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Tomeu Barceló, Daniel Faraco, and Alberto Ruiz

Preprint no.: 5 2006





STABILITY OF CALDERÓN INVERSE

CONDUCTIVITY PROBLEM IN THE PLANE
∗

Tomeu Barceló Daniel Faraco Alberto Ruiz

Abstract

It is proved that, in two dimensions, Calderón inverse conductivity
problem is stable when the conductivities are Hölder continuous with
any exponent α > 0. The approach is based on reducing the conduc-
tivity equation to a complex Beltrami equation as in Astala-Päivärinta
proof of the uniqueness in Calderón problem for L∞ conductivities.

1 Introduction

We consider a bounded domain Ω in C with connected complement. A well
known problem that A.P. Calderón proposed was the determination of an
isotropic L∞ conductivity coefficient γ on Ω from boundary measurements.

These measurements are given by the Dirichlet to Neumann map defined
for a function f on ∂Ω as the Neumann value Λγ(f) = γ ∂

∂νu, where u is the
solution of the Dirichlet boundary value problem

{
∇ · (γ∇u) = 0

u∂Ω = f
(1.1)

and ∂
∂ν denotes the outer normal derivative. The Dirichlet to Neumann map

Λγ : H1/2 → H−1/2 (1.2)

can be defined for such general domain and conductivities as

〈Λγ(f), ϕ0〉 =

∫

Ω
γ∇u · ∇ϕ (1.3)
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where ϕ ∈ W 1,2(Ω) is such that ϕ∂Ω = ϕ0. The uniqueness of the inverse
problem, that means the injectivity of the map

γ → Λγ

has been completely solved in the two dimensional case by K. Astala and L.
Päivärinta in [7] improving previous results [27] and [34]. In higher dimen-
sion the known results require some extra a priori regularity on γ, basically
some control on 3

2 derivatives of γ, see [33], [13], [29] and [16].
A relevant question (specially in applications) is the stability of the in-

verse problem, that is the continuity of the inverse map

Λγ → γ.

For dimension n > 2 the known results are due to Alessandrini [2], [3], who
proved stability in for γ ∈ W 2,∞. In the planar case, n = 2 the situation is
different. Liu proved stability for conductivities in W 2,p with p > 1 in [24].
Recently, stability was obtained γ ∈ C1+α with α > 0 in [10].

In this paper we prove that Hölder regularity of γ is enough to obtain
stability:

Theorem 1.1. Let Ω be a Lipschitz domain in the plane. Let γ = γ1, γ2

two planar conductivities satisfying

• (I) Ellipticity: ‖1−γ
1+γ ‖L∞ < κ < 1

• (II) α-regularity: γ ∈ Cα(Ω̄) with α > 0 and with a priori bound
‖γ‖Cα < Λ0.

Then there exists a non decreasing continuous function V : R → R with
V (0) = 0 such that

‖γ1 − γ2‖L∞(Ω) ≤ V (‖Λγ1 − Λγ2‖H1/2(∂Ω)→H−1/2(∂Ω)) (1.4)

The function V can be taken

V (ρ) = C log(ρ)−a. (1.5)

Where C and a depend on κ, α and Λ0. An expression for a is given in
(3.33).

Observe that the usual ellipticity condition for γ is

1/C ≤ γ(x) ≤ C,

for a certain constant C > 0. This is equivalent to condition (I). We use
this formulation because the dilation µ = 1−γ

1+γ will be the coefficient of a
Beltrami equation to be introduced later.
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An example, due to Alessandrini [2], shows that some extra regular-
ity in γ is necessary to obtain stability. Alessandrini gives non continu-
ous conductivities in L∞ such that ‖Λ1 − Λ2‖H1/2→H−1/2 → 0, meanwhile
‖γ1 − γ2‖L∞ = 1. Namely, if we denote by Bro = {x ∈ R2, |x| < ro}
the ball centered at the origin with radius ro, take Ω = B1 the unit
ball in R2, γ1 = 1 and γ2 = 1 + χBro

, then ‖γ1 − γ2‖L∞(Ω) = 1, but
‖Λγ1 − Λγ2‖H

1
2 →H−

1
2
≤ 2ro → 0 as r0 → 0. The details are given in [2].

Observe that in this case these conductivities actually lie in W ǫ,2 for any
ǫ < 1

2 . This example suggests that some control on the modulus of continu-
ity of the conductivities is necessary to prove stability in the L∞ norm. A
natural choice is the Hölder continuity condition (II).

The stability we obtain is just logarithmic. Unfortunately, an argument
of A.Mandache [26] shows that even for C∞ conductivities this must be the
case. Therefore the regularity of γ is just reflected on the constant a, see
(3.33). An interesting problem is to determine what additional conditions
on γ would imply a better stability, like Lipschitz or Hölder stability. Some
answers in this direction are given in [4].

Finally, the Lipschitz regularity of the domain Ω is needed to recover
the boundary values of γ and then to reduce the problem to Ω = D and
conductivities compactly supported there, see Section 6.

Since the foundational paper of Calderón [18] there has been an intensive
research on this problem [22],[23]. It turns out that dimension n = 2 is very
different from higher dimensions and special techniques have been devel-
oped to treat this case. There has been several approaches to the Calderón
problem in the plane, all of which are based on the construction of the ap-
proximated exponential solutions, the so called complex geometric optics
solutions, which have asymptotics eikz depending on the complex frequency
k.

The first approach reduces the conductivity equation (1.1) to the
Schrödinger equation

∆v + qv = 0,

where q(x) = ∆γ1/2

γ1/2 . This works in any dimensions, however in the plane the

problem no is longer overdetermined and it can not be treated in the same
way. Local uniqueness was obtained in [34] by using, as in higher dimensions,
only bounds for the geometric optics solutions for large frequencies, but
requiring the potential to be sufficiently close to 1 in W 3,∞. Nachman [27]
obtained uniqueness for conductivities in W 2,p, for p > 1, by studying the
so called scattering transform t(q,k) of the potential q. This transform is
given essentially by the behavior at infinity of the complex geometric optics
solutions. Using this method Liu, [24], obtained stability for γ with the
same regularity.

The next approach is due to Brown and Uhlmann [17]. They use the
inverse scattering method of Beals and Coifmann [11] for 2 × 2 matrices

3



used before in the study of well posedness of some non linear systems. The
conductivity equation is reduced to the ∂∂̄ system

(
∂ 0
0 ∂

) (
v
w

)
= Q(x)

(
v
w

)

where

Q(x) =

(
0 q(x)

q(x) 0

)

and

q(x) = −
1

2
∂(log γ) = −

∂γ1/2

γ1/2
.

This reduction has the advantage of requiring only one derivative of the
conductivity. Introducing the scattering transform of the matrix Q, S(Q, k),
the uniqueness is obtained for conductivities in W 1,p for p > 2. In [10] it
was shown that it is possible to quantify this approach and obtain stability
for γ ∈ C1+α.

The last approach is that of Astala-Päivärinta. The conductivity equa-
tion is then reduced to a complex Beltrami type equation

∂zf = µ∂zf,

where µ = γ−1
γ+1 has also its correspondent scattering transform τ(µ, k).

These three approaches share essentially the same philosophy. First the
Dirichlet to Neumann data determine the corresponding scattering trans-
form. Second the complex geometric optics are solutions in the k variable
to the so called ∂-equation which depends on the scattering transform. If
there is uniqueness for this equation, the problem is solved. For stability
one looks first for an explicit formula relating the difference of Dirichlet to
Neumann maps to the difference of scattering transforms. Then one needs
that the corresponding ∂-equation in the k variable enjoys suitable a priori
estimates.

The lack of regularity for µ in L∞ makes the situation very delicate
and topological arguments in both variables z and k are needed. In [7],
the authors use also the special structure of the Beltrami equations to ob-
tain a subexponential decay of the geometric optic solutions which depends
strongly on the given conductivity µ. However, this decay is not enough to
guarantee uniqueness for the corresponding equation in the k variable. This
is overcome in [7] by combining the information in the z and k variables
at the same time and making again use of the topological degree. This ap-
proach have proved to be effective also when dealing with the anisotropic
case, see [9].

We use the approach of [7] to prove our stability Theorem 1.1. As in
previous works in stability, our task is to replace qualitative uniqueness
arguments by a priori estimates. For the first step, from the Dirichlet to
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Neumann map to the scattering transform, we only need the conductivities
to satisfy the ellipticity condition. We accomplish this step in two manners,
the first by recovering the geometric optics solutions in the exterior of D

by mean of non homogeneous Beltrami equations. The second manner is by
showing an explicit formula for the difference of scattering transforms, which
is valid for conductivities just in L∞ and which might be of independent
interest. The second step, from the scattering transform to the coefficients,
is more complex since we need to achieve a priori estimates from topological
arguments. The proof is much more involved than in the uniqueness case
and, in particular, it needs a uniform control on the assymptotics in k for
the geometric optics solutions, which we call uniform subexponential growth.
This is one of the points at which the Hölder continuity of γ is essential.

A more precise description of the paper is as follows: In section 2 we
obtain some a priori estimates for solutions of non homogeneous Beltrami
equations and collect some results from [7] which are essential to our work.
In section 3 we prove some additional properties of the geometric optic
solutions in the k and z variables. In the z variable we obtain Schauder type
estimates and uniform lower bounds for the Jacobians. In the k variable we
obtain an uniform decay as k → ∞. We need to prove as well that the
solutions are uniformly Lipschitz with respect to k.

In section 4 we study the stability from the Dirichlet to Neumann map
to the scattering transform. This section does not require the Cα- regularity
of γj . In section 5 we prove the stability from scattering transform to the
geometric optic solutions. It is needed to remark that from section 2 to
section 5 we study the particular case Ω = D and conductivities to be 1
in a neighborhood of ∂Ω. The Theorem 1.1 is proved in section 6. The
proof includes the reduction to the particular case of Ω = D and compactly
supported conductivities, see Proposition 6.1 We make this reduction in
a different and more direct way than in previous works on the Calderón
problem. Finally, for the convenience of the reader we include an appendix
with regularity results for Beltrami type equation with Hölder continuous
dilatations µ.

Let us finish the introduction with some further comments on the result
and possibilities for future research. As opposite to [10], in the first step
we do not need a global control of the scattering transform, which in the
mentioned work was essential to assure uniqueness of the ∂- equation in the
second step. This gives Hölder type stability from the Dirichlet to Neumann
map to local L∞norm of the scattering transform. The logarithmic stability
appears in the second part from the scattering transform to the coefficients.

Concerning future research, let us remark that besides the example of
Alessandrini, the lack of regularity of the solutions for just L∞ conductiv-
ities yields another reason why it would not be expectable to obtain L∞

stability. In fact, for a given κ < 1 there exists a conductivity γ satisfy-
ing the ellipticity condition γ−1

γ+1 < κ such that the corresponding solution
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satisfies that for every disc B in Ω

∫

B
|∇u|1+

1
κ = ∞.

For a reference see [5], [19]. Under this viewpoint it is plausible that Lp

stability holds for much more irregular conductivities, say in some Sobolev
space. We will investigate this in a forthcoming work.

The scattering transform gives a non linear Fourier transform of the
unknown coefficient. Each approach extends the previous transform to a
wider class of functions. To see the relation between the Schrödinger and
the Beals-Coifman scattering transform, see [28]. It will be of interest to
see how the different definitions of scattering transform relate and which are
the properties of this non linear Fourier transform. In this direction some
results related to Plancherel identity were obtained in [15].

Notation:

Differential operators:
∂zu = 1

2(∂x + i∂y) and ∂zu = 1
2(∂x − i∂y)

Spaces:
Wα,p(C) = {f : ‖[(1 + | · |2)

α
2 f̂(·)]̂‖Lp < ∞} , Cα(Ω) = {f : ‖f‖L∞ +

supx,y∈Ω
|f(x)−f(y)|

|x−y|α < ∞}, H1(Ω) = W 1,2(Ω), H1
0 = W 1,2

0 (Ω) H1/2(∂Ω) =

H1(Ω) \H0(Ω),
We define the Lp-difference of a function f by

ωp(f)(y) = ‖f(· + y) − f(·)‖Lp(C). (1.6)

Then the Lp modulus of continuity of f is given for t > 0 by

ωp(f)(t) = sup
|y|<t

ωp(f)(y). (1.7)

Constants: We remark that C or a denote constants which may change
at each occurrence. We will indicate the dependence of the constants on
parameters κ, Γ,... , by writing C = C(κ,Γ, ...)

Finally, ek(z) denotes the unitary eikz+ik̄z̄ and

ρ = ‖Λγ1 − Λγ2‖H1/2→H−1/2 .
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2 Preliminaries

Our starting point is the work of K. Astala and L. Päivärinta [7]. We will
make an overview of their beautiful use of quasiconformal mapping methods
in the Calderón Inverse problem, and we will collect some facts, to be used
in our proof of stability. Some of the results that we remark here have been
only implicitly stated in their work.

