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Abstract

The structured tensor-product approximation of multi-dimensional nonlocal oper-
ators by a two-level rank-(r1, ..., rd) decomposition of related higher-order tensors is
proposed and analysed. In this approach, a construction of the desired approximant to
a target tensor is a reminiscence of the Tucker-type model, where the canonical com-
ponents are represented in a fixed (uniform) basis, while the core tensor is given in the
canonical format. As an alternative, the multi-level nested canonical decomposition is
presented. The complexity analysis of the corresponding multi-linear algebra indicates
almost linear cost in one-dimensional problem size. The existence of a low Kronecker
rank two-level representation is proven for a class of function-related tensors. In partic-
ular, we apply the results to d-th order tensors generated by the multi-variate functions

1
|x|2 , 1

|x−y| , e−α|x−y|, e−|x−y|
|x−y| and |x|λsinc(|x| |y|) with x, y ∈ R

d.

AMS Subject Classification: 65F30, 65F50, 65N35, 65F10
Key words: structured matrices, H-matrices, Kronecker products, higher-order tensors,
multi-dimensional integral operators, Newton potential, matrix-valued functions.

1 Introduction

There is a wide range of traditional as well as an increasing number of modern applications
involving quantities described by higher-order tensors, which are, in fact, the higher-order
analogues of vectors and matrices. Naive numerical implementation of the corresponding
multi-linear algebra suffers from the so-called “curse of dimensionality” which can be relaxed
by invoking various Kronecker product formats to represent the fully populated tensors which
arise. As a result of over more than thirty year developments, nowadays we have several
well-established concepts of data-sparse approximation to higher-order tensors, which are
based either on the so-called Tucker model [38] or on the CANDECOMP/PARAFAC (CP)
decomposition [3, 24]. There are numerous successful applications of the Tucker and CP
models in higher-order statistics, independent component analysis, chemometrics, telecom-
munications, signal processing, data mining, mathematical biology, complexity theory and
in many other fields (cf. [35] and references therein).
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Given a d-th order tensor A = [ai1...id] ∈ C
I , defined on the product index set I =

I1 × ...× Id, the Tucker model deals with the following approximation

A(r) =

r1∑
k1=1

...

rd∑
kd=1

bk1...kd
×1 V

(1)
k1

×2 ...×d V
(d)
kd

≡
r∑

k=1

bk

d⊗
�=1

V
(�)
k�

≈ A, (1.1)

where the Kronecker factors V
(�)
k�

∈ CI� (k� = 1, ..., r�, � = 1, ..., d) are complex vectors of
the respective size n� = |I�|, r = (r1, ..., rd) (the Tucker rank) and bk1...kd

∈ C (cf. Fig. 1.1
visualising (1.1) for d = 3). Here and in the following we use the notation ×� to represent the

canonical tensor U ≡ {ui}i∈I = b×1U
(1) ×2 ...×dU

(d) ∈ CI , defined by ui1...id = b ·u(1)
i1

· · ·u(d)
id

with U (�) ≡ {u(�)
i�
}i�∈I� ∈ CI� .

Without loss of generality, we assume that the vectors {V (�)
k�

} are orthonormal, i.e.,〈
V

(�)
k�
, V (�)

m�

〉
= δk�,m�

, k�, m� = 1, ..., r�; � = 1, ..., d,

where δk�,m�
is Kronecker’s delta. In the following, we denote by T r the set of tensors

parametrised by (1.1) (i.e., V(�) = [V
(�)
1 V

(�)
2 ...V

(�)
r� ] is an orthogonal matrix for � = 1, ..., d).

We use the shortening in notation

A(r) = B ×1 V(1) ×2 V(2)...×d V(d), (1.2)

with tensors V(�) ∈ RI�×r� and B = {bk} ∈ Rr1×...×rd, where the latter is called the core
tensor. Notice that the representation of elements A ∈ T r is still not unique due to the
rotational uncertainty in the core tensor B (cf. Remark 2.5).
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Figure 1.1: Visualisation of the Tucker model for a third-order tensor.

The canonical CP model is a simplified version of a general decomposition (1.1) (i.e.,
without orthogonality constraint) defined by

A(r) =

r∑
k=1

bk ×1 V
(1)
k ×2 ...×d V

(d)
k ≡

r∑
k=1

bk

d⊗
�=1

V
(�)
k ≈ A, bk ∈ C, (1.3)

where the Kronecker factors V
(�)
k ∈ CI� are unit-norm vectors. Indeed, the decomposition

(1.3) can be viewed as a special case of the Tucker model (1.1), where r = r1 = ... = rd and
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bk1...kd
= 0 unless k1 = k2 = ... = kd, i.e., only the super-diagonal of B = {bk} is non-zero.

In this case we say B = diag{b1, ..., br} with bk = bk...k.
The trilinear CP-decomposition is visualised in Fig. 1.2. The minimal number r in the
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Figure 1.2: Visualisation of the CP-decomposition for a third-order tensor.

representation (1.3) is called the Kronecker rank of a given tensor A(r); under moderate
assumptions, the corresponding decomposition is unique (cf. [29, 30]). We denote by Cr

the set of component-wise normalised tensors parametrised by (1.3) and by C⊥
r ⊂ Cr the

corresponding subset of orthogonally decomposable tensors (i.e., the matrices [V
(�)
1 , ..., V

(�)
r ]

(� = 1, ..., d) are orthogonal). If we let r = r�, n = n� (� = 1, ..., d) then both the CP- and
Tucker models require only drn numbers to represent the canonical components plus r (resp.
rd) memory units for the core tensor. Notice that the Tucker decomposition can be viewed
as CP representation with rCP = r1 · · · rd.

Methods of optimised data-sparsity discussed in the present paper are mainly oriented
toward FEM/BEM applications for partial differential and integral equations in Rd, many-
particle modelling based on the electronic Schrödinger [41] and Hartree-Fock equations,
evolution Schrödinger equations [32, 27] (molecular dynamics), financial mathematics and
stochastic PDEs [33, 34], operator equations in Banach spaces [12, 13] etc.. In such applica-
tions the parameter d is usually associated with the spatial dimension.

The feasibility of any tensor decomposition method is naturally limited by:
(a) robustness and complexity of computing the canonical components;
(b) data-sparsity and complexity of tensor-tensor operations;
(c) its range of applications.

Clearly, the efficiency of a numerical implementation crucially depends on the particular
purposes of the multi-linear algebra (say, the component identification, matrix-vector or
matrix-matrix operations, computation of matrix-valued functions, etc.).

The main computational problem is an approximation of a given higher-order tensor A0

in a certain set of low-rank structured tensors S. In particular, S may be one of the classes
T r, Cr or C⊥

r . The most general approach is to derive the components of A(r) (resp. A(r) )
by straightforward minimisation of the quadratic cost functional f(A) := ‖A −A0‖2,

A(r) = argmin ‖A −A0‖2, (1.4)

over all rank-r (resp. rank-r) tensors A ∈ S. Here and in the following we make use of
the Frobenius (energy) norm ‖A‖ :=

√
〈A,A〉 induced by the inner product 〈A,B〉 :=∑

(i1,...,id)∈I
ai1...idbi1...id. The maximum-norm is defined by ‖A‖∞ := max

i∈I
|ai|. Relying on the

beneficial features of the tensor-product arithmetic (cf. [26]), the approximation process can
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be simplified dramatically if the target tensor A0 already has a data-sparse representation,
say, A0 ∈ T R or A0 ∈ CR with R� nd (resp. max�R� � n) (see the discussion in §3.3).

There are algebraic, analytically-based and combined strategies for computing a Kro-
necker tensor-product decomposition of a higher-order tensor. Algebraic methods are the
most general ones. However, they are known to have intrinsic limitations due to (a) multiple
local minima of the cost functional, (b) degeneracy of a minimiser (typical for the CP model),
(c) high-dimensional nonlinear optimisation. Analytically-based representation methods are
efficient for a special class of function-related operators/tensors, while all the difficulties ac-
companying algebraic methods are addressed as soon as one requires further tensor-tensor
operations. Combined methods are designed to take advantage of both algebraic and analytic
approaches, and, at the same time, to relax their limitations.

Tensor decompositions can be beneficially combined with different well-structured ma-
trix/tensor formats which may include H-matrices, low-rank, Toeplitz/circulant or Fourier
based matrices, wavelet sparsity etc. (see the Table below). The hierarchical Kronecker
tensor-product (HKT) matrix format (cf. [22, 20]) provides an extension of the CP-model
to the case of matrices associated with higher-order tensors. The key idea of an analytically-
based HKT-model is a data-sparse hierarchical representation of low-dimensional matrix
components corresponding to the canonical factors. The analytic component estimates are
mainly based on the approximation of a univariate generating function by exponential sums.

In the present paper we propose two combined models, which extend the general CP and
Tucker decompositions to the case of matrices associated with higher-order tensors. First,
we introduce the so-called multi-level nested CP model which generally exhibits larger tensor
rank, but provides robust numerical schemes since it avoids nonlinear minimisation (cf. §2.2).
This tensor format is denoted by CT (I),L, where L is the depth of recursion corresponding to
the product cluster tree T (I).

In the second approach, using a combined strategy, we extend the general Tucker model
to the case of matrices associated with higher-order tensors by imposing a certain a-priori
structure on the canonical components (e.g., representation in a uniform basis) and combin-
ing this with a rank-q CP decomposition of the core tensor. This tensor class will be denoted
by T (U ,r,q), so that

T (U ,r,q) ⊂ T r, with B ∈ Cq.

For each A ∈ T (U ,r,q), the core tensor B ∈ Cq of the size Rr1×...×rd contains at most q(r1 + · ·
·+rd) entries (representation coefficients) instead of r1r2 · · ·rd. In the applications considered
in this paper, we are able to prove r = max

�
r� = O(| log ε| logn). Since B is represented by a

rank-q CP model, the overall complexity is of the order O(rqd) independently of n. Another
version of the two-level structure is specified by the choice B ∈ T q.

In this approach the canonical components can be constructed analytically dwelling upon
the tensor-product sinc-interpolation of multi-variate (generating) function. Since the core
tensor is supposed to have a small size, its CP decomposition can be performed by combining
analytic approximations (initial guess) with nonlinear minimisation methods.

