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Abstract

Among the simple finite dimensional Lie algebras, only sl(n) possesses two auto-
morphisms of finite order which have no common nonzero eigenvector with eigenvalue
one. It turns out that these automorphisms are inner and form a pair of generators
that allow one to generate all of sl[(n) under bracketing. It seems that Sylvester was
the first to mention these generators, but he used them as generators of the associative
algebra of all n x n matrices Mat(n). These generators appear in the description of
elliptic solutions of the classical Yang-Baxter equation, orthogonal decompositions of
Lie algebras, ’t Hooft’s work on confinement operators in QCD, and various other in-
stances. Here I give an algorithm which both generates sl(n) and explicitly describes a
set of defining relations. For close to simple (up to nontrivial center and outer deriva-
tions) Lie superalgebras, analogs of Sylvester generators exist only for gl(n|n). The
relations for this case are also computed.

§1 Introduction

Dealing with a given Lie algebra g and modules over it, especially when ¢-quantizing, we
need a convenient presentation of g, i.e., a description in terms of generators and defining
relations. Obviously, the basis elements qualify as generators, but there are too many of
them. It is well-known [GL2] that

For any nilpotent Lie algebra n, the natural set of relations is
a basis of n/[n,n] = Hi(n); relations between these generators (1.1)
can be described in terms of the basis of Hy(n).

A simple Lie (super)algebra g (finite dimensional, Kac-Moody or of polynomial vector fields)
is conventionally split into the sum g = n_ @ h@n, of two maximal nilpotent subalgebras n.
(positive and negative) and the commutative Cartan subalgebra; the corresponding genera-
tors are called Chevalley generators; the relations between them are also known, cf. [GL3],
[GLP]. They are numerous (3n generators for a rank n algebra and ~ n? relations), but
these relations are simple and therefore convenient.
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For comparison: for the simplest case, gl(n), the matrix units are obvious generators,
and the relations between them are simple, but far too numerous (n? generators and ~ n*
relations).

Jacobson was, perhaps, the first to observe that every simple finite dimensional Lie
algebra can be generated by just a pair of generators, but he did not specify his pairs, so no
discussion of relations was made. Grozman and Leites [GL1] introduced a pair of generators
associated with the principal embedding of s[(2), and the relations between them are rather
simple (at least, for computers). There are more generators similar to those Grozman and
Leites had chosen, but experiments performed so far show that the ones Grozman and Leites
considered are most convenient, and are related to various applications [GL2], [LS].

There are, however, certain pairs of generators indigenous only to the sl series, and only
over an algebraically closed field, e.g. C. Below, we describe such a pair of generators for
sl(n) and their analogs for gl(n|n) and give relations between them.

Let a = exp (QZT”) and define Sylvester’s generators (also called clock-and-shift or 't Hooft
matrices) to be
0 1 0 0 0
0 0
D = diag(1,a,a?,...,a" '), S=1o 0 (1.2)
0 K 1
1 0 0 0 0

Zachos [Z2] points out that

“apparently, Sylvester [S] was the first to study these (1.2) generators' of sl(n); he worked
them out for s(3) first, and called them “nonions” (after quaternions), and then generalized
to sl(n).

They became popular in the 30s in the context of (QM-around-the circle, i.e., on a discrete
periodic lattice of N points, see [W]. That effort has continued to date, with the work of
Schwinger, Santhanam, Tolar, Floratos, and others.

They also became popular among high-energy theorists, with the work of 't Hooft [tH],
on order-disorder confinement operators in QCD, so that many in my end of the woods
intriguingly call them ‘“’t Hooft matrices”.

I have been using them every few years, starting from [FFZ] to identify cases of a Sine-
algebra we found at that time with sI{(N), and also with the Moyal Bracket algebra [Moy]
on a toroidal phase space; and hence take the N — oo limit to get Poisson Brackets more
directly than in Hoppe’s first derivation [Ho] on a spherical phase space.

Our latest use of them was in our recent diversion, [FZ], on ring-indexed Lie algebras.
They are apparently the most systematic basis for dealing with all s{(N)s on an equal footing
and taking naive N — oo limits.”

