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Sylvester-'t Hooft generators of sl(n) and gl(njn), andrelations between themChristoph Sa
hse �August 24, 2006Abstra
tAmong the simple �nite dimensional Lie algebras, only sl(n) possesses two auto-morphisms of �nite order whi
h have no 
ommon nonzero eigenve
tor with eigenvalueone. It turns out that these automorphisms are inner and form a pair of generatorsthat allow one to generate all of sl(n) under bra
keting. It seems that Sylvester wasthe �rst to mention these generators, but he used them as generators of the asso
iativealgebra of all n � n matri
es Mat(n). These generators appear in the des
ription ofellipti
 solutions of the 
lassi
al Yang-Baxter equation, orthogonal de
ompositions ofLie algebras, 't Hooft's work on 
on�nement operators in QCD, and various other in-stan
es. Here I give an algorithm whi
h both generates sl(n) and expli
itly des
ribes aset of de�ning relations. For 
lose to simple (up to nontrivial 
enter and outer deriva-tions) Lie superalgebras, analogs of Sylvester generators exist only for gl(njn). Therelations for this 
ase are also 
omputed.x1 Introdu
tionDealing with a given Lie algebra g and modules over it, espe
ially when q-quantizing, weneed a 
onvenient presentation of g, i.e., a des
ription in terms of generators and de�ningrelations. Obviously, the basis elements qualify as generators, but there are too many ofthem. It is well-known [GL2℄ thatFor any nilpotent Lie algebra n, the natural set of relations isa basis of n=[n; n℄ = H1(n); relations between these generators
an be des
ribed in terms of the basis of H2(n). (1.1)A simple Lie (super)algebra g (�nite dimensional, Ka
-Moody or of polynomial ve
tor �elds)is 
onventionally split into the sum g = n��h�n+ of two maximal nilpotent subalgebras n�(positive and negative) and the 
ommutative Cartan subalgebra; the 
orresponding genera-tors are 
alled Chevalley generators; the relations between them are also known, 
f. [GL3℄,[GLP℄. They are numerous (3n generators for a rank n algebra and � n2 relations), butthese relations are simple and therefore 
onvenient.2000 Mathemati
s Subje
t Classi�
ation. 17A70 (Primary) 17B01, 17B70 (Se
ondary).Key words and phrases. De�ning relations, Lie algebras, Lie superalgebras..�I am thankful to the Klaus-Ts
hira-Stiftung and the International Max Plan
k Resear
h S
hool for�nan
ial support, and to Dimitry Leites for raising the problem.1



For 
omparison: for the simplest 
ase, gl(n), the matrix units are obvious generators,and the relations between them are simple, but far too numerous (n2 generators and � n4relations).Ja
obson was, perhaps, the �rst to observe that every simple �nite dimensional Liealgebra 
an be generated by just a pair of generators, but he did not spe
ify his pairs, so nodis
ussion of relations was made. Grozman and Leites [GL1℄ introdu
ed a pair of generatorsasso
iated with the prin
ipal embedding of sl(2), and the relations between them are rathersimple (at least, for 
omputers). There are more generators similar to those Grozman andLeites had 
hosen, but experiments performed so far show that the ones Grozman and Leites
onsidered are most 
onvenient, and are related to various appli
ations [GL2℄, [LS℄.There are, however, 
ertain pairs of generators indigenous only to the sl series, and onlyover an algebrai
ally 
losed �eld, e.g. C . Below, we des
ribe su
h a pair of generators forsl(n) and their analogs for gl(njn) and give relations between them.Let a = exp �2i�n � and de�ne Sylvester's generators (also 
alled 
lo
k-and-shift or 't Hooftmatri
es) to be
D = diag(1; a; a2; : : : ; an�1); S = 0BBBBBB�0 1 0 0 00 . . . . . . . . . 00 . . . . . . . . . 00 . . . . . . . . . 11 0 0 0 0