Motivations for developing the T (U ,r,q)-model are its applicability to a more general class
of discrete nonlocal operators (not necessarily generated by shift-invariant kernels), the pos-
sibility to reduce its numerical complexity (logarithmic in both n and ε) and at the same
time, it seems to provide more flexibility in the construction of efficient numerical implemen-
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tations (the canonical decomposition applies only to low-dimensional tensors). Notice that
all of our constructions can be generalised to complex-valued tensors.

This paper mainly focuses on the following issues:

• Brief survey of modern tensor decomposition techniques.

• Construction of a two-level rank-(r1, ..., rd) matrix/tensor format based on model (1.1)
as well as the multi-level nested CP model.

• Complexity analysis of matrix/tensor arithmetic in the proposed formats.

• Rank estimates for the considered decompositions applied to a class of function-
generated tensors, provided with numerical experiments.

In the following table we collect the computational characteristics of different tensor-
product models considered in this paper. Here ALS means the alternative least squares
iteration.

Structured Kronecker product models (d-th order tensors of size nd)
Model Notation Memory/A · x A ·B Comp. tools

Canonical - CP Cr drn drn2 ALS/Newton
HKT - CP CH,r dr

√
n logq n drn logq n Analytic (quadr.)

Nested - CP CT (I),L drlog dn+ rd drlog dn SVD/QR/orthog. iter.
Tucker T r rd + drn - Orthogonal ALS

Two-level Tucker T (U ,r,q) drq/drr0qn
2 dr2q2 (mem.) Analyt.(interp.)+ CP

The rest of the paper is organised as follows. Section 2 describes the L-level nested rank-
(r1, ..., rL) and the two-level rank-(r1, ..., rd) Tucker tensor formats, addresses complexity
issues and discusses some numerical aspects of the traditional and new approaches. In
particular, in Section 2.1, we recall the main features of the HKT matrix decomposition.
Section 3 addresses computational aspects of the CP and the Tucker models. The main
result is presented in section 3.2 which derives the Lagrange equations for the cost functional
specifying the orthogonal Tucker decomposition. In Section 4, we apply the results to d-th
order tensors generated by the multi-variate functions 1

|x|2 ,
1

|x−y| , e
−α|x−y| and e−|x−y|

|x−y| with

x, y ∈ Rd, and present some numerical illustrations.

2 Nested CP and Rank-(r1, ..., rd) Decompositions

In §2, we introduce and analyse a class of nested rank-(r1, ..., rL) and the two-level rank-
(r1, ..., rd) tensor decompositions based on the structured versions of a CP and Tucker models,
respectively.

2.1 Rank-r Matrix Decomposition via the HKT-Format

We consider the representation problem for a class of real-valued square matrices related
to discrete multi-dimensional operators posed in Rd, such that A ∈ RN×N , N = nd. In
general, such matrices can be interpreted as high-order fully populated tensors which makes
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the standard matrix arithmetic almost non-feasible. To overcome this difficulty, one needs
numerically tractable data-sparse representations of high-dimensional tensors which arise.

The hierarchical Kronecker tensor-product (HKT) format as proposed in [22, 20] reads

A =
r∑

k=1

bkV
(1)
k ⊗ ...⊗ V

(d)
k , bk ∈ R, (2.1)

where the Kronecker factors V
(�)
k ∈ Rn×n are H-matrices (see [15]-[19] for the definition,

approximation properties and applications of H-matrices). We recall that the Kronecker
product of matrices A ⊗ B, is defined as a block matrix [aijB], provided that A = [aij].
The operation “⊗” can be applied to arbitrary rectangular matrices (in particular, to row
or column vectors) and in the multi-factor version as in (2.1).

We write A ∈ HKT(r,s) if A is of the form (2.1) and V
(�)
k have a hierarchical block

partitioning (independent of k) with blocks of rank at most s. Again the minimal number
of Kronecker-product terms r involved, is referred to as the Kronecker rank of the matrix
(tensor) at issue.

Approximations of function-related matrices by matrices of the form (2.1) were first
studied in [22], [39]. The main result of these papers are estimates of the form r = O(log2 ε)
and r = O(| log ε| logn), where ε is a prescribed approximation accuracy. However, if there
is no structure in the Kronecker factors then the storage is O(drn2), while the matrix-matrix
complexity is O(dr2n3), which may be far from being satisfactory. A possible remedy is
the hierarchical (H-matrix) approximation to the Kronecker factors (HKT-approximations)
with the advantage of rigorously proved existence theorems [22] with estimates of the form
r = O(log2 ε), s = O(log ε−1).

If A ∈ HKT(r,s) then only the V
(�)
k need to be stored. Since, by definition, they have the

H-format, we arrive at the following complexity bounds (the linear complexity is O(nd)):

• the storage for A is O(drsn logn), indicating the superlinear compression property;

• multiplication of A by a rank-r1 vector x =
r1∑
k=1

bkx
(1)
k ⊗...⊗x(d)

k requires O(drr1sn logn)

operations;

• the complexity of the matrix-matrix multiplication is O(dr2n logq n).

In this paper we prove existence results for the low Kronecker rank approximations for
a general class of matrices related to functions which are characterised in terms of their
Laplace transform.

2.2 Multi-level Nested Rank-(r1, ..., rL) CP Model with L = log2 d

In this section, we discuss the decomposition of general tensors A ∈ RI . As in the previous
section, in the matrix case, we use the standard Kronecker product operation ⊗ instead of
×�. For ease of presentation, we assume that d = 2L with L = log2 d ∈ N. Generalisation to
the case of arbitrary d ≥ 2 is straightforward.

Let Id := {1, ..., 2L} and let T (Id) be a binary cluster tree of Id. On the tensor-product
index set I, we introduce the associated cluster tree T (I), such that for each σ ∈ T (Id) we
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define τσ ∈ T (I) by τσ = ×�∈σI�. By construction, we have T (I) := {T (�)(I)}L�=0, where

T (�)(I) := {τ (�)
i : 1 ≤ i ≤ 2�} with standard definition for the clusters τ

(�)
i on level �,

τ
(�)
i := {(i− 1) ∗ 2L−�, (i− 1) ∗ 2L−� + 1, ..., i ∗ 2L−� − 1}.

In particular, T (0)(I) = I is the root, T (L)(I) forms the set of leaves and τ
(�)
i = τ

(�+1)
2i−1 ×τ (�+1)

2i ,

where τ
(�+1)
2i−1 , τ

(�+1)
2i are the sons of τ

(�)
i (� < L).

Assume we are given a cluster tree T (I) of depth L and the set of rank parameters
r1, ..., rL ∈ N. We introduce the multi-level nested CP model as a class of tensors A(0) ∈
RT (0)(I), defined via a recursive sequence of two-fold Kronecker products, which finally builds
the nested decomposition.

Given the components on level L (i.e., on the leaves). We proceed recursively, i.e. for each

� = 1, ..., L, we represent the corresponding Kronecker factors U
(j)
m�−1 ∈ R

τ
(�−1)
j (1 ≤ j ≤ 2�−1)

by

U (j)
m�−1

=

r�∑
m�=1

µ(j)
m�
U (2j−1)
m�

⊗ U (2j)
m�

with U (2j−1)
m�

∈ R
τ
(�)
2j−1 , U (2j)

m�
∈ R

τ
(�)
2j , (2.2)

where τ
(�)
2j−1 and τ

(�)
2j are the sons of τ

(�−1)
j , and µ

(j)
m� ∈ R. On zero level, i.e. for � = 0, define

A(0) ≡ U (0)
m0

=

r1∑
m1=1

µ(1)
m1
U (1)
m1

⊗ U (2)
m1

with U (1)
m1

∈ R
τ
(1)
1 , U (2)

m1
∈ R

τ
(1)
2 , (2.3)

where τ
(1)
1 and τ

(1)
2 are the sons of τ

(0)
1 = T (0)(I), and µ

(1)
m1 ∈ R.

We denote by CT (I),L the set of tensors parametrised as above by the recursive construc-
tion of depth L.

Example 2.1. Let d = 8. Then L = 3 and a three-level nested CP model (2.2) - (2.3)
reads as

A(0) =

r1∑
m1=1

µ(1)
m1
U (1)
m1

⊗ U (2)
m1

with

U (1)
m1

=

r2∑
m2=1

µ(1)
m2

(
r3∑

m3=1

µ(1)
m3
U (1)
m3

⊗ U (2)
m3

)
⊗
(

r3∑
m3=1

µ(2)
m3
U (3)
m3

⊗ U (4)
m3

)

U (2)
m1

=

r2∑
m2=1

µ(2)
m2

(
r3∑

m3=1

µ(3)
m3
U (5)
m3

⊗ U (6)
m3

)
⊗
(

r3∑
m3=1

µ(4)
m3
U (7)
m3

⊗ U (8)
m3

)
.

In the matrix case we just have I = Ix × Iy and T (I) := {T (�)(I)}L�=0 with T (�)(I) =
T (�)(Ix) × T (�)(Iy). The corresponding matrix A ∈ CT (I),L operates as A : R

Ix → R
Iy .

Obviously, the Kronecker rank of the recursive decomposition (2.3) is r1r
21

2 r
22

3 ...r
2L−1

L

(that is rd−1 if r = r1 = ... = rL).

Definition 2.1 A d-th order tensor is called super-symmetric if it is invariant under arbi-
trary permutations of indices in {1, ..., d}.
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Examples of super-symmetric tensors include those generated by translation invariant func-
tions (cf. §4).

The following Lemma shows the effective rank reduction via (2.2), (2.3).

Lemma 2.2 The storage for A ∈ CT (I),L can be estimated by O(dr1...rLn+
L∑
�=1

r�2
�−1), while

for a super-symmetric tensor we arrive at the memory consumption O(r1...rLn +
L∑
�=1

r�).

In the matrix case, a multiplication of A ∈ CT (I),L by a rank-r0 vector requires
O(dr0r1...rLn

2) operations. Let A1, A2 ∈ CT (I),L and suppose r = r1 = ... = rL, then both
A1A2 and the Hadamard matrix product A1 �A2 can be computed (and stored) in O(dr2Ln3)
operations.