More precisely, Sylvester used them as generators of an associative algebra, where they yield the algebra
of n X n matrices Mat(n). Having replaced the dot product by the bracket we endow the space of Mat(n)
with the structure of the Lie algebra gl(n); having introduced parity in Mat(n) by attributing parity to each
basis vector (and hence to each row and column) and replacing the dot product by the superbracket we
endow the superspace of Mat(n; Par), where Par is an ordered collection of parities, with the structure of
the Lie superalgebra gl(Par). As generators of a Lie algebra, Sylvester’s generators can only generate sl(n),
but not gl(n).



For the passage from the notation of Zachos et al. to ours, observe that, e.g. in [FFZ],
the authors generate gl(n) from Sylvester’s generators D, S (1.2) in the form
Jmymy) = a2 D G
which are n? independent matrices labelled by two integers 0 < my,mo < n. Under the

bracket, the identity matrix Jig0) spans the center. So dividing it out leaves sl(n) with the
bracket

.. 27
[J(m1,m2)a J(k1,k2)] = —2isin <W(m1k2 - m2k1)> J(m1+k1,m2+k2)

Another important application of Sylvester’s generators is the classical Yang-Baxter equa-
tion for a function taking values in a simple Lie algebra g. It turns out [BD1, BD2] that for
this equation to have elliptic solutions, g has to possess two automorphisms of finite order
which have no common nonzero eigenvector with eigenvalue 1. Sylvester’s generators are
such automorphisms for g = sl(n); in fact, [BD1, BD2] prove that any g possessing such
automorphisms must be isomorphic to sl(n), and the elliptic solutions can be characterised
by the images of Sylvester’s generators (1.2) under this isomorphism. Also, they play a vital
role in the study of orthogonal decompositions of Lie algebras [KKU, KT, FOS].

Finally, a more applied subject on which these generators have been used is hydrody-
namics and the statistical theory of turbulent fluids and gases, in particular, the study of
lattice models of inviscid fluids (Euler fluids), see, e.g., [MWC],[MW],[Ze].

The aim of this paper is to give an algorithm that generates sl(n) and gl(n|n) from
Sylvester’s generators and which also produces a presentation for them. This presentation
contains redundancies, but might be of interest for practical problems since it allows quick
and easy computations in the adjoint representation. The main statements are the following
ones.

Theorem 1.1. Fiz an integer n > 2. Then the matrices (1.2) are generators for sl(n):

sl(n) = Span(D, S, T% |1 < k,m <n, and k # n for m = 1,n, and k # 1 for m = n),
(1.3)
where for 1 < k,m < n, we set

Ty = (adD)*'((ad S)" ((ad D(5))),
TF = adS(TF ).

A defining set of relations for generators (1.2) can be obtained in the following way. The
relations

(adD)™"(S) = (1—a)"S,
(adD)™((adS)™ ' (adD(S))) = (1 —a)™(1 —a™)*(—=1)™*"(adS)™ ' (adD(S)) (1.
1 - a)n(_l)nD:



prohibit generation of elements of order higher than n in both D and S. Besides them, for
each TF with 2 < m < n — 1, except for T2, m — 1 relations have to hold, which can be
written as

a8y (D (a9 = (A20) T (F)

where sy + sy =m—1and sy =1,2,...,m — 1.

Theorem 1.2. Considered as 2n X 2n supermatrices on a superspace with an alternating
format (even, odd, even, odd, ...), (1.2) are generators for gl(n|n):

gl(n|n) = Span(D, S, TF |1 < k,m < 2n, and k # 2n for m = 1 and k # 1 for m = 2n)

with the same definition of T¥ as in Thm. (1.1). A defining set of relations in this case are
(3.1)-(3.5) and m — 1 relations for each T¥ with 2 < m < 2n — 1. These can be written as

( s1—1

(—=1)° (a* — 1)1771 (alkjal) (11_;'3:11)k_1 (—ijrg) > Tfl for s1 odd and
S9 even,
k — s1=1 (gk —ab k—1 —a L B
(ad S)* (T§,11) = 4 (—1)51(a22k’C — 1/)2 g (lal)k(liamil) /(2— =) T Tk for s1, 8, odd, or
a®’—1)°1 —a® - —a)$ T

(_1)81( 1_1,1 (11_ami1) (_i-l—_a) ' T,]fl fOT' S1, 89 even,

\ or s even, Sy odd,
where again s + sy =m —1 and sy =1,2,...,m — 1.

In the following we show why the set of relations indicated in Thms. (1.1), (1.2) is a
defining set. This will then automatically also deliver an upper bound on the number of
independent relations for Sylvesters’s generators.