1CCCCCCA (1.2)
Za
hos [Z2℄ points out that\apparently, Sylvester [S℄ was the �rst to study these (1.2) generators1 of sl(n); he workedthem out for sl(3) �rst, and 
alled them \nonions" (after quaternions), and then generalizedto sl(n).They be
ame popular in the 30s in the 
ontext of QM-around-the 
ir
le, i.e., on a dis
reteperiodi
 latti
e of N points, see [W℄. That e�ort has 
ontinued to date, with the work ofS
hwinger, Santhanam, Tolar, Floratos, and others.They also be
ame popular among high-energy theorists, with the work of 't Hooft [tH℄,on order-disorder 
on�nement operators in QCD, so that many in my end of the woodsintriguingly 
all them \'t Hooft matri
es".I have been using them every few years, starting from [FFZ℄ to identify 
ases of a Sine-algebra we found at that time with sl(N), and also with the Moyal Bra
ket algebra [Moy℄on a toroidal phase spa
e; and hen
e take the N �!1 limit to get Poisson Bra
kets moredire
tly than in Hoppe's �rst derivation [Ho℄ on a spheri
al phase spa
e.Our latest use of them was in our re
ent diversion, [FZ℄, on ring-indexed Lie algebras.They are apparently the most systemati
 basis for dealing with all sl(N)s on an equal footingand taking naive N �!1 limits."1More pre
isely, Sylvester used them as generators of an asso
iative algebra, where they yield the algebraof n � n matri
es Mat(n). Having repla
ed the dot produ
t by the bra
ket we endow the spa
e of Mat(n)with the stru
ture of the Lie algebra gl(n); having introdu
ed parity in Mat(n) by attributing parity to ea
hbasis ve
tor (and hen
e to ea
h row and 
olumn) and repla
ing the dot produ
t by the superbra
ket weendow the superspa
e of Mat(n;Par), where Par is an ordered 
olle
tion of parities, with the stru
ture ofthe Lie superalgebra gl(Par). As generators of a Lie algebra, Sylvester's generators 
an only generate sl(n),but not gl(n). 2



For the passage from the notation of Za
hos et al. to ours, observe that, e.g. in [FFZ℄,the authors generate gl(n) from Sylvester's generators D;S (1.2) in the formJ(m1;m2) = am1m2=2Dm1Sm2whi
h are n2 independent matri
es labelled by two integers 0 � m1; m2 < n. Under thebra
ket, the identity matrix J(0;0) spans the 
enter. So dividing it out leaves sl(n) with thebra
ket [J(m1;m2); J(k1;k2)℄ = �2i sin�2�n (m1k2 �m2k1)� J(m1+k1;m2+k2)Another important appli
ation of Sylvester's generators is the 
lassi
al Yang-Baxter equa-tion for a fun
tion taking values in a simple Lie algebra g. It turns out [BD1, BD2℄ that forthis equation to have ellipti
 solutions, g has to possess two automorphisms of �nite orderwhi
h have no 
ommon nonzero eigenve
tor with eigenvalue 1. Sylvester's generators aresu
h automorphisms for g = sl(n); in fa
t, [BD1, BD2℄ prove that any g possessing su
hautomorphisms must be isomorphi
 to sl(n), and the ellipti
 solutions 
an be 
hara
terisedby the images of Sylvester's generators (1.2) under this isomorphism. Also, they play a vitalrole in the study of orthogonal de
ompositions of Lie algebras [KKU, KT, FOS℄.Finally, a more applied subje
t on whi
h these generators have been used is hydrody-nami
s and the statisti
al theory of turbulent 
uids and gases, in parti
ular, the study oflatti
e models of invis
id 
uids (Euler 
uids), see, e.g., [MWC℄,[MW℄,[Ze℄.The aim of this paper is to give an algorithm that generates sl(n) and gl(njn) fromSylvester's generators and whi
h also produ
es a presentation for them. This presentation
ontains redundan
ies, but might be of interest for pra
ti
al problems sin
e it allows qui
kand easy 
omputations in the adjoint representation. The main statements are the followingones.Theorem 1.1. Fix an integer n � 2. Then the matri
es (1.2) are generators for sl(n):sl(n) = Span(D;S; T km j 1 � k;m � n; and k 6= n for m = 1; n; and k 6= 1 for m = n);(1.3)where for 1 � k;m � n, we setT km = (adD)k�1((adS)m�1((adD(S)));T kn = adS(T kn�1):A de�ning set of relations for generators (1.2) 
an be obtained in the following way. Therelations (adD)n(S) = (1� a)nS; (1.4)(adD)n((adS)m�1(adD(S))) = (1� a)m(1� am)n(�1)m+1(adS)m�1(adD(S)) (1.5)adS(T 1n�1) = (1� a)n(�1)nD; (1.6)adS(T nn�1) = 0; (1.7)adS(T kn ) = (�1)n(1� ak)2(1� an�1)k�1(1� a)n�kT k1 ; (1.8)adD(T kn ) = 0 (1.9)3