The relation between elliptic equations and quasiconformal mappings
generalizes the fact that a harmonic function is the real part of a holomorphic
mapping. That is, given a real solution u in W 1,2 of the elliptic equation

∇ · (γ∇u) = 0, (2.1)

one can find a real v, unique modulo constants, such that f = u + iv is a
solution of the R-linear Beltrami equation

∂zf = µ∂zf (2.2)

where the distortion or Beltrami coefficient µ is given for z ∈ C as

µ(z) = (1 − γ)/(1 + γ) (2.3)

The ellipticity condition is then equivalent to the existence of κ < 1 such
that

‖µ‖L∞ < κ. (2.4)

For the detailed argument see [7, Lemma 2.1]. Then, Astala and Paivärinta
worked with equation (2.2) instead of with equation (2.1). They were able
to prove the existence of complex geometric optic solutions f(z, k), control
their asymptotics when k → ∞, find the appropriate equations in the k
variable and conclude their proof of uniqueness by an ingenious argument,
combining the behaviour of the complex geometric optic solutions in the k
and z variables.

In subsection 2.1 we will recall results in the theory of Beltrami equations
required to treat this type of equations and also we will prove some further
properties needed in our work. Then, in subsection 2.2 we will gather all
the results from [7] needed for our approach.

2.1 Beltrami Equations

The theory of Beltrami equations and planar quasiregular and quasicon-
formal mappings generalizes many aspects of classical geometric function
theory and is they key for a very rich theory of planar elliptic systems. We
refer to the classical monographs [1], [21],[25], [30],[36]. See also the recent
[6] were the last advances in the planar theory are collected (or proved).
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Key tools in this theory are the following operators:
The solid Cauchy transform P ,

P (g) = −
1

π

∫

C

g(w)

w − z
dm(w). (2.5)

The Beurling transform T ,

T (g) = −
1

π

∫

C

g(w)

(w − z)2
dm(w). (2.6)

The Beltrami operator B,

B = I − µT − νT (2.7)

where
|µ(z)| + |ν(z)| < κ.

The basic properties of these operators can be found in [7, section 3]. Several
of our arguments are based on the following estimates for non homogeneous
Beltrami type of differential inequalities. The next theorem extends Propo-
sition 3.3 in [7] to the nonhomogeneous case.

Theorem 2.1. Let κ < 1, M > 0 and 2 < p <∞. Let F ∈W 1,2
loc (C) satisfy

the differential inequality,

|∂zF | ≤ χD(κ|∂zF | +M |F | + E). (2.8)

with E ∈ L2(D). Suppose in addition that

lim
z→∞

F (z) = 0 (2.9)

Then it holds that

a) There exists a constant C1 depending on (p, κ) such that

‖F‖Lp(C) ≤ eC1(1+M)‖E‖L2(D) (2.10)

b) Suppose that E ∈ Lp(D). Then there exists constant C2 depending on
p such that

‖F‖L∞(C) + ‖F‖W 1,p(C) ≤ eC2(1+M)‖E‖Lp(D) (2.11)

Proof of theorem 2.1:
We reformulate the differential inequality (2.8) as a Beltrami type equa-

tion. Namely, there exists complex valued functions ν : D → D(0, κ), γ :
D → D(0,M) and E ∈ L2(D,C) such that

∂zF = χD(−ν∂zF + γF + E). (2.12)

Formally we declare, η = P (I − νT )−1(γ), g = eη, s = P (I − νT )−1(Ee−η)
and H = sg. Then we have that

8



1. ∂zη − ν∂zη = γ.

2. ∂zg − ν∂zg = γg.

3. ∂zs− ν∂zs = Ee−η

4. ∂zH − ν∂zH = γH + E

Let us check that we can use all these operators. Since γ ∈ L∞(D), (I −
νT )−1(γ) ∈ Lp(D) for every

1 + κ < p < 1 +
1

κ
. (2.13)

Since for p > 2, P : Lp(Ω) → W 1,p(C) is bounded, η ∈ W 1,p(C) for every
2 < p < 1 + 1

κ . Moreover, for p > 2, L∞(C) →֒ W 1,p(C) and hence we have
that η ∈ L∞(C) with

‖η‖L∞(C) ≤ CM. (2.14)

Thus, g is a well defined solution of (2) and Ee−η ∈ L2(D). Then, (I −
νT )−1(Ee−η) ∈ L2(D) and s is in Lp(C) ∩ VMO for every p > 2 with the
estimate

‖s‖Lp(C) ≤ C(p)‖E‖L2(D)e
CM . (2.15)

In particular, s ∈ W 1,2
loc (C) and since η ∈ W 1,p(C), H ∈ W 1,2

loc (C) as well.
Moreover, (2.15) implies that

lim
z→∞

H(z) = 0. (2.16)

Now consider the function R = F −H. Clearly it solves the homogeneous
equation

∂zR− ν∂zR = γR. (2.17)

and by (2.16) and the assumptions on F

lim
|z|→∞

R(z) = 0. (2.18)

Now, we argue as in [7, Proposition 3.3]. Consider G = e−ηR. It follows
from (2.17) that G solves

∂zG− ∂zG = 0. (2.19)

Being G ∈ W 1,2
loc , this implies that G is quasiregular mapping. Since η ∈

L∞(C) and R satisfies (2.18) it follows that lim|z|→∞G(z) = 0. But then,
the representation theorem of quasiregular mappings and Liouville theorem
imply that G = 0. Thus R = 0 as well and,

F = H = seη. (2.20)
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With this representation of F , (2.10) follows from (2.15) and (2.14). If
E ∈ Lp(D) for p > 2 we have that

‖∂z(s)‖Lp(D) ≤ Cpe
M‖E‖Lp(D)

and arguing exactly as for η, we conclude that s ∈W 1,p(C) and therefore in
L∞. This yields the required estimate (2.11) for H and thus for F .

2.2 Astala-Päivärinta approach

The strategy of Astala and Päivärinta’s work is the construction of the
approximate complex exponential solution of the elliptic equation, used in
previous works, through some appropriate solutions of the Beltrami equa-
tion. This allows then to avoid any a priori regularity assumption on the
coefficient γ.

The first step is to find a map associated to the equation (2.2), which
contains the information of the Dirichlet to Neumann map Λγ . This is done
by the Hilbert transform Hµ with respect to the distortion µ. For u real as
above we define Hµ : H1/2(∂D) → H1/2(∂D) as

Hµ(u|∂D) = v|∂D (2.21)

Since

HµøH−µu = H−µøHµ = −u+
1

2π

∫

∂D

u, (2.22)

it is natural to extend Hµ R-linearly by defining

Hµ(iu) = iH−µ(u).

We have (Proposition 2.3 in [7])

Proposition 2.2. The Dirichlet to Neumann map Λγ uniquely determines
Hµ, H−µ and Λγ−1. For u and v real valued, the following identity holds

∂THµ(u+ iv) = Λγ(u) + iΛγ−1(v). (2.23)

Furthermore, for two given conductivities γ1 and γ2 we have

‖Hµ1 −Hµ2‖H1/2(∂D)→H1/2(∂D) ≤ C‖Λγ1 − Λγ2‖H1/2(∂D)→H−1/2(∂D). (2.24)

Above, by an abuse of language, we have identified u and v with their
restrictions to ∂D.

The new Hilbert transforms give rise to the corresponding Riesz projec-
tions onto the µ Hardy spaces on ∂D. Namely consider the operators

Pµ(g) =
1

2
(I + iHµ)(g) +

1

2

∮

∂D

gds,

Qµ(g) =
1

2
(I − iHµ(g)) −

1

2

∮
gds

(2.25)

Then Pµ is the analogous of the Riesz projections in the following sense.
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Lemma 2.3 ([8]). Let g ∈ H1/2(∂D). Then

i) Pµ(g) +Qµ(g) = I

ii) P 2
µ = Pµ.

iii) Pµ(g) = g ⇐⇒ g = f|∂D for some f ∈W 1,2 with

∂zfµ = µ∂zfµ. (2.26)

iv) The range of Pµ consists of boundary values of solutions to (2.26).

The following theorem gives the existence and properties of the approx-
imate complex exponential solutions of the equation (2.2). We look for
perturbations of the solutions eikz of the equation when µ = 0. It relies on
the following lemma.

Lemma 2.4. Let 2 < p < pκ = 1 + 1
κ , α ∈ L∞ supported on D and

|ν(z)| ≤ κχD for almost every z ∈ D. Then, the operator K = K(ν, α)
defined by

K(g) = P (I − νT )−1(αḡ) (2.27)

as well as (I − K)−1 are bounded operators from Lp(C) → Lp(C). Also
K : Lp →W 1,p

Theorem 2.5. For each k ∈ C and each 2 < p < 1 + 1/κ there exists a
unique solution fµ ∈W 1,p

loc of (2.2) such that

fµ(z, k) = eikzMµ(z, k) (2.28)

with
Mµ(z, k) = 1 +O(1/z) as z → ∞ (2.29)

and
fµ(z, 0) = 1 (2.30)

Mµ(z, k) = eη(z,k) (2.31)

ℜ

(
Mµ(z, k)

M−µ(z, k)

)
> 0 (2.32)

The solution in the above theorem is constructed as

Mµ(z, k) = (1 + ωµ(z, k)) where ωµ = (I −K)−1(K(χD)), (2.33)

for a suitable choice of α. The function ω(z, k) is actually in W 1,p for
2 < p < 1 + 1/κ. In fact we have the following estimate.
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Proposition 2.6. Let ω(z, k) = Mµ(z, k) − 1. Then ω(z, k) ∈ W 1,p(C, dz)
is a solution to the equation

∂zω − µe−k∂zω = −ikµe−k(ω + 1). (2.34)

Moreover, there exists a constant C(κ, p) such that for every 2 < p < 1 + 1
κ

‖ω‖W 1,p(C,dz) ≤ eC(1+|k|) (2.35)

Proof: The fact that ω is a W 1,p(C, dz) solution to (2.34) follows from
the definition and properties of the operator K with α = −ikµe−k. Once
we know that ω satisfies equation (2.34) the estimate (2.35) follows from
Theorem 2.1.

The other key ingredient in the proof of uniqueness is the so called ∂̄k-
equation which we state as

Theorem 2.7. Let us define

F+(z, k) =
1

2
(Mµ +M−µ) (2.36)

F−(z, k) =
ie−k

2
(Mµ −M−µ) (2.37)

Then the functions k → F±(z, k) has continuous derivatives with values in
W 1,p(C) in the norm sense. They satisfy

∂k̄F+(z, k) = τ(µ, k)e−k(z)F−(z, k) (2.38)

∂k̄F−(z, k) = τ(µ, k)e−k(z)F+(z, k) (2.39)

Where the scattering transform τ(µ, ·), defined as

τ(µ, k) =
1

4πi

∫

D

∂z(Mµ(z, k) −M−µ(z, k))dm(z) (2.40)

satisfies |τ(µ, k)| < 1.

We need to work with solutions of the original elliptic equation (2.1). The
following definitions, [7, Section 1], give an extension to the case γ ∈ L∞ of
the so called complex geometric optics solutions of Nachman and Sylvester-
Uhlmann:

uγ(z, k) = Refµ(z, k) + iImf−µ(z, k) (2.41)

We also need the solutions of the γ−1-conductivity equation ∇·(γ−1∇u) = 0
defined as

−uγ−1(z) = Imfµ − iRef−µ (2.42)

We collect some of the properties of uγ .
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Proposition 2.8. The complex geometric optics solutions u = uγ(z, ·) sat-
isfy

u(z, k) = eikz(1 +R(z, k)) with R(z, k) ∈W 1,p(C, dz) (2.43)

u(z, k) = eδ(z,k) (2.44)

with
δ(z, k) = ik(z +O(1/z)) for fixed k as z → ∞ (2.45)

and
δ(·, k)(C) = C for k 6= 0. (2.46)

Moreover, u(z, ·) = u satisfies the equation

∂k̄u = −iτ(µ, k)ū (2.47)

This proposition follows from the previous results for fµ. In fact (2.43)
is a consequence of (2.33) and the definition (2.41) with

R(z, k) = ωµ + ω−µ + e−k(ωµ − ω−µ). (2.48)

(2.44) follows from (2.32). (2.45) follows from (2.29). Equation (2.46) from
(2.45) and a homotopy argument. Finally (2.47) is a consequence of (2.38)
and (2.39).

To end this section we remark Theorem 7.1 in [7].

Theorem 2.9. Let us define fλµ the solution of Theorem 2.5 with µ substi-
tuted by λµ where λ ∈ ∂D. Then fλµ admits a representation

fλµ(z, k) = eikφλ(z,k) (2.49)

where, for fixed k ∈ C \ 0 and λ ∈ ∂D, the function φλ(·, k) : C → C is a
quasiconformal homeomorphism that satisfies

φλ(z, k) = z +O(1/z) as z → ∞ (2.50)

and

∂̄φλ(z) = −
k̄

k
λµ(z)e−k(φλ(z, k))∂φλ(z, k) (2.51)

3 Further properties of the complex geometric op-

tic solutions.

