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Abstract

We study the regularity of the free boundary, near contact points with
the fixed boundary, for a parabolic free boundary problem:

∆u − ∂u
∂t

= χ{u �=0} in B+
r .

We will show that the free boundary is a C1 manifold up to the fixed
boundary under certain regularity assumptions on the boundary data,
the C1 norm is uniform for a certain, and specified, subclass of solutions.

1 Introduction

In this paper we will investigate the free boundary (see below for definitions) for
the heat equation near contact points with the fixed boundary. Mathematically
the problem can be formulated in the following way

∆u− ∂tu = χΩu where Ωu = Q+
r \ {u = |∇u| = 0}

u|Π = f(x2, ..., xn, t) where Π = {x1 = 0}.
}

(1)

All relevant notation will be defined at the end of the introduction.
Before we state our main results, in the next section, we will shortly describe

the mathematical and applicational context of our problem.
Applications: Under the assumption that u, ut ≥ 0 this is the well known
Stefan problem describing the melting process of ice. For further detail on the
Stefan problem see [F].
Mathematical background: The regularity of free boundaries have been ex-
tensively studied over the last twenty years and the literature on the Stefan
problem is vast. This problem however (without sign restriction) is to the au-
thors knowledge first studied by L.A. Caffarelli, A. Petrosyan and H. Shahgho-
lian in [CPS]. The authors showed that a solution is C1,1 in space and C0,1in
time, and that the free boundary is locally analytic under an assumption on the
density of {u = 0} backward in time.

The regularity of the free boundary near contact points with the fixed bound-
ary was investigated by D.E. Apushkinskaya, N.N. Uraltseva and H. Shahgho-
lian in [ASU]. The authors of [ASU] works under the assumption of vanishing
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boundary data. They prove that the free boundary is uniformly C1 away from
the fixed boundary, but only Lipschitz as a graph over the fixed boundary near a
contact point. This Lipschitz property of the free boundary is rather surprising
and not in line with similar results in the elliptic case where the free boundary
approach the fixed boundary tangentially, see [SU].

Our main object in this paper is to extend the results of [ASU] to non-
vanishing boundary data. In a sense this is a twin paper to [A] where the same
problem is investigated for a corresponding elliptic problem.
Plan of the paper: In the next section, after this short introduction, we
will state our main results in theorems one to three. Before we are able to
prove these theorems we must however introduce some technical tools, the so-
called monotonicity formulas. The monotonicity formulas are well known in this
context, but we include them for completeness in section 3.

With these tools at hand we will prove the main theorems in sections four,
five and six. Section seven is dedicated to a discussion of how to extend Theorem
3 up to the fixed boundary and also give examples when such an extension fails.

Notation: R
n+1 will denote n + 1 dimensional real space with coordinates

(x1, x2, .., xn, t).
Br(x0) will denote the n dimensional ball in the x variables.
Qr(x0, t0) will denote Br(x0)× (−r2, 0), the parabolic cylinder.
R

n
+, B+

r (x0) and Q+
r (x0, t0) will denote the corresponding sets intersected

with {x1 > 0}.
Π will be the plane {x1 = 0}.
Hn(Ω) is the n-dimensional Hausdorff measure of Ω.
|Ω| will denote the Lebesgue measure of Ω, |x| will also denote the Euclidian

norm of the vector x ∈ R
n. With another slight abuse of notation we will use

|(x, t)| = √|x|2 + |t|, the parabolic distance.
dist((x0, t0), Ω) will denote the Euclidian distance from x0 to the set Ω∩{t =

t0}, the t0-section of Ω.
pardist((x0, t0), Ω) will denote the parabolic distance between (x0, t0) and

Ω, that is inf(x,t)∈Ω

√|x− x0|2 + |t− t0|.
χΩ will denote the characteristic function of the set Ω.
u± will denote the positive and negative parts of the function u. that is

u± = max(±u, 0).
f |Ω will denote the restriction of f to the set Ω.
∂i for i = 1, .., n and ∂t will denote ∂

