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SHARP-INTERFACE LIMIT OF A MESOSCOPIC FREE ENERGYWITH A RANDOM EXTERNAL FIELDNICOLAS DIRR AND ENZA ORLANDIAbstract. We add a random bulk term, modeling the interaction with theimpurities of the medium, to a standard functional in the gradient theory ofphase transitions consisting of a gradient term with a double well potential.For the resulting functional we study the asymptotic properties of minimizersand minimal energy under a rescaling in space, i.e. on the macroscopic scale.By bounding the energy from below by a coarse-grained, discrete functional,we show that for a suitable strength of the random �eld the random energyfunctional has two types of random global minimizers, corresponding to twophases. Then we derive the macroscopic cost of low-energy \excited" statesthat correspond to a bubble of one phase surrounded by the opposite phase.1. IntroductionModels where a stochastic contribution is added to the energy of the systemnaturally arise in condensed matter physics where the presence of the impuritiescauses the microscopic structure to vary from point to point. The starting point isa random functional which models the free energy of a two phases material on a so-called mesoscopic scale, i.e. a scale which is much larger than the atomistic scale sothat the adequate description of the state of the material is by a continuous scalarorder parameter m : D � Rd ! R: The free energy functional consists of threecompeting parts: An "interaction term" penalizing spatial changes in m; a double-well potential W (m); i.e. a nonconvex function which has exactly two minimizers,for simplicity +1 and �1; modeling a two-phase material, and a term which couplesm to a random �eld with mean zero, variance �2 and unit correlation length, i.e. aterm which prefers at each point in space one of the two minimizers of W (�) andbreaks the translational invariance, but is "neutral" in the mean. This randomterm models the interaction with \impurities" that are randomly distributed in thematerial. A standard choice with the aforementioned properties isĜ(m;!) := ZD �jrm(y)j2 +W (m(y)) + �g(y; !)m(y)� dy:We are, however, interested in a so-calledmacroscopic scale, which is coarse than themesoscopic scale. Therefore we rescale space with a small parameter �: If � = �Dand u(x) = m(��1x); we obtain Ĝ(m;!) = �1�dG�(u; !); whereG�(u; !) := Z���jru(x)j2 + 1�W (m(x)) + �� g�(x; !)m(x)� dxwhere g� has now correlation length �: First, we are interested in the asymptoticbehavior of the minimizers, which, unlike in the case � = 0; will not be the constantDate: February 8, 2007.1991 Mathematics Subject Classi�cation. 35R60, 80M35, 82D30, 74Q05.Key words and phrases. � convergence, Random functionals, Phase segregation in disorderedmaterials.N.D. supported by DFG-Forschergruppe 718.E.O. supported by MURST/Co�n 05-06 PRIN 2004028108 and ROMA TRE University.1



2 NICOLAS DIRR AND ENZA ORLANDIfunctions u(x) � 1 and u(x) � �1; but functions varying in x and !; and the min-imal energy will be strictly negative. Second, we would like to know how functionswhich are not minimizers, but have energy of the same order as the minimizer,behave as � ! 0. This can be used to obtain information on the asymptotics ofminimizers with a constraint, like requiring the spatial mean of u to equal a �xedvalue. The appropriate mathematical set-up for the second question is as follows.First we \renormalize," i.e. we subtract the energy of the minimizers (which existsby standard arguments) to obtainF�(u; !) = G�(u; !)� infH1(�)G�(�; !);and then we consider the �-limit of the functionals F� de�ned in L1(�) (with respectto the L1(�) convergence). A functional F0 is the �-limit of the family (F�)�!0with respect to the L1-topology, if for all u 2 L1(�)� for all fu�g 2 L1(�) with u� ! u in L1(�),lim inf� F�(u�) � F0(u);� and there exists a sequence fu�g 2 L1(�), v� ! u in L1 (recovery sequenceor �-realizing sequence) such thatlim sup� F�(v�) � F0(u): (1.1)The �-limit, a notion invented by E. De Giorgi, means heuristically that F0(u) isthe limit energy of the \lowest-energy approximations" to u: In the the case � = 0the minimizers are obviously the constants �1 with minimum energy zero, and thesecond question, the �-limit, was answered by Modica and Mortola, see [14, 15],who found thatF0(u) = ( R� � � rujruj� jruj if u 2 BV (�); juj = 1 a:e:1 else (1.2)�(n) = CW = 2 Z 1�1pW (s)ds for all n 2 Sd�1; (1.3)where Sd�1 := fx 2 Rd : jxj = 1g. If the \jump set" of u; i.e. the set separatingthe region where u = +1 from the region where u = �1; is su�ciently regular, thenru(jruj)�1 = n; the outward unit normal to the set fu < 0g: For the generalizationto BV-functions, i.e. functions such that the distributional derivative is a (vector-valued) Radon measure, see e.g. [9]. The weight �(n) = �(�n) is the surfacetension in the language of statistical mechanics. While it is constant for � = 0; it isnonconstant (anisotropic) for g periodic (see [6, 7]) or for the gradient term beingreplaced by a bilinear form with periodic coe�cients, see [1]. The g-dependentbulk term, when strong enough, because of the scaling with ��1, force a sequenceu� to \follow" the oscillations of g: This always happens in the form of boundedoscillations around the two wells of the double well potential. In such a situationthere are still two distinct minimizers, also called \phases," adopting the languageof statistical mechanics. But in principle the g-dependent term could be strongenough to enforce large oscillations, so that the minimizers will \change well." Inthe periodic case it is possible to check on a deterministic volume with a diameterof the order of the period whether the minimizer \changes well," i.e. creates a\bubble" of the other phase. The random case is quite di�erent, because there isno deterministic subset of � such that the integral of the random �eld over thissubset equals zero for almost all realizations of the random �eld - there are always
uctuations around the zero mean. A set A becomes the support of a bubble of the



SHARP-INTERFACE LIMIT WITH RANDOM FIELD 3other phase if the cost of switching to the other well, which can be estimated by theModica-Mortola result as proportional to the boundary of A; is smaller than theintegral of the random �eld part over A: As the correlation length is �; a set A � �contains roughly jAj��d independent random variables, where j � j denotes the d�dimensional Lebesgue measure of a set. By the central limit theorem, 
uctuations oforder �pjAj�d=2 are highly likely, but the probability of larger 
uctuations vanishesexponentially fast. Therefore, using the isoperimetric inequality, the probability ofA being the support of a bubble is exponentially small ifcdjAj(d�1)=d � jAj1=2�(d�2)=2�;where cd is the isoperimetric constant. In d � 3 this is asymptotically always thecase for sets of diameter of order larger �; or for sets of any size, provided � ! 0:When determining properties of the minimizers we are, however, not interested inwhether a single given set A becomes the support of a bubble, but whether thereexist \bubbles" of the other phase. In order to estimate the latter probability, wehave to �nd a way to count subsets, which requires a coarse-graining on the scaleof the correlation length.We de�ne a phase-indicator which is �1 if the average of u over a cube of side� is close to �1; the minimizers of the \unperturbed" (� = 0) functional. (See2.15.) Then we prove that the energy of a function is bounded from below by anenergy that can be expressed as a function of the so-called contours of the coarse-grained \representative" of the function. The proof of this bound does not requireprobabilistic arguments. The basic idea behind contours is to make explicit theregion in space where the order parameter u deviates from the minimizer, which is,of course, unknown. However, one may guess that for su�ciently weak disorder (�small) the minimizers should look almost like the ones without random �eld. It isthus natural to build the contour model on the basis of the ideal minimizers and tolet the contours themselves keep track of the deviations of the true minimizers fromthese ideal minimizers. Our use of contours for functions u : �! R; i.e. functionsin continuum, has been strongly inspired by the series of papers done for Ising spinsystems with Kac type interaction by Errico Presutti and his collaborators, see thebook [18].However, we do not impose any boundary conditions on the cube �; becausewe are interested in global minimizers. This kind of free boundary conditioncorresponds to Neumann boundary conditions for smooth solutions of the Euler-Lagrange equations. In the \discretized" setting after \coarse-graining", the freeboundary conditions will make the de�nition of contours more complicated thanin the standard setting, where usually some type of \Dirichlet" boundary condi-tions are used. In addition the energy in [18] contains convolution terms insteadof gradients, so our approach is quite di�erent as far as the more technical partsare concerned. This contour reduction allows us to use probabilistic techniquesdeveloped in the 1980's for the (discrete) random-�eld Ising model. The centralquestion heatedly discussed in the 1980's in the physics community was whetherthe Random Field Ising model would show spontaneous magnetization at low tem-perature and weak disorder in dimension 3, or not. This is closely related to thequestion whether there are at least two distinct minimizers, one predominantly +and one predominantly �: The problem was solved by Bricmont and Kupianen,[5], who proved the existence of phase transition in d � 3 for small magnitude ofthe random �eld, and Aizenman and Wehr, [2], who proved that there is no phasetransition in d = 2 for all temperatures.We prove that in d � 3 and for a set of random realizations of overwhelmingprobability, see Theorem 2.1, there are two functions u+� (�; !) and u�� (�; !), closein L1 respectively to +1 and �1, on which the value of the functional is close to



4 NICOLAS DIRR AND ENZA ORLANDIits minimum value, and one of them is the global minimizer. The energy of theseminimizers diverges as � ! 0; but the minimal energy is close to a deterministicsequence c� up to an error which vanishes as �! 0; see Theorem 2.2, i.e. the energybecomes deterministic in the limit by a law of large numbers. The �-convergence ofthe renormalized energy F� is the content of Theorem 2.3. We show �-convergencewith respect to the L1(�)-topology with probability 1. The realization ! of therandom �eld is treated as parameter for P almost all such !:Both Theorem 2.1 and 2.3 hold only in the case � = (log(��1))�1 ! 0; while theanalytic result which is crucial in obtaining these estimates, the contour reductionTheorem 2.7 and Theorem 2.9, hold for � small but strictly positive as � # 0.The assumption � ! 0 is important because by analogy with the aforementionedIsing models with random �eld we expect that for � small but �nite two (almost)minimizers exist, but they do not stay in a single well: The + minimizer, forexample, will be predominantly near +1; but there will be many small (diameter� �) \bubbles" where it is close to �1: In the case of \weak" disorder treated here,i.e. � ! 0; we show that the surface tension � = CW (see (1.2)) as in the case� = 0: This does not mean that the disorder is too weak to have any e�ect: Firstnote that the minimizers are not constants but functions depending on space andon the realization of the random �eld. Their energy is not zero, hence the presenceof the renormalization.Moreover, in Appendix III, we present a (partly heuristic) computation thatindicates that minimizers in d = 3 are not microscopically 
at, i.e. even if the jumpset of u is a plane, the recovery sequence u� has the property that for some � > 0the set S(u�) = f�1 + � < u < 1 � �g 
uctuates around the limit plane on anyscale smaller than �2=3: This is clearly not the case for � = 0; where the globalminimizer has planar level sets, and in the periodic case recent results by Novagaand Valdinoci, see [16], indicate that S(u�) oscillates on the scale �:This paper is organized as follows. In Section 2 we state the main results, de�nethe phase indicator and our notion of contours. In Section 3 we show that wecan associate to each function a representative which gives rise to essentially thesame coarse grained function, but has smaller energy and is uniformly bounded anduniformly Lipschitz. This allows to derive that such a function must be pointwiseclose to the minimizers if the coarse-grained function is. In Section 4 we estimatethe cost of a contour, i.e. a deviation of the coarse-grained function from localequilibrium. In Section 5 we show the already mentioned lower bound on the energyin terms of a functional depending only on the contours of the coarse-graining. Asconsequence, we prove that a minimizer stays in one single well of the double-wellpotential. In Section 6, �nally, we use the information obtained so far to showthe �-convergence of the renormalized functionals. We collect, in the appendix, forconvenience of the reader, standard results and computations about properties ofthe solution to the Euler-Lagrange equation of our random functional under thecondition that the solution stays in one single well and probabilistic estimates usedin this paper.Acknowledgments. We would like to thank Stephan Luckhaus and Errico Pre-sutti for helpful discussions. EO acknowledges the hospitality of the Max-Planck-Institute for Mathematics in the Sciences, and ND acknowledges the hospitality ofthe University Roma Tre. 2. Notations and Results2.1. The functional. The \macroscopic" space is given by � := [� 12 ; 12 ]d; the d�dimensional unit cube centered at the origin. The ratio between the macroscopic