In this section we study several properties of fµ and u = uγ(z, k) when we
assume the coefficient µ to be in the Hölder class Cα for some fixed α > 0. We
start by stating a more precise asymptotic expansion of the “logarithmic”
functions of the geometric optics solutions in the k variable and finally we
prove some facts about their derivatives in the k variable. We also analyze
the extra regularity that we gain in the z variable.
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3.1 Uniform subexponential growth of fµ

If µ ∈ L∞. It is proved in [7] that the Jost functions satisfy that

Mµ = eik(z−ϕµ(z,k)),

where
z − ϕµ(z, k) → 0

uniformly in z ∈ C as k → ∞. However the convergence depends on µ.
We will prove that this uniformity can be extended to all conductivities µ
whose Hölder norm is bounded by some Λ0. We start with some elementary
properties of Hölder functions.

Lemma 3.1. Let µ ∈ Cα, supported on D(0, R), β < α and 1 ≤ p < ∞.
Then

i) There exists a constant C = C(p,R) such that

‖µ‖W β,p ≤
C

α− β
‖µ‖Cα . (3.1)

ii) Let f ∈Wα,2(C) then there exists a constant C = C(R) such that

‖µf‖W β,2 ≤
C

α− β
‖µ‖Cα‖f‖W β,2 (3.2)

Proof:
We first prove the second claim. Recall that by [32, Section 3.5.2, chapter

5] we have

‖µf‖W α,2 ∼

∫
ω2(µf)(t)2

t−2(1+α)
+ ‖µf‖L2 , (3.3)

where ω2 denotes the modulus of continuity, defined in the introduction. It
is easy to see that

ω2(µf)(t) ≤ ‖f‖L2‖µ‖Cαt2α + ‖µ‖L∞ω2(f)(t). (3.4)

Thus, the claim follows by plugging (3.4) into (3.3) and integrating.
The first claim with p = 2 follows by taking ϕ a compactly supported

function which is 1 on the support of µ. If p 6= 2 the claim is a consequence of
sufficient conditions, in terms of the Lp-modulus of continuity, for a function
to be in W β,p. See [32, Section 3.5.2 chapter V]

Lemma 3.2. Let f ∈W β,2(C). Then for R0 > 1

‖χ{|(.)|>R0}f̂‖L2 ≤ CR−β
0 .
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Proof:

∫

|ξ|>R0

|f̂ |2 ≤ R−2β
0

∫
(1 + |ξ|2)β|f̂ |2 ≤ R−2β

0 ‖f‖W β,2 .

Our task is to control the asymptotics of the exponent functions of

fλµ = eikφλ(z,k), (3.5)

with respect to the norm in the Hölder class Cα of µ. From Theorem 2.9,
the function φλ(z, k) in (3.5) for each k fixed in C \ {0}, and λ ∈ ∂D, is a
quasiconformal homeomorphism on C that satisfies the non linear equation
(2.51) and for fixed k

φλ(z, k) = z +Ok(1/z) as z → ∞ (3.6)

We start with the solution of the linear equation related to 2.51.

Proposition 3.3. Let ψ(z, k) be the solution in W 1,2
loc of the equation

∂zψ(z) = −
k̄

k
λµ(z)e−k(z)∂zψ(z) (3.7)

such that
ψ(z, k) = z +O(1/z) as z → ∞ (3.8)

Let R,α,Λ0 > 0, 0 < κ < 1. Then, there exists constants a > 0 and C > 0
depending on these parameters such that for any z ∈ C, λ ∈ ∂D and any µ
which satisfies ‖µ‖Cα < Λ0 and |µ| < κχD(0,R) it holds that,

|ψ(z, k) − z| ≤ C|k|−a. (3.9)

An expression for a is given in (3.33).

We may reduce to R = 1. Recall that by the Cauchy formula we have
that

ψ(z, k) − z = C

∫

D

Φ(w, z)∂zψ(w, k)dm(w), (3.10)

where Φ(w, z) = χD

w−z . In the next lemmas we analyze more in detail the

two factors Φ(w, z) and ∂zψ. We will write Kz(w) = 1
z−w .

Lemma 3.4. Let 1 < q < 2 and let s < 2−q
2q . Then the following properties

hold:

i) There exists C = C(q,R) such that for every z ∈ C, ‖Kz‖Lq(D(0,R)) ≤
C.
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ii) There exists C = C(q, s) such that for every z ∈ C

ωq(Φz)(t) ≤ Cts. (3.11)

Proof: The first claim follows by direct calculation. For the second, take
q < q̃ < 2. Then, if t < 1 it holds that

ω
q
q(Φz)(t) ≤ ω

q
q(Kz)(t) + ‖Kz‖

q
Lq̃(D(0,2))

ω q̃
q̃−q

(χD)(t). (3.12)

Now on one hand, for example by [1, page 86] there exists C independent
of z such that

ω
q
q(Kz)(t) ≤ C|t|2−q. (3.13)

On the other for p ≥ 1, a direct calculation yields that

ωp(χD)(t) = t
1
p . (3.14)

Since for 1 < q < q̃ < 2, 2 − q > q̃−q
q̃ , plugging (3.13) and (3.14) into (3.12)

we obtain that
ωq(Φz)(t) ≤ C(q, q̃)t

q̃−q
q̃q .

By taking the limit when q̃ → 2 we prove the second claim.

The uniform control on the modulus of continuity of Φz = Φ(z, ·) trans-
lates into a uniform control of the speed of converge of a suitable mollification
of Φz.

Lemma 3.5. Let δ > 0. Then there exists a function Φδ(z, w) such that for
every 1 < q < 2 the following properties hold:

i) For every s < 2−q
2q there exists C = C(s, q) such that

‖Φδ(z, w) − Φz(ω)‖Lq ≤ Cδs

ii) There exists C = C(q) such that

‖Φδ(z, ·)‖L2 ≤ C(q)δ
1− 2

q

iii) Let δR0 > 1,m > 0. Then there exists C(q,m) such that

‖Φ̂δ(z, ·)‖L2(C\D(R0)) ≤ C(q,m)δ
1− 2

q (R0δ)
−m.

Proof:
Take a compactly supported smooth function φ(w) = φ0(|w|) and let us

consider the mollification Hδ(z, w) defined by

Ĥδ(z, ·)(ξ) = Φ̂(ξ, z)φ̂(δξ).
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The first claim follows from lemma 3.4, since,

‖Φz(·) − Φδ(z, ·)‖Lq ≤

∫

C

ωq(Φz)(w)φδ(w)dw

≤

∫
ωq(Φz)(|w|)|φδ(w)|dw ≤

∫
ωq(Φz)(δ|y|)|φ0(|y|)|dy ≤ C(s)δs,

Where φδ(w) = δ−2φ(δ−1w).
For the second, using Plancherel, Hölder and Hausdorff-Young inequali-

ties and lemma 3.4 we obtain, for 1/q − 1/p = 1/2, that

‖Φδ‖L2 ≤ ‖Φz‖Lq‖|φ̂(δχ)‖Lp ≤ Cδ
1− 2

q .

For the third claim write again

‖Φ̂δ‖L2(|ξ|>R0) ≤ ‖Φz‖Lq‖|φ̂(δξ)‖Lp(|ξ|>R0)

≤ ‖Φz‖Lqδ1−2/q‖φ̂(ξ)‖Lp(|ξ|>δR0)

Since φ̂ is rapidly decreasing for any m there exists C(m) such that

‖φ̂(ξ)‖Lp(|ξ|>δR0) ≤ C(m)(δR0)
−m

from where (iii) follows.

Next, we analyze ∂zψ. We use a decomposition Lemma as in [7]. How-
ever, the extra Hölder regularity allows us to simplify the proof obtaining a
uniform subexponential decay.

Lemma 3.6. Let ψ(z, k) the solution of (3.7) and ( 3.8). Choose 2 < p
such that

κ‖T‖Lp→Lp = κ1 < 1.

Given n0 ∈ N , we can decompose ∂̄ψ = g + h, where g = gλµ(z, k) and
h = hλµ(z, k) satisfy

i) supk∈C ‖h(., k)‖Lp < C(κ, p)(κ‖T‖Lp)n0

ii) supk∈C ‖g(., k)‖Lp < C0 = C0(κ)

iii) Let |k| ≥ 2R0 and β < α. Then there exists a universal constant C
such that,

∫
|ξ|<R0

|ĝ|2 ≤ (C Λ0
α−β )n0+1|k|−β

Proof:
The function ∂zψ(z, k) is the solution in Lp of the equation

(I +
k̄

k
λµ(z)e−k(z)T )∂zψ(z, k) = −

k̄

k
λµ(z)e−k(z).
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We may solve the equation by the Born series

∂zψ(z, k) =

∞∑

n=0

(−
k̄

k
λµ(z)e−k(z)T )n(−

k̄

k
λµe−k) (3.15)

We take h to be the tail

h(z, k) =
∞∑

n=n0

(−
k̄

k
λµ(z)e−k(z)T )n(−

k̄

k
λµe−k).

Then (i) holds easily.
For this choice, g(z, k) has the form

g(z, k) =

n0∑

n=0

Gn(z, k), (3.16)

where

Gn(z, k) = (−
k̄

k
λµ(z)e−k(z)T )n(−

k̄

k
λµe−k) (3.17)

Then g satisfies condition (ii):

‖g(., k)‖Lp ≤ π1/p κ1

1 − κ1
= C0(κ).

Only (iii) remains to be proved. We write Gn(z, k) as

Gn = (
−k̄

k
λ)n+1e−(n+1)kfn, (3.18)

where {
fn(z) = µTnµTn−1µ...µT1(µ), for n > 0

f0 = µ.
(3.19)

The operator Tj = ejkTe−jk is a Fourier multiplier with unimodular symbol
(ξ − jk)/(ξ − jk). Therefore, ‖Tj‖W α,2→W α,2 = 1. Combining this with
Lemma 3.1 we arrive at

‖fn‖W β,2 ≤ (C
Λ0

α− β
)n+1. (3.20)

Thus, ∫

|ξ|<R0

|ĝ|2 =

n0∑

n=0

∫

|ξ|<R0

|f̂n(ξ − (n+ 1)k)|2.

If |k| ≥ 2R0 this is bounded by

n0∑

n=0

∫

|ξ|>(n+1)|k|−R0

|f̂n|
2 ≤ (C

Λ0

α− β
)n0+1

n0∑

n=0

((n+ 1)|k| −R0)
−β,

18



where the last inequality follows from Lemma 3.2. Therefore

∫

|ξ|<R0

|ĝ|2 ≤ (C
Λ0

α− β
)n0+1|k|−β(n0 + 1)1−β ≤ (

CΛ0

α− β
)n0+1|k|−β .

The proof is concluded .

Proof of Proposition 3.3:
By (3.10) and Lemma 3.6,

ψ(z, k) − z = C

∫

D

Φ(w, z)(g + h)dm(w). (3.21)

Let 2 < p be such that
κ‖T‖Lp→Lp < 1, (3.22)

and let q be its dual. Then, Hölder’s, Lemma 3.4 and Lemma 3.6 imply
that,

|

∫
hΦ(w, z)| ≤ ‖Φ(w, z)‖Lq‖h‖Lp ≤ C(κ, q)(κ‖T‖Lp)n0+1 <

ǫ

4
. (3.23)

The last inequality follows for any n0 ∈ N such n0 ≥ log(ǫC)
log(κ‖T‖Lp

→Lp ) , where

C = C(κ, p) > 0.
On the other hand by Lemma 3.5 for every s < 2−q

2q

|

∫
gΦ| ≤ |

∫
gΦδ|+‖g‖Lp‖Φ−Φδ‖Lq ≤ |

∫
gΦδ|+C(κ, s, q)δs ≤ |

∫
gΦδ|+

ǫ

4
(3.24)

where the last inequality is obtained if δ ≤ C(κ, s, q)ǫ
1
s .

It only remains to estimate the term
∫
gΦδ. We do this on the Fourier

transform side:

|

∫
gΦδ| ≤ |

∫

|ξ|<R0

ĝΦ̂δ| + |

∫

|ξ|≥R0

ĝΦ̂δ|.

But, by Lemma 3.5 if R0 ≥ δ−1 ≥ C(κ, s, q)ǫ
−1
s

|

∫

|ξ|≥R0

ĝΦ̂δ| ≤ ‖g‖L2‖Φ̂δ‖L2(|χ|≥R0) ≤ C(q,m)δ
1− 2

q (R0δ)
−m <

ǫ

4

the last inequality being if we further require R0 ≥ C(q,m)ǫ−
m−1+2q+s

sm .
Thus, by taking the limit when m → ∞, we see, for s fixed in the open
range s < 2−q

2q , that there exists C(κ, s, q) such that if R0 ≥ C(κ, s, q)ǫ−
1
s

|

∫

|ξ|≥R0

ĝΦ̂δ| ≤
ǫ

4
. (3.25)
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Finally, we need to estimate |
∫
|ξ|<R0

ĝΦ̂δ|, where R0, δ and n0 have been

fixed satisfying R0 ≥ C(κ, s, q)ǫ−
1
s , δ ≤ C(κ, s, q)ǫ

1
s and n0 ≥ log(ǫC)

log(κ‖T‖Lp
→Lp ) .