∂xi
and ∂

∂t respectively.
ui and ut will be used for ∂iu and ∂tu respectively.
∆ is the spatial Laplacian, ∆ =

∑n
i=1 ∂2

i .
∇u is the spatial gradient of u, ∇u = (∂1u, ..., ∂nu).
Λu is the set where u = ∇u = 0. We will also use the notation Λu(−r2) for

Λu ∩ {t = −r2}.
Ωu is the complement of Λu with respect to the domain of u.
Γu, the free boundary of u, is the intersection of the closures of Λu and Ωu.
C1+α,β(Ω) is the parabolic Hölder space of functions C1+α in the spatial

variables and Cβ in the time variable.
Wa(r, u) is defined in Lemma 1.
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Ψ(t, h1, h2) is defined in Lemma 2.
Pr(M, f) is defined in Definition 1.
The limit limr→0 u(rx)/r2, maybe normalised differently, through some sub-

sequence will be called the blow-up of u.

2 Main Results.

Before we state our main results we need some definitions to simplify our state-
ments.

Definition 1. Pr(M, f) is the set of all functions solving equation (1) in the
sense of distributions and whose L∞-norm is bounded by M .

By P∞(f) we will mean the set of quadratically bounded functions solving
equation (1) in the sense of distributions in the entire space x1 > 0, t < 0. By
quadratically bounded we mean supQ+

r
|u| < Cr2, where C may depend on u but

not on r.

Theorem 1. Let u ∈ P1(M, f),

lim inf
r→0

Hn(Γu ∩Qr)
rn

> ε > 0 (2)

and
sup

Qr∩Π
|f | ≤ C1r

2

then
sup
Q+

r

|u| ≤ C2Mr2.

Theorem 2. Let u ∈ P+
∞(f), be a homogeneous function then if f = 1/2(e ·

x)2+|Π for a unit vector e = (e1, ..., en) ∈ R
n, then u = 1/2(e · x)2+ or u =

1/2(ê · x)2+ in Q+∞. Here ê = (−e1, e2, ...en) is the reflection of e in Π.

Remark: An interesting question is whether the same result is true without
the homogeneity assumption. This is not the case, for a proof see [AS].

Remark: Another interesting question is if the same could be said if f is a
polynomial, but this is not true either. Let us sketch some details. We want to
construct a solution in Q+

1 whose blow up is not a polynomial.
Consider the function

v =
1
4
(
(e · x)2+ + (−e · x)2+

)
+ b(x1 −

√−t)2+,

where e = (
√

1− a, 2a) and a, b > 0 are small constants. Straight forward
calculations gives

∆v − ∂v

∂t
≤ 3

4
a +

1
4

+ 3b− bx1√−t
≤ 1,
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if a and b are small enough. This maximum principle gives that u, the solution
of equation (1) with v as boundary data, will satisfy u ≤ v. But this implies
that spt(u) ⊂spt(v). But the support of v is invariant under blow ups which in
particular means that the support of u0, the blow up of u, will lie in the support
of v. But this excludes the possibility for u0 to be a polynomial.

A total classifications for solutions as the one above is probably a difficult
task today and is not even known in the elliptic case (see [AS]). This question
will not be addressed in this paper.

Because of the importance of the two half polynomial solutions introduced
in the above theorem we will make the following definition.

Definition 2. Let f be a given function on Π satisfying

lim
r→0

f(rx)
r2

= (e · x)2+|Π,

|e| = 1/
√

2. By Uf
1 we mean ((−|e1|, e2, ..., en) · x)2+ and by Uf

2 we mean
((|e1|, e2, ..., en) · x)2+.

We will often write U1 and U2 when the f -dependence is given by context.

The final main result in this paper regards the local behaviour of the free
boundary near a contact point with the fixed boundary. As in [A] this result
depends on the blow-up of u at the contact point. We will need the following
definition.

Definition 3. P̂r(M, f) will denote the subset of Pr(M, f) of functions whose
blow-up at the origin is U2.

Here we tacitly assume that the blow up of f is a half polynomial.

