate system (5.5)-(5.7) which is in
Hα

loc(Ω; R2) by Lemma 4.3 and which is nonnegative by Lemma 5.4. By the

Lemmas 5.5, 5.6 and 5.7 uε converges weakly in H
α
2

0 (Ω; R2) and strongly in

Hα(Ω′; R2) for any Ω′
⋐ Ω to some u ∈ H

α
2

0 (Ω; R2)∩Hα
loc(Ω; R2) for a suitable

subsequence. By (5.11) ‖u1
ε − u2

ε‖L2(Ω) → 0 as ε → 0. Hence u1 ≡ u2 =: u.
By the construction

Ljuj
ε(x) + ajuj

ε(x) − f j(x) ≤ 0 a.e. in Ω

for j = 1, 2, which yields

Lju(x) + aju(x) − f j(x) ≤ 0 a.e. in Ω.

It remains to prove the third equation of (5.1). By (5.5)-(5.6)
∫

Ω

ϕ(x)
(
L1u1

ε(x) + a1u1
ε(x) − f 1(x)

)(
L2u2

ε(x) + a2u2
ε(x) − f 2(x)

)
dx

=

∫

Ω

ϕ(x)ε−2βε(u
1
ε(x) − u2

ε(x))βε(u
2
ε(x) − u1

ε(x))dx = 0

for all ϕ ∈ C∞
0 (Ω). Hence

0 = lim
ε→0

∫

Ω

ϕ(L1u1
ε + a1u1

ε − f 1)(L2u2
ε + a2u2

ε − f 2) dx

= lim
ε→0

∫

Ω

ϕL1u1
εL

2u2
ε dx+

∫

Ω

ϕL1u(a2u− f 2) dx

+

∫

Ω

ϕ(a1u− f 1)L2u dx+

∫

Ω

ϕ(a1u− f 1)(a2u− f 2) dx

for all ϕ ∈ C∞
0 (Ω) by the strong convergence of uj

ε in Hα
loc(Ω). Now

∫

Ω

ϕ(x)L1u(x)L2u(x)dx ≤ lim
ε→0

∫

Ω

ϕ(x)L1u1
ε(x)L

2u2
ε(x)dx
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for all ϕ ∈ C∞
0 (Ω), ϕ ≥ 0, which follows from the fact that

lim
ε→0

∫

Ω

ϕ(x)L1u1
ε(x)L

2u2
ε(x)dx = lim

ε→0

∫

Ω

ϕ(x)L1u1
ε(x)L

2u1
ε(x)dx

since u1
ε − u2

ε → 0 in Hα
loc(Ω) as ε→ 0 and the fact that

F (v) :=

∫

Ω

ϕ(x)L1v(x)L2v(x)dx

is a convex functional onHα(Ω′)∩H
α
2

0 (Ω), where suppϕ ⊆ Ω′
⋐ Ω. Summing

up ∫

Ω

ϕ(L1u+ a1u− f 1)(L2u+ a2u− f 2)dx ≤ 0

for all ϕ ∈ C∞
0 (Ω), ϕ ≥ 0. On the other hand, by (5.5)-(5.6) the integrand

above is nonnegative almost everywhere, which shows the third equation of
(5.1) and finishes the proof.
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