Proof. The storage demand is a direct consequence of the L-level recursive construction. Let
x ∈ CT (Ix),L and suppose (for ease of exposition) that x = x1 ⊗ ...⊗xd, i.e., r1 = ... = rL = 1
holds. Then a product Ax can be calculated recursively in L steps starting from the leaves
of T (I), which proves the desired matrix-vector complexity. In the case of general rank,
similar arguments apply.

To analyse matrix-matrix operations, we notice that the product of two rank-(r1, ..., rL)
matrices is a rank-(r2

1, ..., r
2
L) matrix. Since the matrix-matrix product on the leaves (level

L) costs O(n3), the result follows.
Notice that any tensor A ∈ Cr (see the CP decomposition (1.3)) is a particular case of the

rank-(r1, ..., rL) representation with r1 = r, r2 = ... = rL = 1. Hence, the existence of a low-
rank CP approximation also implies the existence of a low-rank nested CP decomposition.
Moreover, it provides a lower bound for r, r1 ≤ r (r1 is computable by SVD). For efficient
SVD calculation via subspace iteration, the first-level rank r1 can be a-priori estimated based
on some analytic arguments. However, a possible drawback of the nested decomposition is the
expensive SVD since in general the parameters r2, ..., rL cannot be estimated a priori. Thus,
the numerical efficiency of this heuristic model generally depends on the specific application.

2.3 General Rank-(r1, ..., rd) Matrix Decomposition

Let A ∈ RI×I be a real-valued matrix defined on the index set I := I1 × ... × Id with
I� = {1, ..., n�}. A matrix A can be multiplied with a vector X ∈ RI , so that AX ∈ RI .

A matrix A (resp. a vector X) can also be regarded as a d-th order tensor A ∈ RI21×...×I2d

(resp. X ∈ RI1×...×Id).
We make use of the multi-index notation i := (i1, ..., id) ∈ I.

Definition 2.3 We introduce the following rank-(r1, ..., rd) tensor-product matrix format

A =

r1∑
k1=1

...

rd∑
kd=1

bk1...kd
V

(1)
k1

⊗ ...⊗ V
(d)
kd

∈ R
I21×...×I2d , (2.4)

where the Kronecker factors V
(�)
k�

∈ RI�×I�, k� = 1, ..., r�, � = 1, ..., d, are matrices of a
certain structure (say, H-matrix, wavelet based format, Toeplitz/circulant, low-rank, etc.).
Here r = (r1, ..., rd) is again called the Kronecker rank.
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The matrix representation by the format (2.4) is a model reduction which is a generalisation
of low-rank approximation of matrices, corresponding to the case d = 2.

Remark 2.4 The matrix representation (2.4) is a reminiscence of the Tucker decomposition
of multi-dimensional tensors (cf. (1.1)), while (2.1) comply with the CP model (cf. (1.3)).

With the help of the so-called n-mode tensor-matrix product (cf. [5]), we introduce the short
notation

A = B ×1 V(1) ×2 V(2)...×d V(d) ≡ B ×r {V}, (2.5)

with tensors V(�) ∈ RI�×I�×r� and B = {bk} ∈ Rr1×...×rd, where the latter is the core tensor.
We denote matrices by uppercase letters, e.g., A, and tensors by calligraphic letters, e.g.,
B. Besides, we set A = [A1A2...], where Ai is the ith column matrix/vector of A, e.g.,

V(�) = [V
(�)
1 V

(�)
2 ...V

(�)
r� ]. Notice that in the case d = 2, the representation (2.5) is a multi-

linear equivalent of a matrix factorisation, i.e., we have

A = B ×1 V(1) ×2 V(2) ≡ V(1) · B · V(2)T , B ∈ R
r1×r2 .

Similarly to the class of tensors T r in the Tucker model, i.e., if the components V
(�)
k�

∈
RI� in (1.1) are mutually orthogonal vectors of an arbitrary structure (V(�) ∈ RI�×r� are
orthogonal matrices), we introduce the notation A ∈ T H,r for the multi-linear matrix class
with the canonical components having hierarchical structure.

Remark 2.5 The orthonormality assumption in the Tucker model (1.1) is no constraint.
But even with this assumption, the core tensor is still not uniquely defined since each trans-
formation

V(�) →Ṽ(�) := S(�)V(�),

B →B̃ := B ×1 S
(1)T × ...×d S

(d)T

represents the same tensor A for any choice of orthogonal matrices S(�) ∈ Rr�×r�, � = 1, ..., d.
In turn, due to the orthogonality requirement, the CP model (1.3) can be retrieved from (1.1)
only in the special case of orthogonally decomposable tensors.

Clearly, we have

Cr = T r if r = 1; C⊥
r ⊂ T r, Cr �⊂ T r if r ≥ 2.

Hence, in general, the CP decomposition (1.3) cannot be retrieved by rotation and ”diagonal”
truncation of the Tucker model.

We simplify the complexity analysis and set r� = r, n� = n (� = 1, ..., d); the general case
can be treated completely similarly.

Lemma 2.6 The storage cost for A ∈ T H,r is estimated by O(drsn logn) + rd, while for

super-symmetric tensor we arrive at the memory consumption O(rsn logn) + rd

d
.

Multiplication by a rank-r0 vector requires O(drr0sn logn) operations. Let A1, A2 ∈ T H,r.
Then both the A1A2 and the Hadamard matrix product A1 �A2 can be computed and stored
in O(dr2s2n logn) + r2d operations.
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Proof. The storage requirement for A is trivial. Let X = x1 ×2 ...×d xd with x� ∈ R
I� . Then

AX ≡ B ×1 V(1) ×2 V(2)...×d V(d)X = B ×1 V(1)x1 ×2 V(2)x2...×d V(d)xd

implies the second assertion. Now we set

A1 = B ×1 V(1) ×2 V(2)...×d V(d), A2 = C ×1 U(1) ×2 U(2)...×d U(d),

to obtain the representation

A1A2 =

(
r∑

k=1

br

d⊗
�=1

V
(�)
k�

)(
r∑

m=1

cr

d⊗
�=1

U (�)
m�

)
=

r∑
k=1

r∑
m=1

bkcm

d⊗
�=1

V
(�)
k�
U (�)
m�
,

which includes dr2 canonical components, and where the core tensor {bkcm} has (r2)d = r2d

entries. Analogously, for the Hadamard product we have

A1 �A2 =

(
r∑

k=1

br

d⊗
�=1

V
(�)
k�

)
�
(

r∑
m=1

cr

d⊗
�=1

U (�)
m�

)

=

r∑
k=1

r∑
m=1

bkcm

d⊗
�=1

V
(�)
k�

� U (�)
m�
,

and take into account that the Hadamard product of two H-matrices has linear-logarithmic
cost (cf. [26]). This completes our proof.

As already noticed, a CP decomposition (2.1) can be viewed as a special case of a gener-
alised Tucker decomposition (2.4), where r = r1 = ... = rd and only the super-diagonal of B
is non-zero. In this case we introduce the notation A ∈ CI×I,r or more specifically A ∈ CH,r
if the canonical components are matrices of the generic or H-matrix structure, respectively
(in particular, we can now identify HKT(r,s) ≡ CH,r). Notice that from the numerical point
of view, a CP decomposition can generally not be retrieved by ”diagonal” truncation of the
Tucker model (cf. Remark 2.5) since

(a) both formats might have rather different sets of canonical components {V},
(b) the corresponding decompositions usually realise distinct local minima of the cost

functional (cf. §3).
In the following we introduce more economical formats by imposing a certain data-sparse

structure on the core tensor B on the one hand, and by specifying a priori the set of structured
matrices V

(�)
k in the format CH,r on the other hand.

2.4 Two-level Rank-(r1, ..., rd) Decomposition

As soon as the tensor-product representation of function-related operators is concerned, both
decompositions (2.1) and (2.4) rely on a deep connection to the separable approximation of a
multi-variate analytic/asymptotically smooth functions with point singularities (see [20, 26]
concerning (2.1)). In particular, (2.4) can be derived by using tensor-product interpolation
with respect to some fixed system of approximating functions (say, sinc-functions, plain
waves, interpolating wavelets) which indicates that one can adapt some fixed basis to rep-
resent the canonical components. In this way, the entries bk are specified by the trace of

10



the approximating function on an interpolation grid, hence, in turn, the core tensor can be
again represented in a certain data-sparse format. Based on the above observation, we come
to the new concept of the multi-level (telescopic) decomposition of type (2.4).

First, we introduce the two-level matrix/tensor decomposition of type (1.1), (2.4).

Definition 2.7 Let A have the form (1.1) with canonical components V(�) ∈ RI�×r� ∈ {U},
where the matrices {U} span some fixed basis which does not depend on A (uniform basis),
while the core tensor B = {bk} ∈ R

r1×...×rd is represented by the rank-q CP decomposition
(2.1). Then we say that A allows a two-level rank-(r, q) decomposition and denote A ∈
T (U(I),r,q) ≡ T (U ,r,q). Respectively, introducing a similar definition for matrices in (2.4), we
denote the new formats as A ∈ T (U(I×I),r,q).

The example of a uniform basis is given by structured matrices generated by a fixed set of
basis functions (say, uniform H-matrices/low-rank matrices).

Lemma 2.8 The storage for A ∈ T (U(I×I),r,q) is estimated by O(drq) with r =
max{r1, ..., rd}. The multiplication by a rank-r0 vector of size nd requires O(drr0qn

2)
operations.

Let A1, A2 ∈ T (U(I×I),r,q) then the matrix-product A1A2 can be stored in O(dq2r2) memory

units provided that a certain ”product” basis {Ũ} is already precomputed. The inner product

of two matrices (tensors), 〈A1,A2〉, can be computed in q2n
d∏
�=1

(2r� + 1) operations.

In the case of super-symmetric tensors the factor d can be removed from the complexity
estimates.

Proof. If A ∈ T (U(I×I),r,q) then only the core tensor need to be stored. Since, by definition
the latter has the CP tensor-format in R

r, i.e.,

B =

q∑
k=1

λk ×1 B
(1)
k ×2 ...×d B

(d)
k , λk ∈ R, (2.6)

where B
(�)
k ∈ Rr, the desired storage requirements follow. The analysis for the matrix-vector

product is straightforward due to the relation

B ×1 V(1)x1 ×2 V(2)x2...×d V(d)xd =

q∑
k=1

λk ×1 B
(1)
k V(1)x1 ×2 ...×d B

(d)
k V(d)xd.