Theorem 3. Let u ∈ P1(M, f) be quadratically bounded, and ε > 0. Assume
further that

lim
r→0

f(rx, r2t)
r2

= λ(x2)2+,

for a λ ≤ 1
2 , then Γu ∩ {x1 ≥ ε(|x′|+ √|t|)} is a C1 graph in a neighbourhood

of the origin.
If u ∈ P̂1(M, f) then we have the following uniformity

1. there exists a modulus of continuity and a constant r0 (depending only on
f and M) such that

Γu∩{x1 ≥ ε(|x′|+
√
|t|)}∩Qr0 ⊂ {x; paradist((x, t), ΓU2 ) ≤ σε(|(x, t)|)|(x, t)|},

2. the C1 norm of the Γu is uniform in M , f and ε.

Remark: The condition {x1 ≥ ε(|x′| + √|t|)} is a non-tangential approach
condition. It is necessary if the regularity of f or the support of f is irregular.
With further assumptions on f and the blow-up of u this will give C1 regularity
up to the fixed boundary. This is expected and similar to Fatou’s Lemma for
harmonic functions.
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We will at the end of this paper prove, as a a corollary to Theorem 3, a
C1 up to the fixed boundary result and also give some examples of when C1

regularity up to the fixed boundary fails.

3 Technical Tools and Known Results.

An essential role in the theory of free boundaries is played by the so-called
monotonicity formulas. We will use two monotonicity formulas in this paper,
the first one (essentially) due to G.S. Weiss and the second due to L.A. Caffarelli.

Lemma 1. Let u be a solution to (1) and let also f be homogeneous of degree
two. Then

Wa(r, u) =
1
r4

∫ −r2

−4r2

∫
B+

a

(1
2
|∇u|2 + u +

u2

2t

)
G(x, t)dxdt

satisfies
dWa(r,u)

dr =
1
2r

∫ −1

−4

∫
B+

a/r

|u′
r|2
−t G(x,−t)dxdt + Ja(r, u)

(3)

for 0 < r ≤ a ≤ 1. Here

u′
r(x, t) = x · ∇ur(x, t) + 2t∂tur(x, t)− 2ur(x, t),

G(x, t) =
exp(−|x|2/4t)

(4πt)n/2
for t > 0 and G(x, t) = 0 for t ≤ 0,

Ja(r, u) =
∫ −1

−4

∫ +

∂Br/a

u′
r

r (η · ∇ur)G(x,−t)dxdt

− a
2r2

∫ −1

−4

∫
(∂Ba/r)

(
|∇ur|2 + 2ur + (ur)2

t

)
G(x,−t)dxdt,

η is the outward normal of ∂B+
a/r.

Remark: It is not difficult to see that

|Ja(r, u)| ≤ 1
p(r/a)

e−
a2

16r2 ,

where p(·) goes to zero with polynomial speed. This implies in particular that

lim
r→0

Ja(r, u) = 0

for any a > 0.
It is also easy to see that even if f isn’t homogeneous almost the same result

holds, we will however get the following extra term on the right hand side in
formula (3): ∫ −1

−4

∫
Π∩Ba/r

∂′fr

r

(∂ur

∂x1

)
G(x,−t)dxdt. (4)
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This term will however go to zero uniformly if fr converges to a homogeneous
function uniformly in C1+α,β

loc . A fact that we will use later in Section 6.
Proof: The proof follows the same lines as in [ASU]. By a change of variables

we see that
Wa(r, u) = Wa/r(1, ur),

where ur = u(rx,r2t)
r2 . From this we will get

d
drWa/r =

∫ −1

−4

∫
B+

a/r

(
∇u′

r · ∇ur + u′
r + uru′

r

t

)
G(x,−t)dxdt−

a
r2

∫ −1

−4

∫
∂Ba/r∩R

n
+

(
1
2 |∇ur|2 + ur + u2

r

2t

)
G(x,−t)dxdt = I1 + I2.