SHARP-INTERFACE LIMIT WITH RANDOM FIELD 5and the \mesoscopic" scale is given by the small parameter � > 0: Hence for any �the mesoscopic space is de�ned as �� := [� 12� ; 12� ]d:We require � to be in a countableset, e.g. � = 1n ; n 2 N. This choice avoids irrelevant technical di�culties.1 Thedisorder or random �eld is constructed with the help of a family fg(z; !)gz2Zd ofindependent, identically distributed Bernoulli random variables. The law of thisfamily of random variables will be denoted by P; in particularP(fg(z; !) = �1g) = �12 z 2 Zd: (2.1)Di�erent choices of g could be handled by minor modi�cations provided g is stilla random �eld with �nite correlation length, invariant under (integer) translationsand such that g(z; !) has a symmetric distribution with compact support. Thedisorder or random �eld in the functional will be obtained by a rescaling of g suchthat the correlation length is order � and the amplitude grows as � ! 0: To thisend de�ne for x 2 � a function g�(�; !) 2 L1(�) byg�(x; !) := Xz2Zd g(z; !)1I�(z+[� 12 ; 12 ]d)\�(x); (2.2)where for any Borel-measurable set A1IA(x) := ( 1; if x 2 A0 if x 62 A:For u 2 H1(�) and any open set A � � consider the following random functionalG�(A; u; !) := ZA��jru(x)j2 + 1�W (u(x))� dx+ 1� �(�)� ZA g�(x; !)u(x)dx (2.3)where � > 0 and 0 < �(�)� 1 is a function of � to be speci�ed later. If A = �; wesimply write G�(u; !): The potential W is a so-called \double-well potential:"Assumption (H1) W 2 C2(R), W � 0,W (s) = 0 i� s 2 f�1; 1g,W (s) =W (�s)and W (s) is strictly decreasing in [0; 1]. Moreover there exists �0 and C0 > 0 sothat W (s) = 12C0 (s� 1)2 8s 2 (1� �0;1): (2.4)These assumptions could be relaxed, but in order to keep the exposition rea-sonably short, we prefer to use stronger assumptions. The functional (2.3) can beextended to a lower semicontinuous functional G� : L1(�) ! R [ f+1g by de�n-ing G�(v; !) = +1 for any v 62 H1(�) and ! 2 
. For � > 0 �xed and ! 2 
it follows in the same way as in the case without random perturbation that thefunctional G�(�; !) is coercive and weakly lower semicontinuous in H1(�); so thereexists at least one minimizer, see [8], which is here a random functions in H1(�);i.e. di�erent realizations of ! will give di�erent minimizers.2.2. Minimizers and �-limit. Our �rst main result is the existence of two min-imizing random functions u�� and their properties.Theorem 2.1. Let d � 3, 0 < �, �(�) = 1ln 1� . There exists �0 > 0 and a �a(�(�0)�; d) > 0 so that for all � � �0, there exists a set 
� � 
, P[
�] �1 � e�a ln 1� (ln 1� ) 4950 , 2, so that for all ! 2 
� the following holds: There exist two1It will become soon clear that this assumption simpli�es some de�nitions, see for example thede�nitions of contours given next, avoiding to deal with boundary layer problems.2The exponent 4950 is just a possible choice. The relevant issue is that for � = 1n , Pn ef(n) is�nite, where here f(n) = �a(lnn)1+ 4950 .



6 NICOLAS DIRR AND ENZA ORLANDIfunctions u�� (�; !) 2 H1(�) such thatinfH1(�)G�(�; !) = G�(u�� ; !); where � = �sign�Z� g�� (2.5)jG�(u+� ; !)�G�(u�� ; !)j � ��; (2.6)where �� is a deterministic function with �� ! 0 as �! 0,ku+� (�; !)� 1k1 � C��(�); ku�� (�; !) + 1k1 � C��(�) ! 2 
�;E [u�� (r; �)] = 1 8r 2 �and (decay of correlations)��E [u�� (r; �)u�� (r0; �)]� E [u�� (r; �)]E [u�� (r0; �)]�� � C(d)�2�2(�)e� 12�p2C0 jr�r0j: (2.7)In the unperturbed case � = 0 the minimum value is zero and there are twominimizers, the constant functions u� = �1: When � > 0 the in�mum over H1(�)can be negative or even diverge to �1 as � # 0. Hence we shall introduce anadditive renormalization for the functional and denote for u 2 H1(�)F�(u; !) = G�(u; !)� infH1(�)G�(�; !): (2.8)Denote c� = E [ infH1 (�)G�(�; �)]: (2.9)We have the following result.Theorem 2.2. For d � 3 and �(�) = (ln(1=�))�1; � > 0;c� = E [G�(u+� ; �)] = E [G� (u�� ; �)] (2.10)E �c� � infH1(�)G�(�; �)�2 ! 0; 0 < lim inf ��(�)�2jc�j � lim sup ��(�)�2jc�j <1:(2.11)Next theorem states that the renormalized functionals have a �-limit.Theorem 2.3. For d � 3; � = 1n , n 2 N; �(�) = (ln(1=�))�1 and � > 0; F�(�; !)!F0(�) in the sense of �-convergence (with respect to the L1 topology) P-almost surely,where F0 is as in (1.2) and CW is as in (1.3).Theorem 2.2 corresponds to the highest order term of a so-called \�-expansion"of our functional. Its proof is given in Section 5. Theorem 2.3 characterizes thenext order term. Its proof is given in Section 6.Remark 2.4 (Minimizers with Constraints). As a direct consequence we obtainthat a sequence u�(�; !) withG�(u�; !) = minfv2H1: R� v=mgG�(v; !);for m 2 (�1; 1), converges a.e. to a deterministic function u(�) such thatF0(u) = minfv2BV : R� v=m; jvj=1 a:e:gF0(v); P = 1:



SHARP-INTERFACE LIMIT WITH RANDOM FIELD 72.3. Contours and Contour reduction. The proof of Theorem 2.1 and Theorem2.3 is based on an extension of Peierls, [17], argument to the present context, usingthree steps: First, a reformulation of the problem in term of contours, then an esti-mate of their energy and �nally an estimate of their number. As we are interested inglobal minimizers, we consider free boundary conditions, which corresponds to Neu-mann boundary conditions for smooth solutions of the Euler-Lagrange equations.This makes the de�nition of contours in the \discretized" setting more compli-cated. It is convenient to reformulate the problem in the mesoscopic coordinates.We consider v 2 H1(��) and denote in mesoscopic coordinatesG1(v; !) := Z�� �jrv(x)j2 +W (v(x))� dx + �(�)� Z�� g1(x; !)v(x)dx: (2.12)The relation between (2.3) and (2.12) isG�(�; u; !) = �d�1G1(��; v; !); (2.13)where v(x) = u(�x) for x 2 ��.2.3.1. Coarse-graining. We introduce notations for the partition of Rd . We de-note by D(0) = fC(0)g the partition of Rd into cubes of side 1, with one of themhaving center 0, and we denote by C(0(y) for y 2 Rd the block of the partition D(0)which contains y. Two cubes of D(0) are connected if their closures have non emptyintersection. Given m 2 L1loc(Rd ) we denote for each cube C(0) 2 D(0)m(0)(y) � ZC(0)(y)m(z)dz (2.14)and by�(m; y) � ��(m; y) =8><>:1 if m(0)(y) > 1� ��1 if m(0)(y) < �1 + �0 if � 1 + � � m(0)(y) � 1� �; (2.15)the block variable with tolerance �, where 1 > � > 0. We omit to write thesuperscript in notation (2.15) when no confusion arises.2.3.2. Islands and Contours.� Correct points. The point y is �� correct, or, equivalently C(0)(y), the blockof D(0) containing y, is �� correct, if ��(m; y) 6= 0 and ��(m; y) = ��(m; y0) onthe cubes of D(0) which are connected to C(0)(y). The point y, or equivalentlyC(0)(y), is �� incorrect if it is not �� correct. When no confusion arises we dropthe �� in the previous de�nition and we denote a point or a block only by corrector incorrect.�Islands and signs of Islands. The maximal connected components of the correctset are called islands. We denote them by the capital letter I . In an island �(m; y)is constantly equal either to 1 or to �1, accordingly we de�ne the sign of the islandsign(I) = �1.�Boundaries. The boundary @extI of an island I is the set of cubes C(0) not in Ibut at distance 0 from I , @intI is the set of cubes C(0) in I and at distance 0 from@extI . The topological boundary is denoted @I . The de�nition of island ensuresthat @extI is a kind of \safety zone" around I , in which �(m; y) has still a de�nitesign, equal to the sign of the island.�Contours. Each maximal connected component of the incorrect set is the sup-port of a contour. The contour is the pair � = (sp(�); ��) where sp(�) is the spatialsupport of �, i.e. the maximal connected component of the incorrect set and �� isthe restriction to sp(�) of �(m; �). See also Figure 1.