prohibit generation of elements of order higher than n in both D and S. Besides them, forea
h T km with 2 � m � n � 1, ex
ept for T 22 , m � 1 relations have to hold, whi
h 
an bewritten as (adS)s1((adD)k�1((adS)s2(T 11 ))) = �1� ak1� a �s1 � 1� as11� am�1�k�1 T km;where s1 + s2 = m� 1 and s1 = 1; 2; : : : ; m� 1.Theorem 1.2. Considered as 2n � 2n supermatri
es on a superspa
e with an alternatingformat (even, odd, even, odd, ...), (1.2) are generators for gl(njn):gl(njn) = Span(D;S; T km j 1 � k;m � 2n; and k 6= 2n for m = 1 and k 6= 1 for m = 2n)with the same de�nition of T km as in Thm. (1.1). A de�ning set of relations in this 
ase are(3.1)-(3.5) and m� 1 relations for ea
h T km with 2 � m � 2n� 1. These 
an be written as
(adS)s1(T ks2+1) = 8>>>>>>><>>>>>>>:

(�1)s1(a2k � 1) s1�12 (ak+1)1�a � 1�as11�am�1 �k�1 ��1�a1+a� s1�12 ~T km for s1 odd ands2 even,(�1)s1(a2k � 1) s1�12 (ak�1)1�a � 1�as11�am�1 �k�1 ��1�a1+a� s1�12 ~T km for s1; s2 odd, or(�1)s1 (a2k�1)s1=21�a � 1�as11�am�1 �k�1 ��1�a1+a�s1=2 ~T km for s1; s2 even,or s1 even, s2 odd,where again s1 + s2 = m� 1 and s1 = 1; 2; : : : ; m� 1.In the following we show why the set of relations indi
ated in Thms. (1.1), (1.2) is ade�ning set. This will then automati
ally also deliver an upper bound on the number ofindependent relations for Sylvesters's generators.x2 Relations between Sylvester's generators for sl(n)Setting T k1 := (adD)k(S) for k = 1; : : : ; n� 1we obtain the matri
esT k1 = (1� a)k0BBBBB� 0 1 0 : : : 00 0 ak : : : 0...0 0 : : : : : : ak(n�2)ak(n�1) 0 : : : 0 0
1CCCCCAwhi
h are, 
learly, all linearly independent. For k = n, we get the relation (1.4). Pro
eedinglikewise, we generate a basis for sl(n). We setT km = (adD)k�1((adS)m�1(T 11 )) = (adD)k�1((adS)m�1((adD(S)))
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where m = 1; : : : ; n� 1 and k = 1; : : : ; n. In matrix form,
T km = (1� a)m(1� am)k�1(�1)m+10BBBBBBBBB�

0 : : : 0 1 0 : : : : : : 00 : : : 0 0 ak 0 : : : 0... ... ...0 : : : ak(n�m�1)ak(n�m) 0 : : : : : : 0... ...0 : : : ak(n�1) 0 : : : : : : 0
1CCCCCCCCCAThese are all the non-diagonal matri
es needed for a basis of sl(n). Their linear independen
eis easily 
he
ked. We also immediately read o� the relation (1.5) for k = n+ 1.It remains to generate n� 2 diagonal matri
es, whi
h we do as follows:T kn = adS(T kn�1) = adS((adD)k�1((adS)n�2(adD(S))));where k = 2; : : : ; n� 1, and we obtain the relations (1.6)-(1.9).Sin
e we have obtained n2 � 1 linearly independent matri
es, we have found a basis forsl(n), see (1.3). One might, however, wish to des
ribe sl(n) as the quotient of the free Liealgebra generated by the two Sylvester generators modulo 
ertain de�ning relations. Sin
ewe know that the matri
es T km span sl(n), we know that any 
ommutator of them must yielda relation. The relations stated above are merely those ones that are �rst en
ountered whenwe pro
eed through our 
hosen algorithm for the generation of the basis of sl(n). To �ndout the number and an expli
it realization of the minimal de�ning relations turns out to bequite a tough job, despite the seeming simpli
ity of the problem. P. Grozman was able to�nd those minimal relations for n = 2; 3; 4:n = 2 : (adS)2(D) = 4D; (adD)2S = 4S;n = 3 : (adS)3(D) = �3(a� a2)D; (adD)3(S) = 3(a� a2)S; [T 12 ; T 21 ℄ = 0;n = 4 : (adS)4(D) = �4D; (adD)4(S) = �4S; [T 11 ; T 12 ℄ = [D; T 13 ℄;[T 11 ; [T 12 ; T 13 ℄℄ = �4T 21 ; [T 31 ; T 13 ℄ = 0; 2[T 12 ; T 31 ℄ = [T 21 ; [D; T 12 ℄℄;2[T 21 ; T 13 ℄ = [T 12 ; [S; T 21 ℄℄; T 21 ℄ = [S; T 31 ℄ [T 21 ; T 31 ℄ = 4T 12 : (2.1)