Integrating I1 by parts will lead to

I1 =
∫ −1

−4

∫
B+

a/r

u′
r

(
−∆ur − xi

2t ∂iur + 1 + ur

t

)
G(x,−t)dxdt+∫ −1

−4

∫
∂B+

a/r
∩R

n
+

u′
r

∂ur

∂η G(x,−t)dxdr,
(5)

where η is the outward unit normal. Observe that we are here using that the
boundary values are homogeneous.

Using the definition of u′
r together with the equality

du

dr
=

u′
r

r

will lead us to

−∆ur − xi

2t
∂iur + 1 +

ur

t
= −∆ur + ∂tur + 1− u′

r

2t
.

Using this in equation (5) will give the desired result.

Lemma 2. Let h1 and h2 be two sub-caloric functions in R
n × [−1, 0] with

polynomial growth at infinity such that

h1(0, 0) = h2(0, 0) = 0 and h1 · h2 = 0,

then the functional

Ψ(t, h1, h2) =
1
t2

∫ 0

−t

∫
Rn

|∇h1|2G(x,−s)dxds ·
∫ 0

−t

∫
Rn

|∇h2|2G(x,−s)dxds

is nondecreasing in t ∈ (0, 1).

Proof: The proof of this Lemma is rather technical so we will omit it here.
We refer the reader to [C2].
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4 Proof of Theorem 1

The proof follows the lines in of the proof of Lemma 3.1 in [ASU], we will sketch
some details.

Denote
Mk(u) = sup

Q2−k

|u|, for k ∈ N.

It is sufficient to show that ∃C2 such that

4k+1Mk+1(u) ≤ max(4M1(u), ..., 4kMk(u), MC2) ∀k ∈ N.

Suppose, to get a contradiction, that this fails. That is ∀j ∈ N there exists
uj ∈ P+

1 (M) and kj ∈ N such that

4kj+1Mk+1(uj) ≤ max(4M1(uj), ..., 4kj Mk(uj), j).

We now make the blow up

ũj =
uj(2−kj x, 2−2kj t)

Mkj+1(uj)
.

It is easy to see that kj →∞ as j →∞. It is also easy to verify that each ũj is
uniformly quadratically bounded away from the origin and that

∆ũj − ∂tũj → 0.

It will also follow from the definition of ũj that supQ+
1/2
|ũj| = 1 and that

ũj(0, x′, t)→ 0.
Standard compactness theory will imply that a subsequence of ũj will con-

verge to, say, u0. u0 will be a caloric, non-zero, quadratically bounded function
in Q+

∞ with zero boundary values on Π.
Now we can use the Liuoville Theorem (Lemma 2.1 in [ASU]) to deduce that

u0 is a quadratic polynomial in x and linear in t. But u0 will also preserve the
Hausdorff criteria which will lead to a contradiction.

5 Proof of Theorem 2.

We will show that ut = 0. Then result follows then from [A].
Form homogeneity it follows that ‖ut‖∞ < ∞. Consider the functions w+

R

satisfying
∆w+

R − ∂w+
R

∂t = 0 in {t > −R}
w+

R(x,−R) = ‖ut‖∞ if {x1 > 0}
w+

R(x,−R) = 0 if {x1 < 0}.
w+

R is uniformly bounded by ‖u+
t ‖∞ and therefore a subsequence will converge as

R→∞, call the limit w+. A direct calculation establishes that w+ = ‖u+
t ‖∞/2.

Now w+
R ≥ ut which implies that ut ≤ ‖u+

t ‖∞/2. A similar calculation will
yield the opposite inequality. Thus ‖ut‖∞ ≤ ‖ut‖∞/2.
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6 Proof of Theorem 3.

The proof of this Theorem is the most technically difficult in this paper. We
will only prove the uniformity in the second part of the Theorem. The proof
of the first part is very similar but simpler, the reader can substitute a fixed
function u whenever we consider a sequence of functions uj in the proof below
and the first part of the Theorem follows.

We will start to prove a lemma which will help us to use Theorem 2.

Lemma 3. Let u ∈ Pr(m, f) and any blow up of f be homogeneous and u have
quadratic growth. Then any blow up of u will be homogeneous. Moreover if
f(rx,r2t)

r2 → λ(x2)2+ in C1+α,β
loc , then the blow up of u is unique.

