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Abstract

We give a concrete and surprisingly simple characterization of com-
pact sets K ⊂ R

2×2 for which families of approximate solutions to the
inclusion problem Du ∈ K are compact. In particular our condition
is algebraic and can be tested algorithmically. We also prove that the
quasiconvex hull of compact sets of 2 × 2 matrices can be localized.
This is false for compact sets in higher dimensions in general.

1 Introduction

Let Ω ⊂ R
2 be a bounded open set. In this paper we consider systems of

the form
Du(x) ∈ K for almost every x ∈ Ω (1)

for functions u : Ω → R
2, where K ⊂ R

2×2 is a given (compact) set of 2× 2
matrices. Our interest lies in studying compactness properties of exact and
approximate solutions to general systems of this form.

The systematic study of compactness for a general class of nonlinear
systems - including the differential inclusion (1) - has been initiated by
F. Murat and L. Tartar [40, 55] in their study of oscillation phenomena in
nonlinear partial differential equations, leading to the theory of compensated
compactness (see also [18, 41, 49, 56]). The issue of compactness for inclusion
(1) is strongly linked [38, 51] to the study of quasiconvexity in the calculus
of variations [8]. An important example arises in the work of J. Ball and
R. James [10] on variational models for solid-solid phase transitions (see also
[11, 12, 17, 19, 50]).

There are two natural questions: stability and the relaxed problem. To
be precise, suppose {uj} is a uniformly Lipschitz sequence of approximate
solutions to problem (1) in the sense that dist (Duj ,K) → 0 in L1(Ω).
Under what conditions on K is the sequence {Duj} compact in L1(Ω), and
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in particular if uj → u uniformly, is the limit u a solution to (1)? The
latter corresponds to the stability of (1) under weak convergence of the
gradient Du. In situations where (1) is not stable, one usually asks for the
smallest compact set containing K for which the inclusion is stable under
weak convergence. In the terminology of the calculus of variations [38] this
set is called the quasiconvex hull Kqc, and represents the relaxed problem.
In physical situations the relaxed problem describes the relation between
microscopic and macroscopic quantities, as has been pointed out by Tartar
[55], see also [10].

More recently the study of compactness became also relevant from the
point of view of existence of solutions to (1) via Gromov’s method of convex
integration [22]. This method, which stems from the famous Nash-Kuiper
C1 isometric embedding theory [30, 42], is based on the presence of suf-
ficiently many oscillations compatible with the inclusion. In this sense it
relies on lack of compactness. One important feature of this construction is
that it yields a very rich class of solutions with highly irregular behaviour.
Recently S. Müller and V. Šverák [39] combined convex integration with a
careful analysis of oscillations in the spirit of Tartar’s compensated com-
pactness to obtain surprising counterexamples to regularity in quasilinear
elliptic systems (see also [46, 52] and [28]).

It is well known that for problems of the type (1) the main obstruction
to compactness is due to the possible presence of rapid oscillations in the
sequence of gradients Duj. Indeed, if A,B ∈ R

2×2 are any two matrices
such that rank(A−B) = 1, then one can construct a sequence of uniformly
Lipschitz functions uj whose gradients oscillate between A and B, and no
subsequence of {Duj} converges strongly in L1(Ω). If A and B are such
that rank(A − B) = 1, we say that A and B are rank-one connected and
in general speak of rank-one connections. Thus a necessary condition for
compactness in (1) is that K contains no rank-one connections.

In [56] Tartar conjectured that in fact this condition should also be
sufficient. For connected sets K ⊂ R

2×2 the conjecture was verified by
V. Šverák in [49]. On the other hand Tartar showed (see [57]) the need for
additional conditions in the case of a general compact set. Indeed, Tartar
produced an example of a set consisting of four matrices which contains
no rank-one connections, but where compactness for sequences of gradients
fails (this type of example was discovered in different contexts by various
authors, e.g. [6, 16, 35, 46], see also [12]). Such four-matrix sets, called
T4 configurations, were subsequently subject to an intense analysis in the
literature [27, 28, 53], in part because they were the key elements in the
construction of counterexamples to regularity for elliptic systems mentioned
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above.
Our first theorem shows that the additional condition that K contains

no T4 configurations is sufficient for compactness.

Theorem 1 (Compactness). Suppose K ⊂ R
2×2 is a compact set with-

out rank-one connections and K contains no T4 configurations. Then for
any uniformly Lipschitz sequence uj : Ω ⊂ R

2 → R
2 with dist (Duj ,K) →

0 in L1(Ω), the sequence {Duj} is compact in L1(Ω).

We remark that combining Proposition 2 and Theorem 2 in [53] leads to
a very quick algorithm for deciding whether a compact set of 2× 2 matrices
contains T4 configurations.

Now we turn to our second question, the characterization of the relaxed
problem. As mentioned earlier, this amounts to estimating the quasiconvex
hull Kqc. The usual technique in the literature [11, 12, 19, 44, 47, 55] is
to get a lower estimate from the rank-one convex hull Krc and an upper
estimate from the polyconvex hull Kpc, since

Krc ⊂ Kqc ⊂ Kpc.

In general these inclusions are known to be strict, although whether Kqc =
Krc in R

2×2 remains an open problem. In estimating the rank-one convex
hull a very useful fact is that the rank-one convex hull is localizable. This
means that if we know apriori that Krc is disconnected (for example by an
estimate on the polyconvex hull), then Krc can be calculated by considering
just subsets of K contained in each connected component of Krc. More
precisely if Krc ⊂ ⋃n

i=1 Ui for pairwise disjoint open sets Ui, then Krc ∩
Ui = (K ∩ Ui)rc for each i, see [27, 33, 43]. This result, known as the
“structure theorem” for rank-one convex hulls, is valid in any dimension, and
the proofs rely heavily on the locality of rank-one convexity. In contrast,
quasiconvexity is known to be a non-local condition in higher dimensions
[29], and localization of the quasiconvex hull is not possible in general (see
below). Nevertheless, our second main result is that in the space of 2 × 2
matrices the structure theorem also holds for the quasiconvex hull (see also
Corollary 3 in Section 5).

Theorem 2 (Structure of quasiconvex hulls). If K ⊂ R
2×2 is a compact

set and Kqc ⊂ ⋃n
i=1 Ui for pairwise disjoint open sets Ui, then Kqc ∩ Ui =

(K ∩ Ui)qc.

There is a close relationship between Theorems 1 and 2 and Morrey’s
conjecture regarding quasiconvexity and rank-one convexity. We recall that
a variational integral of the form

∫
Ω f(Du(x))dx is weakly* lower-semi-

continuous in the space W 1,∞(Ω, Rm) if and only if f : R
m×n → R is
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quasiconvex (see [36]). It is well known that every quasiconvex function is
rank-one convex, and Ch.B. Morrey Jr. in [36] posed the interesting problem
of whether rank-one convexity implies quasiconvexity (see also [2, 7, 24] for
the relation of this conjecture with other areas). In the higher dimensional
case, where m ≥ 3, V. Šverák in [48] constructed an ingenious counterex-
ample, showing that quasiconvexity is not the same as rank-one convexity,
and on the other hand S. Müller in [37] proved equality of the two notions
for 2 × 2 diagonal matrices. However, the general case n = m = 2 remains
an outstanding open problem. Subsequently Šverák’s counterexample was
used to show that in higher dimensions quasiconvexity is not a local con-
dition [29], and moreover that the type of localization as in Theorem 2 is
not possible (an example in the space of 6 × 2 matrices is due to Šverák,
and can be found on page 68 in [38]). Theorem 2 (and Theorem 6 in Sec-
tion 5) suggest that if there is a difference between rank-one convexity and
quasiconvexity in R

2×2, it has to be of a much more subtle nature.
To close this introduction, we briefly discuss the method of proof. Our

approach is based on the notion of incompatible sets. Following [9] two dis-
joint compact sets K1,K2 ⊂ R

2×2 are said to be homogeneously incompati-
ble if whenever uj : Ω ⊂ R

2 → R
2 is a sequence of uniformly Lipschitz map-

pings which are affine on the boundary and such that dist (Duj ,K1∪K2) → 0
in L1, then either dist (Duj ,K1) → 0 or dist (Duj ,K2) → 0. Notice that
if K = K1 ∪ K2 is the union of homogeneously incompatible sets, then the
compactness issue for K is reduced to the compactness issue of the two
smaller sets K1 and K2 separately. Accordingly, in both theorems our aim
is to find a decomposition of K into homogeneously incompatible sets. We
do this in two steps, a geometric and an analytic step.