with the help of Mathemati
a and his SuperLie pa
kage [Gr℄, but did not su

eed to dedu
efrom (2.1) a general formula. On the other hand, neither the number nor an expli
it formof the minimal set of relations is of great pra
ti
al importan
e when working with thesegenerators. Rather one would like to have, e.g., formulae that des
ribe the a
tion of arbitraryprodu
ts of the elements of sl(n) in the adjoint representation. Su
h formulae will be givenbelow and, additionally, a set of relations o�ered whi
h 
ontains redundan
ies, but whi
hallows immediate redu
tion of an arbitrary expression of the form (with the Xi and Y beingarbitrary elements of sl(n)) adX1(adX2(: : : (adXq(Y )) : : :))to a linear 
ombination of the basis elements produ
ed by our algorithm.By expli
it 
al
ulation one �rst veri�es that[T km; T k0m0 ℄ = (1� am)k�1(1� am0)k0�1(1� am+m0)k+k0�1 (ak0m0 � 1)T k+k0m+m05
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Figure 1: The two paths that generate T 22 in sl(3)for any of the T km; T k0m0 de�ned above. Hereafter, k + k0 and m +m0 have to be understoodmod n. This dire
tly shows the following statement.Lemma 2.1. The result of the appli
ation of an arbitrary produ
t of elements in the adjointrepresentation to a T km depends up to a fa
tor only on the number of S's and D's 
ontainedin these operators. That is,adX1(adX2(� � � adXN (T km)) � � � ) = C(k; k0; m;m0; n)T k+k0m+m0 (2.2)where mi and ki is the number of S's and D's, respe
tively, 
ontained in Xi,m0 =Xi mi; k0 =Xi ki;and C(k; k0; m;m0; n) is a 
onstant depending on all the indi
es.Therefore we 
on
lude that it suÆ
es to 
he
k only relations between elements whi
h areat most of degree n in both S's and D's. If we know all relations of this type, then anyrelation of a higher degree will follow from these and (1.4)-(1.9).In order to �nd these relations, it is most 
onvenient to visualise the generated basis asa grid of points. Fig. 1 shows the basis of sl(3), starting from D and S in the upper left
orner. Below them is T 11 = [D;S℄. The other solid points are those that we generate withour algorithm by going only horizontally on ea
h level, and verti
ally only along the leftedge. The white points are those whi
h are ruled out by the relations (1.4)-(1.9), i.e., theydo not represent basis elements of sl(3). Now, an arbitrary produ
t of r-many (adD)'s ands-many (adS)'s applied to T 11 
orresponds to a path on the grid starting at T 11 and rea
hingT r+1s+1 , but one whi
h will in general only produ
e a matrix proportional to T r+1s+1 , with a fa
tor6= 1. A horizontal step of the path des
ribes the a
tion of adD, a verti
al one the a
tion ofadS. In the pi
ture, the solid line shows the way our algorithm went to generate T 22 , whilethe dotted lines show the alternative path, i.e.,solid line , adD(adS(adD(S))) (2.3)dotted line , adS((adD)2(S)) (2.4)It is 
lear that any expression we have to examine 
an be expressed as a path from T 11 tosome admissible T km whi
h only moves right and downwards (
ompare to Fig. 1). In general,there are � m+ k � 2k � paths from T 11 to T km6