To prove the matrix-matrix complexity, we set

A1 = B ×1 U(1) ×2 U(2)...×d U(d), A2 = C ×1 V(1) ×2 V(2)...×d V(d).

The representation (2.6) now implies (same for A2)

A1 =

q∑
k=1

λk

d⊗
�=1

U(�)B
(�)
k . (2.7)

11



In fact, substituting (2.6) in (2.4) and setting B
(�)
k = {bk,k�

}r�k�=1 lead to

A1 =

q∑
k=1

λk

(
r1∑

k1=1

...

rd∑
kd=1

bk,k1 · · · bk,kd
×1 U

(1)
k1

×2 ...×d U
(d)
kd

)

=

q∑
k=1

λk ×1

(
r1∑

k1=1

bk,k1U
(1)
k1

)
×2 ...×d

(
rd∑

kd=1

bk,kd
U

(d)
kd

)

=

q∑
k=1

λk

d⊗
�=1

U(�)B
(�)
k .

Imposing (2.7), we finally obtain

A1A2 =

(
q∑

k=1

λk

d⊗
�=1

U(�)B
(�)
k

)(
q∑

m=1

µm

d⊗
�=1

V(�)C(�)
m

)

=

q∑
k=1

q∑
m=1

λkµm

(
d⊗
�=1

U(�)B
(�)
k V(�)C(�)

m

)

=

q∑
k=1

q∑
m=1

λkµm

d⊗
�=1

(
r∑

k�=1

r∑
m�=1

bk,k�
ck,m�

U
(�)
k�
V (�)
m�

)
,

where {λkµm} has q2 entries. In turn, assuming that the matrices U
(�)
k�
V

(�)
m� can be stored a

priori, we need only r2 coefficients to represent each canonical component in the product
matrix. To prove the inner product complexity (say, in the matrix case) we note that〈

d⊗
�=1

U (�),

d⊗
�=1

V (�)

〉
:=

d∏
�=1

〈
U (�), V (�)

〉
.

Then the result follows from the representation

〈A1,A2〉 :=

q∑
k=1

q∑
m=1

λkµm

〈
d⊗
�=1

U(�)B�
k,

d⊗
�=1

V(�)C�
m

〉

=

q∑
k=1

q∑
m=1

λkµm

d∏
�=1

〈
U(�)B�

k,V
(�)C�

m

〉
.

In the case of super-symmetric tensors we just take into account that the canonical
components coincide for different � = 1, ..., d and the same holds for the core tensor.

We can observe that the proposed combination of a CP decomposition (to represent the
core tensor) with a fixed basis {U} (to represent the canonical components) reduces dra-
matically the memory demands. Even more important, it also improves the computational
complexity of the numerical approximation (cf. §4).

If the dimension r of B is still large enough, one can introduce a next-level decomposition
of the core tensor which leads to the multi-level (”telescopic”) version of the method.
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Example 2.2. The familiar sparse grid methods in Rd can be interpreted as the Tucker
decomposition with the fixed tensor-product hierarchical basis of size nd to represent the
canonical components endowed with the “hyperbolic cross” selection of nonzero elements
in the core tensor B of the full size nd, where r� = n (� = 1, ..., d). The approximability
features in this format rely on the regularity with respect to square integrable mixed weak
derivatives leading to an O(n logd−1 n) estimate on the number of nonzero elements in the
“compressed” tensor B.

Example 2.3. The tensor-product sinc interpolation method (cf. [20]) corresponds to
the Tucker model, where the canonical components are represented in the tensor-product
sinc-basis, while the fully populated core tensor B has a reduced size, e.g., r� = | log ε| logn
(� = 1, ..., d). In this way, a sparsification strategy is based on the application of the classical
Kotelnikov-Whittaker-Shannon sampling theorem (originally applied to band limited signals)
to analytic, exponentially decaying multi-variate functions.

The tensor decompositions described in Sections 2.2 – 2.4 can be applied to the following
classes of operators/tensors:

• Tensors generated by a class of analytic functions,

• Integral operators with analytic/asymptotically smooth kernels,

• Matrix-valued functions, e.g., A−1, Aα, exp(A).

In this paper we analyse approximation methods for function-generated tensors. Further
applications will be discussed elsewhere.

3 Computational Aspects of CP and Tucker Models

In this section we give a brief survey on the existing iterative methods to approximately
compute the CP or Tucker decompositions of a given tensor A0 ∈ RI . The latter might be
already presented in the CP format but with rather large Kronecker rank r0 which can be
reduced via certain algebraic/analytic/combined approximations.

3.1 CP Decomposition

The most general approach is to derive CP-components by straightforward minimisation of
the quadratic cost functional

f(A) := ‖A −A0‖2 → min (3.1)

over all rank-r tensors A ∈ Cr, which will be parametrised as in (1.3) and with the constraints

‖V (�)
k ‖ = 1 (k = 1, ..., r; � = 1, ..., d).
To find the local minima of (3.1), Newton-type algorithms can be applied to the Lagrange

equation corresponding to the unconstrained minimisation problem: Find A ∈ Cr and the
Lagrange multipliers λ(k,�) ∈ R such that

〈A − A0,A−A0〉 +
r∑

k=1

d∑
�=1

λ(k,�)
(
‖V (�)

k ‖2 − 1
)
→ min. (3.2)
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In the case of satisfactory convergence behaviour (in presence of good initial guess) the
complexity of one Newton’s iteration may be estimated at least by O(dr2n + rd).

As second common approach, one can resort to an alternative least-squares (ALS) al-
gorithm which is as follows: let B = diag{b1, ..., bd} in (1.3) and assume that all matrices
V(�), � �= m, are fixed. Then (3.1) is a quadratic expression in the components of the matrix
V(m) · B, hence we obtain a classical least-squares problem. To drive the solution toward
the local minima, an ALS iteration repeats this procedure for each component m = 1, ..., d
until convergence (or termination). The components of B = diag{b1, ..., bd} are obtained by

normalisation of the columns V
(m)
k (k = 1, ..., r) to unit-length.

Remark 3.1 In general, the convergence analysis of both Newton’s and ALS schemes is still
an open question. The intrinsic difficulty to achieve the robust convergence of such nonlinear
iterations is due to the well-known effect of degeneracy of a minimising sequence (if d > 2,
the corresponding set Cr of structured tensors is no longer closed). For example, the FD
matrix representation A ∈ R

n3×n3
to the 3D Laplace operator is given by a tensor of the

Kronecker rank three,

A := V ⊗ I ⊗ I + I ⊗ V ⊗ I + I ⊗ I ⊗ V, V, I ∈ R
n×n,

where I is the n × n identity matrix and V = tridiag{−1, 2,−1}. It can be approximated
with any tolerance ε > 0 by a tensor of rank two,

Ak := I ⊗ I ⊗ (V − kI) + k (I +
1

k
V ) ⊗ (I +

1

k
V ) ⊗ I,

A− Ak =
1

k
V ⊗ V ⊗ I → 0, as k → ∞.

However, the minimising sequence Ak does not converge as k → ∞. Surprisingly, the Tucker
rank of the FD ”d-dimensional Laplacian”

A := V ⊗ I ⊗ ...× I + I ⊗ V ⊗ ...⊗ I + ... + I ⊗ I ⊗ ...⊗ V ∈ R
nd×nd

, V, I ∈ R
n×n,

is equal to r = (2, 2, ..., 2) ∈ Nd independent of d (the proof is the direct application of the
higher-order SVD). On the other hand, the Kronecker rank of A is r = d.

Notice that in the case of orthogonally decomposable tensors in C⊥
r the incremental rank-

1 approximation algorithm correctly computes its CP representation (cf. [28, 42] concerning
the convergence theory). However, in spite of their attractive computational features, the
orthogonally decomposable tensors usually do not provide a low-rank approximation in the
considered applications.

Now we look in more detail to the simple special case of a CP model that is the best rank-1
approximation, since it is an important ingredient in typical multi-linear algebra algorithms.
To derive the corresponding Lagrange equations we notice that due to the normalisation
‖A‖2 = b21, the minimisation problem (3.2) appears to be equivalent to the dual problem of
maximising the generalised Rayleigh quotient over the unit-norm vectors (eliminates b1),∣∣∣A0 ×1 V

(1)T ×2 ...×d V
(d)T
∣∣∣2 − d∑

�=1

λ(�)
(
‖V (�)‖2 − 1

)
→ max. (3.3)

14



For any solution of this problem, the corresponding scalar b1 can be chosen as a minimiser

of t2 − 2ta0 with a0 = A0 ×1 V
(1)T × ... ×d V

(d)T that is b1 = a0. Differentiating (3.3) with
respect to V (m) (1 ≤ m ≤ d) leads to the equations

a0 A0 ×1 V
(1)T ...×m−1 V

(m−1)T ×m+1 V
(m+1)T ...×d V

(d)T = λ(m) V (m),

which imply λ(m) = b21. Finally, the Lagrange equations read as (cf. [5])

A0 ×1 V
(1)T ...×m−1 V

(m−1)T ×m+1 V
(m+1)T ...×d V

(d)T = b1 V
(m),

A0 ×1 V
(1)T ×2 ...×d V

(d)T = b1,

‖V (m)‖ = 1 (1 ≤ m ≤ d).

The above system of Lagrange equations can be solved by an ALS algorithm, so that in each
step the approximant to the scalar b1 and the estimate of the vectors V (m) (m = 1, ..., d)
are optimised, while the rest vector-components with � �= m are kept constant. This is
a higher-order generalisation of the power method for matrices [14]. The ALS method
for the best rank-1 approximation is proved to have locally linear convergence rate (cf.
[42]). Alternatively, one can apply Newton’s type method which provides locally quadratic
convergence.

3.2 Orthogonal Rank-(r1, ..., rd) Decomposition

In general, the numerical complexity of the Tucker model depends heavily on the size of
data-array A which may require substantial computational resources (see [35] for related
discussion).