8 NICOLAS DIRR AND ENZA ORLANDI�Boundary of a contour. The boundary @int(sp(�)) of the contour � is the unionof @extI \ sp(�) over the islands. The � boundary, @�(sp(�)), is the union of cubesin @extI \ (sp(�)) over the � islands I.�Contours in �nite regions. When m 2 H1(��) the block variable, see (2.15)can be de�ned only for those C(0) � ��, since m has support in ��. The notion ofcorrectness for a block C(0) needs the knowledge of the block variables of the cubesconnected to C(0). We make the following convention:� Neumann Boundary on ��. A cube C(0) � �� is correct if ��(m; y) 6= 0 fory 2 C(0) and ��(m; y) = ��(m; y0) on the cubes of D(0) � �� connected to C(0)(y).Contours are de�ned consequently and their support is contained in ��.�Dirichlet Boundary on A � ��. Let A � �� be a bounded, D(0)� measurableregion. We say that A has boundary conditions + (or �1) when �(m; y) = +1 (or�) for all y 2 Ac, d(y;A) � 1. We then use the convection that all the blocks in Acare considered positive (negative) correct and de�ne those inside A according to theprevious rules. Contours are de�ned consequently and their support is containedin A.� Collection of contours and islands. Given m 2 H1(��), � > 0 we associateG(m) � G(m; �) = f�1; : : : ;�kg for k 2 N, the collection of contours accordingto the previous construction. This de�nes also the collection of islands I(m) �I(m; �) = fI1; : : : ; Ing for n 2 N. It is possible that there are no islands, I(m) = ;,for example when G(m) = f�g and sp(�) = ��: Since islands and their signs aredetermined by the knowledge of the contours, � = (sp(�); ��), it is convenient to�x a way to associate to each contour � the corresponding islands, i.e. to de�ne amapping � 2 G(m)! I� � I(m): Note that each contour may have several islands,i.e. I� is a set of islands. By abuse of notation we will denote islands, i.e. elementsin I�; by I� as well, if no confusion arises.�Outer complement of a contour �. For a contour �, consider all connectedcomponents of � n sp(�); which are connected to the boundary @��. Denote themby C1; : : : ; CK� :We can associate a sign with each connected component by de�ningsign(Cj) := �(x) for some x 2 Cj with dist(x; sp(�)) < 1=2: We form the unionover the positive and negative connected components, i.e.A+� := [sign(Cj)=+1Cj ; A�� := [sign(Cj)=�1Cj :Note that due to the possible presence of other contours, this does not imply that� is constant on A�� : We denote by O�, the outer complement of a contour �, theset O� := � A+� ; if jA+� j � jA�� j;A�� ; if jA+� j < jA�� j:� Inner complement of a contour �. The inner complement of a contour � isdenoted by int(�) := �� n [sp(�) [ O�].� The islands of a contour �. The islands I�, together with their sign, are de-�ned as follows: For each connected component of the inner complement the islandassociated with this connected component is the union of all cubes in the consideredconnected component, connected to @� (sp(�)), � = �1, so that �(m; y) = � for ally 2 I� and the sign of I� is � . Note that the number of islands associated to �is equal to the number of the connected components of the inner complement andtheir signs can be + or �.� Virtual contour. Further we denoteI~� := �� n [�2G(m) (sp(�) [ I�) :
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Figure 1. Possible types of contours and Inner/Outer Complement.The coarse-grained phase indicator � is constant on I~�; see Lemma 5.1 and wede�ne sign(m) := ��(m; �)jI~� : (2.16)This means that I~� shares this important property with the islands associated withreal contours, therefore it is justi�ed to call it an island associated with a virtualcontour ~�.Remark 2.5. Note that in a �nite volume with Neumann or Dirichlet boundaryconditions a collection of contours is always admissible in the following sense: Acollection of contours f�1; : : : ;�kg is admissible if there is no connected path ofcubes from some @+(sp(�i)) to @�(sp(�j)) in the complement of the support off�1; : : : ;�kg. The notion of an admissible collection of contours is relevant becausein this case we can divide the complement of the support of f�1; : : : ;�kg into con-nected regions Ii for i = 1; : : : ; n so that � is constant and not zero on @extIi (theboundary of an island).The de�nitions (2.14) and (2.15) distinguish functions in L1loc(Rd ) according totheir mean over unit cubes of the partition D(0). We would like to have somecontrol on their pointwise behavior on correct cubes. In the next theorem we showthat, given � > 0 andm0 2 H1(��); we can associate a function which decreases theenergy functional, has \almost" the same phase indicator �� as the original functionand for which positive (negative rep.) mean over correct cubes implies pointwisepositivity (negativity). We will refer to such a function as the �� representative ofm0. We denote by R�(��) � H1(��) the set of the �� representatives of functionsin H1(��). We will drop the su�x � when no confusion arises.Remark 2.6. Theorem 2.7 and Theorem2.9 are stated for � small and �(�) = 1:In the case �(�) ! 0 they hold for � su�ciently small.Theorem 2.7. [Representation] There exists �0 > 0 and 0 < �0 < �0=4, 3, suchthat P-almost surely the following holds: For all 0 < � � �0; 0 < � � �0 and for allm0 2 H1(��) we can associate m1 2 H1(��), m1 � m1(!;m0; �) so thatG1(m1; !) � G1(m0; !): (2.17)Further let bI = fx 2 ��; d(x; I) � 14g for I 2 I(m1; �); and let C1 = 2C0kgk1:Then1. If � 2 G(m0; �) then sp(�) � sp(�0) with �0 2 G(m1; �).2. m1 is Lipschitz continuous on bI with Lipschitz constant L0 = L0(d; C1; �0):3The upper bound �0 < �0=4 is an immediate consequence of (3.4).



10 NICOLAS DIRR AND ENZA ORLANDI3. There exists 0 < �̂ < �0=2; �̂ = �̂(d; �; �0), see (3.3), so thatm1(x)2( �1��̂; 1+C1��; x 2 bI and sign(I) = +1;��1�C1�;�1+�̂� x 2 bI and sign(I) = �1 :4. m1(x; !) = sign(I) + v̂(x; !;bI) for x 2 bI; where v̂(�; !; bI) is the solution of��v + 12C0 v + 12�(�)�g1(�; !) = 0 in bI; v = m1 � sign(I) on @bI: (2.18)Remark 2.8. The previous theorem holds for 0 < � < �0; but it becomes meaning-less for � �xed and � small: In such a situation �� = 0 on too many cubes, becausethe random �eld will create deviations from �1 which are typically larger than �:Theorem 2.9, stated below, holds only for an accuracy parameter �(�); not for arange reaching up to zero.For this \representative" m1 we can bound the energy from below in terms ofcontours. First we need to de�ne two functions u+� (�; !) and u�� (�; !) which for� � 1 are the minimizers under the point-wise constraints u > 0 and u < 0respectively.De�nition 1. Let v�� (�; !) be the solution of the following equation���v(r) + 12C0 v(r)� + 12��(�)�g�(r; !) = 0 in �; @v@n = 0 on @�: (2.19)Let u�� := �1 + v�� ; and set for x 2 ��, v�(x) := v�� (�x); u� := �1 + v�: Note thatv�(y) depends on � only through �(�):The relevant properties of v�� are summarized in Proposition 7.2.Theorem 2.9. [Reduction] Let �0 and �0 be as in Theorem 2.7. There exists �1 > 0with �1 < �0 such that P-almost surely the following holds: There exists 0 < � :=�(�0) < �0 such that for all 0 < � < �1 there exists a deterministic constant c(�)with lim inf�!0 c(�) > 0 such thatG1(m;!)�G1(usign(m); !) � X�2G(m1;�) 2� ZI�� g1(x; !)dx + c(�)N�! ;where m1 is a �� representative of m, see Theorem 2.7, N� = ��[�2G(m1;�)sp(�)�� ;and I�� denotes those islands associated with � where �� = �1:Remark 2.10. Since we apply Theorem 2.7 and Theorem 2.9 to prove Theorems2.1, (2.2) and 2.3, which hold only in d � 3; we prove Theorem 2.7 and Theorem2.9 only for d � 3: The proof extends to the general case with minor modi�cationswhich are due to the explicit representation of the solution of (2.19) in term of theassociated Green function.We show Theorem 2.9 in Section 5.3. Properties of low energy states3.1. Existence and properties of global minimizers. In this section we proveproperties of function with energy close to the minimal one. The statements holdeither for �(�) = 1 and � su�ciently small, or for � arbitrary, �(�) ! 0 and �su�ciently small.We �rst show that in order to determine the minimizers of the functional G� it issu�cient to consider functions v 2 H1(�) so that jv(x)j � 1+C0�kgk1�(�) whereC0 depends only on the double well potential.



SHARP-INTERFACE LIMIT WITH RANDOM FIELD 11Lemma 3.1. Assume (H1). We have with P = 1 that for all v 2 H1(�) and allt > 1 + C0��(�)kgk1;G�(t ^ v _ (�t); !)�G�(v; !) � 1� Z�t �C�10 (t� 1)� �(�)�kgk1� (jv(y)j � t);where C0 is the constant in (2.4) and �t = fy 2 � : jv(y)j > tg: In particularG�(t ^ v _ (�t); !) < G�(v; !) unless �t = ;:Proof. Since (H1) we getG�(v; !)�G�(t ^ v _ (�t); !) � 1� Z�t (W (v(y)) �W (t)) dy+ 1��(�)� Z�t dyg�(y; !)[v(y)� sign(v(y))t]� 1� Z�t (W 0(t)� �(�)�) (jv(y)j � t)dy:This L1 bound on the global minimizer implies Lipschitz-regularity. In order tosee this, note that a global minimizer of G�(�; !) in H1(�) is a weak solution of theEuler-Lagrange equation��v = 12� [W 0(v) + ��(�)g�] in �; ! 2 
@v@n = 0 on @�: (3.1)Proposition 3.2. Let v solve the Euler-Lagrange equation 3.1, thenjv(r; !)� v(r0; !)j < L0� jr � r0j; r; r0 2 �; P = 1;where L0 = C(d)[ supfs:s=v(r);r2�g jW 0(s)j+ �kgk1]: (3.2)Proof. By Lemma 3.1, a global minimizer v satis�es the bound jv(r; !)j � 1 +C0�kgk1�(�) for r 2 � and ! 2 
. Since jg�(�; !)j � 1 for all ! 2 
; any minimizerwill be a bounded solution of Poisson's equation with a bounded right hand side.By changing variables y = r� one writes (3.1) in ��. Denote u(y; !) = v(�y; !).By the regularity theory for the Laplacian (see [12]) the solution u is Lipschitz in�� with a Lipschitz constant bounded by L0 = supfs:s=u(x);x2��g jW 0(s)j + �kgk1and independent of �. Transforming back the solution in the old set of coordinatesone immediately obtains the result.3.2. Pointwise properties. Once the Lipschitz-continuity is established, it is easyto derive pointwise properties from information about integral averages over cubesby standard estimates.Proposition 3.3. Let �0 > 00 and 1 > �0 > 0; Q 2 D(0) and letk(d) = infx2[0;1]d lim infr!0 r�djBr(x) \ [0; 1]dj:Suppose that u is Lipschitz continuous in Q with Lipschitz constant L0; and kuk1 �1 + C1�, for 0 < � � �0. Let�̂(d; L0; �0; �0) := 2��0 + C1�0k(d) � 1(d+1) (2L0) d(d+1) : (3.3)



12 NICOLAS DIRR AND ENZA ORLANDIThen for 0 < � < �0u(x) 2 � �1� �̂ ; 1 + C1��; if ��(u; x) = +1;�� 1� C1�;�1 + �̂� if ��(u; x) = �1:Proof. Suppose ��(u; x) = 1 for x 2 Q. Let �̂ be as in (3.3) and assume there existsa point x0 2 Q such that u(x0) < 1� b�: We will show that this assumption leadsto a contradiction. Let 0 < r � 1: Then since u has Lipschitz constant boundedby L0 u(x) < 1� b� + L0r for all x 2 Br(x0):Moreover we have the bound juj � 1 + C1�. Let vr := jBr(x0) \ Qj; then since� � �0 (1� �0) � (1� �) � ZQ u � (1� b� + L0r)vr + (1� vr)(1 + C1�0);and consequently vr(b� � L0r + C1�0) � �0 + C1�0:In order to derive a contradiction, choose �rst r so small that L0r � (1=2)b�:Moreover, note that there exists a dimension dependent constant k(d) such thatvr � k(d)rd: (This constant takes into account that x0 may be in the corner of acube.) So �nally (1=2)b�  b�2L0!d k(d) � �0 + C1�0:Now if �̂ as in (3.3) we derive a contradiction. Therefore x0 cannot exist andu(x) > 1� b� for all x 2 Q: The case �� = �1 is proven similarly.Remark 3.4. To exploit the properties of the double well potential near the points�1 it is essential to require u(x) � 1��0 for x 2 Q, where �0 is the quantity de�nedin (2.4). Keeping in mind that by Lemma 3.1 we may assume kuk1 � 1+2C0kgk1;we require 2��0 + 2C0kgk1�0k(d) � 1(d+1) (2L0) d(d+1) � �02 : (3.4)This forces a condition on �0 and �0 (when �(�) = 1).3.3. Minimizers with constraints.De�nition 2. Denote for m 2 H1(��); jmj � 1 + C1�0, I � ��, a D(0) measurableset, � = � XI;m = � 2 H1(��; R) :  = m on (I [ @extI)c	 ; (3.5)A�I;m = f 2 XI;m : �( ; x) = � on I [ @extIg : (3.6)A generic function in A�I;m; e.g. an element of a recovery sequence for the �-convergence result in Theorem 2.3, does not need satisfy the hypothesis of Propo-sition 3.3. However, it will turn out that we do not need to prove that the con-straint given by the mean, see (2.15), implies a strictly pointwise constraint for ageneric function in A�I;m but only for those functions minimizing the energy underthe constraint to be in A�I;m (the integral constraint) and the pointwise constraintj j � 1+C1�0. So we dedicate the next subsection to the proof that the minimizersof the functional (2.12), subject to the integral and the pointwise constraint justdescribed, are, on correct cubes, Lipschitz continuous with a Lipschitz constantdepending only on W , �0 and kgk1.