By Hölder

|

∫

|ξ|≤R0

ĝΦ̂δ| ≤ (

∫

|ξ|≤R0

|ĝ|2)
1
2 ‖Φδ‖L2 (3.26)

We want to apply Lemma 3.5 and Lemma 3.6(iii). Thus, we need to assume
that

|k| ≥ 2R0 ≥ C(κ, s, q)ǫ−
1
s . (3.27)

We obtain that

|

∫

|ξ|≤R0

ĝΦ̂δ| ≤

(
C

Λ0

α− β

)1/2(n0+1)

|k|−β/2δ1/2−1/q (3.28)

which, after plugging in the optimal values of δ and n0, is dominated by

C(κ, α, q)ǫ
−C(κ,q) log(

Λ0
α−β

+e)−1/s(1/q−1/2)|k|−β/2. Now we impose this quan-
tity to be bounded by ǫ

4 which can be attained if

|k| ≥ Cǫ
−(1/β)(2+C(κ,q) log(

Λ0
α−β

+e)+1/s(2/q−1))
(3.29)

to arrive at

|

∫

|ξ|≤R0

ĝΦ̂δ| ≤
ǫ

4
(3.30)

as desired. Putting together (3.27) and (3.29), we have proved the following
claim: For any 1 < q < 2 such that p = q

q−1 satisfies κ‖T‖Lp→Lp < 1, any

s < 2−q
2q , there exists positive constants C and b depending on κ, Λ0, α, s

and q such that
|k| ≥ Cǫ−b (3.31)

implies |φ(z, k) − z| ≤ ǫ. The constant b above is given by

max{
1

s
,
2 + C log( Λ0

α−β + e) + 1/s(2/q − 1)

β
}

Therefore we have obtained the claim of the proposition with

a = 1/b = min{s, β

(
2 + C log(

Λ0

α− β
+ e) + 1/s(2/q − 1)

)−1

} (3.32)

By choosing appropriated s, q and β, a possible value of the exponent is

a = min{
δ(κ)

4
,
α

2
(6 + C(κ) log(2Λ0/α+ e))−1} (3.33)

Unlike in [7], the corresponding Theorem for the nonlinear equation fol-
lows easily thanks to the uniformity of the estimates in the case Cα.
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Theorem 3.7. Let φλ be the solution of (2.51) which satisfies (3.6). Let
R,α,Λ0 > 0, 0 < κ < 1. Then, there exists constants a and C depending on
these parameters such that for any z ∈ C, λ ∈ ∂D and any µ which satisfies
‖µ‖Cα < Λ0 and |µ| < κχD(0,R) it holds that,

|φλ(z, k) − z| ≤ C|k|−a (3.34)

Proof: We observe as in [7] that since the estimates are uniform in z it is
equivalent to prove similar asymptotics for the inverse function. ψλ = φ−1

λ .
This satisfies the equation

∂̄ψλ(z) = −
k̄

k
λµ(ψλ(z))e−k(z)∂ψλ(z),

under the condition

ψλ(z, k) = z +Ok(1/z) as z → ∞

The theorem is a corollary of the proposition 3.3. We just need to prove
that the coefficient ν(z) = µ(ψλ(z, k)) satisfies:
(a) It is in an a Hölder Class Cβ for β = β(α, κ).
(b) Its support is contained in 4D.
These conditions are satisfied, since (b) follows from 1

4 -Koebe theorem and
(a) follows from

‖ν‖Cαβ ≤ ‖µ‖Cα‖ψλ‖
α
Cβ ≤ Λ0‖ψλ‖

α
W 1,p ≤ C(Λ0)

where β = 1− 2
p , and p < 1+ 1

κ . The Sobolev norm is on 4D and is bounded
by a constant depending of κ by the normalization (3.6) ( [1]).

3.2 Uniform subexponential growth of u

Theorem 3.8. Let u be the solution of the equation

div(γ∇u) = 0

constructed as u(z) = ℜfµ + iℑf−µ, where µ, supported on D is such that
‖µ‖∞ < κ and ‖µ‖Cα < Λ0. Then there exists a = a(κ, α,Λ0) and C =
C(κ, α,Λ0) such that for every z ∈ C, we may write

u(z, k) = eik(z+ǫz(k)), where |ǫz(k)| ≤ C|k|−a (3.35)

Remark: A similar estimate can be proved for the solution u = uγ−1

of
div(γ−1∇u) = 0,
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given in 2.42
Proof: We can write

u = fµ

(
1 +

fµ − f−µ

fµ + f−µ

)−1 (
1 +

fµ − f−µ

fµ + f−µ

)
(3.36)

Let

α(z) =
fµ − f−µ

fµ + f−µ
.

Then Theorem 3.7 implies that we may reduce the proof of (3.35) to prove

|α(z)| ≤ 1 − e−kǫ, (3.37)

where |ǫ(z, k)| ≤ C|k|−a. In [7, Lemma 8.2] it is shown that estimating α
reduces to estimate fλµ for λ ∈ S1. Since in our case the control of fλµ is
uniform in our class of µ,z ∈ C and λ ∈ S1, (3.37) follows.

3.3 Regularity of the complex geometric optic solutions

Theorem 3.9. Let β be such that 0 < β < α. There exists constant C1 =
C1(κ,Λ0, |k|, β), and C2 = C2(κ,Λ0, |k|, β) > 0 such that for any µ with
|µ| ≤ χDκ and ‖µ‖Cα ≤ Λ0

i)
‖fµ(·, k)‖C1+β(D,dz) ≤ C1 (3.38)

ii)
inf
z∈D

|Jfµ(z, k)| ≥ C2. (3.39)

Where Jfµ is the Jacobian in the z variable of fµ

The proof is based on the following Theorem (see [30] thms II.5.2 and
II.5.47)

Theorem 3.10. Let µ such that |µ(z)| ≤ κ < 1 and µ ∈ Cα(G) for a domain
G ⊂ C with ‖µ‖Cα < Λ0. Given a function ω such that:

• (i) ω is a solution in W 1,p
loc (G), p > 2, of the equation

∂zω = µ∂zω (3.40)

• (ii) For any G′ ⊂⊂ G, there exists K = K(G′) such that

sup
z∈G′

|ω(z)| ≤ K. (3.41)

Then the following properties hold:
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• (I) If β is such that 0 < β < α and D ⊂⊂ G′. Then there exists a
Λ1 = Λ1(κ,K,D, β) such that

‖∂zω‖Cβ(D) + ‖∂zω‖Cβ(D) ≤ Λ1. (3.42)

• (II) Assume that ω is a quasiconformal homeomorphism in C. Then
for any D ⊂⊂ C, there exists a constant J = J(K,κ,Λ0, D) such that

inf
z∈D

(|∂zw(z)|2 − |∂zw(z)|2) = inf
z∈D

(Jω(z)) > J. (3.43)

This theorem will be proved in the Appendix.
Proof of Theorem 3.9:
(i) is an immediate consequence of Theorem 3.10, once we prove the

existence of the constant K(2D) in (3.41) for fµ(·, k). This follows from (k
is fixed) fµ(z, k) = eikφ(z,k), where φ(z, k) = z+ǫ(z, k) with ǫ(z, k) uniformly
bounded for fixed k. The uniform bound only depends on k and κ.

The same argument as in (i) proves that

inf
z∈2D

|fµ(z, k)| > c = c(k, κ) > 0

Then (ii) follows from the same property for the exponent φ(z, k). From
Theorem 2.9, φ(z, k) is a κ-quasiconformal homeomorphism. The property
is a consequence of (II) in theorem 3.10.

3.4 Growth of the k derivatives of the Complex geometric

optic solutions

In this section we study the behavior of the complex geometric optic so-
lutions respect to the k variable. It is proved in Theorem 2.5 that the
Jost functions Mµ(k, z) are C∞-smooth in the k variable. As with many
other properties, for stability it is needed a quantitative version of this
fact. Bounds are provided by the fact that the derivatives in the k plane
of Mµ(k, z) solve corresponding non homogeneous Beltrami equations. The
results in this section just assume that |µ| ≤ κχD.

Lemma 3.11. Let 2 < p < pk, et ∈ S1 and h(z, k) = ∂etωµ(z, k). Then
h(z, k) ∈W 1,p(C) and satisfies the equation

∂zh− µe−k∂zh = µ(γh+ E). (3.44)

Here
γ = −ike−k

and E is an error term given by

E = ∂ete−k∂zω + (ω + 1)(−i)∂et(ke−k).
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Proof:
We start by finding a unique solution h ∈W 1,p of equation (3.44). Since

ω ∈W 1,p(C, dz) and µ has compact support , it follows that E ∈ Lp(C) and
γ ∈ L∞. Declare ν = µe−k. We will find h with the help of the operators K
introduced in Lemma 2.4. Recall that for any L∞ functions ν, α supported
in D and |ν| ≤ κ the operator K(ν, α) : Lp(C) →W 1,p(C) was defined by

K(g) = P (I − νS)−1(αg).

Since by Lemma 2.4, (I −K) is invertible in Lp we can find h ∈ Lp solving
the equation

h−K(ν, µγ)(h) = K(ν, µ)(E). (3.45)

Since for η ∈ Lp, ∂zP (η) = η if we take the distributional ∂z derivative in
(3.45), we obtain that

∂zh = (I − νS)−1(µγh+ µE). (3.46)

Now h and E are in Lp(C) for the required range of exponents. By the
boundedness of the Beltrami operators, ∂zh ∈ Lp(C). By means of the
Beurling transform we achieve that h ∈ W 1,p(C). Moreover, if h solves
(3.46) then h solves (3.44) as well.

To see that in fact h = ∂etω, we observe that equation (3.44) is ob-
tained by formally differentiating in the k variable respect to the t direction
the equation satisfied by ω (2.34). Standard arguments using differences
quotients show that h = ∂etω as desired.

Now we implement our knowledge of estimates for non homogeneous
Beltrami equations to achieve the required control on the derivatives of the
Jost functions and of the scattering transform.

Theorem 3.12. There exists a constant C = C(κ, p) such that for 2 < p <
1 + 1

κ it holds that

‖∇kMµ(k, z)‖W 1,p(dz) ≤ e(1+C)|k|. (3.47)

For every k ∈ C

|∇kτ(µ, k)| ≤ e(1+C)|k| (3.48)

Proof:
Observe that independently of the direction et ∈ S1

‖γ(z, k)‖L∞(D,dz) ≤ |k| (3.49)

and for 2 < p < 1 + 1
κ by Proposition 2.6

‖E‖Lp(D,dz) ≤ 6|k|‖ω‖W 1,p(D,dz) ≤ CeC|k| (3.50)
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Thus, the claim follows from equation (3.44) and Theorem 2.1. Now,
from the formula

τ(µ, k) =
1

4πi

∫

D

∂z(Mµ −M−µ)dz ∧ dz

we can take derivatives with respect to k under the integral sign and conclude
by Holder’s inequality.

4 Stability from the Dirichlet to Neumann map to

the scattering transform

The main result in this section is Corollary 4.5. We obtain it in two different
ways. In section 4.1, following the lines of [7] [8], we recover with stability
the values of the geometric optics solution in the exterior of D. In section 4.2
we prove a formula relating the differences of scattering transforms to the
differences of Dirichlet to Neumann maps. Similar expressions were essential
in previous works about stability, See [2] , [27], [24] and [10]. Let us remark
that in both subsections no extra regularity on γ is required.

4.1 Values of Mµ on C \ D

Theorem 4.1. Let 2 < p < ∞. Then there exists an uniform constant
c = c(κ, p) such that if µ1, µ2 are complex with |µ1|, |µ2| < χD. Then,

‖Mµ1 −Mµ2‖Lp(C\D) ≤ ec|k|ρ

where
ρ = ‖Λγ1 − Λγ2‖H1/2→H−1/2 .

The proof of Theorem 4.1 is decomposed in the following Lemmas.