§2 Relations between Sylvester’s generators for sl(n)

Setting
Tf = (adD)*(9) for k=1,....n—1

we obtain the matrices

0 1 0 0
0 0 df 0
Tl”“:(l—a)'C :
0 0 ... ... gkn=2)
ak=1 0 .. 0 0

which are, clearly, all linearly independent. For k& = n, we get the relation (1.4). Proceeding
likewise, we generate a basis for sl(n). We set

T = (adD)" Y ((adS)™ (1)) = (adD)"~*((ad S)™ " ((ad D(S)))



where m =1,...,n—1and k= 1,...,n. In matrix form,

0 . 0 1 0 . 0
0 0 0 a* 0 0
Th = (1—a)"(1—a™)* " (=1)"" 0 . gkn-—m-1)
ak(nfm) 0 0
0 .. dtD oo . .0

These are all the non-diagonal matrices needed for a basis of s[(n). Their linear independence
is easily checked. We also immediately read off the relation (1.5) for £k = n + 1.
It remains to generate n — 2 diagonal matrices, which we do as follows:

TF = adS(TF |) = adS((adD)F!((adS)"2(adD(S)))),

where kK =2,...,n — 1, and we obtain the relations (1.6)-(1.9).

Since we have obtained n? — 1 linearly independent matrices, we have found a basis for
sl(n), see (1.3). One might, however, wish to describe sl(n) as the quotient of the free Lie
algebra generated by the two Sylvester generators modulo certain defining relations. Since
we know that the matrices T span sl(n), we know that any commutator of them must yield
a relation. The relations stated above are merely those ones that are first encountered when
we proceed through our chosen algorithm for the generation of the basis of sl(n). To find
out the number and an explicit realization of the minimal defining relations turns out to be
quite a tough job, despite the seeming simplicity of the problem. P. Grozman was able to
find those minimal relations for n = 2, 3, 4:

n=2: (ad S)%(D) = 4D, (ad D)%S = 48S;
=3: (ad S)}(D) = —=3(a — a®>)D, (ad D)*(S) =3(a —a*)S; |[T),T} = 0;
n=1: (ad 5)4(D) — _4D, (adD)(S) = —4S, [T}, T)]=[D,T]], (2.1)
(77, [T3. T3]) = =477, [17, T3] =0, 2[T,T7] = [T, [D, T1]],
2(TF, T3] = 13, [S, TN T] = [S.T7] [T 17] = AT;.

with the help of Mathematica and his SuperLie package [Gr], but did not succeed to deduce
from (2.1) a general formula. On the other hand, neither the number nor an explicit form
of the minimal set of relations is of great practical importance when working with these
generators. Rather one would like to have, e.g., formulae that describe the action of arbitrary
products of the elements of sl(n) in the adjoint representation. Such formulae will be given
below and, additionally, a set of relations offered which contains redundancies, but which
allows immediate reduction of an arbitrary expression of the form (with the X; and Y being
arbitrary elements of s((n))

ad X (ad Xa(. .. (ad X,(Y))...))

to a linear combination of the basis elements produced by our algorithm.
By explicit calculation one first verifies that

(1 . am)kfl(l o am’)k’fl
(1 — qmtm)erh=1

T, T ] = (@™ — 1)TEE

m+m/
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Figure 1: The two paths that generate T7 in sl(3)

for any of the Tk, T,ﬁ’, defined above. Hereafter, k 4+ k' and m + m' have to be understood
mod n. This directly shows the following statement.

Lemma 2.1. The result of the application of an arbitrary product of elements in the adjoint
representation to a T depends up to a factor only on the number of S’s and D’s contained
in these operators. That is,

ad Xy (ad Xo(---ad Xy (TF)) -+ ) = C(k, k', m, m', n) T (2.2)

m+m/

where m; and k; is the number of S’s and D’s, respectively, contained in X;,
m=>"m, K=k,

and C'(k, k', m,m',n) is a constant depending on all the indices.

Therefore we conclude that it suffices to check only relations between elements which are
at most of degree n in both S’s and D’s. If we know all relations of this type, then any
relation of a higher degree will follow from these and (1.4)-(1.9).