SHARP-INTERFACE LIMIT WITH RANDOM FIELD 13De�nition 3. Given m0 2 H1(��), km0kL1 � 1 + C1�, � > 0, 1 > � > 0 wede�ne S�(m0) � S�� (m0) as follows:S�(m0) :=�m 2 H1(��) : kmkL1 � 1 + C1�	\8><>:m 2 H1(��) : 8><>: RC(0)(x)m � 1� � if RC(0)(x)m0 > 1� �;���RC(0)(x)m��� � 1� � if ���RQ(0)(x)m0��� � 1� �;RC(0)(x)m � �1 + � if RC(0)(x)m0 < �1 + �: 9>=>;(3.7)Since weak convergence in H1 implies strong convergence in L2; the integralconstraints are preserved under weak H1 convergence. Moreover any strongly L2-converging sequence has a subsequence which converges almost everywhere, so thatalso the L1 constraint is preserved under weak H1-convergence. Hence for any�xed � > 0 the set S�(m0) is weakly H1-closed and minS�(m0)G1(u; !) exists withP = 1. Note that m0 2 S�(m0); sominS�(m0)G1(u; !) � G1(m0; !): (3.8)Choose any m1 2 argminS�(m0)G1(u; !): We denote m1 � m1(!;m0; �) a repre-sentative of m0. De�ne, as before, the block indicator ��(m1; x), x 2 ��, and theset of the associated contours G(m1) and islands. Note that if ��(m0; x) = 0 then��(m1; x) = 0 but it might happen that ��(m1; x) = 0 even though ��(m0; x) 6= 0.Next Lemma shows that on correct cubes the pointwise constraint is not active forthe minimizerm1; while the integral constraint is not active by de�nition, see (2.15).This is not obvious due to the simultaneous presence of both types of constraints:The one-sided integral constraint \pushes the minimizer up."Lemma 3.5. Let m1 2 argminS�(m0)G1(u; !); Q0 a �� correct cube for m1 andU := fx : dist(x;Q0) < 1=2g. There exists for any � 2 C10 (U) a �� > 0 such thatm1 + �� 2 S�(m0) for all � < �� :As a simple consequence we have that the minimizer with the constraints satis�esthe Euler-Lagrange equation in a weak sense:Corollary 3.6. For m1 and � as in Lemma 3.5 we have that�2 Z rm1r� = Z [W 0(m1) + ��(�)g1] �:Lemma 3.5 follows from Lemma 3.7 and 3.8 stated below in the case ��(m1; x) =1, x 2 Q0, and the obvious version of them when ��(m1; x) = �1, x 2 Q0. Weneed the following de�nition.De�nition 4. Let Q � Rd be connected, D(0)-measurable, i.e. a union of translatedunit cubes, and such that the topological interior int(Q) is connected, � > 0 andC > 0. We denote by 	�Q;� the unique element ofargminfv2H1(Q): v�(1+C�)2H10 (Q)g ZQ(jruj2 + �u); (3.9)i.e. the minimizer with boundary condition �(1 + C�):To shorten notation we specialized next lemmas to the case ��(m1; x) = 1,x 2 Q0 and denote 	+Q;� := 	Q;� .Lemma 3.7. Let 	Q;� be as in Def. 4. Then1. �2�	Q;� + � = 0 on int(Q), 	Q;� = 1 + C� on @Q.



14 NICOLAS DIRR AND ENZA ORLANDI2. 1+C��C(Q)� � 	Q;� < 1+C� on int(Q) where C(Q) depends only on thediameter of Q:3. RQ j	Q;� � (1 + C�)j ! 0 as � ! 0:Proof. The point (1) is obvious, (2) is an immediate consequence of the strongmaximum principle applied to 	Q;� (upper bound) and the maximum principleapplied to � � 	Q;� � [ �4d jx� x0j2 + c0]; where x0 is the center of the smallest ballcontaining Q and c0 is the largest constant such that �4d jx� x0j2 + c0 � 1+C� on@Q. Namely � is harmonic function in Q and on the boundary of Q it is biggeror equal of zero. So �(x) � 1 + C� � [ �4d (diamQ)2 + c0] � 0 for x 2 Q. Wechoose c0 = 1 + C� � �4d(diamQ)2. This implies the lower bound in (2), settingC(Q) = (diamQ)24d . Finally (3) follows from (2).Lemma 3.8. Let Q be connected and D(0)-measurable. Let 	Q;� be as in Def.4 with C � 2C0kgkL1; where C0 is the constant in (2.4). Let u 2 H1(Q) sothat kuk1 � 1 + C�. There exists �0 = �(W; kgk1) > 0 and for all � � �0�0 = �0(�;W; diamQ), see (3.12), so that for 0 < � < �0 the function bu� :=u ^	Q;�satis�es1. G1(Q; bu�; !) � G1(Q; u; !); with strict inequality if bu� 6= u, P = 1.2. bu� < 1 + C� in int(Q); bu� = u on @Q:3. ���RQi bu� � RQi u���! 0 as � ! 0, for all Qi � Q; Qi 2 D(0).Proof. The point (2) follows from (2) of Lemma 3.7, the L1 bound on u and that,by construction, 	Q;�(�) = 1 + C� on the boundary of Q. The point (3) followsfrom the point (3) of Lemma 3.7 and the bound u(x) � 1 + C� a.e..It remains to show (1). The main idea is to consider e	 := 	Q;� _ u as a(compactly supported) perturbation of 	 := 	Q;� , thus obtaining bounds onRfu(x)>	(x)g jruj2. These bounds, in turn, are used to obtain (1), consideringbu� � 	Q;� ^ u as a perturbation of u. As 	 is a minimizer, see (3.9), we obtain0 � ZQ h(jre	j2 � jr	j2) + �(e	�	)i = Zfu>	g �(jruj2 � jr	j2) + �(u�	)� ;and therefore Zfu>	g(jruj2 � jr	j2) � �� Zfu>	g(u�	): (3.10)ThenG1(Q; u; !)�G1(Q; bu�; !)= Zfu>	g �(jruj2 � jr	j2) +�W (u)�W (	)u�	 + �g1(�; !)� (u�	)�� � inf[1+C��C(Q)�;1+C�]W 0(s)� �kgkL1 � ��Zfu>	g(u�	)| {z }�0 : (3.11)We used that, by (2) of Lemma 3.7 	(�) 2 [1 + C� � C(Q)�; 1 + C�] and u(�) 2(1 + C� � C(Q)�; 1 + C�] for all x 2 fu > 	g. Take � � �0C(Q) so that 1 � �0 <1 + C� � C(Q)� and therefore, see (2.4),inf[1+C��C(Q)�;1+C�]W 0(s) = 1C0 [C� � C(Q)�]:Then the last term inside parenthesis in (3.11) becomes equal to�C0 [C � C0kgkL1]� �C0 [C0 + C(Q)] � �kgkL1 � �C0 [C0 + C(Q)]



SHARP-INTERFACE LIMIT WITH RANDOM FIELD 15since by assumption C � 2C0kgkL1. Take �0 and �0 so that�0 � 2 �kgk1 �0 = 12� C0kgkL1C0 + C(Q) (3.12)for all � < �0 4 � inf(1+C��C(Q)�;1+C�]W 0(s)� �kgkL1 � �� > 0: (3.13)Remark 3.9. For u as in Lemma 3.8 we can �nd � � �(u) < �0 such thatRQi bu� > 1� � if RQi u > 1� � for all unit cubes Qi contained in Q = [iQi:As consequence we have that for such �, bu� strictly satis�es the integral and the L1constraints in Q, G1(Q; u; !) � G1(Q; û� ; !); with strict inequality unless u = û�a.e..Proof of Lemma 3.5. Let m1 be a minimizer in the set S�(m0); see (3.7) and(3.8). Let bQ be the union of Q0 and the cubes Qi; which are the connected neighborsof Q0. By assumption Q0 is �� correct and we assume that ��(m1; x) = 1 for x 2 bQ:Similar argument holds when ��(m1; x) = �1 for x 2 bQ: By Lemma 3.8 (and itsversion for the negative well) there exists a � > 0 such that jm1(x)j � 	 bQ;�(x) inbQ: This implies, see point (2) of (3.8), that there exists a c0 � c0(�; d) such thatjm1(x)j � c0 < 1 + C� in the set U �� bQ, see the statement of the Lemma. Since� 2 C10 (U), there exists �� so that for all � � �� , m1 + �� does not violate thepointwise constrain, i.e km1 + ��kL1 < 1+C�: (Take � supx j�(x)j < 1+C�� c0:)We may require in addition that 0 < �j RQi �j < minQi� bQ(RQi m1) � (1 � �); thenm1 + �� 2 S�(m0):After having established that the constraint minimizer m1 satis�es the same Euler-Lagrange as the unconstraint minimizer, we obtain Lipschitz regularity on correctcubes by standard methods (see e.g. [8]), which we sketch for convenience of thereader.Lemma 3.10. With P = 1 the following holds: Let �0 > 0, there exists a constantL0 � L0(d; C0; �0; kgk1) (C0 as in (2.4),) such that for 0 < � < �0; 0 < � < �04the representatives m1 2 argminS�� (m0)G1(�; !) of any m0 2 H1(��) satisfy on anycorrect cube Q0 for x; y 2 U := fx : dist(x;Q0) < 1=2gjm1(x) �m1(y)j � L0jx� yj:Remark 3.11. Note that L0 does not depend on �: This will enable us to applyLemma 3.3 to �; � that satisfy (3.4)Proof. Let bQ be the union of Q0 and the cubes Qi; which are the connected neigh-bors of Q0; and let V := fx : dist(x;Q0) < 3=4g: Then there exists a cuto�function � 2 C10 ( bQ) such that k�kW 2;1 � K for some K(d) independent of � and�, �(x) = 1 for all x 2 U; while �(x) � 0 for x 2 bQnV; and 0 � �(x) � 1 for x 2 bQ.Then by Cor.3.6 we obtain that (�m1) is a weak solution of the linear PDE�v = f on bQ; v = 0 on @ bQ; (3.14)f = m1��+r�rm1 + 12 [W 0(m1) + ��(�)g1]� (3.15)4The choices done enforce � � �0C(Q) since C(Q) � 1.