However, we 
an rule out some of these. The algorithm always uses paths whi
h run throughall verti
al steps �rst, then through all horizontal ones (
alled the algorithm path in whatfollows). A relation is obtained by running through any di�erent path and 
omparing theresult to what the algorithm path would have produ
ed at this vertex.Proposition 2.2. For a path ending at T rs to yield an independent relation, it has to� end with a verti
al step if s < n,� end with a horizontal step if s = n.Proof. Look at the s < n 
ase �rst. We know that at the vertex where the last verti
al stepends, we will have produ
ed a matrix proportional to the one that the algorithm path wouldhave produ
ed there (
f. Lemma 2.1). Thus, at this vertex we obtain a relation. But if itis followed by horizontal steps, these will then trivially also yield matri
es proportional tothose that the algorithm would have produ
ed. Thus, the relations we 
an read o� at theseverti
es are generated from the one obtained at the end of the last verti
al step.An analogous argument holds for s = n, ex
ept that at the last step of the algorithmthere is a verti
al step, so a path produ
ing an independent relation 
annot have a verti
alstep at its end.Corollary 2.3. Apart from those verti
al steps whi
h lie on the left edge of the grid, a paththat leads to T rs and yields an independent relation for s < n must 
ontain all other verti
alsteps at its end. For s = n, the only path yielding a nontrivial relation is the algorithm pathto T r�1n followed by a horizontal step.Proof. As a 
ounterexample for the s < n 
ase, 
onsider Fig. 2.
T1
1

a

c
bFigure 2: Example of a path ruled out by Corollary 2.3Up to vertex a, it follows the algorithm path, then going to b will yield a relation. Butpro
eeding further horizontally after b yields only dependent relations, as seen before.In the s = n 
ase, we have seen in Lemma 2.1 that the last step of a path yielding arelation must be horizontal. Sin
e going a horizontal step in the n-th row always gives zero(
f. (1.9)), a nontrivial path 
an only have exa
tly one horizontal pie
e at its end. So these
ond last step is always the last step of the algorithm to T r�1n , and therefore any otherpath leading to T r�1n followed by a horizontal step would trivially yield a result proportionalto what the algorithm path followed by the horizontal step gives. The relations so obtainedare pre
isely those of (1.9) 7



This redu
es the number of possibly independent relations 
onsiderably: for any vertexT km with m < n, there 
an now be at most m � 1 independent relations, whi
h result fromthe paths leading there and having between zero and m� 1 verti
al steps at their ends. ForT kn , there 
an only be one relation. Among the relations thus obtained, there will still beredundan
ies, whi
h are not obvious at �rst glan
e. To reveal them, one has to apply theJa
obi identity and other relations one has already obtained. As an example, look at T 22 insl(n) for n � 3. Two paths lead there, des
ribed in (2.3) and (2.4). Sin
e they are bothadmissible in the sense of Proposition 2.2, one might think that we obtain a relation herebetween T 22 generated by the algorithm and the result of another path. However,adD(adS(adD(S))) = adS((adD)2(S)) + ad(adD (S))(adD(S))due to the Ja
obi identity and the last term is of the form adz(z) � 0. Therefore, the twopaths trivially yield the same result, and we obtain no relation here. We will show now thatthere are no other interdependen
ies of this sort ex
ept the above one for T 22 .Lemma 2.4. It is impossible to trivially identify the result of two paths to a given T rs byrearranging them using the Ja
obi identity, ex
ept for the 
ase r = s = 2, where we haveadD(adS(adD(S))) = adS((adD)2(S))Proof. Any admissible path in the sense of Lemma 2.1 and its 
orollary is of the formT rs = (adS)s2((adD)r�1((adS)s1(T 11 ))) (2.5)where s1 + s2 = s� 1. For s2 = 0, we obtain the algorithm path. In order to show that twopaths give the same result, we want to apply the Ja
obi identityad(ad x (y))z = ad x (ad y (z))� ad y (ad x (z))in su
h a way that the left hand side of it be
omes zero, i.e. is of the form ad z(z). This wouldrule out one of the relations these paths produ
e. We see immediately that for this to happenfor adjoint operators x; y; z, the element z would have to 
ontain as many D's and S's as xand y together. Looking at (2.5), whi
h we would like to identify with ad x (ad y (z)), thisimplies r = s. We have to split (2.5) in two equally long subpaths, the head (in
luding T 11 )being z and the tail being ad x (ad (y)) and ea
h 
ontaining s2 -many D's and S's, implying smust be even.For the 
ase r = s = 2, we �nd that z = T 11 , x = adS and y = adD meet theserequirements.Let now r = s = 2n, n > 1 and let x; y; z satisfy the above 
onditions. Then z representsthe path of the algorithm to T s=2s=2 and adx(ad y) is of the form (adS)s=2((adD)s=2). Butwe see that it is impossible then to �nd x; y su
h that ad y((adx)(z)) would again be anadmissible path.It is important to note that this still does not ex
lude all possible dependen
ies betweenthe relations that various admissible paths yield. By 
lever rearrangement, it might still bepossible to bring a bra
ket of two elements into a form whi
h, when expanded into paths,8