The first step in finding such a decomposition is to analyse the rank-one
convex geometry of K. In both Theorems 1 and 2 the assumptions on the
set K imply restrictions on the rank-one convex hull Krc, and these in turn
imply a certain geometric structure for K, namely that K ⊂ EΓ, where EΓ

is the quasiconformal envelope of an elliptic curve (see Definition 1). This
analysis, mainly based on work in [53], is carried out in Section 4.

In Section 3 we show that the condition K ⊂ EΓ implies a decomposition
of K into homogeneously incompatible sets. The key point is to realize
that the set EΓ corresponds on the one hand to elliptic equations and on
the other hand to families of quasiconformal mappings. More precisely, if
u ∈ W 1,2(Ω, C) satisfies Du(z) ∈ EΓ for almost every z ∈ Ω, then u solves a
corresponding nonlinear Beltrami equation of the form

∂zu = H(z, ∂zu),
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whereas when coupled with appropriate boundary conditions u gives rise to
a family of quasiconformal mappings parametrized by the curve Γ as

ut(z) = u(z) − Γ(t)z.

The former allows us to use the approach in [3, 21] to construct certain
nonlinear operators which act as projectors onto the set EΓ, whereas the
latter, an idea which appeared in [14], leads to the required incompatibility
result for solutions of the inclusion Du(z) ∈ EΓ. Indeed, our proof of this
incompatibility (see Theorem 4) relies heavily on adapting the methods in
Section 7 of [14] - where Γ is a straight line in the conformal plane - to our
nonlinear setting. Using a different but less flexible approach the special
case when Γ is a straight line and K consists of symmetric 2 × 2 matrices
has been obtained in [54].

Finally, in Section 5 we combine the results of the previous sections to
give the proof of the main theorems.

2 Preliminaries

Throughout the paper we denote by R
m×n the space of m × n matrices.

We introduce conformal-anticonformal coordinates on R
2×2 in the following

way: for each A ∈ R
2×2 there exist unique z,w ∈ R

2 such that

A =
(

z1 + w1 w2 − z2

w2 + z2 z1 − w1

)
, (2)

so that R
2×2 ∼= C×C, and for matrices A ∈ R

2×2 we write A = (a+, a−) with
a+ ∈ C denoting the conformal part and a− ∈ C denoting the anticonformal
part of A. Also, we identify the complex number z = x + iy with the vector
(x, y) ∈ R

2, so that
Az = a+z + a−z. (3)

The norm | · | is the Euclidean norm on R
2. Then for each matrix A =

(a+, a−), detA = |a+|2 − |a−|2, so that

detA > 0 if and only if |a+| > |a−|.
Furthermore, we have

|A|2 = 2|a+|2 + 2|a−|2 and ‖A‖ = |a+| + |a−|,
where |A| and ‖A‖ denote the Hilbert-Schmidt and the operator norm, re-
spectively.
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Let K ⊂ R
m×n be a compact set and let uj : Ω ⊂ R

n → R
m be a sequence

of uniformly Lipschitz functions such that dist (Duj,K) → 0 in L1(Ω). The
technical tool to describe possible oscillations in the sequence of gradients
{Duj} is the Young measure {νx}x∈Ω generated by the sequence (see e.g.
[38, 44, 55]). Specifically, {νx}x∈Ω is a family of probability measures on
R

m×n, depending measurably on x ∈ Ω, such that supp νx ⊂ K and for
every f ∈ C0(Rm×n)

f(Duj)
∗
⇀

∫
Rm×n

f(A) dνx(A) in L∞(Ω). (4)

In particular the sequence {Duj} of gradients is compact in L1 precisely
if the measure νx is a Dirac mass for almost every x ∈ Ω. An important
tool in the study of gradient Young measures is spatial localization in the
sense that if {νx}x∈Ω is a gradient Young measure, then for almost every
x ∈ Ω the measure νx coincides with a homogeneous gradient Young measure,
i.e. one which is independent of x (see [26]). In turn, if ν is a homogeneous
gradient Young measure with barycenter A = ν, then for any domain Ω ⊂ R

n

there exists a sequence of uniformly Lipschitz functions uj : Ω → R
m with

uj(x) = Ax on ∂Ω such that {Duj} generates the Young measure ν in the
sense of (4). Therefore, in studying the issue of compactness for differential
inclusions one can restrict attention to sequences of approximate solutions
defined on some special domain (e.g. the unit ball in R

n) and subject to linear
boundary conditions. In our case we will consider mappings u : D → C,
where D ⊂ C is the unit disc.

A function f : R
m×n → R is quasiconvex if for all open sets U ⊂ R

n and
all A ∈ R

m×n∫
U

f(A + Du) − f(A)dx ≥ 0 for all u ∈ C∞
0 (U, Rm),

and f is said to be rank-one convex if it is convex along each rank-one line,
i.e. if t 	→ f(A + tB) is convex whenever rank(B) = 1. Every quasiconvex
function is rank-one convex. Homogeneous gradient Young measures are in
duality with quasiconvex functions via Jensen’s inequality [26]: a (compactly
supported) probability measure µ on R

m×n is a homogeneous gradient Young
measure if and only if f(µ̄) ≤ ∫

f(A) dµ(A) for all quasiconvex f : R
m×n →

R. In analogy, a probability measure µ is called a laminate if Jensen’s
inequality holds for all rank-one convex functions [34, 43, 44]. Thus, all
laminates are homogeneous gradient Young measures.

The quasiconvex hull of a compact set K ⊂ R
m×n can be defined as

the set of barycenters of homogeneous gradient Young measures which are
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supported in K:

Kqc = {ν : ν is a homogeneous gradient Young measure, supp ν ⊂ K},

and the rank-one convex hull is defined similarly with laminates supported
in K.

Throughout the paper we assume that the approximating sequence {uj}
with dist (Duj,K) → 0 is uniformly Lipschitz. Nevertheless we remark that
this is no real restriction and can be assumed without loss of generality (as
long as the set K is assumed to be compact), by the truncation argument of
K. Zhang [58]. See also the remark at the end of Section 3 for an extension
to the case where K is not compact. For further information concerning the
general theory of gradient Young measures we refer the reader to [38, 44].