Proof: Let rj → 0 be a sequence such that

lim
j→∞

u(rjx, r2
j t)

r2
j

= u0(x, t) locally in Q+
∞.

Then for arbitrary α and β we will have

W1(αrj , u)−W1(βrj , u)→ 0 as j →∞.

But this is equivalent to

0 = limj→∞ W1/rj
(α, urj )−W1/rj

(β, urj ) =

=
∫ α

β

dW1/rj
(θ,urj

)

dθ dθ.

The last integral can be estimated by means of Lemma 1 and the remark after
that Lemma. We will get

0 = limj→∞
∫ α

β
1
2θ

∫ −1

−4

∫
B+

1/θrj

|u′
θrj

|2
−t G(x,−t)dxdtdθ =

limj→∞
∫ α

β
1

2θ5

∫ θ2

−4θ2

∫
B+

1/rj

|u′
rj

|2
−t G(x,−t)dxdtdθ.

This implies that

1
2θ5

∫ θ2

−4θ2

∫
R

n
+

|u′
0|2
−t

G(x,−t)dxdt = 0

for almost all θ ∈ (β, α). This is only true if u′
0 = 0 a.e., but this is equivalent

to homogeneity for u0.
To prove the uniqueness of the blow-up we argue by contradiction. Assume

that there exists two subsequences rj , sj → 0 such that limj→∞ urj = U1 and
limj→∞ usj = U2. But this is not possible by Lemma 1 and the remark after
that lemma.

We will also need another lemma before we start with the proof of the main
Theorem, but before that let us refresh our memory of a definition in [CPS].
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Definition 4. The minimal diameter of a set E in R
n, denoted md(E), is the

infimum of distances between two parallel hyper planes such that E is contained
in the strip between these planes.

In [CPS] it is proven that there exists a modulus of continuity µ such that
if, for some r

η(r) =
md(Λu(−r2) ∩Br)

r
> µ(r),

then Γu is C1 in Qr/2(x0, t0). Together with the next Lemma we may use their
result to deduce regularity of the free boundary close to a contact point.

Lemma 4. Let u be as in Theorem 3, then there exists an ρ = ρε,δ for each
ε > 0 and δ > 0 such that if (x0, t0) ∈ Q+

ρ ∩ Γu ∩ {x1 ≥ ε(|x′|+ √|t|)} then

md(Λũ(−δ2r2) ∩Bδr

δr
> ε,

ũ = u(x + x0, t + t0) and r = x0
1.

We will prove the first statement in the uniformity part of Theorem 3 before
we prove this Lemma.
Proof of 1) in Theorem 3: Assume that this isn’t true. That is we assume that
there exists uj ∈ P1(M, f) and {x1 ≥ ε(|x′| + √|t|} ∩ Γuj 
 (xj , tj) → 0 and
(xj , tj) /∈ {(x, t); paradist((x, t), ∂ΩU2 ) < δ|(x, t)|}. Make a blow up

uj(x, t) =
u(rjx, r2

j t)
r2
j

→ u0 for a subsequence in C1,α.

By assumption u0 will be the half space solution U2. But this contradicts the
assumption (xj , tj) /∈ {(x, t); paradist((x, t), ∂ΩU2 ) < δ|(x, t)|}.

Proof of Lemma 4: The argument is by contradiction and blow up. Assume
that there exists a sequence uj ∈ P̂1(M, f) and (xj , tj) ∈ Γuj ∩B1/j(0) ∩ {x1 ≥
ε(|x′|+ √|t|)} such that

md(Λuj(x+xj ,t+tj)(−δ2r2) ∩Brj )
δrj

≤ 1
j
, (6)

for rj = xj
1. Upon scaling uj

ũj =
uj(rjx + xj , r2

j t + tj)
r2
j

,

we will have, for a sub sequence, ũj → u0. But by part 1 of Theorem 3 u0 is a
half space solution contradicting equation (6).