16 NICOLAS DIRR AND ENZA ORLANDIStep 1: We show that there exists a constant depending only on W , d, K thebound on the W 2;1 norm of the cuto� function, and �0 so that for all � � �0;ZV jrm1j2 � C(W; kgk1; d; �0): (3.16)Note that m1 2 H1(��) since it minimizes the functional G1 on the set S�(m0)which is weakly H1-closed. The relevance of (3.16) is to determine that the bounddepends only on structural quantities of the model. The proof is done by applyingthe same strategy to show interior elliptic estimates (see, e.g. Theorem 1 on page309 of [8]). Let b� a cut-o�-function between V and V̂ , where V � V̂ � bQ, V̂ :=fx : dist(x;Q0) < 7=8g satisfying the same requirements of �. Take in Corollary3.6 � = (b�)2m1. Then, using the L1bound on m1; and Corollary 3.6 we obtainZV jrm1j2 � ZV̂ (b�)2jrm1j2 � 2krb�kL1qjV̂ jsZV̂ (b�)2jrm1j2 + C 0(W; jV̂ j; �0):Note that the variations in Corollary 3.6 were required to be C10 ; but by standardconvolution arguments, the corollary applies as well to variations � 2 H10 : FurtherjV̂ j � C(d), krb�kL1 � K and then since x2 � ax+b implies x bounded, we obtain(3.16).Step 2: From step 1 we obtain that f in (3.15) can be written as f = f1 + f2;kf1kL1( bQ) + kf1kL2( bQ) � C(W;d; �0): By the regularity theory for weak solutionsof (3.14), we obtain v 2 W 2;2; hence rm1 2 Lp(V 0) for a slightly smaller set V 0and p < 2d=(d� 2): This improves the regularity of f2 to kf2kLp < C 0(W;d; �0):Step 3: We sketch this step, because the described bootstrap procedure is stan-dard in elliptic regularity theory. The procedure described above can be repeateduntil, after a number of steps depending only on the dimension, kf2kLp < Cp(W; �)for p > d: Then v 2 W 2;p by Lp-regularity theory for elliptic equations and bySobolev embedding v 2 C1 with constants depending only on W; �, kgk1j and thedimension.We are now able to prove Theorem 2.7.Proof of Theorem 2.7 Let � � �0 and S�� (m0) the set de�ned in (3.7). Theexistence of a minimizer of G1(m;!) for m 2 S�(m0) is a consequence of the factthat there exist a constant C and C�(�; kgk1) so thatG1(u; !) � 1C �kruk2 + kuk2�� C� P = 1:G1 is weakly lower semicontinuous on H1(��) and, as pointed out before Lemma3.5, the set S�(m0) is weakly H1� closed. Point (1) is obvious because of thede�nitions of S�(m0), the block variable, see (2.15), and the de�nition of contours.The Lipschitz property in point (2) is a consequence of Lemma 3.10 applied to eachblock in any island associated to m1. Recall that, by de�nition, each island is theunion of correct blocks. The positivity is a consequence of point (1) and Proposition3.3. Further assume without loss of generality that signI = 1. Set m1 = 1+ v̂. Thefunctional restricted to bI can be written as following:G1(bI; 1 + v̂; !)= ZbI �jrv̂(y)j2 +W (1 + v̂(y))� dy + �(�)� ZI dyg1(y; !)(1 + v̂(y))= ZbI �jrv̂(y)j2 + 12C0 (v̂(y))2� dy + �(�)� ZbI dyg1(y; !)(1 + v̂(y)): (3.17)



SHARP-INTERFACE LIMIT WITH RANDOM FIELD 17The last equality holds since m1(x) � 1 � �̂ for x 2 bI , see point (3), �̂ � �0 byassumptions, see remark 3.4, and the assumption on the double well potential, see(2.4). Further we proved that the constraints on m1 are not active in bI . Thenv̂ must be the minimizer of the one well potential and solve the Euler-Lagrangeequation (2.18). As a simple consequence of the convexity of the potential W (s)when s � �0, see (H1), this solution is unique.4. Deviations from equilibriumIn this section we estimate the cost associated with the support of a contour.We will need several lemmas for estimating the cost of a single cube which is notcorrect, and then conclude by a covering argument. Let Q be a cube of sidelength`: Given m 2 H1(Q) and t > 0 de�neDe�nition 5.mtQ(x) = ( jm(x)j _ t if jfm > 0gj � 12 jQj�(jm(x)j _ t) if jfm > 0gj < 12 jQj: (4.1)Lemma 4.1. Set �0 be the quantity de�ned in (2.4). There exists maxf 12 ; 1��0g <t0 < 1 so thatG1(Q;m; !)�G1(Q;mtQ; !) � �D1� 8�(�)�`t0C2 �Z t2� t2P (fm < sg; Q) ds (4.2)where Q is a cube of sidelength `, C2 is a positive constant associate to the unitarycube, t0 < t < 1� 2C0�(�)�kgk1 and D1 = inf jsj� 12 p2(W (s)�W (t0)).The proof goes as in Proposition 3.6 of [6]. We will apply Lemma 4.1 togetherwith the following isoperimetric inequality, see Section 5/6 of [9],P (fm < sg; Q) � (min(jQ \ fm(x) � sgj; jQ \ fm(x) > sgj)) d�1d : (4.3)Next we show the following lemma:Lemma 4.2. Let 0 < � < 14 . There exist increasing and near 0 strictly increasingcontinuous functions ~�(�) > 0; ~�(�) > 0 with ~�(0) = ~�(0) = 0 which depend onlyon the double-well potential, the L1-norm of g; the sidelength of the cube and thedimension, such that for 0 < � < ~�(�) on any cube Q with�1 + � < 1jQj ZQm < 1� �; kmkL1(Q) < 1 + 2�C0it holds that G1(Q;m; !)�G1(Q; u�; !) � ~�(�)jQj: (4.4)Proof. Assume w.l.o.g. thatmax(jQ \ fm(x) > 0gj; jQ \ fm(x) � 0gj) = jQ \ fm(x) � 0gj: (4.5)Let � > 0; � > 0, so that 0 < � < � < �. Denote byA = fx 2 Q : �1 + � � � < m(x) < 1� � + �g: (4.6)We distinguish two cases. Case 1 : jQ \ Aj > �jQj: (4.7)Case 2 : jQ \ Aj � �jQj: (4.8)



18 NICOLAS DIRR AND ENZA ORLANDICase 1: Recall that u� = �1 + v� and, similarly to Proposition 3.2, one estimates1jQj RQ jrv�j2 � C�2 where C = C(W;d; kgk1). We haveG1(Q;m; !)�G1(Q; u�; !) � � ZQ jrv�j2+ ZQW (m)� ZQW (u�) + � ZQ g1[m� 1)]� � ZQ g1v�� �C�jQj+ jQj �2C0 (� � �)2; (4.9)since the assumption on the double-well potential (H1)W (u�) � �2kgk21C20 ; 1jQj ZQ\AW (m) � �2C0 (� � �)2:Then G1(Q;m; !)�G1(Q; u�; !) � � �2C0 (� � �)2 � C�� jQj: (4.10)Case 2: Assume (4.8). We apply Lemma 4.1 to the cube Q. Recall that, see (4.5),jQ \ fm(x) > 0gj � 1=2jQj. So from Lemma 4.1, adding and subtracting we havefor f 12 ; 1� �0g < t < 1� � :G1(Q;m; !)�G1(Q; u�; !) � [G1(Q;mtQ; !)�G1(Q; u�; !)]+�D1� 8`�t0C2�Z t2� t2P (fm < sg; Q) ds: (4.11)Taking in account the assumption (H1) for the potential, we estimate the �rst termin a straightforward manner, obtaining[G1(Q;mtQ; !)�G1(Q; u�; !)] � �C�jQj;where C = C(W;d; kgk1). For the second term, by the isoperimetric inequality(4.3), it is enough to show that there exists a subinterval [a; b] � [�t=2; t=2], withjb� aj bounded below and a �3 := �3(�; �; �) so that(min(jQ \ fm(x) � sgj; jQ \ fm(x) > sgj)) d�1d � � d�1d3 jQj for s 2 [a; b]: (4.12)The existence of �3 > 0 and of an subinterval with jb� aj � t2 � 14 will be shownin Lemma 4.3. Take~� = min�� d�1d3 �D1� 8`�t0C2� 14 � C�;� �2C0 (� � �)2 � C��� : (4.13)Fix t0 := 1+maxf1=2;1��0g2 , 0 < � < 1=4 such that 1� t0 < 1��, � = 14� and � = 12�.Then take ~�(�) so that ~� := ~�(�) of (4.13) is strictly positive.Lemma 4.3. Assume jm(x)j < 1 + C1�, 0 < � < � < � < 1=4; f 12 ; 1 � �0g < t <1� �. There exists �3 = �3(�; �; �) > 0, given in (4.19), which is uniform in � < 1such that for any Q, so that ��(m;x) = 0 x 2 Q, satisfying (4.8), (4.6), on Q thereexists [a; b] with jb� aj > t=2 such thatmin(jQ \ fm(x) > sgj; jQ \ fm(x) < sgj) � �3jQj for a < s < b: (4.14)Proof. We show the lemma in the case (4.5), the remaining case is shown similarly.By assumption f 12 ; 1 � �0g < t0 < t < 1 � � and s 2 [0; t=2]. We distinguish twocases:� (a) jQ \ fm(x) > sgj � jQ \ fm(x) < sgj,� (b) jQ \ fm(x) < sgj � jQ \ fm(x) > sgj.



SHARP-INTERFACE LIMIT WITH RANDOM FIELD 19We start discussing the case (a). As s < t2 < 1� �; we havejf0 < m(x) < sgj � jf0 < m(x) < 1� � + �gj; (4.15)for any � > 0 and by (4.8) jQ \ f0 < m(x) < sgj < �jQj: (4.16)We havejQ \ fm(x) > sgj = jQj � jQ \ fm(x) � 0gj � jQ \ f0 < m(x) < sgj:As jQ \ fm(x) � 0gj � 1=2jQj by assumption (4.5) and (4.16),we obtainjQ \ fm(x) > sgj � (12 � �)jQj: (4.17)Take � < 12 so that (4.17) is strictly positive. In the (b) case we estimate with thehelp of the a-priori bound jmj � 1 + C1� and 0 < s < 1� � :ZQm � ZQ\fm(x)<sgm+ ZQ\fs<m(x)<1��+�gm+ ZjQ\fm(x)>1��+�g u� (�1� C1�)jQ \ fm(x) < sgj+ (1� � + �)(jQ0 \ fm(x) > 1� � + �gj)� �(1 + C1�)jQ \ fm(x) < sgj+(1��+�) [jQj�jQ \ fm(x) < sgj�jQ\ f�1+��� < m(x) < 1��+�gj]By �� = 0 on Q and inequality (4.8) we obtainjQj(1��) � �(2� � + �+ C1�)jQ \ fm(x) < sgj+ (1� � + �)(1� �)jQj;which implies for � < � < � < 1=4jQ \ fm(x) < sgjjQj � �� �(1� � + �)2� � + �+ C1� � �� �3 + C1 > 0: (4.18)Denote �3 = minf(12 � �); �� �3 + C1 g (4.19)[a; b) � [0; t2 ) and we obtain (4.14).Lemma 4.4. Set 0 < � < �0 < 1=2. Let C� be two cubes of sidelength 1 and letz0 2 Zd be such that C� [ C+ � Q for Q := z0 + 2[� 12 ; 12 ]d: Suppose thatZC+m > (1� �); ZC� m < (�1 + �); kmkL1(Q) � 1 + C1�:There exists �0 > 0 independent of � and a constant �2 := �2(�0; �0; d) > 0 givenin (4.23) so that for all � � �0G1(Q;m; !)�G1(Q; u�; !) � �2jQj P = 1:Proof. LetG1(Q;m; !)�G1(Q; u�; !) = [G1(Q;m; !)�G1(Q;mt; !)]+G1(Q;mt; !)�G1(Q; u�; !):We estimate the second addend as in Lemma 4.2, G1(Q;mt; !) � G1(Q; u�; !) ��C�jQj, where C = C(W;d; kgk1) > 0. For the �rst addend we apply Lemma 4.1and the isoperimetric inequality, see (4.3). Note that here Q is not an unitary cubebut the union of 2 unitary cubes, so Lemma 4.1 holds with ` = 2. Next we showthat for any s 2 [�t=2; t=2]min jQ \ fm > sgj; jQ \ fm < sgj > 1� �02`d(1 + C1�) jQj: (4.20)