In order to find these relations, it is most convenient to visualise the generated basis as
a grid of points. Fig. 1 shows the basis of sl(3), starting from D and S in the upper left
corner. Below them is T}! = [D, S]. The other solid points are those that we generate with
our algorithm by going only horizontally on each level, and vertically only along the left
edge. The white points are those which are ruled out by the relations (1.4)-(1.9), i.e., they
do not represent basis elements of s[(3). Now, an arbitrary product of r-many (adD)’s and
s-many (adS)’s applied to T} corresponds to a path on the grid starting at 7} and reaching
T;jll, but one which will in general only produce a matrix proportional to T;fll, with a factor
# 1. A horizontal step of the path describes the action of ad D, a vertical one the action of
ad S. In the picture, the solid line shows the way our algorithm went to generate T, while
the dotted lines show the alternative path, i.e.,

solid line < adD(adS(adD(S))) (2.3)
dotted line & adS((adD)*(S)) (2.4)

It is clear that any expression we have to examine can be expressed as a path from T} to
some admissible T* which only moves right and downwards (compare to Fig. 1). In general,

there are
( " +lf -2 ) paths from T} to T
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However, we can rule out some of these. The algorithm always uses paths which run through
all vertical steps first, then through all horizontal ones (called the algorithm path in what
follows). A relation is obtained by running through any different path and comparing the
result to what the algorithm path would have produced at this vertex.

Proposition 2.2. For a path ending at T, to yield an independent relation, it has to
e end with a vertical step if s < n,

e end with a horizontal step if s = n.

Proof. Look at the s < n case first. We know that at the vertex where the last vertical step
ends, we will have produced a matrix proportional to the one that the algorithm path would
have produced there (cf. Lemma 2.1). Thus, at this vertex we obtain a relation. But if it
is followed by horizontal steps, these will then trivially also yield matrices proportional to
those that the algorithm would have produced. Thus, the relations we can read off at these
vertices are generated from the one obtained at the end of the last vertical step.

An analogous argument holds for s = n, except that at the last step of the algorithm
there is a vertical step, so a path producing an independent relation cannot have a vertical
step at its end. O

Corollary 2.3. Apart from those vertical steps which lie on the left edge of the grid, a path
that leads to T7 and yields an independent relation for s < n must contain all other vertical
steps at its end. For s = n, the only path yielding a nontrivial relation is the algorithm path
to T"=" followed by a horizontal step.

Proof. As a counterexample for the s < n case, consider Fig. 2.

-|-1

Figure 2: Example of a path ruled out by Corollary 2.3

Up to vertex a, it follows the algorithm path, then going to b will yield a relation. But
proceeding further horizontally after b yields only dependent relations, as seen before.

In the s = n case, we have seen in Lemma 2.1 that the last step of a path yielding a
relation must be horizontal. Since going a horizontal step in the n-th row always gives zero
(cf. (1.9)), a nontrivial path can only have exactly one horizontal piece at its end. So the
second last step is always the last step of the algorithm to 7~! and therefore any other
path leading to T ~! followed by a horizontal step would trivially yield a result proportional
to what the algorithm path followed by the horizontal step gives. The relations so obtained
are precisely those of (1.9) O



This reduces the number of possibly independent relations considerably: for any vertex
T with m < n, there can now be at most m — 1 independent relations, which result from
the paths leading there and having between zero and m — 1 vertical steps at their ends. For
TF, there can only be one relation. Among the relations thus obtained, there will still be
redundancies, which are not obvious at first glance. To reveal them, one has to apply the
Jacobi identity and other relations one has already obtained. As an example, look at T3 in
sl(n) for n > 3. Two paths lead there, described in (2.3) and (2.4). Since they are both
admissible in the sense of Proposition 2.2, one might think that we obtain a relation here
between T2 generated by the algorithm and the result of another path. However,

adD(adS(adD(S))) = adS((adD)?*(S)) + ad(adD (S))(adD(S))

due to the Jacobi identity and the last term is of the form adz(z) = 0. Therefore, the two
paths trivially yield the same result, and we obtain no relation here. We will show now that
there are no other interdependencies of this sort except the above one for T3.