yields only a few admissible paths and several others whi
h run over already ex
luded pie
es.We 
ould �nd no way to rule out all su
h possibilities. This seems only possible with thehelp of 
omputers. But, as stated above, the minimal number might not be of pra
ti
alinterest. The pre
eding dis
ussion still gives us an upper bound on the number of relations.Theorem 2.5. The number R(n) of independent relations between Sylvester's generators isbounded from above by: R(n) � (2 for n = 2;n2 � 3 for n � 3:Proof. n = 2: See Fig. 3 for the diagram.
D

S

T1
1Figure 3: The grid of basis elements for sl(2)The white dots are ruled out by the relations stated in the beginning, however the dot inthe lower right 
orner is not independent here. Thus, the only relations are(adD)2(S) = 4S; (adS)2(D) = 4D:whi
h was also Grozman's result (2.1).n � 3: As an example for the generi
 
ase, look at the n = 5 grid (Fig. 4).

D
T1
1

S

Figure 4: The grid of basis elements for sl(5)We get here the following relations:� 2 relations for the n-th powers of adD and adS,� (n� 2) relations that limit the appli
ation of adD (the rightmost white dots),9



� (n� 2) relations that limit the appli
ation of adS (lowermost white dots),� 1 relation 
orresponding to relation (1.7) (white dot in the lower right 
orner),� (n� 3) relations for the verti
al paths from the �rst to the se
ond row,� (n� 3)(n� 1) relations for the verti
al paths between the se
ond and third row, thirdand fourth row and so on down to the (n� 1)st row,� (n� 2) relations for the horizontal paths in the n-th row.This makes a total of n2�3 relations. Lemma 2.1 and its 
orollary ex
lude the possibility thatone of them is obtained by another by appli
ation of adD or adS. Lemma 2.4 shows thatnone of them is a 
onsequen
e of another via a rearrangement using the Ja
obi identity.We see that even for n = 3, the bound overestimates the exa
t number of relations.However, the number of relations found in the above manner is only of order � n2, whi
h
an be expe
ted to lie pretty 
lose to the true behaviour of R(n) so that the relative errorwill de
rease for growing n. But the main advantage of our method is that it expli
itlyprodu
es a presentation (albeit a redundant one): all relations 
an be dire
tly read o� fromthe grid representation of the basis of sl(n).x3 Relations between Sylvester's generators for gl(njn)Sylvester's generators 
an as well be used to generate a basis of gl(njn), and only for this\almost" simple (up to nontrivial 
enter and outer derivations) �nite dimensional Lie super-algebra, see [LSe℄. It is most 
onvenient to 
hoose an alternating format for the superspa
ein whi
h we express the supermatri
es, i.e., if (e1; e2; : : : ; en) is a basis of this ve
tor spa
e,let the e2k+1 be odd ve
tors and the e2k be even ones for all k. This format has the advantagethat we 
an use the same matri
es D;S as above as Sylvester's generators, where now Dis an even supermatrix and S an odd one. The result obtained below remains valid in anyformat, but looks ni
est in the 
hosen one. To be able to 
ompare the matri
es obtained forthe sl(n) and gl(njn) 
ases, we put a twiddle on the supermatri
es: ~D; ~S.As above, set ~T 11 = [ ~D; ~S℄whi
h is now an odd supermatrix, but with the same entries as in the sl(n) 
ase. Likewise,~T k1 = (ad ~D)k�1( ~T 11 )are all odd supermatri
es, but look the same as in the sl(n) 
ase, and we �nd the analogueof relation (1.4) to be (ad ~D)2n( ~S) = (1� a)2n ~S: (3.1)We follow the same algorithm as in the sl(n) 
ase, now using the superbra
ket: set~T 12 = [ ~S; [ ~D; ~S℄℄ = [ ~S; ~T 11 ℄
10