20 NICOLAS DIRR AND ENZA ORLANDIWe obtain with the L1 bound on m.(1� �) � ZC+ m � (1 + C1�)jC+ \ fm > sgj; for � t=2 < s < 0 (4.21)and(1� �) � ZC+m � sjC+ \ fm � sgj+ (1 + C1�)jC+ \ fm > sgj; for 0 < s < t2 :(4.22)Since t < 1� �0, we have for (4.22)(1��) � t2 jC+\fm � t2gj+(1+C1�)jC+\fm > sgj � (1� �0)2 +(1+C1�)jC+\fm > sgj:Then both (4.21) and (4.22) implyjC+ \ fm > sgj � (1� �0)2(1 + C1�) :A similar estimate can be obtained for jC� \ fm < sgj: Hence, we obtain (4.20)when � t2 < s < t2 . Set�2 = t0�D1� 2`�0t0C2�� 1� �02`d(1 + C1�0)� d�1d � C�0: (4.23)Since �0 � 12 we can take �0 independent on �0 and small enough so that �2 > 0.Given m 2 H1(Rd ;R), � > 0 and a D(0) measurable region J de�neB(�;J)0 (m) � fx 2 J : ��(m;x) = 0g;B(�;J)� (m) =�x 2 J : ��(m;x) = �1 and there is x0 2 J with��(m;x0)��(m;x) = �1; C(0)(x0) connected to C(0)(x)o : (4.24)We will show the following result:Theorem 4.5. Assume the conditions of Lemma 4.2. Given m 2 H1loc(Rd ;R),sp(�) a bounded D(0)-measurable -connected subset of �� incorrect cubes there exists�1(�) > 0 so that for all � � ~�(�); ~� as in Lemma 4.2,G1(J;m; !)�G1(J; u�; !) � �1 jsp(�)j P = 1: (4.25)Proof. If Q + z0 is an incorrect cube, then it either is a zero cube, or it has aconnected neighbor which is a zero cube, or it has a connected neighbor of oppositesign. In each of the cases it holds that the cube 3Q+ z0 of sidelength 3 centered atthe same center contains� (a) a zero cube, or� (b) a pair C+; C� of connected cubes with opposite sign such that C+ or C�is centered at z0:In case (a), by Lemma 4.2,G1(3Q+ z0;m)�G1(3Q+ z0; u�) � 3�d~�(�)j3Q+ z0jwhile in case (b), by Lemma 4.4,G1(3Q+ z0;m)�G1(3Q+ z0; u�) � (3=2)�d�2j3Q+ z0jfor � su�ciently small. Hence we have shown the following: Let z0 2 Zd the centerof a cube which is incorrect for m with accuracy �: Then for � < �0(�) there exists�3(�) such thatG1(3Q+ z0;m)�G1(3Q+ z0; u�) � �3(�)j3Q+ z0j:



SHARP-INTERFACE LIMIT WITH RANDOM FIELD 21Therefore, if fz1; : : : ; zNg is a collection of lattice points such thatzi +Q � sp(�); (zi + 3Q) \ (zj + 3Q) = ; for j 6= i; i; j = 1; : : : ; N (4.26)then G1(sp(�);m)�G1(sp(�); u�) � NXi=1 �G1(zi + 3Q;m)�G1(zi + 3Q; u�)�+G1(sp(�) n [Ni=1(zi + 3Q);m)�G1(�) n [Ni=1(zi + 3Q); u�)� �3(�)N � �kgk1jsp(�)j:The claim of Theorem 4.5 follows by choosing � su�ciently small, provided we canshow that there exists a constant C(d) depending only on the dimension such thatfor any contour � there exists a collection of lattice sites fz1; : : : ; zN(�)g satisfying(4.26) such that N(�) � C(d)�1jsp(�)j: We claim that C(d)�1 � 6�d; which issu�cient but not optimal. This is done by induction on jsp(�)j 2 N: For theinduction proof we will not assume that sp(�) is connected, the claim holds for anyD(0)-measurable set. The claim is obvious with C(d) = 5�d for 0 < jsp(�)j � 5d:Assume that the claim is shown for 0 < jsp(�)j � n; and suppose that jsp(�)j =n + 1: Choose a cube z0 + Q in � and consider the set b� := sp(�) n (5Q+ z0):Clearly any cube of sidelength 3 centered at any cube in b� does not intersectz0 + 3Q: ThereforeN(�) � 1 +N(b�) � 1 + C�1(n� 5d)= C�1(n+ 1) + 1� C�1(1 + 5d) � (n+ 1)C�1;provided 1 + 5d < C:5. Contour Reduction and proof of Theorem 2.1, 2.2 and 2.9.Take � � �0 ^ 14 , where �0 is chosen according to Theorem 2.7. Let G(m; �)be the collection of contours associated to m. Next we show that the sign(m) :=��(m; �)jI~� , de�ned in (2.16) is well de�ned.Lemma 5.1. The function �(m; �) is constant onI~� := �� n [�2G(m) (sp(�) [ I�) :Proof. By construction, I~� \ int(�) = ; for all � 2 G(m); hence each cube in I~�is connected to the boundary of ��: The function �(m; �) is constant over eachconnected component of I~�: Assume that there exist two connected componentswith di�erent signs. As they are connected to the boundary of ��; there exist twocubes Q+ 2 I~� and Q� 2 I~� of di�erent sign, which touch the boundary. Hencethere must be a contour �0 2 G(m) intersecting the boundary such that Q+ and Q�are in di�erent connected components of O�0 : According to our de�nition, eitherQ+ or Q� must be contained in I�0 ; which contradicts that both are contained inI~�:Next we estimated the di�erence between the energy of m 2 R�(��) and the oneof u� in each �� Island of m. Recall that by Theorem 2.7, m(x; !) = sign(I) +v̂(x; Î ; !) for x 2 Î where I �� Î .Lemma 5.2. Let u� = �1 + v� where v� solves (2.19) rescaled in ��. Let m =sign(I)+ v̂ for x 2 Î, I �� Î, see Theorem 2.7, and let �; � be as in Theorem 2.7.Then there exists c = c(d;W; kgk1) such thatG1(I;m; !)�G1(I; usign(I); !) � �cp�j@extI j: (5.1)



22 NICOLAS DIRR AND ENZA ORLANDIRemark 5.3. Note that for those islands that touch @��; in particular for I~�; theexternal boundary @extI consists of cubes contained in the support of a contour andis therefore very di�erent from the topological boundary.Proof. For the sake of simplifying the presentation we prove the case I 6= I~�. Thecase I = I~� is proven similarly, replacing @I with @extI . To take advantage of theboundary in
uence decay, we separate a strip near the boundary from the rest ofthe island. For this purpose, letI� := fx 2 I : dist(x; @I) � �g ;and choose � = p2C0 log ���1� : We splitG1(I;m; !)�G1 �I; usignI ; !� = �G1(I�;m; !)�G1 �I�; usignI ; !��+ �G1(I n I�;m; !)�G1 �I n I�; usignI ; !�� : (5.2)The �rst term is estimated as follows. By the Lipschitz estimate in Lemma 3.2 andthe L1-bound (7.15) we obtain thatG1 �I�; usignI ; !� � c�jI�j � c� log ���1� (j@I j);where we denoted by c := c(d;W; kgk1) a constant which may change from oneoccurrence to the other. MoreoverG1(I�;m; !) � ZI� �gm � �2kgkL1�jI�j � �2kgkL1p2C0� log ���1� (j@I j);hence �G1(I�;m; !)�G1 �I�; usignI ; !�� � �c� log ���1� (j@I j):The remaining term in (5.2) is estimated applying the estimate (7.25), which inmesoscopic coordinates becomesjm(x)� usignI(x)j � C(d)e� 1p2C0 dist(x;@I)km� usignIkL1(@I) � C(d)� (5.3)for all x 2 I n I�: Denote by �� a C1(��; [0; 1]) cut-o� function so that��(x) = (1 when x 2 I n (I�+p�);0 when x 2 I�and kr��kL1 � C(d)��1=2. Suppose that sign(I) = +1. Leth� := ��m+ (1� ��)u+:Then h�j@(InI�) = u+; hence, recalling that u+ is a minimizer in its well,G1(I n I�; h�; !)�G1(I n I�; u+; !) � 0: (5.4)Moreover by Theorem 2.7 and Proposition 3.2 there exists C � C(d;W; kgk1) sothat jru+j+ jrmj � C. Hence, recalling (5.3),jrh� �rmj � jr��jjm� u+j+ jrmj+ jru+j � p� + C:As h� = m on I n I�+p�; we can combine this, with (5.4) and the gradient boundsabove obtainingG1(I n I�;m; !)�G1 �I n I�; u+; !� � G1(I n I�;m; !)�G1(I n I�; h�; !)� �C ZIp�+�nI� (jrh� �rmj+ jm� h�j) � �Cp�j@I j:Proof of Theorem 2.9 As the proof holds for all realizations of the random �eldprovided kg(x; !)k1 � 1; we will suppress the explicit dependence on !: Thanks toTheorem 2.7 it is enough to show the theorem for a ��representative ofm 2 H1(��),� � �0, with �0 as in Theorem 2.7. To simplify the presentation we take � = �0.