Lemma 2.4. It is impossible to trivially identify the result of two paths to a given T by
rearranging them using the Jacobi identity, except for the case r = s = 2, where we have

adD(adS(adD(S))) = adS((adD)?*(S))

Proof. Any admissible path in the sense of Lemma 2.1 and its corollary is of the form
T; = (ad §)*((ad D)""'((ad S)* (1)) (2.5)

where s; + s3 = s — 1. For sy = 0, we obtain the algorithm path. In order to show that two
paths give the same result, we want to apply the Jacobi identity

ad(adz (y))z =adx (ady (2)) —ady (adz (2))

in such a way that the left hand side of it becomes zero, i.e. is of the form ad z(z). This would
rule out one of the relations these paths produce. We see immediately that for this to happen
for adjoint operators z,y, z, the element z would have to contain as many D’s and S’s as x
and y together. Looking at (2.5), which we would like to identify with ad z (ady (z)), this
implies r = s. We have to split (2.5) in two equally long subpaths, the head (including T7!)
being z and the tail being ad  (ad (y)) and each containing 5-many D’s and S’s, implying s
must be even.

For the case r = s = 2, we find that z = T, * = ad S and y = ad D meet these
requirements.

Let now r = s = 2n, n > 1 and let z,y, z satisfy the above conditions. Then z represents

the path of the algorithm to Tss//; and adz(ady) is of the form (ad S)*/%((ad D)*/?). But
we see that it is impossible then to find z,y such that ady((ad x)(z)) would again be an

admissible path. O

It is important to note that this still does not exclude all possible dependencies between
the relations that various admissible paths yield. By clever rearrangement, it might still be
possible to bring a bracket of two elements into a form which, when expanded into paths,
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yields only a few admissible paths and several others which run over already excluded pieces.
We could find no way to rule out all such possibilities. This seems only possible with the
help of computers. But, as stated above, the minimal number might not be of practical
interest. The preceding discussion still gives us an upper bound on the number of relations.

Theorem 2.5. The number R(n) of independent relations between Sylvester’s generators is
bounded from above by:
2 fi =2
R(n) < or n ,
n?>—3 forn > 3.

Proof. n = 2: See Fig. 3 for the diagram.

®s

D

® o017 O
O O

Figure 3: The grid of basis elements for s((2)

The white dots are ruled out by the relations stated in the beginning, however the dot in
the lower right corner is not independent here. Thus, the only relations are

(adD)?(S) = 45, (adS)*(D) = 4D.

which was also Grozman’s result (2.1).
n > 3: As an example for the generic case, look at the n =5 grid (Fig. 4).

®s

D

® o0 6 O O
® 6 6 6 o O
® 6 6 o o O
® 6 6 6 o O
O ® @& @& O

O O O

Figure 4: The grid of basis elements for s((5)

We get here the following relations:
e 2 relations for the n-th powers of adD and adS,

e (n — 2) relations that limit the application of ad D (the rightmost white dots),
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e (n — 2) relations that limit the application of ad S (lowermost white dots),

e 1 relation corresponding to relation (1.7) (white dot in the lower right corner),

e (n — 3) relations for the vertical paths from the first to the second row,

e (n—3)(n—1) relations for the vertical paths between the second and third row, third

and fourth row and so on down to the (n — 1)st row,
e (n — 2) relations for the horizontal paths in the n-th row.

This makes a total of n?—3 relations. Lemma 2.1 and its corollary exclude the possibility that
one of them is obtained by another by application of ad D or ad S. Lemma 2.4 shows that
none of them is a consequence of another via a rearrangement using the Jacobi identity. [

We see that even for n = 3, the bound overestimates the exact number of relations.
However, the number of relations found in the above manner is only of order ~ n?, which
can be expected to lie pretty close to the true behaviour of R(n) so that the relative error
will decrease for growing n. But the main advantage of our method is that it explicitly
produces a presentation (albeit a redundant one): all relations can be directly read off from
the grid representation of the basis of sl(n).

§3 Relations between Sylvester’s generators for gl(n|n)

Sylvester’s generators can as well be used to generate a basis of gl(n|n), and only for this
“almost” simple (up to nontrivial center and outer derivations) finite dimensional Lie super-
algebra, see [LSe]. It is most convenient to choose an alternating format for the superspace
in which we express the supermatrices, i.e., if (e, es,...,€e,) is a basis of this vector space,
let the egr11 be odd vectors and the ey, be even ones for all k. This format has the advantage
that we can use the same matrices D,S as above as Sylvester’s generators, where now D
is an even supermatrix and S an odd one. The result obtained below remains valid in any
format, but looks nicest in the chosen one. To be able to compare the matrices obtained for
the sl(n) and gl(n|n) cases, we put a twiddle on the supermatrices: D, S.
As above, set
T =D, ]
which is now an odd supermatrix, but with the same entries as in the sl(n) case. Likewise,
Tt = (ad D)* (1Y)

are all odd supermatrices, but look the same as in the sl(n) case, and we find the analogue
of relation (1.4) to be