In the case of an orthogonal rank-(r1, ..., rd) decomposition (i.e., all V(�) = [V
(�)
1 V

(�)
2 ...V

(�)
r� ]

(� = 1, ..., d) are orthogonal matrices), the minimisation problem (3.1) is constrained to all
rank-r tensors A ∈ T r. Introducing the Stiefel manifold

Vn,r := {Y ∈ R
n×r : Y TY = I ∈ R

r×r},

we can impose the componentwise constraints as V(�) ∈ V� := Vn�,r� (� = 1, ..., d). As in
the case of rank-1 approximation, the core tensor can be eliminated from (3.2). For given
components V(�), we denote

B(¬m) = A0 ×1 V(1)T ...×m−1 V(m−1)T ×m+1 V(m+1)T ...×d V(d)T

and let B(¬m) ∈ Rnm×rm be the corresponding matrix representation, where rm =
d∏

�=1,� �=m
r�.

Lemma 3.2 For given A0 ∈ RI1×...×Id, the minimisation problem (3.2) on T r is equivalent
to the dual maximisation problem

g(V(1), ...,V(d)) :=
∥∥∥A0 ×1 V(1)T ×2 ...×d V(d)T

∥∥∥2

→ max (3.4)

over a set of canonical components V(�) ∈ R|I�|×r� from the Stiefel manifold, i.e., V(�) ∈ V�
(� = 1, ..., d).
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The problem (3.4) has at least one global maximum. At each extremal point the corre-
sponding Lagrange equations read as (1 ≤ m ≤ d)

2(I− V(m)V(m)T ) · B(¬m) · B(¬m)T ·V(m) = 0. (3.5)

Under the compartibility condition

rm ≤
d∏

�=1,� �=m
r� (1 ≤ m ≤ d) (3.6)

equation (3.5) is solvable for any m = 1, ..., d. For given matrices V(m) (m = 1, ..., d), the
tensor B that minimises (3.2) is represented by

B = A0 ×1 V(1)T ×2 ...×d V(d)T ∈ R
r1×...×rd, (3.7)

providing the equation f(A) + g(A) = ‖A0‖2.

Proof. First and last assertions are the direct consequences of Theorem 4.2 [5].
Existence of the global maximum follows from the compactness of the Stiefel manifold

V� with respect to the Frobenius norm.
Justification of the Lagrange equation is based on the standard variational arguments.

Notice that in the matrix notations the function g takes the form

g(V(1), ...,V(d)) =
〈
B(¬m)T · V(m),B(¬m)T · V(m)

〉
.

To calculate the derivative of g over the Stiefel manifold Vm, first, we take into account that
the tangent space at V ∈ Vm is given by

TV Vm = {δ ∈ R
nm×rm : δTV + V T δ = 0}.

Second, making use of the orthogonal projections V(m)V(m)T and I − V(m)V(m)T onto the
space spanned by columns of V(m), and onto its orthogonal complement, respectively, we
are able to represent any (constraint) variation in the tangent space δT ∈ TV Vm over the
arbitrary variation δ ∈ R

nm×rm by

δT = (I −V(m)V(m)T )δ. (3.8)

In fact, since the orthogonality V(m)TV(m) = I, it is readily seen that

δT
TV(m) + V(m)T δT = δT (I −V(m)V(m)T )V(m) + (V(m)T I −V(m)V(m)T )δ

= δT (V(m) −V(m)V(m)TV(m)) + (V(m)T − V(m)TV(m)V(m)T )δ

= 0.

With δT ∈ TV(m)Vm being an arbitrary variation in the tangent space, with the properties
of a scalar product and using relation (3.8), we derive equations for the Frechét derivative
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in V(m),

g(V(1), ...,V(m) + δT , ...,V
(d)) − g(V(1), ...,V(m), ...V(d))

≈ 2
〈
B(¬m)T · V(m),B(¬m)T · δT

〉
= 2

〈
B(¬m) · B(¬m)T · V(m), (I −V(m)V(m)T )δ

〉
= 2

〈
(I − V(m)V(m)T ) · B(¬m) · B(¬m)T ·V(m), δ

〉
∀δ ∈ R

nm×rm .

Now the equation (3.5) follows.
Furthermore, since we are looking for the solution of (3.5) which is given by an orthonomal

basis for the dominant subspace of the m-mode space spanned by columns of B(¬m), the
compartibility relation (3.6) appears as the necessary and sufficient condition for solvability
of the arising SVD.

It is readily seen that in the case of rank-1 approximation (i.e., r = 1) the system of the
Lagrange equations (3.5) is equivalet to those presented in §3.1.

Based on Lemma 3.2 a rank-(r1, ..., rd) approximation can be calculated by the orthog-
onal ALS iteration (see, e.g., [5] for the particular computational scheme). The following
algorithm consists of three steps, where the iteration phase (Step II) includes solving of
equation (3.5) for different components.

Algorithm ALS(T r).
Step I: Compute the initial guess (options: the analytic approximation, truncation of the
so-called higher-order SVD, an approximation with smaller Tucker/Kronecker rank).
Step II: For each index m = 1, ..., d, the ALS algorithm optimises the canonical component
V(m) by solving equation (3.5), while the other matrix-components V(�), � �= m, are kept
constant. Termination criterion: fixed number of iterations or control the current increment.
Step III: Compute the core tensor via (3.7).

This scheme is a higher-order extension of the orthogonal iteration for matrices [14].
The Newton-type algorithm can be also applied to the system of Lagrange equations

(3.5). For successful convergence of a nonlinear iteration, the initial guess should belong to
the attraction region of the global optimum (see Step I above).

Remark 3.3 The complexity of the minimisation algorithm can be reduced dramatically if
the target tensor A0 is already represented in the format with the moderate Kronecker ranks
R� such that Cn ≥ R� > r� (� = 1, ..., d).

Further complexity reduction is possible if one looks for the canonical components repre-
sented in the fixed basis (the latter may depend on the input-tensor) and if, at the same
time, one can sparsify the core tensor. In the following, we focus on the analysis of a two-level
structured rank-(r1, ..., rd) decomposition which can be applied to certain function-related
matrices/tensors and to the corresponding discrete nonlocal operators.

3.3 Multi-level Rank-(r1, ..., rL) and Two-level Rank-(r, q) Models

A multi-level rank-(r1, ..., rL) CP decomposition can be computed by successive application of
SVD (if there is no a-priori information on the Kronecker rank) or by the orthogonal iteration
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with some fixed rank r� on each level. The corresponding simplifications are standard if the
target tensor is already represented with moderate Kronecker ranks R�, n ≤ R� > r�.

Problem independent basis. A two-level rank-(r, q) model can be computed using an
interpolation process with respect to the fixed basis on the first level (say, Sinc- or wavelet-
interpolation) and then applying an analytic-algebraic method to compute the CP decom-
position to the low-dimensional core tensor of size r1 × ...× rd. For moderate problems, the
first-level decomposition can also be computed by the orthogonal ALS iteration as described
in §3.2.

Problem dependent basis. The “fixed basis” can be adapted to the problem by truncation
of the higher-order SVD (cf. [4]) applied to the target tensor. Again, one can benefit
if the latter is already represented in the tensor-form with rather small Kronecker ranks
R� > r�, the QR-decomposition of the corresponding unfolding matrices can be applied for
each dimension � = 1, ..., d. The data-sparse representation of the core tensor is along the
line as above.

4 Approximating Function Generated Tensors

In this section we discuss the low Kronecker rank approximation of a special class of higher-
order tensors arising as certain “discretisations” of multi-variate functions. They will be
called function-generated tensors (FGTs). FGTs directly appear from

(a) the representation of multi-variate functions (say, solutions or right-hand sides in
FEM/BEM discretisations in R

d);
(b) the representation of ”local potentials” acting as a multiplication operator;
(c) Nyström, collocation or Galerkin discretisations of integral operators;
(d) the approximation to some analytic matrix-valued functions.

4.1 Basic Definitions

In the following we define FGTs corresponding to the Nyström/collocation and Galerkin
discretisations.

In the case of an interpolation method, we let I� = I�,1 × ...× I�,p be the product index
set, where we use multi-indices i� = (i�,1, ..., i�,p) ∈ I� (� = 1, ..., d) with the components
i�,m ∈ {1, ..., n} (m = 1, ..., p). Furthermore, let ω� be a uniform rectangular grid on Π :=

[a0, b0]
p, a0, b0 > 0, indexed by I�, and let {ζ (1)

i1
, ..., ζ

(d)
id

} with i� ∈ I� (� = 1, ..., d), be a set
of collocation points living on the tensor-product lattice ωd := ω1 × ...× ωd in a hypercube
Ω := Πd ∈ Rd with d = dp so that (ζ

(1)
i1
, ..., ζ

(d)
id

) ∈ I(d) := I1 × ... × Id. We also define
|i�| = maxm≤p |i�,m| and similarly for |i|, i = (i1, ..., id). In our applications we have d ≥ 2
with some fixed p = 1, 2, 3.

Definition 4.1 (Collocation case, FGT(C)). Given a multi-variate function g : Ω → R, we
introduce the collocation-type FGT of order d by

A ≡ A(g) := [ai1...id] ∈ R
I1×...×Id with ai1...id := g(ζ

(1)
i1
, ..., ζ

(d)
id

). (4.1)

18



In the case of Galerkin schemes we make use of tensor-product test functions

φi(x1, ..., xd) =
d∏
�=1

φi�� (x�), i = (i1, ..., id) ∈ R
I1×...×Id, i� ∈ In := {1, ..., n}, (4.2)

and ψj with j = (j1, ..., jd) ∈ RJ1×...×Jd, j� ∈ In, of the similar product form.

Definition 4.2 (Galerkin case, FGT(G)). Given a multi-variate function g : Ω × Ω → R

with Ω ∈ Rd, and a tensor-product basis set (4.2), we let p = 2, ζ (�) = (x�, y�), m� = (i�, j�) ∈
M� and introduce the Galerkin-type d-th order FGT by A ≡ A(g) := [am1...md

] ∈ RM1×...×Md

with

am1...md
:=

∫
Ω×Ω

g(ζ (1), ..., ζ (d))φi(x1, ..., xd)ψ
j(y1, ..., yd)dxdy. (4.3)

In various applications, the function g is analytic in all variables except a “small” set of
singularity points given either by a hyper-plane S(g) := {ζ ∈ Ω : ζ (1) = ζ (2) = ... = ζ (d)} or
by a single point S(g) := {ζ ∈ Ω : ζ (1) = ζ (2) = ... = ζ (d) = 0}.