SHARP-INTERFACE LIMIT WITH RANDOM FIELD 23Further, to shorten notation, we denote the representative always by m; we assume�(�) = 1. We haveG1(m)�G1(usign(m)) = G1(I~�;m)�G1(I~�; usign(m))+ X�2G(m)nhG1(I�;m)�G1(I�; usign(m))i+ hG1(sp(�);m)�G1(sp(�); usign(m))io :(5.5)From now on, we assume w.l.o.g that the sign of I~� is positive. We estimate eachaddend in the sum.G1(I�;m)�G1(I�; u+) = hG1(I�;m)�G1(I�; usign(I�))i+ hG1(I�; usign(I�))�G1(I�; u+)i� hG1(I�; usign(I�))�G�(I�; u+; !)i� cp�j@extI�j= 2�[sign(I~�)� sign(I�)] ZI� g1(x; !)dx� cp�j@extI�j:(5.6)The last equality is a consequence on the hypothesis (2.4), ju� � �1j � �0 andLemma 5.2. Note that the random �eld contributions on islands having the samesign as m cancel. The last term in (5.6) appears in estimating all the islands,regardless of their sign. The last term in (5.5) is estimated asG1(I~�;m)�G1(I~�; u+) � �cp�j@extI~�j:To estimate from below the energy of a contour we apply Theorem 4.5. Let �1 :=~�(�0) be as in Theorem 4.5, then for all � � �1 we haveG1(sp(�);m)�G1(sp(�); u+) � �1N�; (5.7)where N� = jsp(�)j = number of D(0) measurable cubes in sp(�)and �1 = �1(�0) is the quantity de�ned in Theorem 4.5. The r.h.s. of (5.7) is the"gain term" and the energy of a contour � is at least the gain term. If there aremore contours in �, each one will contribute by its volume. Therefore from (5.5)we obtainG1(m)�G1(u+) � X�2�(m) 2� ZI�� g1(x)dx + �1N� � cp�j@extI�j!� cp�j@extI~�j� X�2�(m) 2� ZI�� g1(x)dx + �12 N�! : (5.8)In order to prove the last inequality use that N� � j@extI�j and choose � smallenough.5.1. Proof of Theorem 2.1. Applying Lemma 3.1 we get immediately that theglobal minimizer u� ful�lls ju�(r; !)j � 1 +C0�(�)� for r 2 �. Set u+� = 1+ v�� andu�� = �1 + v�� where v�� solves (2.19) in �. Choose �0 > 0 so that C0��(�0) � �0,then for all � � �0, by the symmetry assumption on W , see (2.4), we obtain for! 2 
 G�(u+� ; !)�G�(u�� ; !) = 2��(�)� Z� g�(r; !)dr: (5.9)



24 NICOLAS DIRR AND ENZA ORLANDIBy the Markov exponential inequality or the classical deviation inequality for Lip-schitz function of Bernoulli random variables one has for any t > 0P[! : j2��(�)� Z� g�(r; !)drj � t] � 2e� t24�d�2�2�2(�) : (5.10)In dimension d � 3, for any choice �(�) ( �(�) = 1 su�ces) we can take t = t(�),lim�!0 t(�) = 0 so thatP �! : jG�(u+� ; !)�G�(u�� ; !)j � t(�)� � 1� 2e� t2(�)4�d�2�2�2(�) ;which concludes the proof of (2.6). In order to show thatinfH1(�)G�(�; !) = minfG�(u+� ; !); G�(u�� ; !)g; ! 2 
�; (5.11)we �rst prove that any ~u such thatG�(~u; !) = infH1(�)G�(�; !)does not change sign, so it is in one well of the potential W . The assumption onW , see (H1) and the L1 bound on g imply that if � is small enoughinfu2H1(�): u>0 a:e:G�(�; !) = infu2H1(�): u>1��0 a:e:G�(�; !):The functional G� is convex on fu 2 H1(�) : u > 1 � �0 a:e:g; hence it has aunique minimizer over that set. It follows easily that the constraint is not activefor � su�ciently small, so the minimizer solves the linear Euler-Lagrange equation.Thanks to the symmetry assumptions on W , see (2.4), it is enough to solve theEuler-Lagrange equation in one well. In this way one obtains immediately thatthe two minimizers are indeed u�� = �1+ v�� , being v�� solution of (2.19). To prove(5.11) we apply Theorem 2.9, i.e. we use the notion of contours and Theorem 2.7. Itis convenient to reformulate the problem in mesoscopic coordinates and thereforestudy the functional (2.12) in ��. The idea of the proof is to show that eachcontour costs more than the possible gain obtained from the random �eld, hence aminimizer cannot have contours. Note that I� need not be connected. Denote by(I�)1; : : : ; (I�)K� its connected components, and denote by @ext(I�)j the exteriorboundary of (I�)j , see also 2.3.2. As all connected components of the islands aswell their exterior boundaries are D(0) measurable there exists a � := �(d; �) > 0such that2�(�)�ZI��g1(x; !)dx+�12 N� �K�Xj=1 "2�(�)�Z(I�� )jg1(x; !)dx + �j@ext(I�)j \ sp(�)j#+�14 N�;where all sets (I�� )j are connected. Note that they need not be simply connected,because there may be contours within contours. Recall that @ext(I�) � sp(�) thenwe obtainG1(m;!)�G1(u+; !) � X�2�(m) K�Xj=1 "2�(�)� Z(I�� )j g1(x; !)dx + �j@ext(I�)jj# :(5.12)The purely probabilistic Lemma 5.4 implies that with overwhelming probabilityfor any choice of m 2 R�(��) the r.h.s. of (5.12) is nonnegative. Let 
�;� be asin Lemma 5.4 with some 0 < � < 1 to be determined later. If m is a functionwhich has at most one block di�erent from � = 1, by Theorem 4.5, there will be a� > 0, independent on �, so that one obtains the estimate (5.14). For ! 2 
�;�, theminimizer ~umust have all cubes �� close to the sign(~u) phase, i.e ��(~u; x) = sign(~u)for all x 2 ��, i.e all blocks are correct. The theorem holds for ! 2 
�;� for any



SHARP-INTERFACE LIMIT WITH RANDOM FIELD 25�xed choice of �. We strengthen the result taking � = �(�) # 0 for � # 0 as in (5.15).We can apply Proposition 3.3 to show that j~u(x)j > 0 for x 2 ��: From AppendixII (The minimizer in one single well) we have that the minimizer ~u equals either u+�or u�� , see De�nition (1). The statement (2.5) is now an immediate consequence ofthe symmetry of W: ObviouslyE [u�� (r; �)] = 1 8r 2 �and, see (7.17),��E [u�� (r; �)u�� (r0; �)]� E [u�� (r; �)]E [u�� (r0; �)]�� = jE [v�� (r; �)v�� (r0; �)]j� C(d)�2�2(�)e� 12�p2C0 jr�r0j: (5.13)Lemma 5.4. Let d � 3; R � �� a connected, D(0) region, and let for � > 0
�;� := �! 2 
 : 9R � ��; ����ZR dyg1(y; !)���� < ��(�)� j@Rj� :There exists �0 > 0 and a := a(�(�0)�; d) so that for � � �0P[
 n
�;�] � 2 j�j�d e� �2a�2�2(�) : (5.14)Further, setting �(�) = �(ln(1=�))� 1100 and 
� := 
�;�(�) (5.15)we have P[
 n 
�] � e�a ln 1� (ln( 1� )) 4950 : (5.16)Proof. In the following we consider only region R connected and D(0) measurable,i.e unions of unit cubes. We haveP �9R � ��; ����ZR dyg1(y; !)���� � ��(�)� j@Rj�= P �9x0 2 ��; 9R � �� : x0 2 R; ����ZR dyg1(y; !)���� � ��(�)� j@Rj�� j�j�d P �9R � Rd : 0 2 R; ����ZR dyg1(y; !)���� � ��(�)� j@Rj� : (5.17)Estimating naively the last term in (5.17), one hasP �9R � Rd : 0 2 R; ����ZR dyg1(y; !)���� � ��(�)� j@Rj�� XfR:02RgP �����ZR dyg1(y; !)���� � ���(�) j@Rj� � XfR:02Rg e� �2�2�2(�) 12d j@Rj (d�2)(d�1) : (5.18)The last inequality is obtained by the independence of the random �eld and thenapplying the isoperimetric inequality5 jRj � 2dj@Rj dd�1 then j@Rj2jRj � 12d j@Rj2j@Rj dd�1 =12d j@Rj (d�2)(d�1) . On the other hand there are eC(d)n, see [13], regions R containing theorigin, D(0) measurable, of given surface n. One immediately veri�es that (5.18)diverges. So this analysis is inadequate. We need to take advantage of the factthat many regions enclose essentially the same volume. In order to obtain (5.14),5Note that a relative isoperimetric inequality bounds the ratio jRj(d�1)=djjSj�1 � C(d) in thecase where R = I� and S = @ext(�); and the island I� associated with a contour is given by ourde�nition. A proof of the relative isoperimetric inequality can be given adapting the argumentsin [19], p.230.



26 NICOLAS DIRR AND ENZA ORLANDIwe apply then a method we learned from [11], see also [4], p. 115 �., reported inthe Proposition 7.1 of the appendix. 6Now take � function of �, so that �(�)! 0 su�ciently slow, e.g. like (5.15). It isimmediate to verify that there exists an �0 and a constant a(�(�0)�; d) so that for� � �0 the right hand side of (5.14) is smaller than the right hand side of (5.16).In the proof of Theorem 2.1 we actually quanti�ed the di�erence of the energybetween a function and the minimizer. We state this for further use.Theorem 5.5. There exist � > 0 , �0 > 0, a := a(�0�; d) > 0 and there exists foreach � < �0 a set 
� � 
 with P(
�) � 1� e�a ln 1� (ln( 1� )) 4950 such that for ! 2 
�G1(m;!)�min�G1(u+; !); G1(u�; !)	 � � X�2G(m) jsp(�)j: (5.20)Moreover we get the immediate Corollary, see for notation (2.8):Corollary 5.6. Under the same hypothesis of Theorem 5.5, for ! 2 
�, we haveF�(m;!) � �d�1� X�2G(m) jsp(�)j:Next we prove Theorem (2.2).Proof of Theorem (2.2) Since (2.5) of Theorem 2.1, the symmetry of the wellsand the fact that v�� is solution of (2.19) one immediately obtains thatinfH1(�)G�(�; !) = min�G�(u+; !); G�(u�; !)	 = min���(�)� � Z� g�(r; !)dr�+F�(v�� ; !);where F� is the functional de�ned in (7.13). ThenE [G� (u�� ; �)] = E [F�(v�� ; �)]and (2.10) follows immediately. Since (7.18) we have thatF�(v�� ; !) = 12��(�)� Z� g�(r; !)v�� (r; !)dr = �2(�)4�3 �2 Z��� g�(r; !)G�(r; z)g�(z; !)dzdrwhere G�(r; z) in the integrand is the Green function solution of (7.19). Then,using the construction of g� with the help of i.i.d. random variables, see (2.1) and(2.2) and the bounds on the Green function in the appendix, see (7.21), we havethat there exists C(d) > 0 such that in d � 3jE [G� (u�� ; �)]j � �(�)24� �2C(d)j�j; E [G� (u�� ; �)� c�]2 � C(d)�2(�)�2�d�2j�j:Moreover, using the exponential decay of the Green function we obtain that forany � > 0 there exists �(�) > 0 such that G�(x; y) > C(d)�1 for dist(x; @�) > �;dist(y; @�) > �; � < �(�): Therefore we also obtainlim inf 4��(�)2 jE [G� (u�� ; �)]j > 0:6In d = 2 we have P�����ZR dyg�(y; !)���� � � ���(�) j@Rj� � 2e� �2�2�(�)2 : (5.19)Therefore in d = 2, when �(�) = 1 the upper bound in (5.19) depends only on �. By theBorel Cantelli Lemma one sees immediately that with probability one, the event ��RR dyg�(y; !)�� ��� �j@Rj, for any � > 0 occurs for a number of regions in � going to 1 as � # 0. In d = 2, when�(�) = (ln 1� )�1 for a �xed region, the upper bound in (5.19) is small for � small. Neverthelesseven in this case, see Proposition 7.1, the entropic factor spoils the estimate and we are not ableto show the absence of contours.