A mapping u ∈ W 1,2(D, R2) is said to be K-quasiregular if the inequality

‖Du(z)‖2 ≤ K det Du(z) (5)

holds for almost every z ∈ D. If in addition u is a homeomorphism, it is
called K-quasiconformal. Defining ∂z = 1/2(∂x−i∂y) and ∂z = 1/2(∂x +i∂y)
allows one to write (5) equivalently as |∂zu(z)| ≤ k|∂zu(z)|, where k = K−1

K+1 ,
since ∂zu(z) and ∂zu(z) are nothing but the conformal and anticonformal
parts of the 2 × 2 matrix Du(z) in the sense of (2). For the basic theory
of planar quasiregular mappings see [1, 25, 31]. In particular quasiregular
mappings are continuous and differentiable almost everywhere. An impor-
tant fact which was discovered recently by several authors (see [32, Theorem
5] and [14, Theorem 6.1]) is that restrictions on the boundary values of the
real part of the mapping are already enough to make quasiregular mappings
quasiconformal:

Proposition 1. Suppose u ∈ W 1,2(D, C) is a quasiregular mapping such
that �u agrees with an affine map on the boundary ∂D, in the sense that
�(u − A) ∈ W 1,2

0 (D) for some affine map A. Then u is a homeomorphism
and hence quasiconformal.

We will also need some basic facts concerning nonlinear Beltrami equa-
tions [4, 5, 23]. These are equations of the form

∂zu = H(z, ∂zu) + h(z), (6)

where H : Ω × C → C is a measurable function satisfying the ellipticity
condition

|H(z,w1) − H(z,w2)| ≤ k|w1 − w2| and H(z, 0) = 0 (7)
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for some constant k < 1. As shown in [15] general nonlinear systems
Φ(z, ∂zu, ∂zu) = 0 which are elliptic in the sense of Lavrentiev can be reduced
to this form. We will need the following result concerning the existence and
uniqueness for the corresponding Riemann-Hilbert problem in the unit disc
D ⊂ C:

Proposition 2. Let H : D × C → C satisfy (7), and let h ∈ L2(D). Then
equation (6) admits a unique solution u ∈ W 1,2(D, C) with �u ∈ W 1,2

0 (D),
and moreover there exists a constant C = C(k) such that

‖Du‖L2(D) � C‖h‖L2(D).

Proof. This result is well known to experts, we sketch the proof for the
reader’s convenience. The proof is based on local versions of the classical
Cauchy transform and the Beurling-Ahlfors transform. The local Cauchy
transform is given by the formula

CDf(z) =
1
π

∫ ∫
D

f(w)
z − w

− zf(w)
1 − zw

dw,

and the local Beurling-Ahlfors transform is defined as SD(f) = ∂zCD(f). As
the classical Beurling-Ahlfors transform, SD is an isometry on L2(D) (see for
example [13, 14, 23]). Thus the operator BD(v)(z) = H(z, SDv(z)) + h(z) is
a contraction on L2(D, C):

‖BD(v1) − BD(v2)‖L2(D) � k‖v1 − v2‖L2(D),

and hence has a unique fixed point v ∈ L2(D, C). Then the solution u ∈
W 1,2(D, C) is given by u = CDv, since then ∂zu = v, ∂zu = SDv, and
�u ∈ W 1,2

0 (D, C).
The L2 estimate is obtained similarly. Because of the condition (7) we

obtain for the fixed point v

‖v‖L2(D) = ‖BD(v)‖L2(D) � k‖v‖L2(D) + ‖h‖L2(D),

and since SD is an isometry, we find

‖Du‖2
L2(D) = 2‖v‖2

L2(D) + 2‖SDv‖2
L2(D) � 4‖v‖2

L2(D) � 4
(1 − k)2

‖h‖2
L2(D).

Q.E.D.

For the corresponding Lp theory of equation (6) for the sharp range of
exponents p we refer the reader to [4, 5].
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3 Quasiconvex hulls

In this section we give a geometric condition for two disjoint compact sets
K1,K2 ⊂ R

2×2 to be homogeneously incompatible. Recall that this means
that whenever uj : Ω ⊂ R

2 → R
2 is a sequence of uniformly Lipschitz map-

pings which are affine on the boundary of Ω and such that dist (Duj,K1 ∪
K2) → 0 in L1, then either dist (Duj,K1) → 0 or dist (Duj,K2) → 0. In
terms of gradient Young measures this means that if ν is a homogeneous
gradient Young measure with support suppν ⊂ K1 ∪K2, then supp ν ⊂ K1

or supp ν ⊂ K2.

Definition 1. A continuous curve Γ : S1 → R
2×2 is said to be K-elliptic

if Γ(t) �= Γ(s) for t �= s and

‖Γ(t) − Γ(s)‖2 ≤ K det(Γ(t) − Γ(s)) for all t, s ∈ S1.

For an elliptic curve Γ we define the K-quasiconformal envelope of Γ as

EΓ =
{
X ∈ R

2×2 : ‖X − Γ(t)‖2 < K det(X − Γ(t)) for all t ∈ S1
}

.

Observe that in conformal-anticonformal coordinates EΓ can be written as

EΓ =
{
X = (z,w) ∈ R

2×2 : |w − Γ−(t)| < k|z − Γ+(t)| for all t ∈ S1
}

,

where k = K−1
K+1 and Γ(t) = (Γ+(t),Γ−(t)).

We start with the following elementary fact, relating the quasiconformal
envelope of elliptic curves to elliptic partial differential equations.

Lemma 1. Let Γ : S1 → R
2×2 be a K′-elliptic curve and let EΓ be the

K-quasiconformal envelope of Γ for some K > K′ ≥ 1. For every matrix
X = (x+, x−) ∈ EΓ there exists a k-Lipschitz map H : C → C, where
k = K−1

K+1 , such that x− = H(x+) and

(z,H(z)) ∈ EΓ for all z ∈ C.

Proof. Let p0 : R
2×2 → C be the orthogonal projection onto the conformal

plane, identified with C. We consider the set E = Γ ∪ {X} ⊂ R
2×2 and

denote by p0(E) the projection of E onto the conformal plane. Note that
K′-ellipticity of Γ and X ∈ EΓ together imply

‖A1 − A2‖2 ≤ K det(A1 − A2) for all A1, A2 ∈ E.

As observed by K. Zhang [59] and further exploited in [21], this condition
implies that the function H0 : p0(E) ⊂ C → C defined by

H0(a+) = a− for A = (a+, a−) ∈ E
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is k-Lipschitz on p0(E) with k = K−1
K+1 . Therefore, by Kirszbraun’s theorem

it can be extended to a k-Lipschitz function H : C → C. Now if z ∈ C and
t ∈ S1, then

|H(z) − Γ−(t)| = |H(z) − H(Γ+(t))| ≤ k|z − Γ+(t)|,

therefore (z,H(z)) ∈ EΓ. Q.E.D.

Next we describe some geometric properties of quasiconformal envelopes.

Lemma 2. Let EΓ be the K-quasiconformal envelope of a K′-elliptic curve
Γ, with K > K′. Then EΓ consists of precisely two connected components

EΓ = E0
Γ ∪ E1

Γ,

that can be characterized in the following way: Let L ⊂ R
2×2 be any two-

dimensional subspace such that detX ≥ 0 for all X ∈ L, and let pL : R
2×2 →

L be the orthogonal projection onto L. Then pL(Γ) ⊂ L ∼= C is a Jordan
curve and hence L \ pL(Γ) = ω ∪ (L \ ω), where ω ⊂ L is a bounded simply
connected open set in L. Then

E0
Γ = {X ∈ EΓ : pL(X) ∈ ω} ,

E1
Γ = {X ∈ EΓ : pL(X) ∈ L \ ω} .

Moreover
E0

Γ ∩ E1
Γ = Γ.