whi
h is the same matrix as in the sl(n) 
ase, ex
ept for the prefa
tor, whi
h is now (1� a2)instead of �(1� a)2. In general, for k = 1; : : : ; 2n; m = 1; : : : ; 2n� 2, we have(ad ~D)k�1([ ~D; ~S℄) = ~T k1 = T k1 for k = 1; : : : ; 2n� 1(ad ~D)k�1((adS)( ~T 1m)) = ~T km+1 = ( � ��1+a1�a�m+12 T km+1 for m odd� ��1+a1�a�m2 T km+1 for m evenso ~T km is proportional to T km. The (1+ a)-fa
tors stem from the appli
ation of anti
ommuta-tors. One obtains the analogue of the relations (1.5) for k = 2n+ 1 and 2 � m � 2n� 1:(ad ~D)2n((ad ~S)m�1((ad ~D)( ~S))) = ��1 + a1� a�m(+1)2 (1� am)2n(�1)m(ad ~S)m�1(ad ~D( ~S)):(3.2)For the diagonal basis elements, we set~T kn = ad ~S( ~T kn�1) for 2 � k � nand obtain the following relations:ad ~S( ~T 1n�1) = ��1 + a1� a�n (�1)n+1 ~D; (3.3)ad ~S( ~T kn ) = ��1 + a1� a�n�1 (1� a)(a2k � 1)(1� a2n�1)k�1(�1)n ~T k1 : (3.4)Note that ~T 2n2n is not zero here, but is proportional to the identity matrix. On any (njn)-dimensional superspa
e, the identity matrix is supertra
eless, and therefore an element ofsl(njn). Thus, no relation 
orresponds to (1.7) in the super 
ase.We have to add one more relation, whi
h did not exist in the non-super 
ase: the super-
ommutator of ~S with itself:[ ~S; ~S℄ = 1(1 + a)(1� a)2n�1 ~T 2n2 for n > 1. (3.5)For n = 1, this is not a relation, but really generates a new element, see Thm. (3.1).Thinking of the set of basis elements again as a grid of points, we see that we have foundrelations of the same sort as in the sl(n) 
ase, with one ex
eption: there is one more element,the one proportional to the identity matrix, represented by the rightmost dot in the last row.One 
an again verify by expli
it 
al
ulation that [ ~T km; ~T k0m0 ℄ is proportional to ~T k+k0m+m0 . Thisextends the validity of Lemma 2.1 to the super 
ase. To �nd a bound for the number ofrelations again redu
es to 
he
king all paths from ~T 11 to the other ~T km's. This is done in thesame way as before, it is 
lear that our algorithm pro
eeds on the same paths as in the sl(n)
ase and that Prop. 2.2 and Cor. 2.3 also apply in the super 
ase.Also Lemma 2.4 generalises to the super 
ase, now using the super Ja
obi identity. Buthere we have to be 
areful about a spe
ialty of the super 
ase: super
ommutators of elementswith themselves do not ne
essarily vanish. Consider, for example, ~T 22 :ad ~D(ad ~S(ad ~D ( ~S))) = �ad(ad ~S( ~D))(ad ~D( ~S))� ad ~S((ad ~D)2( ~S)): (3.6)Here, the �rst term on the right hand side does not vanish. Therefore the relation betweenthe two paths to ~T 22 that we ruled out as being trivial in the sl(n) 
ase is nontrivial in thesuper 
ase. Ex
ept for this fa
t, Lemma 2.4 remains valid.11



Theorem 3.1. For gl(njn), the number R(n) of independent relations between Sylvester'sgenerators is bounded by R(n) � (4 for n = 1,(2n)2 � 1 for n > 1. (3.7)Proof. The n = 1 
ase di�ers from the sl(2) 
ase be
ause of the relation[ ~S; ~S℄ = 2 � 1;where 1 is the identity matrix. The basis elements of gl(1j1) 
an be represented by the grid
D

S

T1
1

Figure 5: The grid of basis elements of gl(1j1)in Fig 5. There are four relations: [ ~D; [ ~D; ~S℄℄ = 4 ~S (3.8)[ ~S; [ ~D; ~S℄℄ = 0 (3.9)[ ~D; [ ~S; ~S℄℄ = 0 (3.10)[ ~S; [ ~S; ~S℄℄ = 0 (3.11)
D

S

T1
1

Figure 6: The grid of basis elements of gl(2j2)For n > 1, the grid looks like in Fig. 6. Note that now there is one more bla
k dot inthe lower right 
orner whi
h we generate from the dot above it. This provides one morerelation. Another additional relation is obtained from the two paths to ~T 22 , whi
h are nowindependent. Apart from this, the situation is identi
al to the non-super 
ase.12
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