Lemma 4.2. There exists C = C(κ), such that for any pair fµ1 , fµ2 there
exists two other functions f1, f2 ∈ H1/2(∂D) such that:

1. (fµ1 − fµ2)|∂D = f1 + f2

2. ‖f2‖H1/2 ≤ Cρ‖fµ2‖H1/2

3. f1 = g|∂D, with g such that

∂zg = µ1∂g
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Proof:
The claim follows from lemma 2.26. Let g = fµ1 − fµ2 . We set f1 =

Pµ1(g), f2 = Qµ1(g). Claims (1) and (3) are straightforward. For claim (2)
observe that Qµ1(fµ1) = 0 and

Qµ1(fµ2) = Qµ2(fµ2) + i(Hµ2 −Hµ1)(fµ2) = i(Hµ2 −Hµ1)(fµ2)

Therefore

‖f2‖
H

1
2
≤ ‖fµ2‖H1/2‖Hµ2 −Hµ1)‖H1/2→H1/2 ≤ ρ‖fµ2‖H

1
2

as desired.

Lemma 4.3. There exists a constant C(κ) such that

‖fµ‖
H

1
2 (∂D)

≤ eC|k|

Proof: From (2.35) we control ‖ω‖H1(D). Thus, the claim follows from
the trace lemma.

Lemma 4.4. Let E : H1/2(∂D) →W 1,2(D)/W 1,2
0 (D) be the extension oper-

ator. Let us define G : C → C by

G(z, k) = (fµ1 − fµ2)(1 − χD) + g + E(f2)χD.

Then G solves the equation

∂zG− µ1∂zG = (∂zE(f2) − µ1∂zE(f2))χD. (4.1)

Furthermore let G0 = e−ikzG and p be the right hand side of (4.1), i.e

p(f2) = (∂zE(f2) − µ1∂zE(f2))χD.

Then
∂zG0 = e−(ikz+ikz)µ1∂zG0 − ikµ1G0 + e−(ikz)p(f2) (4.2)

Proof of the Theorem 4.1 Let G0 as in Lemma 4.4. Then G0 satisfies the
differential inequality

|∂zG0| ≤ κ|∂zG0| + γ|G0| + h (4.3)

with κ = ‖µ1‖∞,D, γ = kκχD, h = |p(f2)|e
|k|. In particular we see that

γ ∈ L∞(C) and is compactly supported. Therefore we can apply Theorem
2.1 to obtain the bound

‖G0‖Lp(C) ≤ eC|k|‖p‖L2 ,

Finally we conclude the proof observing that on one hand, ‖p(f2)‖L2 ≤
‖f2‖H1/2(∂D

≤ ec|k|ρ. where we have used Lemma 4.2 and Lemma 4.3. On

the other hand G0(1 − χD) = e−ikz(fµ1 − fµ2)(1 − χD) = Mµ1 −Mµ2 .
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Corollary 4.5. For i = 1, 2, let µibe as in Theorem 4.1 and let τ(µi, k) be
the corresponding scattering transforms defined in (2.40). Then there exists
an uniform constant c = c(κ) such that for every k ∈ C,

|τ(µ1, k) − τ(µ2, k)| ≤ cρec|k| (4.4)

Proof:
The scattering transform τ(µ, k) can be also defined in terms of the

asymptotics in z of Mµ. Namely

Mµ −M−µ =
τ(µ, k)

z
+O(

1

|z|2
).

Therefore, we have that

D(z, k) = (Mµ1−M−µ1−Mµ2 +M−µ2)(z, k) =
τ(µ1, k) − τ(µ2, k)

z
+O(

1

|z|2
).

Now D(z, k) is analytic in C \ D. Thus, for every r > 1 it holds that

|τ(µ1, k) − τ(µ2, k)| = |

∫

∂Dr

D(z, k)dz|.

Integrating this expression respect to r yields that

|τ(µ1, k) − τ(µ2, k)| ≤
1

2

∫ 2

1

∫

∂Dr

|D(z, k)||dz|dr

≤

∫

1≤|z|≤2
|D(z, k)|dz

≤ c‖D(z, k)‖Lp(C\D) ≤ ρec|k|.

The last inequality follows from Theorem 4.1. The corollary is proved.

4.2 An explicit formula.

We will denote the dependencies by writing u(µ, k, z), etc. The scattering
transform of µ is defined by

τ(µ, k) =
i

4π

∫

D

∂z(M̄(µ, z, k) − M̄(−µ, z, k))dm(z). (4.5)

Since fµ(z, k) = eikzMµ(z, k) we also have

τ(µ, k) =
i

4π

∫

D

∂z(e
ik̄z̄(f̄µ − f̄−µ))dm(z). (4.6)
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Theorem 4.6. Let γ1 and γ2 be L∞ conductivities which are identically
1 in a neighborhood of C \ D and µ1 and µ2 the corresponding Beltrami
coefficients. We have that

τ(µ1, k) − τ(µ2, k) =
−1

8πk̄

∫

∂D

ū(µ1, z,−k)(Λγ − Λγ2)u(µ2, z, k)dσ (4.7)

where u(µi, z, k) = uγi is the complex geometric optics solution given by
(2.41).

To prove the theorem we need an alternative formula for the scattering
transform.

Lemma 4.7.

τ(µ, k) =
−1

4πk̄

∫

∂D

z̄eik̄z̄∂zudσ (4.8)

Proof:
Since the normal at any point z ∈ ∂D can be identified with z, by Green

Formula

τ(µ, k) =
i

4π

∫

∂D

z̄eik̄z̄(f̄µ − f̄−µ)dσ. (4.9)

Notice that for z ∈ D the tangential derivative is

∂T (eik̄z̄) = k̄z̄eik̄z̄.

Thus, by integration by parts it follows that

τ(µ, k) =
−i

4πk̄

∫

∂D

eik̄z̄∂T (f̄µ − f̄−µ)dσ (4.10)

Now we write fµ − f−µ in terms of u and its Hilbert transform:

fµ − f−µ = ℜ(u) + iHµ(ℜ(u)) + Hµ(ℑ(u)) − iℑ(u)

Thus,

∂T (f̄µ − f̄−µ) = ∂T (ℜ(u)) − iΛγ(ℜ(u)) + Λγ(ℑ(u)) + i∂T (ℑ(u)).

Since γ = 1 on ∂D, we have that (in the weak sense) Λγ(ϕ) = ∂ν(ϕ) for

every ϕ ∈ H
1
2 (∂D). Hence,

∂T (f̄µ − f̄−µ) = ∂T (u) − i∂ν(u) (4.11)

Since,
z̄∂zu = ∂νu+ i∂Tu,

(4.11) implies that
i∂T (f̄µ − f̄−µ) = z̄∂zu,
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which plugged into (4.10) yields the claim.

Proof of the Theorem: The theorem will follow from the following claim.
Claim

∫

∂D

zeikz∂zū(µ1, z,−k)dσ −

∫

∂D

z̄eik̄z̄∂zū(µ2, z, k)dσ =

1

2

∫

∂D

ū(µ1, z,−k)(Λγ1 − Λγ2)u(µ2, z, k)dσ.

(4.12)

Assume the Claim, then take γ1 = γ2 to obtain

τ(µ1, k) =
−1

4πk̄

∫

∂D

zeikz∂zū(µ1, z,−k)dσ

and hence (4.7).
Proof of Claim: From Proposition 2.8, we have

eikz = u(µ2, z, k) − eikzR(µ2, k, z) (4.13)

eik̄z̄ = ū(µ1, z, k) − eik̄z̄R̄(µ1, z,−k), (4.14)

where R(µ1, k, z) ∈ W 1,p(C) and R(µ1, k, z) = O( 1
|z|). Inserting these ex-

pressions in the first member of (4.12) we obtain

∫

∂D

zeikz∂zū(µ1, z,−k)dσ −

∫

∂D

z̄eik̄z̄∂zū(µ2, z, k)dσ =

∫

∂D

u(µ2, z, k)z∂zū(µ1, z,−k)dσ −

∫

∂D

ū(µ1, z,−k)z̄∂zu(µ2, z, k)dσ−

∫

∂D

eikzR(µ2, z, k)z∂zū(µ1, z,−k)dσ +

∫

∂D

eik̄z̄R̄(µ1, z,−k)z̄∂zu(µ2, z, k)dσ.

We divide the proof of the claim in two Lemmata:

Lemma 4.8.
∫

∂D

u(µ2, z, k)z∂zū(µ1, z,−k)dσ −

∫

∂D

ū(µ1, z,−k)z̄∂zu(µ2, z, k)dσ =

1

2

∫

∂D

ū(µ1, z,−k)(Λγ1 − Λγ2)u(µ2, z, k)dσ.

Lemma 4.9.

−

∫

∂D

eikzR(µ2, z, k)z∂zū(µ1, z,−k)dσ+

∫

∂D

eik̄z̄R̄(µ1, z,−k)z̄∂zu(µ2, z, k)dσ = 0.
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Proof of Lemma 4.8: Since

z̄∂z = 1/2∂ν + i/2∂T

and
z∂z = 1/2∂ν − i/2∂T ,

we have, integrating by parts
∫

∂D

u(µ2, z, k)z∂zū(µ1, z,−k)dσ −

∫

∂D

ū(µ1, z,−k)z̄∂zu(µ2, z, k)dσ =

1

2

∫

∂D

u(µ2, z, k)Λγ1 ū(µ1, z,−k) −
1

2

∫

∂D

ū(µ1, z, k)Λγ2u(µ2, z,−k)−

i

2

∫

∂D

∂T (u(µ1, z,−k)u(µ2, z, k))dσ

The last integral vanishes from the fundamental theorem of Calculus. Since
Λγ is selfadjoint the lemma follows.

Proof of Lemma 4.9: Let DR be the disc of radius R centered at the
origin. Integration by parts in DR \ D gives

−

∫

∂D

eikzR(µ2, z, k)z∂zū(µ1, z,−k)dσ +

∫

∂D

eik̄z̄R̄(µ1, z,−k)z̄∂zu(µ2, z, k)dσ =

∫

∂DR

z

|z|
eikzR(µ2, z, k)∂zū(µ1, z,−k)dσ −

∫

∂DR

z̄

|z|
eik̄z̄R̄(µ1, z,−k)∂zu(µ2, z, k)dσ+

∫

DR\D

(
−∂z(e

ikzR(µ2, z, k)∂zū(µ1, z,−k)) + ∂z(e
ik̄z̄R̄(µ1, z,−k)∂zu(µ2, z, k))

)
dm

(4.15)

Since u is harmonic on the exterior of D, ∂z∂zu = 0, this together with
expressions (4.13) and (4.14) gives

∂z(e
ikzR(µ2, z, k)∂zū(µ1, z,−k)) = ∂zu(µ2, z, k)∂zū(µ1, z,−k) =

∂z(e
ik̄z̄R̄(µ1, z,−k)∂zu(µ2, z, k)),

Hence the last term in (4.15) vanishes. To finish the proof we estimate
∫

∂DR

z

|z|
eikzR(µ2, z, k)∂zū(µ1, z,−k)dσ = o(R) (4.16)

and ∫

∂DR

z̄

|z|
eik̄z̄R̄(µ1, z,−k)∂zu(µ2, z, k)dσ = o(R). (4.17)

ar R→ ∞. We know from (2.48) that

R(µ1, z, k) = ωµ1 + ω−µ1 + e−k(ωµ1 − ω−µ1)) ∈W 1,p(C).
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We also have, since f̄µ1 is antianalytic on the exterior of D,

∂zū(µ1, z, k) = 1/2(∂z f̄µ1 + ∂z f̄−µ1 + ∂zfµ1 − ∂zf−µ1) = 1/2(∂zfµ1 − ∂zf−µ1)

= 1/2e−ikz∂z(w̃µ11
− w̃µ2)

Since ∂z(w̃µ1 −w̃µ2) is analytic in the exterior of D and is in Lp(C), it decays
as O(1/|z|). Hence

|

∫

∂DR

z

|z|
eikzR(µ2, z, k)∂zū(µ1, z,−k)dσ| ≤

C(

∫

∂DR

|R(µ2, z, k)|
p)1/p(

∫

∂DR

1

|z|q
)1/q ≤ CR−1/p‖R(µ2, ·, k)‖Lp(∂DR)

From the trace theorem

‖R(µ2, ·, k)‖Lp(∂DR) ≤ C‖R‖W 1,p(C)

and (4.16) is proved. (4.17) can be proved in a similar way.

Remark 4.10. It follows from (4.8) that for every k ∈ C

|τ(µ1, k) − τ(µ2, k)| ≤
1

|k|
ρ‖u(µ1)‖

2

H
1
2 (∂D)

. (4.18)

On the other hand τ(µi, 0) = 0 and the Lipschitz bound given in Theo-
rem 3.12 imply that for every k

|τ(µi, k)| ≤ ec(1+|k||k| (4.19)

Thus, we can use (4.19) for |k| ≤ ρ
1
2 and (4.18) for |k| ≤ ρ

1
2 to obtain the

Hölder stability

|τ(µ1, k) − τ(µ2, k)| ≤ ρ
1
2 ec(1+|k|). (4.20)

Comparing this expression with Corollary 4.5 seems to indicate that there
is room to improvement in (4.4) for small |k|.

5 Stability of the complex geometric optics solu-

tions u(z, k).