Proof. Let L be any 2-dimensional subspace in R
2×2 such that det X ≥ 0

for all X ∈ L. It is not difficult to see (see [59]) that such subspaces can be
written in conformal coordinates as

L = {(z,Az) : z ∈ C}, (8)

where A : R
2 → R

2 is some linear map with norm ‖A‖ ≤ 1, and Az is
understood as in (3). In particular the perpendicular subspace L⊥ can be
written as

L⊥ = {(−A∗w,w) : w ∈ C}, (9)

where A∗ : R
2 → R

2 is the adjoint of A (with respect to the standard
scalar product in R

2). Therefore, if X,Y ∈ R
2×2 with pL(X) = pL(Y ) then

det(X − Y ) ≤ 0.
It follows from the ellipticity that pL(Γ) cannot have self-intersections

and is therefore a Jordan curve. Indeed, if pL(Γ(t)) = pL(Γ(s)) for some
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t, s ∈ S1, then det(Γ(t) − Γ(s)) ≤ 0, hence Γ(t) = Γ(s), which is only
possible if t = s.

We start by showing that pL(EΓ) = L \ pL(Γ). Because the curve Γ is
K′-elliptic, as in Lemma 1, we find a k′-Lipschitz function H : C → C such
that

H
(
Γ+(t)

)
= Γ−(t) for all t ∈ S1,

where k′ = K′−1
K′+1 , and we write Γ(t) ∈ R

2×2 ∼= C × C in conformal-anti-
conformal coordinates as Γ(t) = (Γ+(t),Γ−(t)). Consider the graph

GH = {(ξ,H(ξ)) : ξ ∈ C} ⊂ R
2×2

of H. Since H is k′-Lipschitz, we have

|H(ξ) − H(Γ+(t))| ≤ k′|ξ − Γ−(t)| for all ξ ∈ C, t ∈ S1,

or equivalently

‖X − Γ(t)‖2 ≤ K′ det(X − Γ(t)) for all X ∈ GH , t ∈ S1,

and therefore, since K′ < K,

X ∈ EΓ for all X ∈ GH \ Γ. (10)

We claim that pL(GH) = L. Using (8) and (9) this amounts to proving that
for any z ∈ C there exists w ∈ C such that (z,Az) + (−A∗w,w) ∈ GH ,
i.e. that

Az + w = H(z − A∗w). (11)

For any fixed z consider the map F (w) = H(z − A∗w) − Az. Since H is
k′-Lipschitz and ‖A‖ ≤ 1, we have

|F (w1) − F (w2)| = |H(z − A∗w1) − H(z − A∗w2)|
≤ k′|A∗w1 − A∗w2| ≤ k′|w1 − w2|,

therefore F : C → C is a contraction, and thus it has a (unique) fixed
point w satisfying w = F (w). But then w satisfies (11), showing that
L = pL(GH), and hence in light of (10) that L = pL(EΓ) ∪ pL(Γ). Moreover
pL(EΓ) ∩ pL(Γ) = ∅ since det(X − Y ) > 0 for any X ∈ EΓ and Y ∈ Γ.
Therefore we see that pL(EΓ) = L\pL(Γ), and so pL(EΓ) consists of precisely
one bounded and one unbounded component, i.e. pL(EΓ) = ω ∪ (L \ ω).

Next, let X,Y ∈ R
2×2 with det(X − Y ) ≤ 0, and consider for any fixed

t ∈ S1 the function

q(λ) = K det
(
(λX + (1 − λ)Y ) − Γ(t)

) − ‖(λX + (1 − λ)Y ) − Γ(t)‖2. (12)
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Since X 	→ det X is quadratic, we see that q is a strictly concave quadratic
polynomial (provided X �= Y ). Therefore the set {λ : q(λ) > 0} is bounded
and convex. This shows that for every X ∈ L, the set {Y ∈ EΓ : pL(Y ) = X}
is bounded and convex (hence connected), and therefore the connected com-
ponents of EΓ correspond precisely to the connected components of pL(EΓ).

It remains to show that E0
Γ ∩ E1

Γ = Γ. Note that certainly Γ ⊂ E0
Γ ∩ E1

Γ,
and on the other hand pL(E0

Γ ∩ E1
Γ) ⊂ pL(Γ). But if X,Y ∈ E0

Γ ∩ E1
Γ with

pL(X) = pL(Y ) ∈ pL(Γ), then in particular det(X − Y ) ≤ 0 so that for
any fixed t ∈ S1 the function q(λ) defined above in (12) is strictly concave,
and also q(0) = q(1) ≥ 0. But then q(λ) > 0 for λ ∈ (0, 1), implying that
tX + (1 − t)Y ∈ EΓ. This contradicts the fact that pL(EΓ) ∩ pL(Γ) = ∅, and
so we deduce that E0

Γ ∩ E1
Γ = Γ.

Q.E.D.

The main result in this section is the following theorem, showing that
quasiconformal envelopes of elliptic curves provide separating sets for ho-
mogeneous gradient Young measures.

Theorem 3. Let Γ : S1 → R
2×2 be a K′-elliptic curve and let EΓ be the

K-quasiconformal envelope of Γ for some K > K′ ≥ 1. If ν is a compactly
supported homogeneous gradient Young measure with

suppν ⊂ EΓ,

then
supp ν ⊂ E0

Γ or supp ν ⊂ E1
Γ.

As explained in the introduction, the idea is to use the fact that the set
EΓ corresponds to elliptic equations to project the generating sequence of
the Young measure onto the set EΓ. This is done by solving an appropri-
ate Riemann-Hilbert problem. Then the result follows from the analogue
separation statement for functions:

Theorem 4 (Separation for functions). Let Γ : S1 → R
2×2 be a K′-elliptic

curve and let EΓ be the K-quasiconformal envelope of Γ for some K > K′ ≥ 1.
Suppose u ∈ W 1,2(D, C) such that Du(z) ∈ EΓ for almost every z ∈ D

and �(u) is affine on the boundary ∂D. Then either Du(z) ∈ E0
Γ almost

everywhere or Du(z) ∈ E1
Γ almost everywhere in D.

Proof. Consider for any t ∈ S1 the mapping

ut(z) := u(z) − Γ(t)z.
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By definition of EΓ the mapping u satisfies for any t ∈ S1 the distortion
inequality

‖Du(z) − Γ(t)‖2 ≤ K det (Du(z) − Γ(t)) ,

hence ut satisfies

‖Dut(z)‖2 ≤ K det
(
Dut(z)

)
for almost every z ∈ D (13)

and thus ut is a quasiregular mapping.
Furthermore �(ut) is affine on ∂D for all t ∈ S1. Therefore Proposi-

tion 1 implies that ut is a homeomorphism, a quasiconformal mapping. In
particular

ut(z1) �= ut(z2) for all t ∈ S1 and z1, z2 ∈ D with z1 �= z2,

or, in other words,

u(z1) − u(z2) − Γ(t)(z1 − z2) �= 0.

Setting z1 = z and z2 = z + ε for ε > 0 we obtain

u(z + ε) − u(z)
ε

�= Γ(t)e1

for all t ∈ S1 and z ∈ D, ε > 0 such that z + ε ∈ D, where e1 = (1, 0) ∈ R
2.

The curve Γ(t)e1 can be identified with the orthogonal projection of the
curve Γ onto the rank-one plane L = {a ⊗ e1 : a ∈ R

2}. Since Γ is elliptic
in the sense of Definition 1, the curve pL(Γ) ⊂ L ∼= C is a Jordan curve,
forming the boundary of some bounded simply connected domain ω ⊂ C.
Considering (z, ε) 	→ u(z+ε)−u(z)

ε on the connected set ∆ = {(z, ε) : z ∈
D, ε > 0, z + ε ∈ D} and observing that u is continuous, we deduce that
either

u(z + ε) − u(z)
ε

∈ ω for all (z, ε) ∈ ∆,

or
u(z + ε) − u(z)

ε
∈ C \ ω for all (z, ε) ∈ ∆.