In the numerical calculations involving nonlocal/integral operators (e.g., arising from
the Hartree-Fock and Boltzmann equations), n may vary from several hundreds to several
thousands, therefore, for d ≥ 3, a naive “entry-wise” representation to the tensor A in (4.1)
amounts to substantial computer resources (at least of the order O(ndp)).

Some examples of multi-variate functions are given in §4.4.

4.2 Kronecker Rank in CP Decomposition

We recall that the CP-type decompositions like (1.3) (or (2.1) in the matrix case) can be
derived by using a corresponding separable expansion of the generating function g (see [20, 22]
for more details). Assume that we are given a set of approximating functions {Φ�

k : Rp → R}
(� = 1, ..., d).

Proposition 4.3 Suppose that a multi-variate function g : Ω → R can be approximated by
a separable expansion with respect to {Φ�

k},

gr(ζ) :=
r∑

k=1

µkΦ
(1)
k (ζ (1)) · · ·Φ(d)

k (ζ (d)) ≈ g(ζ), ζ (�) ∈ R
p, � = 1, ..., d, (4.4)

where µk ∈ R. Then the FGT(C) defined by the CP decomposition (1.3) via Ar := A(gr) as
in Def. 4.1 with bk = µk, and with

V
(�)
k = {Φ(�)

k (ζ
(�)
i�

)}i�∈I�
∈ R

I� , (4.5)

and the FGT(G), corresponding to the choice,

V
(�)
k =

∫
Φ

(�)
k (ζ

(�)
i�

)φi�� (x�)ψ
j�
� (y�)dx�dy� ∈ R

I�×J� , � = 1, ..., d, k = 1, ..., r, (4.6)

both provide the error estimate ‖A(g) − A(r)(gr)‖∞ ≤ C‖g − gr‖L∞(Ω), where C = 1 in the
FGT(C) case.
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Proof. The analysis for FGT(C) is presented in [20]. In the Galerkin case we readily obtain

|am1...md
− a(r)

m1...md
| =

∣∣∣∣∫
Ω×Ω

(g(x, y)− gr(x, y))φ
i(x)ψj(y)dxdy

∣∣∣∣
≤ ‖g − gr‖L∞(Ω)

∫
Ω×Ω

∣∣φi(x)ψj(y)
∣∣ dxdy,

then the result follows.
In computationally efficient algorithms a separation rank r is supposed to be as small as

possible, while the set of functions {Φ(�)
k : R

p → R} can be fixed a priori or chosen adaptively
to the problem.

Though in general the construction of a decomposition (4.4) with small separation rank
r is a complicated numerical task, in many interesting applications efficient approximation
methods are available. In particular, for a class of multi-variate functions (say, certain
shift-invariant Green’s kernels in R

d) it is possible to obtain a dimensionally-independent
Kronecker rank estimate r = O(logn| log ε|) based on sinc-quadrature methods or an ap-
proximation by exponential sums (cf. case-study examples in [2, 20]).

In this section we discuss the constructive CP decomposition of FGTs applied to a gen-
eral class of generating functions characterised in terms of their Laplace transform. The
approximation results are based on sinc-quadrature methods.

We consider a class of multi-variate functions g : Rd → R parametrised by g(ζ) = G(ρ)
with ρ = ρ1(ζ1) + ... + ρd(ζd) > 0, ρ� : Rp → R+ (with small p ∈ N≥1), where a uni-variate
function G : R+ → R can be represented via the Laplace transform

G(ρ) =

∫
R+

G(τ)e−ρτdτ.

Now the FGT(G) approximation corresponds to p = 2, ζ� = (x�, y�). Without loss of
generality, we suppose that φi�� (·) = φ(· + (i� − 1)h) (� = 1, ..., d) with a single scaling
function φ, where h > 0 is the mesh parameter, and the same for ψj�� (·). We also simplify
and set ρ� = ρ0(x�, y�) (� = 1, ..., d) and, moreover, ρ0 : [a, b]2 → [a1, b1] ∈ R>0, while
ρ ∈ [ad, bd] ∈ R>0. The more general multilevel setting (say, corresponding to the wavelet
basis) can be analysed completely similar. For each i, j ∈ In, we introduce the parameter
dependent function

Ψi,j(τ) :=

∫
R2

e−τρ0(x,y)φ(x+ (i− 1)h)ψ(y + (j − 1)h)dxdy, τ ≥ 0,

as well as an auxiliary function fI(τ) := G(τ)e−ρτ .

Theorem 4.4 (FGT(C) approximation). Assume that
(a) G(τ) has an analytic extension G(w), w ∈ ΩG, into a certain domain ΩG ⊂ C which

can be mapped conformally onto the strip Dδ (see Appendix), such that w = φ(z), z ∈ Dδ

and φ−1 : ΩG → Dδ;
(b) for each ρ ∈ [ad, bd] with ad > 0, the function f(z) := φ′(z)fI(φ(z)) belongs to the

Hardy space H1(Dδ) with N(f,Dδ) <∞ uniformly in ρ;
(c) f(t), t ∈ R, has (c1) exponential or (c2) hyperexponential decay as t→ ±∞.
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Then, for each M ∈ N+, the FGT(C), A(g), defined on [a, b]d allows an exponen-

tially convergent supersymmetric CP decomposition A(r) ∈ Cr with V
(�)
k as in (4.5), where

Φ
(�)
k (ζ (�)) = e−akζ

(�)
(� = 1, ..., d), and where µk, ak are explicitly given by the substitution of

f(t) into the sinc-quadrature (5), such that we have

‖A(g)−A(r)‖∞ ≤ Ce−αM
ν

with r = 2M + 1, (4.7)

where ν = 1
2
, α =

√
2πδb in the case (c1) and with ν = 1, α = 2πδb

log(2πaM/b)
in the case (c2).

(FGT(G) approximation). Assume that (a) holds and for each ρ ∈ [ad, bd] and (i, j) ∈
I × J :

(b′) The transformed integrand f(z) := φ′(z)G(φ(z))
d∏
�=1

Ψi�j�(φ(z)) belongs to the Hardy

space H1(Dδ) with N(f,Dδ) <∞ uniformly in ρ; item (c) holds.
Then, for each M ∈ N, the FGT(C), A(g), defined on [a, b]d allows a super-symmetric

CP decomposition A(r) ∈ Cr with V
(�)
k as in (4.6) that yields the error estimate (4.7).

Proof. In the FGT(C) case, we directly apply the sinc-quadrature theory to the transformed
integrand f(z) to obtain TM(f, h) := h

∑M
k=−M f(kh) ≈ G(ρ) (cf. Appendix) with

|G(ρ) − TM(ρ)| ≤ Ce−αM
ν

, ρ ∈ [ad, bd]

and with the respective α, ν. Combining this estimate with Proposition 4.3 and taking into
account the separability property of the exponential proves the first assertion.

To prove the FGT(G) case, we notice that by definition

aij =

∫
R+

G(τ)

d∏
�=1

Ψi�j�(τ)dτ for (i, j) ∈ I × J .

Again, we apply the sinc-quadrature to the transformed integrand f(z) to obtain the expo-
nential convergence as in the case of FGT(C) approximation. Since our quadrature does not
depend on the index i, j this completes the proof.

Theorem 4.4 proves the existence of a CP decomposition to the FGT A(g) with the
Kronecker rank r = O(| log ε| logn) (in the case (c2)) or r = O(log2 ε) (in the case (c1)).

Remark 4.5 The sinc-quadrature requires pointwise evaluation of the Laplace transform
which can be costly (say, in the case of a matrix-valued function G(·) or if G(·) is not given
explicitly). In such cases one can apply fast numerical methods to compute G (cf. [31]) based
on the inversion formula

G(τ) =
1

2πi

∫
Γ

eτzG(z)dz, τ > 0,

where Γ is a suitable path connecting −i∞ to +i∞.

Notice that in some applications, instead of the Laplace transform, it is more convenient to
apply the Gaussian transform

G(ρ) =

∫
R+

G̃(τ)e−ρ
2τ2

dτ

which can be analysed either directly or by reduction to the Laplace transform via the
substitutions ρ2 = ν, τ 2 = t.
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4.3 Rank Estimates for the Two-level Rank-(r1, ..., rd) Model

For the class of applications based on the separation via tensor-product interpolation, the
CP model typically leads to the Kronecker rank estimate rCP = rd with r = O(logn| log ε|),
where the dimensional parameter d gets into the exponent. In such cases one can apply the
two-level rank-(r1, ..., rd) Tucker decomposition instead of the rank-rCP canonical model.

The next lemma shows that the error of the Tucker decomposition is directly related to
the error of the separable approximation of generating function.

Lemma 4.6 Let g : Ω → R be approximated by a separable expansion

gr(ζ) :=

r1∑
k1=1

...

rd∑
kd=1

bk1...kd
Φ

(1)
k1

(ζ (1)) · · ·Φ(d)
kd

(ζ (d)) ≈ g, ζ (�) ∈ R
p, 1 ≤ � ≤ d, (4.8)

where bk1...kd
∈ R. Then the FGT(C) of the form A(r) := A(gr) ∈ T r generated by gr with

V
(�)
k�

= {Φ(�)
k�

(ζ
(�)
i�

)}i�∈I�
∈ R

I� , (4.9)

and the FGT(G), corresponding to the choice,

V
(�)
k�

=

∫
Φ

(�)
k�

(ζ
(�)
i�

)φi�� (x�)ψ
j�
� (y�)dx�dy� ∈ R

I�×J� , � = 1, ..., d, k� = 1, ..., r�, (4.10)

both provide the error estimate ‖A(g) − A(r)(gr)‖∞ ≤ C‖g − gr‖L∞(Ω), where C = 1 in the
FGT(C) case.

Proof. By the construction of A(r) we have

‖A −A(r)‖∞ = max
(i1,...,id)∈Id

{|g(ζ (1)
i1
, ..., ζ

(d)
id

) −
r1∑

k1=1

...

rd∑
kd=1

bk1...kd
Φ

(1)
k1

(ζ
(1)
i1

) · · ·Φ(d)
kd

(ζ
(d)
id

)|},

which proves the assertion in the FGT(C) case. The Galerkin-type approximation can be
analysed as in Proposition 4.3.