In this section we consider two Beltrami coefficients µ1 µ2. Throughout the
section we will use j = 1, 2 and assume |µj | ≤ κχD and that [µj ]Cα ≤ Λ0.
We will assume that ρ = ‖Λγ1−Λγ2‖ ≤ 1

2 , which is not a loss of generality as
shown in the next section. The constant C may change at each occurrence,
if the change involves new parameters we will write them explicitly.
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Theorem 5.1. Let us denote uj(z, k) = uγj (z, k), given in (2.41). Then
for each k there exists a constant C such that

‖u1(z, k) − u2(z, k)‖L∞(D,dz) ≤
C(k)

| log(ρ)|a
. (5.1)

The exponent a = a(κ,Λ0, α) is given in (3.35).

Remark: A similar estimate can be proved for the solutions uγ−1 of

div(γ−1∇u) = 0,

which are constructed as u = iℜf−µ −ℑfµ, see (2.42).
From Proposition 2.8, we know that for a conductivity γj the correspond-

ing geometric optics solutions to the conductivity equation uj = uγj (z, k)
satisfies the pseudoanalytic equation in the k variable

∂kuj = −iτjuj , (5.2)

and can be written as

uj(z, k) = eδj(z,k). (5.3)

Moreover it follows from Theorem 3.8 that under our regularity conditions
on µ the exponent functions have asymptotics

δj(z, k) = ik(z + vj(z, k)) for fixed k (5.4)

δj(z, k) = ik(z + ǫj(z, k)) for fixed z (5.5)

where vj(z, k) is in L∞ and |ǫj(z, k)| ≤ C|k|−a.
The proof of Theorem 5.1 is inspired by the uniqueness proof in [7].

First we notice that the arguments leading to the uniqueness of the so-
called transport matrix in [7], which satisfies a Beltrami type equation in k,
can be applied directly to the functions u, that satisfy the pseudoanalytic
equation (5.2). This allows us to avoid the use of the transport equation.

It is not known whether uniqueness might be derived directly from the
equation (5.2) in k. However, there is additional information to exploit, since
the uj are functions of z, k with controlled asymptotics in both variables.
The asymptotics in z imply that the functions δj(z, k) have range C, see
Proposition 2.8. From the asymptotics in k and the equation (5.2) we obtain
that if τµ1 = τµ2 , for z 6= w and k 6= 0, then δ1(z, k) 6= δ2(w, k). Uniqueness
follows then easily from these two facts. For stability we need also the
first fact, which we restate as Proposition 5.2. However, we will obtain an
appropriate quantitative version in Proposition 5.3 below.

Proposition 5.2 ([7]). The functions δj(., k) for k 6= 0 have range C.
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Proposition 5.3. Let g(z, w, k) = δ1(z, k) − δ2(w, k). Then there exists a
constant C such that if k 6= 0 and |z−w| ≥ C

| log(ρ)|a , then g(z, w, k) 6= 0. In

particular, this gives that the conditions g(z, w, k) = 0 and k 6= 0 imply that
|z − w| ≤ C| log(ρ)|−a. The constant a = a(κ,Λ0) > 0 is given in (3.35).

We postpone the proof of Proposition 5.3 and prove first Theorem 5.1.
Proof of Theorem 5.1: Let z ∈ D. We want to estimate

|u1(z, k) − u2(z, k)|.

We write uj(z, k) = eδj(z,k). Since δ1 is onto there exists ω ∈ C such that
δ1(ω, k) = δ2(z, k) and hence u1(ω, k) = u2(z, k). Moreover, by Proposi-
tion 5.3 |ω − z| ≤ C| log(ρ)|−a. Then by Theorem 3.9 u1 is Lipschitz in
D(0, 2) with constant C(|k|). Thus,

|u1(z, k) − u2(z, k)| = |u1(z, k) − u1(ω, k)| ≤ C(|k|)C| log(ρ)|−a,

and we are done.

Let us turn to the proof of Proposition 5.3, which is the heart of the
matter. From (5.4) we can write for λ = z − w

g(z, w, k) = iλk + kǫ(k), (5.6)

where |ǫ(k)| ≤ 2C|k|−a. We split the proof of Proposition 5.3 in several
Lemmas. First we find the equation satisfied by g in the k variable.

Lemma 5.4. g satisfies the equation

∂kg = σg + E. (5.7)

Where, if τ denotes the scattering transform,

‖σ(z, ·)‖L∞(C) ≤ 2‖τ(µ2)‖L∞(C) ≤ 2 (5.8)

and E and its derivatives satisfy

|E(k)| ≤ ρeC(1+|k|), |DE(k)| ≤ eC(1+|k|) (5.9)

Proof: Since

∂kδj = ∂k(log uj) =
∂kuj

uj
= −iτ(µj , k)

uj

uj
= −iτ(µj , k)e

δj−δj

then the ∂k derivative of the function g satisfies the equation

∂kg = −i(τ(µ1) − τ(µ2))e
δ1−δ1 − iτ(µ2)(e

δ1−δ1 − eδ2−δ2)

which can be written as
∂kg = σg + E (5.10)
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where

σ = −iτµ2(k)[
eδ1−δ1 − eδ2−δ2

δ1 − δ2
]

E(k) = −i(τµ1 − τµ2)e
δ2−δ2 .

Since the function eiθ is globally Lipschitz for θ ∈ R, we can bound the
coefficients of this equation as |σ| ≤ 2|τ(µ2)| < 2 and since, as we know from
the previous section (4.4) |τ(µ1)−τ(µ2)| ≤ ρec|k|, we have also |E(k)| ≤ ρeck,
where ρ = ‖Λσ1 − Λσ2‖ only depending on ‖µ‖∞ ≤ κ < 1. Finally, since
τ(µ1), τ(µ2), δ1, δ2 are C∞ functions on the k variable with bounds given by
Theorem 3.12, (5.9) follows.

In the following lemma we use the equation (5.7) to decompose g suitably.
Let a and C given in (3.35). Then we define a function R : C → R by

R(λ) =

{
| λ
4C |−

1
a if |λ| ≤ 4C

1 otherwise
(5.11)

This choice guarantees for |k| ≥ R(λ) that in (5.6) we have |ǫ(k)| ≤ |λ|
2 . We

emphasize that R depends only on Λ0 and κ.

Lemma 5.5. There exists complex valued functions η = η(z, w, k) and S =
S(z, w, k) such that the function

F = e−ηg − S (5.12)

is analytic for k ∈ D(0, R(λ)) and for any θ < 1 there exists a constant C
such that

‖η‖L∞(C,dk) ≤ CR(λ) (5.13)

‖S‖L∞(C,dk) ≤ ρR(λ)eR(λ) ≤ ρeCR(λ) (5.14)

‖∇S‖L∞(C,dk) ≤ ρθeCR(λ) (5.15)

Proof: By Lemma 5.4 for fixed z and w, g satisfies in k the equation

∂kg = σg + E. (5.16)

Let us consider the disc D(0, R) centered at the origin 0 and radius R. Let
us define

η = P (σϕR)

S = P (eηEϕR)

where P is the Cauchy transform and ϕR ∈ C∞
0 (D(0, 2R)) is a cut-off func-

tion such that ϕR = 1 on D(0, R). Then the equation ∂kg = σg + E is
equivalent to

∂k(e
−ηg − S) = 0
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Therefore by Weyl’s lemma, the function

F (ω, z, k) = e−ηg − S

is holomorphic in D(0, R). Now, since η = P (σϕR),

|η(k)| = |P (σϕR)| ≤ |

∫

D2R

σ(t)

k − t
dt| ≤

∫

D2R

2

|k − t|
dt ≤ 8πR. (5.17)

Moreover, since the Beurling transform T maps Lp → Lp, we have that

‖∂kη‖Lp ≤ C(p)‖σϕR‖Lp ≤ C(p)πR
2
p . (5.18)

Now we turn to S. For the L∞ norm, since S = P (e−ηEϕR) it follows that

|S(k)| ≤ |

∫

D2R

e−η(t)E(t)

k − t
dt| ≤ ρec(1+R)e8πR

∫

D2R

dt

|k − t|
≤ ρeCRρ,

where we have used (5.9). To bound the derivatives of S recall that since
S = P (e−ηEϕR),

∂kS = e−ηEϕR.

Now, let us first notice that by (5.17), (5.9) and the compact support of ϕR

‖e−ηEϕR‖L∞(C) ≤ e4πRρeCR. (5.19)

Direct application of the boundedness of T would yield Lp(or BMO) bounds
for ∂kS. In particular for 1 < p <∞

‖∂kS‖Lp = ‖T (e−ηEϕR)‖Lp ≤ C‖e−ηEϕR‖Lp ≤ ρR2/peCR ≤ ρeCR. (5.20)

However we need an L∞ bound. The crucial observation is that combining
estimates (5.17), (5.18), ( 5.19) with (5.9), we obtain that for every 1 < p <
∞

‖e−ηEϕR‖W 1,p(C) ≤ R
2
p (e4πReCR + ρC(p)π) ≤ eCR, (5.21)

where C = C(p, κ). Since T is a Calderón -Zygmund integral and also a
Fourier multiplier it preserves the spaces W 1,p and hence

‖∂kS‖W 1,p ≤ eCR. (5.22)

Now we intend to use an interpolation argument to combine estimates (5.20)
and (5.22). Let 0 ≤ θ ≤ 1 and 1 < p < ∞. Then, for example, by complex
interpolation ([12]) or by the wavelets characterization of Sobolev spaces
(see [20]) we have that

‖∂kS‖W θ,p ≤ ρ(1−θ)eθCR.
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Finally choosing θ > 2
p , W θ,p →֒ L∞ and estimate (5.15) follows with any

θ < 1. The proof is concluded.

Remark Let us go back for a moment to the uniqueness proof in [7]. If
ρ = 0, S = 0 and we would have g = eηF . Furthermore by the asymptotic
behaviour of g in (5.6) if z 6= ω

F (k) ∼ (z − ω)keη in ∂D(0, R(λ)) (5.23)

Thus, by the argument principle F has a unique 0. Since the zeros of g are
those of F the proof of uniqueness is concluded. This strategy faces two
obstacles in the stability setting. First, to have something like (5.23) we
need |z − ω| to be sufficiently big in comparison to the size of S (and hence
to the size of ρ). The second obstacle is how to pass information from F to
g = eη(F + S).

The next proposition handles the first obstacle:

Proposition 5.6. Let a given in (3.35). Then there exists a constant C1

such that if |λ| ≥ C1| log(ρ)|−a, then F (w, z, k) = 0 only when k = 0.

Proof: We start by proving that F (k) can not vanish in the set |k| ≤ R(λ)
where it is holomorphic.

We will characterize the zeros of F by proving that F is homotopic in the
k variable to e−ηλk in ∂D(0, R(λ)), where R(λ) was defined in Lemma 5.5.
Let |k| = R(λ), and 0 ≤ t ≤ 1, then

|tF (k) + (1 − t)e−ηiλk| = |te−η(g − iλk) + e−ηiλk − tS|

≥ e−‖η‖∞ |
λ

2
k| − max

|k|=R
|S(k)|.

(5.24)

Suppose that (5.24) is strictly positive. Then deg(F,D(0, R(λ)), 0) =
deg(eηλk,D(0, R(λ)), 0) = 1 and being holomorphic, F would have a unique
zero at k = 0. Therefore, the proof of the proposition will be finished if the
following claim holds:
Claim: Under the assumptions of the proposition

4(max
|k|=R

|S(k)|)e‖η‖∞ ≤ |λR(λ)|. (5.25)

To see that this is the case, we observe that Lemma 5.5 implies that

4(max
|k|=R

|S(k)|)e‖η‖∞ ≤ ρeCReCR = eCRρ.

Thus, to attain (5.25) it suffices that

ρ ≤ |λ|e−CR(λ)). (5.26)
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Since ρ ≤ 1
2 and for an appropriate constant C we have that |λ| ≥ e−CR(λ).

Therefore the claim follows for a suitable constant C1.
Finally if |k| ≥ R(λ), |F (k)| ≥ e−CR|λk

2 | − ρeCR which again by (5.26)
never vanishes.

To handle the second obstacle, how to pass information from F to g =
eη(F + S), it turns out that since F is analytic, from its asymptotics we
gain more precise information that just the number of zeroes. Namely, in
the following two lemmas we prove that, near the origin, it behaves basically
as λk.