(14)

Since u is quasiregular, Du(z) exists almost everywhere. Let z ∈ D be a
point of differentiability. Then

u(z + ε) − u(z)
ε

− ∂xu(z) = o(1),

13



where z = x + iy. Therefore, from (14) we obtain that

∂xu(z) ∈ ω for a.e. z ∈ D,

or
∂xu(z) ∈ C \ ω for a.e. z ∈ D.

(15)

On the other hand ∂xu(z) = Du(z)e1 = pL(Du(z)), so that from (15) to-
gether with Lemma 2 we deduce that

Du(z) ∈ E0
Γ for a.e. z ∈ D,

or

Du(z) ∈ E1
Γ for a.e. z ∈ D.

Q.E.D.

Proof of Theorem 3. Let ν be a homogeneous gradient Young measure with
support supp ν ⊂ EΓ. Our aim is to show that ν can be generated by a
sequence of mappings uj : D → C uniformly bounded in W 1,2 such that
Duj(z) ∈ EΓ almost everywhere and �(uj) is affine on ∂D. To such a
sequence we can then apply Theorem 4.

As explained in Section 2 we may assume that ν is generated by a se-
quence {Dvj}∞j=1 for uniformly Lipschitz mappings vj : D → C such that
vj(z) = Az on ∂D for A = ν ∈ R

2×2. In particular, since supp ν ⊂ EΓ, we
have

lim
j→∞

∫
D

distEΓ
(Dvj)p = 0 for all p < ∞. (16)

Since {Dvj} is uniformly bounded in L∞(Ω, R2×2), the measurable se-
lection theorem ([20], see also [60, Proposition 2.12]) provides us with a
sequence of measurable functions Pj(z) : D → EΓ such that

distEΓ
(Dvj)(z) = |Pj(z) − Dvj(z)|.

Lemma 1 implies that for every j and z there exists a k-Lipschitz func-
tion Hj(z, ·) : C → C such that Pj(z) ∈ GHj(z) ⊂ EΓ, where GHj(z) =
{(w,Hj(z,w) : w ∈ C} denotes the graph of Hj(z, ·) in C×C ∼= R

2×2. In par-
ticular, writing Pj(z) = (pj(z)+, pj(z)−), we have pj(z)− = Hj(z, pj(z)+).

14



But then for almost every z ∈ D we have

|∂zvj(z)−Hj(z, ∂zvj(z))|
≤ |∂zvj(z) − pj(z)−| + |pj(z)− − Hj(z, ∂zvj(z))|
= |∂zvj(z) − pj(z)−| + |Hj(z, pj(z)+) − Hj(z, ∂zvj(z))|
≤ |∂zvj(z) − pj(z)−| + k|pj(z)+ − ∂zvj(z)|
≤ 2 distEΓ

(Dvj(z)).

(17)

Thus, if we define Ej(z) = ∂zvj(z) − Hj(z, ∂zvj(z)), it holds that

lim
j→∞

‖Ej‖L2(D) = 0. (18)

Next, we solve the following Riemann-Hilbert problem for wj ∈ W 1,2(D, C),
by appealing to Proposition 2:{

∂zwj − Hj(z, ∂z(vj + wj)) + Hj(z, ∂zvj) = −Ej in D,

�(wj) = 0 on ∂D.
(19)

We obtain wj satisfying ‖Dwj‖L2(D) � C(k)‖Ej‖L2(D), and hence by (18)

lim
j→∞

‖Dwj‖L2(D) = 0. (20)

Now we claim that uj = vj +wj fulfills all the properties demanded. Firstly,
from (19) we see that uj solves the equation

∂zuj(z) = Hj(z, ∂zuj(z)),

and thus for almost every z, Duj(z) ∈ GHj(z) ⊂ EΓ. Since vj is linear on the
boundary ∂D, we find that �(uj) is also linear on the boundary. Finally,
since Duj − Dvj = Dwj , by (20) we have ‖Duj − Dvj‖L2 → 0 as j → ∞,
therefore the sequence {Duj} generates the same gradient Young measure
as {Dvj}, namely the measure ν.

From Theorem 4 we deduce that for each j ∈ N

Duj ∈ E0
Γ a.e. or Duj ∈ E1

Γ a.e. (21)

Then there must be an infinite subsequence ji → ∞ as i → ∞ such that
Duji ∈ E0

Γ for all i ∈ N, or Duji ∈ E1
Γ for all i ∈ N. Since any subsequence

generates the same gradient Young measure ν, we deduce in the former case
that supp ν ⊂ E0

Γ and in the latter case that supp ν ⊂ E1
Γ. This completes

the proof of Theorem 3. Q.E.D.
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We remark that in Theorem 3 we assumed that ν is a compactly supported
homogeneous gradient Young measure. Using a local version of the recent
work of K. Astala, T. Iwaniec and E. Saksman in [5] concerning the optimal
Lp-properties of nonlinear Beltrami operators in the plane, this requirement
can be relaxed to the condition that ν is a homogeneous gradient Young
measure generated by a sequence {Duj} uniformly bounded in Lq, for some
q > 2K

K+1 .

4 Rank-one convex hulls

In this section we consider compact sets of matrices whose rank-one convex
hull is disconnected. Our aim is to show that for such sets it is possible to
find an elliptic curve (in the sense of Definition 1) separating the set, so that
the ideas of Section 3 apply.

Definition 2. Let K ⊂ R
2×2 be a compact set. A continuous, closed curve

Γ : S1 → R
2×2 is said to be separating for K if

K ⊂ UΓ := {X ∈ R
2×2 : det(X − Γ(t)) > 0 for all t ∈ S1},

and K is contained in more than one connected component of UΓ.

In [53] it was shown that if a compact set K ⊂ R
2×2 contains no rank-one

connections and no T4 configurations, then such a separating curve exists.
To pass from this result to general compact sets we consider the connected
components of Krc. If X,Y are contained in different connected compo-
nents of Krc, then rank(X − Y ) > 1. Therefore the idea is to treat the set
of connected components of Krc as a “set without rank-one connections”.
With this point of view the proofs in [53] can be repeated with minor mod-
ifications, since the essential information used for sets without rank-one
connections is not really det(X − Y ), but only the sign of det(X − Y ). In
addition to finding a separating curve we will need to show that in fact a
separating curve exists which is elliptic.

Theorem 5. Suppose K ⊂ R
2×2 is a compact set such that Krc is not

connected. Then, possibly after changing sign1, there exists an elliptic sep-
arating curve for K.

Proof. The proof is split into several parts:

1Changing sign corresponds to considering K′ = {XJ : X ∈ K} with J =

„
1 0
0 −1

«
.
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(I) prove that (up to changing sign) the set K admits a nontrivial decom-
position of the type K = K1 ∪K2, where K1,K2 are disjoint compact
sets with det(X − Y ) > 0 for X ∈ K1, Y ∈ K2, such that whenever
X1,X2 ∈ K1 and Y1, Y2 ∈ K2, the four-point set {X1,X2, Y1, Y2} is
not a T4 configuration;

(II) use Theorem 4 in [53] to find a separating curve in the sense of Defi-
nition 2, corresponding to the decomposition K = K1 ∪ K2;

(III) show that if a separating curve exists, then there exists another sep-
arating curve for K (possibly corresponding to a different decomposi-
tion), which is elliptic in the sense of Definition 1.

I Sign-separation
We start with the following equivalence relation on K: let X ∼ Y when-

ever X and Y are contained in the same connected component of Krc. Let
K = K/ ∼ denote the quotient space, equipped with the quotient topology,
and let π : K → K be the canonical projection. With some abuse of nota-
tion we will write X = π(X) to denote the equivalence class of X ∈ K, and
also the connected subset of Krc containing X. Note that K is a totally
disconnected, compact Hausdorff space.