Now we are ready to prove the second statement in the uniformity part of
Theorem 3.

Proof of 2) in Theorem 3: By [CPS] (Theorem 14.1) and the previous lemma
it follows that the free boundary is C1,α near the contact point. However the
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C1,α-norm may increase to infinity as we approach the contact point. This is
however not the case.

Assume that there exists uj and 0 ← (xj , tj) ∈ Γuj ∩ {x1 ≥ ε(|x′| + √|t|)}
such that the angle of the normal of Γuj at (xj , tj) is larger than some angle
δ > 0. Then we can blow up by

ũj =
uj(|xj

1|x + xj , |xj
1|2t + tj)

|xj
1|2

.

By the quadratic bound on uj, a subsequence of ũj will converge to some u0 in
C1,α. By our classification of global solutions u0 = U2. This is a contradiction
since the free boundary will (if we take another subsequence) converge in C1,α

to a surface with normal in at least δ radians away from the normal of ΓU2 .

7 Up to the boundary Regularity.

In the previous section we showed regularity of the free boundary in every
non-tangential access cone up to the free boundary. In this section we will
show full regularity of the free boundary up to the fixed boundary in a small
neighbourhood of the touching point. To do that we need to assume more
regularity of the boundary values f . We also need to assume something about
the blow-up of u.

Our first result in this direction is a Corollary to Theorem 3

Corollary 1. Let u ∈ P1(M, f)\ P̂1(M, f) satisfy the conditions in Theorem 3.
Assume further that spt(f) ∈ C1 and that f ∈ C2(spt(f)) then there is a small
parabolic cube Qr where Γ ∈ C1.

Proof: Since f ∈ C2(spt(f)) the blow-up of f is continuously changing in
the centre of the blow-up. By Theorem 3 we need to show that the blow-ups of
u also changes continuously. That is, we need to show that the blow-up of u is
U1 at every point in a neighbourhood of the origin.

We notice that Wa(r, U2) ≥ Wa(r, U1), with equality only if λ = 1/2. The
Corollary follows from the upper semi-continuity of the Weiss energy functional
Wa(0, u) in the centre of the ball where the integrals are taken in.

Remark: In this Corollary we have to assume that u ∈ P1(M, f) \ P̂1(M, f).
The same result would be uniformly true (that is with uniform C1 regularity in
a uniform cube depending only on f and M) if we assume that all the blow-ups
of u equals U2. Whether we have such a continuity in the blow-ups is not known
and does not seem to follow from the techniques in this paper.

Finally we would like to draw attention to two examples related to the
appearance of irregular free boundaries. The first is just a reminder of an
example from [A] and the second one shows another phenomenon where the
free boundary becomes irregular.

Example: Given a closed set one can construct a positive C1,1 function that
is C∞ in its support. This is easy using powers regularised distance functions.
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By the boundedness of the second derivatives we can multiply by a constant so
the function is a super-solution to

∆v = χ{v≥0}.

Using this function as boundary values we can construct a solution u such that
0 ≤ u ≤ v. Therefore the boundary of any closed set can be the touching set
of the free boundary. In particular we need the assumption on the regularity of
the support of f in Corollary 1.

Example: In this example we want to point out another phenomena where
the regularity up to the fixed boundary fails. Let u be a positive solution to

∆u − ∂u
∂t = χ{u≥0} in D = B+

1 × (0,∞)
u = f on ∂D,

where f is the following function

f = U2 on B+
1 × {0 ≤ t ≤ 1}

f = 0 on {x1 > 0} × {t > 1}
f = U2 on {x1 = 0} × {t > 1}.

Then u = U2 when t < 1. By comparison, for tε large enough u ≤ U1(x1, x2+
ε, x3, ...) for any ε > 0. By the uniformity result in Theorem 3 this implies that
the blow-up at free boundary points for large t must equal U1. Therefore there
is smallest t0 such that if t ≤ t0 then the blow-up of u is U2 and if t ≥ t0 the
blow-up of u at free boundary points are U1. In particular the normal of the
free boundary jumps at the point (0, t0).
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