Lemma 5.7. Let λ be such that |λ| = |z − w| ≥ C1| log ρ|−a, for C1 given
in Proposition 5.6. There exists a constant M0 > 0 such that any function
F (w, z, k) as in Lemma 5.5, can be written as

F (w, z, k) = λkeν(k), (5.27)

for some function ν(k) = ν(w, z, k) which on |k| ≤ R(λ) is holomorphic and
satisfies

|ν(k)| ≤M0R(λ). (5.28)

Proof: The function F (w, z, k) = e−ηg−S is analytic in D(0, R), therefore
we might use the maximum principle. We will use the bounds

‖η‖L∞(D(0,R)) ≤ CR(λ) (5.29)

‖S‖L∞(D(0,R)) ≤ ρeCR(λ). (5.30)

On one hand, if |k| = R(λ), g(w, z, k) = iλk+ kǫ(k) with |ǫ(k)| < |λ|/2 and
we obtain (see the claim in the proof of Proposition 5.6)

|F (k)| ≤
3

2
|λ||k|e‖η‖∞ + |S(k)| ≤ |λ|R(λ)eM0R(λ)

On the other hand F is analytic and from Proposition 5.6, only vanishes
at k = 0 for |λ| > C1

| log(ρ)|a . Then for such a λ, F (k)
k is holomorphic as well

and F (k)
k 6= 0 for every k. Therefore there exists a ν(k) analytic, such that

F (k) = λkeν(k).

Moreover, by the maximum principle

sup
k∈D(0,R)

|
F (k)

k
| = sup

|k|=R
|
F (k)

k
| ≤ |λ|eM0R(λ))

This proves that |ν(k)| ≤ CR if |k| < R.

Let us denote

Fλ = {F ∈ H(D(0, R(λ)) : F (k) = λkeν(k), |ν(k)| < M0R(λ)}. (5.31)

The next lemma describes two key properties of the class Fλ.

37



Lemma 5.8. Let F ∈ Fλ, then there exists a constant d such that

i) F−1(D(0, δ)) ⊂ D(0, δeM0R

|λ| ).

ii) inf |k|<d |F
′(k)| > 1

2 |λ|e
−M0R(λ).

Proof: Part i) follows directly from the definition of Fλ. Let k be such
that |F (k)| < δ. Then,

|F (k)| = |λkeν(k)| < δ ⇒ |k| < |
δe−ν(k)

λ
| ≤

δeM0R

|λ|
.

For part (ii) the definition of Fλ implies that

|F ′(k)| = |λeν(k) + λkeν(k)ν ′(k)| ≥ e−M0R|λ||1 + ν ′(k)k|. (5.32)

Let |k| ≤ d1 ≤ R(λ)
2 . Since ν(k) is analytic we can use Cauchy integral

formula to estimate

|ν ′(k)| ≤ |
1

2πi

∫

∂D(0,R)

ν(ω)

(ω − k)2
| ≤

4M0(R)R

R2
= 4M0

Then |ν ′(k)k| < 4M0|k| < 1/2 if |k| < 1
8M0

and this implies

|1 + ν ′(k)k| ≥
1

2
. (5.33)

We define d = inf{d1,
1

8M0
}.

Inserting (5.33) into (5.32) yields that for |k| ≤ d, |F ′(k)| >
1
2 |λ|e

−M0R(λ).

The idea to conclude the proof comes from the fact that a linear function
λk can not be intersected twice by a function S, which is sufficiently small in
W 1,∞ and with S(0) = 0. By Lemma 5.8 one expects the same for F ∈ Fλ,
to see this we show first that if (−S) and F meet they must do it in a
neighborhood of the origin.

Lemma 5.9. Let H = F + S. Then there exists C2 such that if |λ| >
C2| log ρ|−a then the set

Z(H) = {k : H(k) = 0}

is contained in D(0, d), d is given in the previous Lemma.

Proof: If k is a zero of H, then F (k) = −S(k). But we know from
Lemma 5.5 that

‖S(k)‖L∞(C,dk) ≤ ρeCR.
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Thus, it follows that

Z(F + S) ⊂ F−1(D(0, ρeCR)) ⊂ D(0,
ρ

|λ|
eCR)

where the last inequality follows from Lemma 5.8 part i). Therefore we need
λ to satisfy that

ρ ≤ d|λ|e−CR (5.34)

which can be attained as (5.26).

Next, we prove that the jacobians DF and (−DS) can not meet near 0.

Proposition 5.10. There exists C3 such that for |λ| > C3| log(ρ)|−a,
detDH(k) 6= 0 for every |k| < d

Proof: Choose first |λ| > C2| log(ρ)|−a. We have

detDH(k) = |∂kH|2 − |∂kH|2 ≥ |F ′|2 − |DS|2.

Let |k| < d. Then, Lemma 5.8 ii) and Lemma 5.5 condition (5.15) imply
that

detDH(k) ≥ |λ|e−M0R(λ) − ρ2θeCR(λ), (5.35)

which is not zero if ρ2θ < |λ|e−(M0+C)R(λ). By choosing a new constant C3

the Proposition is proved.

Let us put all our knowledge together and conclude by a degree argu-
ment:

End of the proof of Proposition 5.3: Choose λ ≥ C3
| log(ρ)|a . By Lemma 5.9

the zeros of g = eηH belong also to D(0, d). Now, since

g(w, z, k) = iλk + ǫ(k)k

for |k| = R(λ), g(w, z, k) is homotopic to λk, then

deg(g,D(0, R(λ)), 0) = 1

and since g = eη(F + S) with eη continuous

deg(F + S,D(0, R(λ)), 0) = 1

From Lemma 5.9 the zeroes of H = F + S are in D(0, d) where det(H) 6= 0.
Thus, since H ∈ C1 we can express the Brouwder degree by the formula

1 = deg(H, ∂B(0, R(λ)), 0) =
∑

ki∈Z(H)

Ind(H, ki) =
∑

ki∈Z(H)

signdetDH(ki).

Suppose that there exists more that one zero. This would mean, that there
exists ki ∈ Z(H) \ {0} such that detDH(ki) < 0 and, by continuity of the
determinant, there would exists t ∈ (0, 1) such that det(H(tk2)) = 0. We
arrive to a contradiction with proposition 5.10. Thus if |λ| > C3| log ρ|−a

there is a unique zero of g and the proof is concluded with C = C3
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6 The proof of Theorem 1.1

Let γj be two conductivities satisfying the ellipticity (I) and regularity con-
ditions (II) in Theorem 1.1. We start by showing that there is no loss of
generality assuming that the γj − 1 are compactly supported in Ω and that
Ω = D. The key point is the stable recovery of the values of the conduc-
tivities on ∂Ω from the Dirichlet to Neumann map. This is the content of
the following proposition which follows easily from [14]. We would like to
thank R. Brown for this personal communication. The theorem is stated for
hypothesis adapted to our conductivities.

Proposition 6.1 ([14]). Let Ω be a Lipschitz domain and γ1, γ2 two con-
ductivities in C(Ω̄) Then there exists C = C(Ω, κ) such that

‖γ1 − γ2‖L∞(∂Ω) ≤ C‖Λγ1 − Λγ2‖H1/2(∂Ω)→H−1/2(∂Ω) (6.1)

The stable boundary recovery has been studied in several works, for
instance for γj ∈ W 1,p, some p > 2 and Ω a Lipschitz domain, see [3] and
[27] and for continuous conductivities and smooth domains in [35]. By a
combination of Proposition 6.1 and the bilinear weak formulation of the
Dirichlet to Neumann map we prove that we can reduce to the case where
γj − 1 compactly supported in D.

Theorem 6.2. Let Ω be a Lipschitz domain, Ω ⊂⊂ D. Let us denote

ρ = ‖Λγ1 − Λγ2‖H1/2(∂Ω)→H−1/2(∂Ω)

There exist extensions γ̃j of γj such that

‖γj‖Cα(C) < CΛ0 (6.2)

‖Λγ̃1 − Λγ̃2‖H1/2(∂D)→H−1/2(∂D) ≤ Cρ (6.3)

supp(γ̃j − 1) ⊂ D. (6.4)

Proof: We use the Whitney extension operator E0, see [32, page 174].
We consider the closed set F = ∂Ω ∪ (C \ D(r0)) for some r0 < 1 such that
Ω ⊂⊂ D(r0) and take the functions, defined on F , given by

fj(z) =

{
γj for z ∈ ∂Ω

1 for z ∈ C \ D(r0).

We take the Whitney extensions E0(fj) and define the extended conductiv-
ities as

γ̃j(z) =

{
γj(z) for z ∈ Ω

E0(fj) for z ∈ C \ Ω
(6.5)

The condition (6.2) follows from the continuity of Whitney extension on Cα,
0 < α < 1.
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From the linearity of Whitney extension we have

‖γ̃1 − γ̃2‖L∞(D\Ω) = ‖E0(f1 − f2)‖L∞(D\Ω) ≤ ‖γ1 − γ2‖L∞(∂Ω) (6.6)

By (6.1) we have
‖γ̃1 − γ̃2‖L∞(D\Ω) ≤ Cρ. (6.7)

Now we are in conditions to prove (6.3). Let ϕ0 ∈ H
1
2 (∂D) and let ũj ∈

H1(D), for j = 1, 2, be the solutions to

{
∇ · (γ̃j∇ũj) = 0

ũj |∂D = ϕ0.
(6.8)

Consider u2 be the solution to

{
∇ · (γ2∇u2) = 0

u2|∂Ω = ũ1

(6.9)

and declare
ṽ2 = u2χΩ + ũ1χD\Ω.

The idea is that if ρ = 0, in fact ṽ2 = ũ2. Thus, it is natural to conceive
that

∫
D
|∇(ṽ2 − ũ2)|

2 might be controlled in terms of ρ. In fact,

∫

D

|∇(ṽ2− ũ2)|
2 ≤ c

∫

D

γ̃2〈∇(ṽ2− ũ2),∇(ṽ2− ũ2)〉 =

∫

D

γ̃2〈∇ṽ2,∇(ṽ2− ũ2)〉.

Adding and subtracting γ̃1∇ũ1 we get,

∫

D

|∇(ṽ2 − ũ2)|
2 ≤ |

∫

D

〈γ̃1∇ũ1,∇(ṽ2 − ũ2)〉|

+ |

∫

Ω
〈γ1∇ũ1 − γ2∇u2,∇(ṽ2 − ũ2)〉|

+ |

∫

D\Ω
(γ̃2 − γ̃1)〈∇ṽ2,∇(ṽ2 − ũ2)〉|.

(6.10)

The first term vanishes by (6.8). For the second we use the definition of ρ.
Namely,

|

∫

Ω
〈γ1∇ũ1 − γ2∇u2,∇(ṽ2 − ũ2)〉|

= |〈(Λγ1 − Λγ2)(ũ1∂Ω), (ṽ2 − ũ2)∂Ω〉|

≤ ρ‖ṽ2 − ũ2‖H1(Ω)‖ũ1‖H1(D)

≤ ρ‖∇(ṽ2 − ũ2)‖L2(D)‖ũ1‖H1(D)

(6.11)
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Here the Dirichlet to Neumann mappings Λγj are taken on ∂Ω. Finally,
from (6.7),

∫

D\Ω
(γ̃2 − γ̃1)〈∇ṽ2,∇(ṽ2 − ũ2)〉 ≤ ‖γ̃2 − γ̃1‖L∞(D\Ω)‖∇ṽ2‖L2(D\Ω)‖∇(ṽ2 − ũ2)‖L2(D)

≤ ρ‖∇(ṽ2 − ũ2)‖L2(D)‖ũ1‖H1(D).
(6.12)

Then (6.10), (6.11), (6.12) together yield that

(∫

D

|∇(ṽ2 − ũ2)|
2

)1/2

≤ ρ‖ũ1‖H1(D) ≤ ρ‖ϕ0‖
H

1
2 (∂D)

. (6.13)

Our last task is to compare the Dirichlet to Neumann mappings on ∂D,
Λγ̃j . Let ϕ0, ψ0 ∈ H

1
2 (∂D) and ψ ∈ H1(∂D) an extension of ψ0. Then

〈(Λγ̃1 − Λγ̃2)(ϕ0), ψ0〉 =

∫

D

〈γ̃1∇ũ1 − γ̃2∇ũ2,∇ψ〉 (6.14)

Now we want to add and subtract (γ2χΩ + γ̃1χD\Ω)∇ṽ2. Since we have

|

∫

D

〈γ̃1∇ũ1 − (γ2χΩ + γ̃1χD\Ω))∇ṽ2,∇ψ〉| = |

∫

Ω
|〈γ1∇ũ1 − γ2∇u2,∇ψ〉|

= |〈(Λγ1 − Λγ2)(u1∂Ω), ψ∂Ω〉| ≤ ρ‖ũ1‖H1(D)‖ψ‖H1(D)

≤ ρ‖ϕ0‖
H

1
2 (∂D)

‖ψ0‖
H

1
2 (∂D)

(6.15)
We can obtain

|〈(Λγ̃1 − Λγ̃2)(ϕ0), ψ0〉| ≤ ρ‖ũ1‖H1(D)‖ψ‖H1(D)

+ |

∫

D

〈(γ2χΩ + γ̃1χD\Ω)∇ṽ2 − γ̃2∇ũ2,∇ψ〉| ≤

(6.16)
The second term is majorized by

|

∫

Ω
〈γ2〈∇(ṽ2 − ũ2),∇ψ〉| + |

∫

D\Ω
〈γ̃2∇ũ2 − γ̃1∇ũ1,∇ψ〉|, (6.17)

which using (6.7) and (6.13) is controlled by

Cρ‖ũ1‖H1(D)‖ψ‖H1(D) ≤ Cρ‖ϕ0‖
H

1
2 (∂D)

‖ψ0‖
H

1
2 (∂D)

. (6.18)

Therefore we arrive to

|〈(Λγ̃1 − Λγ̃2)(ϕ0), ψ0〉| ≤ Cρ‖ϕ0‖
H

1
2 (∂D)

‖ψ0‖
H

1
2 (∂D)

, (6.19)

which is equivalent to (6.3). The proof is concluded
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We now come back to the complex geometric optic solutions arising from
µj compactly supported in D = Ω. So far we have obtained the stability of
the complex geometric optics solutions, this suffices for uniqueness. But for
stability we need to go further and obtain the stability of the derivatives of
the functions fµ, since the Beltrami coefficients are

µ = ∂zfµ/∂zfµ.