Notice that a T4 configuration has a connected rank-one convex hull,
therefore to obtain (I) it suffices to find a nontrivial decomposition of K
into disjoint compact sets K1 and K2, both consisting of equivalence classes
for ∼, such that det(X−Y ) > 0 for X ∈ K1, Y ∈ K2. In other words we need
to find a decomposition of K into compact sets which are sign-separated.

Let X,Y be two distinct elements of K, and let X ∈ X , Y ∈ Y . Observe
that det(X − Y ) �= 0 since otherwise the line segment [X,Y ] would be
contained in Krc, contradicting the assumption that X and Y are disjoint
connected components of Krc. Assume for example that det(X − Y ) > 0.
We claim that in this case det(X̃−Ỹ ) > 0 for all X̃ ∈ X and Ỹ ∈ Y . Indeed,
suppose that there exist X̃ ∈ X and Ỹ ∈ Y with det(X̃ − Ỹ ) ≤ 0. Since X
and Y are connected, there exist continuous paths in X and in Y connecting
X, X̃ and Y, Ỹ , respectively. But then we find Z1 ∈ X and Z2 ∈ Y with
det(Z1 − Z2) = 0, from which we deduce that the line segment [Z1, Z2] is
contained in K. This is again in contradiction with the assumption that X
and Y are disjoint connected components of K.

The above argument implies that the function s : K × K → {−1, 0, 1}
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defined by

s(X,Y ) =

{
sign det(X − Y ) if X �= Y , where X ∈ X,Y ∈ Y

0 if X = Y

is well-defined, and that s(X,Y ) �= 0 for X �= Y . By viewing s(X,Y ) as
a discrete version of det(X − Y ), we can roughly speaking treat K as a
compact set without rank-one connections, and therefore apply the ideas of
Section 6 in [53].

To be concrete, for n ∈ N let X1, . . . ,XN(n) be a 1
n -net for K, and

consider the image

K
n = {X1, . . . ,XN ′(n)} = π{X1, . . . ,XN(n)},

where N ′(n) ≤ N(n) (with strict inequality if π(Xi) = π(Xj) for some
i �= j). Associated to K

n there is a complete graph of N ′(n) vertices, where
we color each edge XY according to the sign of s(X,Y ). In this graph let
us call a �-path connecting X,Y ∈ K

n a sequence X i ∈ K
n, i = 0, . . . , l for

some l, where X0 = X, X l = Y , and s(Xi,X i+1) = −1 for all i (similarly
we can speak of a ⊕-path). For such a path we say that the length is l.

Since X1, . . . ,XN ′(n) are disjoint connected components of Krc, in par-
ticular the associated graph does not contain the sign configuration (A) in
Figure 1.

X1

X2 X3

X4

Figure 1: Sign configuration (A) - dashed lines denote det(Xi−Xj) < 0 and
solid lines det(Xi − Xj) > 0.

Indeed, by [53, Theorem 2] four matrices whose associated graph is of
this type always form a T4 configuration, and the rank-one convex hull of a
T4 configuration is connected. This leads to the following observations:

1. if there is a �-path between X and Y , then there exists also another
�-path between X and Y of length at most 2, i.e. where l ≤ 2;

2. moreover, the whole graph cannot be both ⊕- and �-connected. In
other words it cannot happen that for any two points X and Y there
exists both a ⊕- and �-path between them.
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The first observation follows by contradiction on assuming that the minimal
path has length 3 at least, as in this case we will find the sign-configuration
(A). The second observation follows by induction on the number of vertices
in the graph. The details can be found in Lemma 5 and Proposition 3 in
[53]. In particular because of the second observation we may assume without
loss of generality2 that there is a subsequence nk → ∞ with corresponding
decomposition

K
nk = K

nk

1 ∪ K
nk

2 ,

such that
s(X,Y ) = 1 for all X ∈ K

nk

1 , Y ∈ K
nk

2 .

Since each connected component of Krc is compact and K
nk is finite, we

deduce that there exist ck > 0 such that

det(X − Y ) ≥ ck for all X ∈ X,Y ∈ Y with X ∈ K
nk

1 , Y ∈ K
nk

2 . (22)

As k → ∞, either ck ≥ c > 0, or (for a subsequence) ck → 0.
Let us consider first the case when there exists c > 0 such that

det(X − Y ) ≥ c for all X ∈ X,Y ∈ Y with X ∈ K
nk

1 , Y ∈ K
nk

2

for all k. Since K is compact, there exists δ > 0 such that det(X1−Y1) ≥ c/2
whenever |X−X1|, |Y −Y1| ≤ δ and X ∈ X,Y ∈ Y with X ∈ K

nk

1 , Y ∈ K
nk

2 .
Fix k large enough so that nk > 1

δ , and let

K1 = {X ∈ K : |X − X1| ≤ δ for some X1 with X1 ∈ K
nk

1 },
K2 = {X ∈ K : |X − X2| ≤ δ for some X2 with X2 ∈ K

nk

2 }.

By definition K1,K2 ⊂ K are closed sets and K = K1 ∪ K2 because K
nk

arises from a 1
nk

-net. Also, det(X − Y ) ≥ c/2 for all X ∈ Kα and Y ∈ Kβ

by the choice of k. In turn this implies that K1 ∩ K2 = ∅, and therefore
K = K1 ∪ K2 yields the required decomposition.

Now consider the case when in (22) the constants ck → 0 as k → ∞. In
this case we find sequences Xk, Yk ∈ K with Xk ∈ K

nk

1 and Y k ∈ K
nk

2 such
that det(Xk − Yk) → 0 as k → ∞. By taking further subsequences we may
assume that Xk → P and Yk → Q in K, so that in particular det(P−Q) = 0.
But then P ∼ Q, so that Q = P . We claim that s(X,P ) = 1 for all

2This is the point where the signs are fixed.
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X �= P . Indeed, if there exists R ∈ K with R �= P and s(P ,R) = −1, then
det(P − R) < 0 and det(Q − R) < 0 (since Q ∈ P ), and so for some δ > 0

det(P1 − R1) < 0 whenever |P − P1| < δ, |R − R1| < δ,

det(Q1 − R1) < 0 whenever |Q − Q1| < δ, |R − R1| < δ.
(23)

Take k sufficiently large so that nk > 1
δ and |Xk−P |, |Yk−Q| < δ. Then there

exists a matrix X in the 1
nk

-net for which |X − R| < δ, and so (23) implies
that det(X − Xk) < 0 and det(X − Yk) < 0. Therefore s(X,Xk) = −1 and
s(X,Y k) = −1. On the other hand either s(X,Xk) = 1 or s(X,Y k) = 1,
depending on whether X is in K

nk

1 or in K
nk

2 . This is a contradiction, from
which we deduce that

s(X,P ) = 1 for all X �= P . (24)

Let us point out that the decomposition P ∪ (K \ P ) would give a sign-
separation, but K \ P might not be compact. To get a decomposition into
compact sets we need to work more.

If s(X,Y ) = 1 for all X �= Y , then any nontrivial decomposition of Krc

into two closed subsets (such decomposition must exist by the assumption
that Krc is not connected) yields a decomposition for K as required.