(ad D)*(S) = (1 — a)™S. (3.1)

case, now using the superbracket: set

S —

We follow the same algorithm as in the sl(n

T21 = [ga [D’S’H = [S” 11]

10



which is the same matrix as in the sl(n) case, except for the prefactor, which is now (1 — a?)
instead of —(1 — a)?. In general, for k=1,...,2n; m=1,...,2n — 2, we have

(ad D)*-Y([D,S)) = TF=TF for k=1,....2n—1
+1

m

- - ~ _ (_14a 2 k
(adD)k*I((adS)(Té)) — Tk+1:{ ( }Z)% T . form odd

m
k
Iy,  form even

so T* is proportional to T. The (1 4 a)-factors stem from the application of anticommuta-
tors. One obtains the analogue of the relations (1.5) for k =2n+ 1 and 2 <m < 2n — 1:

m(;l) 5 o
) (1= a™)?" (=1)™(ad$)™ " (ad D(S)).
(3.2)

1+a
1—a

(adD)*" ((ad3)™ (ad D) (3))) = <

For the diagonal basis elements, we set
TF =ad S(TF ) for 2<k<n
and obtain the following relations:

ST, = (-1

1—a

) comp, 3.9

n—1
ad S(TF) = (— ) (1 —a)(a® — 1)1 — a® ")k~ (—1)"TF. (3.4)
Note that TQZ,;‘ is not zero here, but is proportional to the identity matrix. On any (n|n)-
dimensional superspace, the identity matrix is supertraceless, and therefore an element of
sl(n|n). Thus, no relation corresponds to (1.7) in the super case.
We have to add one more relation, which did not exist in the non-super case: the super-
commutator of S with itself:

8,8) = !

(1+a)(1—a)?!

For n = 1, this is not a relation, but really generates a new element, see Thm. (3.1).

Thinking of the set of basis elements again as a grid of points, we see that we have found
relations of the same sort as in the sl(n) case, with one exception: there is one more element,
the one proportional to the identity matrix, represented by the rightmost dot in the last row.

One can again verify by explicit calculation that [T% T¥)] is proportional to T;iﬁ;,. This
extends the validity of Lemma 2.1 to the super case. To find a bound for the number of
relations again reduces to checking all paths from T} to the other T7%’s. This is done in the
same way as before, it is clear that our algorithm proceeds on the same paths as in the sl(n)
case and that Prop. 2.2 and Cor. 2.3 also apply in the super case.

Also Lemma 2.4 generalises to the super case, now using the super Jacobi identity. But
here we have to be careful about a specialty of the super case: supercommutators of elements
with themselves do not necessarily vanish. Consider, for example, TZZ:

ad D(ad S(ad D (9))) = —ad(ad §(D))(ad D(3)) — ad $((ad D)*(5)). (3.6)

T for n > 1. (3.5)

Here, the first term on the right hand side does not vanish. Therefore the relation between
the two paths to T3 that we ruled out as being trivial in the sl(n) case is nontrivial in the
super case. Except for this fact, Lemma 2.4 remains valid.
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Theorem 3.1. For gl(n|n), the number R(n) of independent relations between Sylvester’s

generators is bounded by
4 form=1,
R(n) < (3.7)
(2n)2 =1 forn>1.

Proof. The n =1 case differs from the s[(2) case because of the relation
[S,8]=2-1,

where 1 is the identity matrix. The basis elements of gl(1|1) can be represented by the grid

®s

D

® 01 O
O @ O

O

Figure 5: The grid of basis elements of gl(1[1)

in Fig 5. There are four relations:

[D,[D,8]] = 45 (3.8)
[ga [D: g]] =0 (3.9)
[D: [‘g: g]] =0 (3.10)
[5,15.8] = 0 (3.11)
®s

D

® oi0 © O
® 6 6 o O
® 6 6 o O
O @ @ @ O

o O O

Figure 6: The grid of basis elements of gl(2/2)

For n > 1, the grid looks like in Fig. 6. Note that now there is one more black dot in
the lower right corner which we generate from the dot above it. This provides one more
relation. Another additional relation is obtained from the two paths to TQQ, which are now
independent. Apart from this, the situation is identical to the non-super case. O
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