By using an interpolation argument we extend the stability in the L∞ norm
proved in Theorem 5.1 to stability in the W 1,∞ norm. We still require ρ ≤ 1

2 .
This requirement will be removed at the end of the proof.

Proposition 6.3. Let fµ1 , fµ2 be the complex geometric optic solutions.
Then there exist constants a = a(κ,Λ0, α) and C(|k|) = C(κ,Λ0, α, |k|) such
that

‖fµ1(z, k) − fµ2(z, k)‖W 1,∞(D,dz) ≤ C(|k|)| log ρ|−a

Proof: Let us start by noticing that, by (2.41), (2.42), the stability of
the geometric optic solutions for both Beltrami and conductivity equations
are equivalent. Thus, Theorem 5.1 implies that

‖fµ1(z, k) − fµ2(z, k)‖L∞(D,dz) ≤ C| log(ρ)|−a. (6.20)

On the other hand by Theorem 3.9 we know that for ǫ < α− 1

‖fµ1(z, k) − fµ2(z, k)‖C1+ǫ(D,dz) ≤ C(|k|) (6.21)

Let us consider the function U = (fµ1(z, k) − fµ2(z, k))ϕ where ϕ ∈
C∞

0 (D(0, 2)) is a cut-off function ϕχD = 1. Then for every 1 < p < ∞,
(6.21) and (6.20) imply that

‖U‖W 1+ǫ,p(C,dz) ≤ C(|k|) and, ‖U‖Lp(C,dz) ≤ C(|k|)| log ρ|−a, (6.22)

which calls for an interpolation argument. By interpolation between Lp

and W 1+ǫ,p we can obtain estimates for ‖U‖W θ(1+ǫ),p and consequently for
‖DU‖W θ(1+ǫ)−1,p . If we further require that θ(1 + ǫ) − 1 > 2

p , by Sobolev
embedding we also control U in L∞. Namely under these conditions we have

‖DU‖L∞(D,dz) ≤ C‖DU‖W θ(1+ǫ)−1,p(C,dz) ≤ C‖U‖W θ(1+ǫ),p(C,dz)

≤ ‖U‖1−θ
Lp ‖U‖θ

W 1+ǫ,p ≤ | log(ρ)|−a(1−θ)C(|k|).
(6.23)

Since we can take any 1 < p <∞ the estimate is valid for any θ < 1
1+ǫ .

Proof of Theorem 1.1
By Theorem 6.2 we can reduce to conductivities γj such that γj − 1 are

compactly supported in Ω = D. It is enough to control the difference of the
Beltrami coefficients µj , since γ = µ+1

1−µ implies that

‖γ1 − γ2‖L∞(D) ≤
4

1 − κ2
‖µ1 − µ2‖L∞(D). (6.24)
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We can also assume that ρ ≤ 1
2 . Otherwise ρ ≥ 1

4κ‖µ1 − µ2‖L∞(D) and the
claim follows. Therefore Proposition 6.3 can be applied. We only need the
complex geometric optics solutions with fixed k = 1. Thus in the rest of the
proof we take fµ(z) = fµ(z, 1). The stability of the Beltrami coefficients is
reduced to the stability of the derivatives. Since, from the definition of the
Beltrami coefficients,

‖µ1 − µ2‖L∞(D) = ‖∂zfµ1/∂zfµ1 − ∂zfµ2/∂zfµ2‖L∞(D). (6.25)

Now we use the regularity of the solutions. By Theorem 3.9 there exists a
uniform constant m > 0 depending on Λ0 such that for every µ

inf
D

|∂zfµ| ≥ m,

and by (6.21) there exists another uniform constant

max
D

|Dfµ| ≤M

Thus,

‖∂zfµ1/∂zfµ1 −∂zfµ2/∂zfµ2‖L∞(D) ≤
M

m
‖Dfµ1 −Dfµ2‖L∞(D) ≤ C| log(ρ)|−a

(6.26)
and the theorem is proved.

7 Appendix. Proof of theorem 3.10:

For the convenience of the reader we give a proof of

Theorem 7.1. Let µ such that |µ(z)| ≤ κ < 1 and µ ∈ Cα(G) for a domain
G ⊂ C with ‖µ‖Cα < Λ0. Given a function ω such that:

• (i) ω is a solution in W 1,p
loc (G), p > 2, of the equation

∂zω = µ∂zω (7.1)

• (ii) For any G′ ⊂⊂ G, there exists K = K(G′) such that

sup
z∈G′

|ω(z)| ≤ K. (7.2)

Then the following properties hold:

• (I) If β is such that 0 < β < α and D ⊂⊂ G′. Then there exists a
Λ1 = Λ1(κ,K,D, β) such that

‖∂zω‖Cβ(D) + ‖∂zω‖Cβ(D) ≤ Λ1. (7.3)
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• (II) Assume that ω is a quasiconformal homeomorphism in C. Then
for any D ⊂⊂ C, there exists a constant J = J(K,κ,Λ0, D) such that

inf
z∈D

(|∂zw(z)|2 − |∂zw(z)|2) = inf
z∈D

(Jω(z)) > J. (7.4)

Proof: Let us start with the proof of (I). Let be d, to be chosen later on,
with the condition 2d < d(D, ∂zG

′). Then for z0 ∈ D and 0 < |z − z0| < 2d
take

g(z) = g(z; z0) =
ω(z) − ω(z0) − µ(z0)(ω(z) − ω(z0))

z − z0

This g is a solution in 0 < |z − z0| < 2d of the equation

∂zg = µ0∂zg +B0, (7.5)

where

µ0(z) = µ0(z; z0) =
(µ(z) − µ(z0))z̄

(1 − µ(z0)µ(z))z
(7.6)

and

B0 =
(µ(z) − µ(z0))

(1 − µ(z0)µ(z))z
(7.7)

We extend µ0 and B0 by zero in C \ D(z0, 2d).
Now, in order to choose d = d(Λ0, κ, α), consider C(α) = ‖T‖Lqα→Lqα

where qα = 2/(1 − α), and ǫ < 1/C(α) and then, by the uniform Hölder
condition for any µ in the hypothesis of the theorem, take 2d such that for
any |z − z0| < 2d

|
µ(z) − µ(z0)

1 − κ2
| < ǫ (7.8)

This choice of d makes
sup
z,z0

|µ0(z; z0)| ≤ ǫ

From the Hölder condition we also have B0(·; z0) ∈ Lq, for q < qα, with
norm uniformly bounded with respect to z0 ∈ D and depending only on Λ0,
κ and q.

From the representation theorem for solution of equation (7.5) we can
write

g(z) = es(z)f(F (z)), for 0 < |z − z0| < 2d.

Where |s(z)| < S1 and |s(z) − s(z′)| ≤ S2|z − z′|β, with β < α because of
(7.8 ) and the choice of ǫ. Here S1 and S2 only depend on κ1 and Λ0.

The function t = F (z) is a Beltrami normalized one to one solution on
C such that

|t− t′| = |F (z) − F (z′)| ≤ S3(R, κ1,Λ0)|z − z′|β , (7.9)
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for β as above and z, z′ ∈ D(R). Also the inverse function z = F−1(t)
satisfies a similar estimate

|z − z′| = |F−1(t) − F−1(t′)| ≤ S4(R, κ1,Λ0)|t− t′|β (7.10)

for β as above and z, z′ ∈ D(2R).
The function f is analytic at least on F (0 < |z − z0| < 2d). If we write

f(t) = e−s(F−1(t))g(F−1(t)) we see that for t0 = F−1(z0)

|f(t)| ≤ eS1
1 + κ

1 − κ
|
ω(F−1(t)) − ω((F−1(t0))

F−1(t) − F−1(t0)
| ≤ C|t− t0|

−1/β (7.11)

in a neighborhood of t0. The last inequality follows from (7.9) and the
boundedness of ω.

It follows that t0 is not an essential singularity. We may use the argument
principle to see that t0 is a removable singularity. In fact, let us consider a
oriented circle Γ = {|t − t0| = r} for small r such that f has no zeroes on
{0 < |t− t0| < r}. Then, since ω and F−1 preserve the orientation and F−1

is a homeomorphism, we have that the variation of the argument along Γ

∆Γ log f(t) = ∆Γ log
ω(z) − ω(z0)

z − z0
≥ 0 (7.12)

where we understand z = F−1(t). Hence t = t0 is not a pole of f and this
shows that g can be extended to a solution of (7.5) on |z − z0| < 2d.

From (7.9) and (7.10) there exist d′ and d0 such that D(t0, 2d
′) ⊂

F (D(z0, d)) and F−1(D(z0, d
′)) ⊂ D(z0, d0).

From the maximum principle and (7.11) we have

|f(F (z))| ≤ eS1C(κ)
2K(G′)

d
(7.13)

for z ∈ D(z0, d) and hence

|f(t)| ≤ eS1C(κ)
2K(G′)

d
= K1 (7.14)

for t ∈ D(t0, 2d
′).

From Cauchy formula we have

|f ′(t)| ≤ K1/d
′ (7.15)

for t ∈ D(t0, d
′).

Then, from the representation, we have

|g(z) − g(z0)| = |es(z)f(F (z)) − es(z0)f(F (z0))|

≤ eS1K1|s(z) − s(z0)| + eS1
K1

d′
|z − z0|

β ≤ K3|z − z0|
β,
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if |z − z0| < d0. Hence

|ω(z)−ω(z0)−µ(z0)(ω(z) − ω(z0))− g(z0)(z− z0)| ≤ K3|z− z0|
1+β (7.16)

This is equivalent to

w(z) = w(z0)+
µ(z0)g(z0; z0)

1 − |µ(z0)|2
(z − z0)+

g(z0; z0)

1 − |µ(z0)|2
(z−z0)+O(|z−z0|

1+β)

(7.17)
From the above expression, ω is differentiable for every z0 ∈ D and it satisfies
the equation everywhere, moreover, for any z0 ∈ D

|∂zω(z0)| < |∂zω(z0)| ≤ C = C(Λ0, κ,K(G′)). (7.18)

It remains to prove the Hölder condition. To attain this take z1 and z2
in D, with |z1 − z2| < d0, then from (7.18)

|w(z1)−w(z2)+∂zω(z1)(z2 − z1)+∂zω(z1)(z2−z1)| ≤ K3|z−z0|
1+β (7.19)

Changing the roles of z1 and z2 in (7.19), using both estimates and the
triangle inequality we obtain

||∂zω(z1) − ∂zω(z2)| − |∂zω(z1) − ∂zω(z2)|| ≤ K4|z1 − z2|
β.

Then using the equation we have

|∂zω(z1) − ∂zω(z2)| = |µ(z1)∂zω(z1) − µ(z2)∂zω(z2)|

≤ |µ(z1)(∂zω(z1) − ∂zω(z2))| + |µ(z1) − µ(z2)||∂zω(z2)|

Hence

(1 − κ)|∂zω(z1) − ∂zω(z2)| ≤ K4|z1 − z2|
β + CΛ0|z1 − z2|

α

where C is the constant in (7.18).
We have proved the β-Hölder condition for β < α in D(z0, d0) for any

z0 ∈ D. Since D is compact a covering argument extends the condition to
D, with constants now depending also on D itself. This finishes (I).

If ω is an homeomorphism as in (II), we have equality in (7.12), for Γ
the circle |t − t0| = r and any r < 2d ( otherwise ω(F (Γ)) would have
selfintersections). Then there are no zeros of f in |t − t0| < 2d. From the
condition on ω, there exists a constant d1 > 0, only depending on κ, such
that

d1 = min{|ω(z) − ω(z0)| : |z − z0| = d}.

Hence, from the minimum principle,

|f(F (z0))| ≥ e−S1
1 − κ

1 + κ

d1

d
= K5,
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and
|g(z0; z0)| > e−S1K5

Now from (7.17) we have, for any z0 ∈ D,

|∂zω(z0)| = |
g(z0; z0)

1 − |µ(z0)|2
| ≥ J > 0.
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