For a class of analytic functions with point singularities the expansion (4.8) can be derived
via tensor-product Sinc-interpolation. As an alternative, a tensor-product wavelet (or some
other hierarchical basis) as well as polynomial approximations can be applied. However, our
choice is motivated by the following favourable features of the Sinc-basis in L2(R):
(a) Complete L2(R)-orthogonal basis in the space of band-limited functions;
(b) interpolation basis; exponential convergence of the Sinc-interpolation/quadratures in
the Hardy space H1(Dδ);
(c) perfect approximation to the Gaussian exp(−αx2), x ∈ R (when the Gaussian basis
works well the Sinc-basis is also good);
(d) allows a multi-resolution analysis (Sinc-wavelet [26]).

Theorem 4.7 Assume that g(ζ) satisfies the requirements for tensor-product sinc-
interpolation (cf. Appendix). Then the FGT(C), A(g), allows an exponentially convergent

rank-(r, ..., r) decomposition A(r) ∈ T r with V
(�)
k�

as in (4.9), where Φ
(�)
k�

(ζ (�)) = sinc(−ak�
ζ (�))
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(� = 1, ..., d), and where bk are explicitly represented via the sinc-interpolation (5.4), such
that

‖A(g) −A(r)‖∞ ≤ C(1 + logM)de−αM
ν

with r = 2M + 1, (4.11)

with ν = 1
2
, α =

√
2πδb in the case (c1) and with ν = 1, α = 2πδb

log(2πaM/b)
in the case (c2) as

in Theorem 4.4.
Suppose there is a separable scaling g(ζ) → g̃(ζ) := f1(ζ1)...fd(ζd)g(ζ) such that g̃ satisfies

conditions of Theorem 4.4. Then there is a decomposition A(r) ∈ T (U ,r,q) which converges
exponentially in both r and q.

Proof. We apply Lemma 4.6 yielding an exponential error bound for the tensor-product sinc-
interpolation (cf. Appendix), which proves the first assertion. Since B can be represented
via a tensor generated by g̃ with respect to the sinc-collocation grid, application of Theorem
4.4 ensures that B allows a rank-q CP decomposition that converges exponentially in q.
Choosing the uniform basis spanned by Sinc functions completes the proof.

The error estimate (4.11) yields max
�
r� = O(| log ε|δ−1) and similarly for q. In turn, in

some cases we get the estimate δ−1 = O(logn) (cf. [20]).

4.4 Some Examples

The following examples of multi-variate functions arise in large-scale applications.

4.4.1 Example 1

Let ζ = (ζ1, ..., ζd) ∈ Rd and choose p = 1. The function g : Rd → R defined by g(ρ) := 1/ρ
with ρ = ζ1 + ... + ζd, ζi > 0, arises in numerical PDEs (elliptic operator inverse in Rd) and
in quantum chemistry simulations, where d may vary up to one hundred. The analysis is
based on the Laplace transform

1

ρ
=

∫
R+

e−ρtdt.

The details can be found in [21].

4.4.2 Example 2

Let x, y ∈ R
d, p = 2, and define ρ = |x − y|2 = ζ2

1 + ... + ζ2
d with ζ� = x� − y� : R

2 → R,
ζ ∈ Rd. The family of functions

g(x, y) ≡ g(ζ) := 1/ρλ with λ ∈ R>0,

arises in potential theory, in quantum chemistry and in computational gas dynamics (cf.
[25]). The choice λ = 1/2 corresponds to the classical Newton potential, while λ = −1/2
refers to the distance function.

Low separation rank decomposition to the multi-variate functions 1/ρ, 1/
√
ρ and to the

related Galerkin approximations were discussed in [2, 20, 21, 22, 37], while the kernel function
ρµ, µ ∈ R, was considered in [25].

Let us take a closer look to the FGT(G) for the Newton potential 1/
√
ρ in the hypercube

[−R,R]d ∈ Rd. As a basic example, we consider piecewise linear finite elements defined
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by scaling functions φ(x), ψ(x) associated with a tensor-product grid with step-size h > 0.
Extension to other types of FEs including those with non-local support is straightforward.

Lemma 4.8 The FGT(G) for the Newton potential 1/
√
ρ in the hypercube [−R,R]d ∈ R

d

allows a CP approximation with exponential convergence rate (independent of d) as in (4.11)
with ν = 1/2.

Proof. We apply the FGT(G)-version of Theorem 4.4. Obviously, we have ρ0(x, y) = (x−y)2

(x, y ∈ R), hence making use of the Gaussian transform

1
√
ρ

=
2√
π

∫
R+

e−ρτ
2

dτ,

we obtain Ψi,j(τ) = Ψ|i−j|(τ) :=
∫

R2 e
−τ2(x−y)2φ(x)ψ(y + |i − j|h)dxdy, τ ≥ 0. Following

[36], we choose the analyticity domain as a sector ΩG := {w ∈ C : |arg(w)| < δ} with apex
angle 0 < 2δ < π/2 (here G = 1), and then apply the conformal map ϕ−1 : ΩG → Dδ with
w = ϕ(z) = ez, ϕ−1(w) = log(w) (cf. Theorem 4.4(a)).

To check condition (b′) of Theorem 4.4, first, we notice that the transformed integrand

f(z) := exp(z)
d∏
�=1

Ψi�j�(φ(z)) belongs to the Hardy space H1(Dδ). Let H = (H1, ..., Hd) ∈ Rd

with H� = |i� − j�|h ≤ R and let

f ∗ g(u) =

∫
R

f(x)g(u− x)dx

be the convolution product in Rd provided that q(x) = |f | ∗ |g| is locally integrable. Now,
using the shift property of convolution, f(·+C)∗ g(·) = f ∗ g(·+C) and applying the Fubini
theorem in the form

(f ∗ g, µ)L2 =

∫
Rd×Rd

f(x)g(y)µ(x+ y)dxdy, µ ∈ D(Rd),

we obtain (note that ψ is an even function)∫
Rd×Rd

e−w
2|x−y|2φ(x)ψ(y −H)dxdy =

∫
Rd×Rd

e−w
2|u|2φ(x)ψ(u− x+H)dxdu

=

∫
Rd

e−w
2|u|2φ(·) ∗ ψ(· +H)(u)du

=

∫
Rd

e−w
2|u|2(φ ∗ ψ)(u+H)du

=

∫
Rd

e−w
2|v−H|2(φ ∗ ψ)(v)dv,

taking into account that the functions φ and ψ have compact support [−h, h]d.
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Notice that the support of φ ∗ ψ is [−2h, 2h]d. Now we estimate the constant N(f,Dδ)
by

N(f,Dδ) =

∫
∂ΩG

|f(w)| |dw|

=

∫
∂ΩG

∫
Rd×Rd

∣∣∣e−w2|x−y|2φ(x)ψ(y −H)dxdy
∣∣∣ |dw|

= 2

∫
R+

∫
Rd

∣∣∣e−ζ2 exp(2iδ)|u−H|2(φ ∗ ψ)(u)du
∣∣∣dζ

≤ 2

∫
Rd

∫
R+

∣∣∣e−ζ2 exp(2iδ)|u−H|2
∣∣∣ dζ |φ ∗ ψ|(u)du

= 2

∫
Rd

∫
R+

e−ζ
2cos(2δ)|u−H|2dζ |φ ∗ ψ|(u)du.

Calculating the integral in variable ζ analytically, we now proceed

2

∫
Rd

∫
R+

e−ζ
2cos(2δ)|u−H|2dζ |φ ∗ ψ|(u)du =

2√
cos(2δ)

∫
Rd

|φ ∗ ψ|(u)
|u−H| du

≤ 2 max |φ ∗ ψ|√
cos(2δ)

∫
supp(φ∗ψ)

du

|u−H|

≤ Cmeas(supp(φ ∗ ψ))

diam(supp(φ ∗ ψ))
√
cos(2δ)

.

This bound is uniform in H since the Newton potential

V (H) =
1

|u| ∗ |φ ∗ ψ|(H)

is a harmonic function outside of supp(φ∗ψ), ∆V = −4π|φ∗ψ|, and V (H) → 0 as |H| → ∞.
Finally, we check that condition (c1) is also valid, which completes the proof.

4.4.3 Example 3

Let ρ be defined as in Example 2. The function

g(x, y) ≡ g(ζ) := exp(−ρλ) with λ ∈ R>0,

arises in quantum chemistry (λ = 1/2) and in stochastic PDEs. The following Lemma shows
the existence of a low-rank CP and the two-level rank-(r1, ..., rd) decompositions to the FGT
generated by e−2

√
α|x−y| = e−2

√
αρ.

Lemma 4.9 (I) Let A be the FGT(C) generated by e−2
√
α|x−y| in Ωd (cf. Def. 4.1). Then

there is an exponentially convergent CP decomposition to the off-diagonal part of A (|i− j| ≥
1) with the Kronecker rank r = O(| log ε|(| log ε| + | log h|)). Besides, diagA(G) is a rank-1
tensor.
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(II) The corresponding FGT(G) with respect to the FE basis in [−R,R]d as above, allows
an exponentially convergent rank r CP decomposition to the target tensor A(G).

(III) There is a two-level rank-(r, ..., r) decomposition to the FGT(G), A(G) with q = r
and with r as above. On any hyper-cube [R0, R]d with R0 > 0, there is the two-level rank-
(r, ..., r) decomposition to FGT(C) with q = r and with r as above.

Proof. (I). We apply the Laplace transform to represent G(ρ) = e−2
√
αρ (ρ > 0 ),

e−2
√
αρ =

√
α√
π

∫
R+

τ−3/2exp(−α/τ − τρ)dτ,

which corresponds to the choice G(τ) =
√
α√
π
τ−3/2eα/τ . Via substitution τ = et (i.e. ϕ(z) =

ez), we obtain

e−2
√
αρ =

√
α√
π

∫
R

f(t;α, ρ)dt with f(t;α, ρ) = exp(−t/2 − αe−t − ρet).