Otherwise there exists X1,X2 ∈ K with X1 �= X2 with s(X1,X2) = −1.
As in the proof of [53, Proposition 3] we consider

CC�(X1) = {X ∈ K : there exists a �-path from X1 to X},

with the only difference that now the �-path is defined in K to be a finite
sequence X1,X2, . . . ,XN = X such that s(Xi,X i+1) = −1. We recall (see
observation 1. above) that if such a path exists between two elements of K,
then the shortest such path has length at most 2. Using this fact we also
deduce that CC�(X1) is compact, and since there exists X2 with X1 �= X2

and s(X1,X2) = −1, CC�(X1) is also open (relative to K). The proofs of
these facts are again precisely as in the proof of [53, Proposition 3]. Finally,
(24) impies that P /∈ CC�(X1), so that

K1 = CC�(X1), K2 = K \ K1

gives the required nontrivial decomposition.

II Existence of a separating curve
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So far we have proved that if Krc is not connected, then K admits a
decomposition K = K1 ∪ K2 into nonempty disjoint compact subsets such
that (without loss of generality)

det(X − Y ) > 0 for all X ∈ K1, Y ∈ K2,

and moreover whenever X1,X2 ∈ K1 and Y1, Y2 ∈ K2, the four-point set
{X1,X2, Y1, Y2} is not a T4 configuration. In turn [53, Theorem 4] implies
that there exists a continuous curve Γ : S1 → R

2×2 with the properties that

(i) det(X − Γ(t)) > 0 for all X ∈ K and all t ∈ S1,

(ii) the projection Γ+ of Γ onto the conformal plane is a Jordan curve,

(iii) the projections of K1 and K2 onto the conformal plane lie in different
components of C \ Γ+.

Since K and Γ are compact, the conditions (i)-(iii) are preserved under small
(C0-)perturbations of the curve Γ. Therefore in particular we may assume
that Γ is a Lipschitz curve, so that |Γ(t) − Γ(s)| ≤ L|t − s| for all t, s ∈ S1.
Furthermore, again by compactness, there exists δ > 0 such that

det(X − Γ(t)) ≥ δ for all X ∈ K and t ∈ S1.

III Existence of an elliptic separating curve
Our aim is to prove the existence of a separating curve for K, which

is elliptic in the sense of Definition 1. In the following it will be more
convenient to parametrize the closed curves with the unit interval [0, 1], so
that Γ : [0, 1] → R

2×2 with Γ(0) = Γ(1).
In obtaining ellipticity it turns out to be rather difficult to control which

particular subsets of K the curve “separates”, and for this reason we fix
elements X1 ⊂ K1 and X2 ⊂ K2. For a closed Lipschitz curve Γ : [0, 1] →
R

2×2 consider the projection Γ+ : [0, 1] → C onto the conformal plane and
for any point z ∈ C let

ιΓ(z) =
1

2πi

∫
Γ+

dw

z − w

be the winding number of the curve Γ+ at the point z. It is not difficult
to check that Γ 	→ ιΓ(z) is continuous on the set of closed Lipschitz curves
Γ : [0, 1] → R

2×2 with respect to the sup-norm topology, and moreover
z 	→ ιΓ(z) is an integer-valued function on C \ Γ+ which is constant on
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each connected component of C \ Γ+. For C1 curves this is classical, see
for example [45]. To pass to Lipschitz curves we argue by density using the
weak* continuity of Γ 	→ ιΓ(z) in W 1,∞([0, 1], R2×2). We will consider closed
curves which “separate” X1 and X2 in the sense that ιΓ(x+

1 ) �= ιΓ(x+
2 ).

Let

S =

⎧⎪⎪⎨
⎪⎪⎩Γ : [0, 1] → R

2×2 :

•Γ(0) = Γ(1)
• |Γ(t) − Γ(s)| ≤ L|t − s| ∀ t, s ∈ [0, 1]
• det(X − Γ(t)) ≥ δ ∀X ∈ K, t ∈ [0, 1]
• ιΓ(x+

1 ) �= ιΓ(x+
2 )

⎫⎪⎪⎬
⎪⎪⎭ .

From Step II we see that S is nonempty, and from Arzela-Ascoli it follows
that S is compact in C([0, 1], R2×2). For any Γ ∈ S, let l(Γ) be the length
of the curve, i.e.

l(Γ) =
∫ 1

0
|
.
Γ(s)|ds.

It is clear that l is lower semicontinuous on S, so that infS l is achieved for
some Γ ∈ S. We claim that for the minimizer Γ we necessarily have

det(Γ(t) − Γ(s)) ≥ 0.

Indeed, assume that Γ ∈ S is a minimizer and that there exist t0 < s0 such
that

det(Γ(t0) − Γ(s0)) < 0. (25)

For λ ∈ [0, 1] let Zλ = λΓ(t0) + (1 − λ)Γ(s0), and let X ∈ K. Then

det(Zλ − X) = det
(
Γ(s0) − X + λ(Γ(t0) − Γ(s0))

)
= det(Γ(s0) − X) + λ〈Γ(s0) − X, cof(Γ(t0) − Γ(s0))〉+

+ λ2 det(Γ(s0) − Γ(t0)),

so that, since det(Γ(s0) − Γ(t0)) < 0, the function

λ 	→ f(λ) def= det(Zλ − X)

is concave. But f(0) ≥ δ and f(1) ≥ δ, so that f(λ) ≥ δ for λ ∈ [0, 1].
Now consider the two new closed curves Γ1,2 ∈ C([0, 1], R2×2) formed by

connecting Γ(t0) and Γ(s0) with a straight line segment. More precisely, we
define

Γ1(t) =

{
Γ(t) if t ∈ [0, t0] ∪ [s0, 1],
λΓ(t0) + (1 − λ)Γ(s0) if t ∈ (t0, s0) with t = λt0 + (1 − λ)s0,
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and similarly Γ2, oriented in such a way that
∫
Γ =

∫
Γ1

+
∫
Γ2

.
The above argument shows that det(X −Γ1,2(t)) ≥ δ for all X ∈ K and

t ∈ S1. Furthermore it is clear that |Γ1,2(t)−Γ1,2(s)| ≤ L|t−s|. Finally, since
ιΓ(z) = ιΓ1(z) + ιΓ2(z) for any z ∈ C \ (Γ1 ∪Γ2), and since ιΓ(x+

1 ) �= ιΓ(x+
2 ),

we have either ιΓ1(x
+
1 ) �= ιΓ1(x

+
2 ) or ιΓ2(x

+
1 ) �= ιΓ2(x

+
2 ).

Therefore, either Γ1 or Γ2 satisfies the conditions for being in S. Notice
also that unless the straight line segment [Γ(t0),Γ(s0)] is contained in Γ,
then both Γ1 and Γ2 have strictly smaller length. Because Γ was a length-
minimizer, we deduce that necessarily [Γ(t0),Γ(s0)] is contained in Γ.

Now choose t1, s1 so that

t1 = min{t ≤ t0 : Γ is a straight line on [t1, s0]},
s1 = max{s ≥ s0 : Γ is a straight line on [t0, s1]}.

By the assumption (25) we have det(Γ(t1) − Γ(s1)) < 0. If t1 = 0 and
s1 = 1, then in particular Γ is a straight line segment, contradicting the
requirement that ιΓ(x+

1 ) �= ιΓ(x+
2 ). Therefore we may assume without loss

of generality that t1 > 0. By continuity there exists t2 < t1 such that
det(Γ(t2) − Γ(s0)) < 0, but then the above argument again implies that Γ
is a straight line on [t2, s0], a contradiction.

Thus we have shown that there exists a Lipschitz continuous closed curve
Γ : S1 → R

2×2 such that

(i) det(X − Γ(t)) ≥ δ for all X ∈ K and all t ∈ S1.

(ii) det(Γ(t) − Γ(s)) ≥ 0 for all t, s ∈ [0, 1],

(iii) The projections of X1 and X2 onto the conformal plane lie in different
components of C \ Γ+.