The decay of the integrand f(t;α, ρ) on the real axis is

f(t;α, ρ) ≈ e−t/2−ρe
t

as t→ ∞, f(t;α, ρ) ≈ e|t|/2−αe
|t|

as t→ −∞,

corresponding to a = 1, b = min{α, ρ}, C = 1 in (5.3). Moreover, it is easy to check that
f(z) ∈ H1(Dδ), δ < π/2 with uniformly bounded constant N(f,Dδ) in both α and ρ. Hence
(5) holds implying the bound M = O(| log ε|(| log ε| + log 1/b)). Applying Theorem 4.4, we
prove the existence of a rank-(2M + 1) CP decomposition to the corresponding FGT(C)
via the interpolation grid ω that fits to the restriction ρ > h, with h > 0 being the mesh
parameter. Furthermore, the diagonal part of A(G) corresponds to the choice ρ = 0, which
proves part (I).

In the case of FGT(G), we have

Ψ|i−j|(τ) :=

∫
R2

e−τ(x−y)
2

φ(x)ψ(y + |i− j|h)dxdy, τ ≥ 0.

Clearly, f(z;α, ρ) ∈ H1(Dδ) with δ < π/2. To prove condition (b′) of Theorem 4.4, we
note that |G(ζ exp(iδ))| ≤ C0 < ∞ for ζ ∈ [0,∞). The following arguments are slight
modifications of those in the previous lemma,

N(f,Dδ) =

∫
∂ΩG

|f(w)| |dw|

=

∫
∂ΩG

∫
Rd×Rd

|G(w)|
∣∣∣e−w|x−y|2φ(x)ψ(y −H)dxdy

∣∣∣ |dw|
≤ 2

∫
R+

∫
Rd

|G(ζ exp(iδ))|
∣∣∣e−ζ exp(iδ)|u−H|2(φ ∗ ψ)(u)du

∣∣∣ dζ
≤ 2C0

∫
Rd

∫
R+

∣∣∣e−ζ exp(iδ)|u−H|2
∣∣∣ dζ |φ ∗ ψ|(u)du,
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∫
Rd

∫
R+

∣∣∣e−ζ exp(iδ)|u−H|2
∣∣∣ dζ |φ ∗ ψ|(u)du =

∫
Rd

∫
R+

e−ζcos(δ)|u−H|2dζ |φ ∗ ψ|(u)du

=
1

cos(δ)

∫
Rd

|φ ∗ ψ|(u)
|u−H|2 du

≤ max |φ ∗ ψ|
cos(δ)

∫
supp(φ∗ψ)

du

|u−H|2

≤ C ·meas(supp(φ ∗ ψ))

cos(δ) · diam(supp(φ ∗ ψ))
.

This bound is uniform in H . Finally, it is easily seen that condition (c) of Theorem 4.3 is
satisfied with b = 1/2 which completes the proof of part (II). The first statement in item
(III) is the direct consequence of part (II).

To prove the last assertion, first, we construct the tensor-product Sinc-interpolant to the

scaled function G1(ρ) =
d∏
�=1

|ζ�|aG(ρ) with some 0 < a < 1, which leads to a rank-(r, ..., r)

Tucker decomposition of A(G1), where V
(�)
k are computed with the modified basis functions

|x�|−aφ�(x�)ψ�(y�) (cf. Lemma 4.5).
The core tensor has now the form B = A(b1 ×2 ...×d b1)� INTsinc(G), where INTsinc(G)

represents the trace of G at the Sinc-interpolation points, and b1 is the corresponding trace
of the weight function |ζ�|a. Applying part (I), we approximate INTsinc(G) by the CP-model
with the Kronecker rank r. In this way, we obtain A(G) = A(b−1

1 ×2 ... ×d b
−1
1 ) � A(G1),

hence the desired representation is given by rescaling of the corresponding one constructed
for A(G1).

The FGT(C) approximation (with dimensionally independent rank) is well suited for the
collocation or FEM-Galerkin type schemes in the range of arguments |x− y| ≥ h > 0. The
FGT(G) approximation is applicable to a complete tensor. The Sinc-interpolation is useful
to construct a two-level rank-(r1, ..., rd) decomposition.

In the numerical illustrations below (cf. Fig. 4.1) indicate the exponential convergence of
the two-level approximation. In the first level, we apply the Sinc-interpolation with respect
to x ∈ [0, B] to the scaled function xα exp(−

√
x2 + y2) (α = 0.5), which already satisfies the

required conditions. The core tensor is represented via the CP model using the truncated
SVD. The first and the second pair of pictures correspond to the choice B = 1.0 and B = 10.,
respectively.

Remark 4.10 It is easily seen that Lemmata 4.8, 4.9 actually apply to a general basis which
ensures the local integrability of |φ| ∗ |ψ| and the decay property of |φ ∗ ψ| in the form∫

R

∣∣∣∣F(
1

|x|β )F(|φ ∗ ψ|)
∣∣∣∣ dω <∞, F − the Fourier transform

with β = 1, 2, respectively (say, with |φ ∗ ψ(u)| ≤ C exp(−a|u|)). In particular, the latter is
the case for both compactly supported and “Mexican hat”-type wavelets.
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Figure 4.1: Two-level rank-(r1, ..., rd) approximation to exp(−|x − y|) in the format T (U ,r,q) (cf.
Def. 2.7) with d = 2: Sinc-interpolation error (left), SVD for the core tensor (right).

4.4.4 Example 4

Further examples of Green’s kernels are given by the Yukawa and the Helmholtz potentials
(the latter is considered for low frequency)

g1(x, y) ≡ g(ζ) :=
e−µ

√
ρ

√
ρ
, µ ∈ R≥0; g2(x, y) ≡ g(ζ) :=

e−κ
√
ρ

√
ρ
, κ ∈ C.

Here we sketch the analysis for the Yukawa potential. Applying the Laplace transform

e−µ
√
ρ

√
ρ

=
1√
π

∫
R+

τ−1/2 exp (−ρτ − µ2/τ)dτ,

we find that the analytic properties of the integrand are completely similar to those in
Example 3. Hence Lemma 4.9 with the corresponding modifications can be applied.

4.4.5 Example 5

The so-called variable hard spheres model (related to the deterministic Boltzmann equation)
is specified by the function

g1,λ(x, y) := |x|λ sinc

(
|x||y|
π

)
, x, y ∈ R

p, λ ∈ (−3, 1],

where the sinc-function is defined in Appendix. A more general kernel function is given by

g2,λ(x, y) := |x−y|λ√
|x|2+|y|2+2|〈x,y〉|

. These examples correspond to the choice d = 2, p = 1, 2, 3. It

is worth to note that g1,λ depends solely on two scalar variables |x|, |y| instead of 2p variables
in the general case, while g2,λ includes also the scalar product 〈x, y〉 (cf. [25] for separable
approximation to g1,λ and g2,λ).
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5 Appendix: Sinc Methods

Following the standard tools in the sinc-methods (cf. [36]), we introduce the Hardy space
H1(Dδ) as the set of all complex-valued functions f , which are analytic in the strip Dδ :=
{z ∈ C : |�m z| ≤ δ} with some δ < π

2
, such that

N(f,Dδ) :=

∫
∂Dδ

|f(z)| |dz| =

∫
R

(|f(x+ iδ)| + |f(x− iδ)|) dx <∞.

Let

S(k, h)(x) =
sin [π(x− kh)/h]

π(x− kh)/h
≡ sinc(

x

h
− k) (k ∈ Z, h > 0, x ∈ R)

be the k-th Sinc function with step size h, evaluated at x, where the sinc-function is defined
by

sinc(z) =
sin(πz)

πz
, z ∈ C. (5.1)

. Given f ∈ H1(Dδ), h > 0, and M ∈ N0, the corresponding Sinc quadrature read as

TM(f, h) := h

M∑
k=−M

f(kh) ≈
∫

R

f(ξ)dξ.

If
|f(ξ)| ≤ C exp(−b|ξ|) for all ξ ∈ R with b, C > 0, (5.2)

then the quadrature error satisfies∣∣∣∣∫
R

f(ξ)dξ − TM(f, h)

∣∣∣∣ ≤ Ce−
√

2πδbM with h =
√

2πδ/bM,

and with a positive constant C depending only on f, δ, b (cf. [36]). If f possesses the
hyper-exponential decay

|f(ξ)| ≤ C exp(−bea|ξ|) for all ξ ∈ R with a, b, C > 0, (5.3)

then the choice h = log(2πaM
b

)/ (aM) leads to (cf. [10])∣∣∣∣∫
R

f(ξ)dξ − TM(f, h)

∣∣∣∣ ≤ C N(f,Dδ) e−2πδaM/ log(2πaM/b).

Note that 2M + 1 is the number of quadrature/interpolation points. If f is an even
function, this number reduces to M + 1.

The classical Sinc interpolant (cardinal series representation) reads as

CM(f, h) =
M∑

ν=−M
S(ν, h)f(νh) ≈ f. (5.4)

If (5.2) holds then the interpolation error satisfies

‖f − CM(f, h)‖∞ ≤ CM1/2e−
√
πδbM , with h =

√
πδ/bM.
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Assuming the hyper-exponential decay of f , we obtain

‖f − CM(f, h)‖∞ ≤ C
N(f,Dδ)

2πδ
e−πδaM/ log(πaM/b) with h = log(

πaM

b
)/ (aM) .

All the results can be reformulated for an arbitrary subinterval in R, in particular for R+.
The Sinc interpolation method can be extended to the multi-dimensional case. Let a

function g�(·) : I� → R be a univariate parameter-dependent function, which is the restriction
of a multi-variate function g onto I� with fixed remaining variables. Suppose that g�(·)
satisfies all the regularity and decay conditions above, uniformly in � = 1, ..., d. It is shown
in [20] that the tensor-product Sinc interpolation CM with respect to d variables,

CMg := C
(1)
M ...C

(d)
M g,

provides the exponential error estimate

|g(ζ)− CM(g, h)(ζ)| ≤ CΛd
M

2πδ
max
�=1,...,d

N(g�(·), Dδ) e
−πδM
log M

with the Lebesgue constant ΛM = O(logM), and where C
(�)
M g = C

(�)
M (g, h) denotes the

univariate Sinc interpolation from (5.4) applied to the variable ζ� ∈ I�.
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