To obtain a separating curve which is elliptic in the sense of Definition 1,
consider for 0 < k < 1 the new curve

Γ̃(t) =
(
Γ+(t), kΓ−(t)

)
.

If (1 − k) is sufficiently small, det(X − Γ̃(t)) > 0 for all X ∈ K and t ∈ S1

by compactness of K, and Γ̃+ still separates x+
1 and x+

2 . Moreover,

|Γ̃−(t) − Γ̃−(s)| ≤ k|Γ̃+(t) − Γ̃+(s)| for all t, s ∈ S1,

and therefore Γ̃ is K-elliptic with K = 1+k
1−k .

Q.E.D.
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5 Rank-one convexity versus Quasiconvexity

Finally, we come to the main results in the paper. In order to state them in
the strongest form we use the language of Young measures. As discussed in
Section 2, Theorem 1 is equivalent to Corollary 2, and we restate Theorem
6 as Corollary 3 below. In fact these results can all be easily deduced from
the following theorem:

Theorem 6. If ν is a compactly supported homogeneous gradient Young
measure, then (supp ν)rc is a connected set.

Proof. Let K = suppν and assume for a contradiction that Krc is not
connected. Then Theorem 5 implies that there exists an elliptic separating
curve Γ : S1 → R

2×2 for K. In particular, since K ⊂ R
2×2 is compact, there

exists K > 1 so that, with EΓ denoting the K-quasiconformal envelope of
Γ, we have K ⊂ EΓ and moreover E0

Γ ∩ K and E1
Γ ∩ K are both nonempty

compact sets. But this gives a contradiction with Theorem 3, which says
that either suppν ⊂ E0

Γ or supp ν ⊂ E1
Γ. This proves the theorem. Q.E.D.

Corollary 1 (Incompatible sets). Disjoint compact sets K1,K2 ⊂ R
2×2

are incompatible for homogeneous gradient Young measures if and only if
they are incompatible for laminates.

Proof. Since laminates are also homogeneous gradient Young measures, it
suffices to prove one direction, namely that incompatibility for laminates
implies incompatibility for homogeneous gradient Young measures. So as-
sume that K1,K2 are incompatible for laminates. We claim that in this case
(K1 ∪ K2)rc is disconnected. Once we prove this, the corollary will follow
from Theorem 6.

Let P ∈ (K1 ∪ K2)rc. Then there exists a laminate ν with suppν ⊂
K1∪K2 and barycenter ν = P . Since K1,K2 are incompatible for laminates,
supp ν ⊂ K1 or suppν ⊂ K2. Thus P ∈ Krc

1 or P ∈ Krc
2 . This shows that

(K1∪K2)rc = Krc
1 ∪Krc

2 . On the other hand if P ∈ Krc
1 ∩Krc

2 , then P = ν1 =
ν2 for for laminates νi with suppνi ⊂ Ki, but then ν = 1/2ν1 + 1/2ν2 is a
laminate where suppν∩K1 and suppν∩K2 are both nonempty, contradicting
the incompatibility. Hence (K1 ∪ K2)rc = Krc

1 ∪ Krc
2 is disconnected.

Q.E.D.

Corollary 2 (Compactness). If K ⊂ R
2×2 is a compact set without rank-

one connections and contains no T4 configuration, then K supports no non-
trivial homogeneous gradient Young measures.
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Proof. First of all [53, Theorem 1] implies that Krc = K. Let ν be a
homogeneous gradient Young measure with support suppν ⊂ K. Theorem 6
implies that (supp ν)rc is connected. On the other hand (supp ν)rc ⊂ Krc =
K, and hence (supp ν)rc is a compact, connected subset of R

2×2 with no
rank-one connections. But then [49, Lemma 3] implies that ν = δν . Q.E.D.

Corollary 3 (Structure of quasiconvex hulls). If ν is a compactly sup-
ported homogeneous gradient Young measure, then (supp ν)qc is a connected
set.

If K ⊂ R
2×2 is a compact set and Kqc ⊂ ⋃n

i=1 Ui for pairwise disjoint
open sets Ui, then Kqc ∩ Ui = (K ∩ Ui)qc.

Proof. Let ν be a compactly supported homogeneous gradient Young mea-
sure, let K = suppν, and suppose that Kqc is not connected. Then there
exists U1, U2 disjoint open sets with Kqc ⊂ U1 ∪ U2 such that Ui ∩ Kqc �= ∅
for i = 1, 2. From Theorem 6 we know that Krc is connected, so let us
assume without loss of generality that Krc ⊂ U1. In particular K ⊂ U1.
Furthermore, let X0 ∈ U2 ∩ Kqc.

Then there exists a homogeneous gradient Young measure µ0 with bary-
center µ0 = X0 and support suppµ0 ⊂ K. But then also the new measure

µ =
1
2
µ0 +

1
2
δX0

is a homogeneous gradient Young measure. Applying Theorem 6 again we
find that (suppµ)rc = (suppµ0 ∪ {X0})rc is a connected set. On the other
hand

(suppµ0 ∪ {X0})rc ⊂ (suppµ0 ∪ {X0})qc ⊂ (K ∪ {X0})qc = Kqc,

since X0 ∈ Kqc. This shows that X0 and suppµ0 are in the same connected
component of Kqc, in particular since X0 ∈ U2, we have that suppµ0 ⊂ U2.
But this contradicts the fact that suppµ0 ⊂ K ⊂ U1.

To prove the second part of the corollary, let X ∈ Kqc ∩ Ui. Then
there exists a homogeneous gradient Young measure ν with ν = X and
suppν ⊂ K. Since (supp ν)qc is connected and X ∈ (supp ν)qc, necessarily
(supp ν)qc ⊂ Ui, and hence suppν ⊂ Ui. But then X ∈ (K ∩ Ui)qc. Con-
versely if X ∈ (K ∩ Ui)qc, then there exists a homogeneous gradient Young
measure ν with ν = X and suppν ⊂ K ∩ Ui. Again, connectedness of
(supp ν)qc implies that (supp ν)qc ⊂ Ui, so that X ∈ Ui. Q.E.D.

Combining Theorem 6 and Corollary 3 shows that for homogeneous gra-
dient Young measures both (supp ν)rc and (supp ν)qc are connected.
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pp. 1153–1158.
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[54] Székelyhidi, Jr., L. On quasiconvex hulls in symmetric 2×2 matrices.
to appear, 2006.

[55] Tartar, L. Compensated compactness and applications to partial dif-
ferential equations. In Nonlinear analysis and mechanics: Heriot-Watt
Symposium, Vol. IV, vol. 39 of Res. Notes in Math. Pitman, Boston,
Mass., 1979, pp. 136–212.

[56] Tartar, L. The compensated compactness method applied to systems
of conservation laws. In Systems of nonlinear partial differential equa-
tions (Oxford, 1982), vol. 111 of NATO Adv. Sci. Inst. Ser. C Math.
Phys. Sci. Reidel, Dordrecht, 1983, pp. 263–285.

[57] Tartar, L. Some remarks on separately convex functions. In Mi-
crostructure and phase transition, vol. 54 of IMA Vol. Math. Appl.
Springer, New York, 1993, pp. 191–204.

[58] Zhang, K. A construction of quasiconvex functions with linear growth
at infinity. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 19, 3 (1992),
313–326.

[59] Zhang, K. On connected subsets of M2×2 without rank-one connec-
tions. Proc. Roy. Soc. Edinburgh Sect. A 127, 1 (1997), 207–216.

[60] Zhang, K. Quasiconvex functions, SO(n) and two elastic wells. Ann.
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