SHARP-INTERFACE LIMIT WITH RANDOM FIELD 276. �-convergence when �(�) = [ln 1� ]�1We �rst show that passing to the representative leaves the L1-limit of a sequenceof bounded renormalized energy unchanged. Although the representative dependson the realization of the random �eld, we will suppress this dependence in the nota-tion when no confusion arises. Likewise we will not denote explicitly the dependenceon ! of the energy.De�nition 6. For m 2 H1(�) de�ne bm : �� ! R by bm(y) := m(�y): Let m1 beany �� representative of bm as in Theorem 2.7. Thenm1;�(x; !) := m1(��1x; !); x 2 �:Theorem 6.1. Let �1 and � be as in Theorem 2.9, and let � < �1: With P = 1the following holds: Let (m�)�!0 2 H1(�); and let the associated representatives(m�)1;� be as in De�nition 6. Thenif lim sup�!0 F�(m�; !) < C <1; then Z� jm�(x)� (m�)1;�(x; !)j ! 0:Proof. Because of the quadratic growth of the potential and the L1-bound onthe random �eld g it is easy to show that there exists a sequence C� ! 0 such thatfor M� = 1 + C�F�((m� _ (�M�)) ^M�) � F�(m�); Z� j(m� _ (�M�)) ^M� �m�jdr ! 0:Therefore we can assume that m� is bounded in L1 by any constant M > 1provided � < �0(M): In order to simplify notations we work on the rescaled cube�� and let, see De�nition 6, Theorem2.7,m(x) := m�(�x); m1(x) := (m�)1;�(�x); x 2 ��:Take a smooth cut-o� function r : �� ! [0; 1] such that krrk1 < C; r(x) = 1 forx 2 S�2G(m1) sp(�); and r(x) = 0 for x 2 @intI�; and let~m := m(1� r2) +m1r2:This functions is equal to m1 on the contours of m1. We obtain immediatelyF1( ~m) = F1(m) + X�2G(m1) �G1 �sp(�) [ @intI�; ~m��G1 �sp(�) [ @intI�;m�� :Since r � 1, m and m1 are bounded in L1 and Theorem 4.5 we can estimate asfollows X�2G(m1) �G1 ��sp(�) [ @intI�� ; ~m��G1 ��sp(�) [ @intI�� ;m��� X�2G(m1)�Cjsp(�)j+ Z@intI� �jr ~mj2 � jrmj2�� :We have r ~m = (1� r2)rm+ r [2rr(m1 �m) + rrm1] :From the bound on jrrj and the bound on the Lipschitz constant of m1 we imme-diately get that there exists a constant C so thatjr ~mj2 � (1� r2)2jrmj2 + C + rjrmjC:Since r � 1,�jr ~mj2 � jrmj2� � C + r2[r2 � 1]jrmj2 + rjrmj[C � rjrmj] � C24 + C:



28 NICOLAS DIRR AND ENZA ORLANDIThen we can conclude for some constant C 0F1( ~m) � F1(m) + C 0 X�2G(m1) jsp(�)j:Since Theorem 5.5 we obtain thatP�2G(m1) jsp(�)j � �1�dC; hence there exists C1such that F1( ~m) � �1�dC1:Therefore ~m satis�es a bound on the energy of the same order asm: Asm and ~m aredi�erent only on P�2G(m1) �sp(�) [ @intI��, the L1-bound on both functions andthe bound on the volume of the contours implies immediately that k ~m�mk1 ! 0as � ! 0: The new function ~m has an important property: On the topologicalboundary of an island it equals m1 and is therefore pointwise in the well of Wwhich corresponds to the sign of �(m1): This property will allow us to show that~m and m1 are close in the islands. Note that G1(m1) � infH1(��)G1(�); so we canestimate�1�dC � G1( ~m)�G1(m1) = G1(m1 + ( ~m�m1))�G1(m1)= Z�� [2r( ~m�m1)rm1 + (W 0(m1) + �(�)�g)( ~m�m1)]+ Z�� �jr( ~m�m1)j2 + 12 �Z 10 W 00(m1 + s( ~m�m1))ds� ( ~m�m1)2� :By Corollary 3.6 we get that the term in the second line equals zero since ~m�m1is an admissible test function. We have thatZ�� �jr( ~m�m1)j2 + 12 �Z 10 W 00(m1 + s( ~m�m1))ds� ( ~m�m1)2�= Zfx2��;�(m1;x)6=0g�jr( ~m�m1)j2 + 12 �Z 10 W 00(m1 + s( ~m�m1))ds� ( ~m�m1)2� :(6.1)We obtain, using the convexity of the wells, and recalling the de�nition of ~m that�1�dC � Z�� C( ~m�m1)2 � C 00jfx : �(m1; x) 6= 0g \ f�(m1; x) ~m(x) < 1� �0gjwhere �0 is de�ned in (2.4). It remains to show thatjfx : �(m1; x) 6= 0g \ f�(m1; x) ~m(x) < 1� �0gj � C�1�d:For t = 1� �0 and x in the Islands of m1 we denote~mt := � j ~m(x)j _ t; if �(m1; x) = 1;�(j ~m(x)j _ t); if �(m1; x) = �1;while for ~mt(x) := ~m(x) for x 2 sp(�); � 2 G(m1): Note that ~m = m1 on thetopological boundary of any contour, and that the representativem1 stays pointwisein the well associated with �(m1) on this topological boundary of the contour, seeThm. 2.7. Therefore the function ~mt is H1; andG1( ~m)�G1( ~mt) � G1( ~m)� inf G1(�) < C�1�d:Since �(m1; x) = �(m;x) for x in the islands of m1, applying Lemma 4.1 and then(4.3) we obtainG1( ~m)�G1( ~mt) � C Xfz:z+Q2I�;�2G(m1)g j(z +Q) \ f�(z;m)m < �(1� t)=2gj d�1d :



SHARP-INTERFACE LIMIT WITH RANDOM FIELD 29As (d� 1)=d < 1; this implies������0@ [�2G(m1) I�1A \ f�(m; z)m < �(1� t)=2g������ � C�1�d:Note that we can easily bound jf�1 + �0 < ~m < 1 � �0gj; because on this set thedouble-well potential dominates the random �eld. So we �nally obtainjfx : �(m1; x) 6= 0g \ f�(m1; x) ~m(x) < 1� �0gj � jf�1 + �0 < ~m < 1� �0gj+ ������0@ [�2G(m1) I�1A \ f�(m; z)m < ��02 g������+ X�2G(m1) jsp(�)j � C�1�d;and the claim is shown.6.1. Identi�cation of the � Limit. The proof of the lower and later of theupper bound is given in macroscale, but still uses the notion of contours which wasintroduced in the mesoscale. To avoid confusion we keep on writing the contoursalways in mesoscale and rescale by � the sp(�) when we deal with the support ofthe contour of the representative m� in macro scale. Hence m(x) := m�(�x) x 2 ��denotes the representative in the mesoscopic scale, G(m) := G(m; �) the collection ofcontours associated to m when the chosen tolerance is �. We suppose 0 � � < �1;with �1 as in Theorem 2.9, and we avoid to write the explicit dependence on �;where � is as in Theorem 2.9.Lemma 6.2. There exists a set e
 � 
 with P(e
) = 1 such that on e
 the followingholds: For any u 2 BV (�; f�1; 1g) and for any m� with km� � ukL1 ! 0 we havethat lim inf� F�(m�; !) � CW Z� jruj for CW as in (1.3): (6.2)Proof. First �x a � > 0 independent of !: Recall that � = �(n) = 1n and let �(�(n))and 
�(n) as in (5.15). We de�ne e
 by de�ning its complement:An := 
 n
�(n); 
 n e
 = f! : ! 2 An for in�nitely many n 2 Ng:The �rst Borel-Cantelli Lemma and the probabilistic estimates in Theorem 2.1and in Lemma 5.4 imply that P(
 n e
) = 0: By de�nition, for any ! 2 e
 thereexists n(!) such that ! 2 
�(n) for all n � n(!): From now on we will alwaysassume that ! 2 e
 and �(n) � �(n(!)) without stating the dependence on !explicitly. Moreover we will write � for �(n) in order to simplify notation. Notethat it is su�cient to consider the case sup� F�(m�; !) < 1: By Theorem 6.1 wecan replace m� by a representative, see De�nition 6, which we still denote by m�for simplicity. Hence we may assume that km�kL1 � 1+C0��(�): By Theorem 2.1infH1(�)fG�(�; !)g = minfG�(u+� ; !); G�(u�� ; !)g and without loss of generality wesuppose that the G�(u+� ; !) � G�(u�� ; !):Recall that u�� = �1 + v�� ; and let v� := m� � sign(m�): Due to the exponentialdecay of the boundary in
uence and the fact that the representative solves a linearPDE in the islands, one can easily show the following, see Section 7.2 (7.25, 7.26).There exists C > 0 and K > 0 such that for � 2 G(m; �) in an island I�ju�� (r)�m�(r)j = jv�� (r)� v�(r)j < Ke���1C dist(r;�sp(�)) (6.3)��r(u�� (r)�m�(r))�� = ��r(v�� (r) � v�(r))�� < ��1Ke���1C dist(r;�sp(�)): (6.4)



30 NICOLAS DIRR AND ENZA ORLANDIWe writeP� forP�2G(m) and de�ne I�� := fy 2 I� : dist(y; @I�) > C�1j ln(�(�))jg;where C is the constant in (6.3, 6.4). We estimateG�(m�)�G�(u+� ) � X� Z� (supp(�)) �2pW jrm�j � 4��(�)��1kgk1��X� Z� (supp(�)) ��jrv�� j2 + ��1W (1 + v�� )�+X� �Z�I� ��(�)��1 ng�[m� � usign(I�)� ]� g�(1� sign(I�))o�+X� Z�I� ��(jrv�j2 � jrv�� j2) + 12C0� (v2� � (v�� )2)� :For � < �0 we get from Theorem 2.7 thatm� > 1�� on I�: Hence Per(fm� < sg) = 0in I�; andG�(m�)�G�(u+� ) � Z 1���1+� 2pW (s)Per(fm� < sg)ds�X� c(�(�)�)j ln(�(�))j�d�1jsp(�)j�X� �(�)��1� Z�I� g�(1� sign(I�)) (6.5)�X� ��(�)��1kgk1 Z�I� jv�� � v�j (6.6)+X� Z�I���(jrv�j2 � jrv�� j2) + 12C0� �v2� � (v�� )2�� : (6.7)First we are going to estimate the term in line (6.7). Denote byM�(u) := �jruj2 + ��1u2:Now we will make use of the splitting I� = I�� [ (I� n I�� ): On I��jM�(v�(x)) �M�(v�� (x))j < C��1�(�)e���1Cdist(x;� @(I�� )); ��1x in I�� : (6.8)Therefore a computation using the Co-Area formula yieldsZ�I�� jM�(v�)�M�(v�� )j = ZR�Z jM�(v�)�M�(v�� )jdHd�1j�I��\fx: dist(x;�@I�)=rg� dr� C�d�1j@I�� j�(�) � C 0�d�1jsp(�)j�(�);where dHd�1 is the 9d� 1) dimensional Hausdor� measure. Let R� be de�ned asthe argument of the summation in (6.7). As M�(v�) �M�(v�� ) � �M�(v�� ) and asM�(v�� ) is of order ��1(��(�))2; we can estimateR�(I�;m�; v�� ) � Z�I�� (: : : ) + Z�(I�nI�� )(: : : )� �C 0�d�1jsp(�)j�(�)� kM�(v�� )kL1�djI� n I�� j� �C�d�1jsp(�)jh�(�) + j ln(�(�))j(��(�))2i:The term in (6.6) is bounded on �I�� by the right hand side of (6.8), while it isof order ��1(��(�)) on �(I� n I�� ); so it can be estimated in a similar way.In order to estimate the expression in (6.5), recall that ! 2 
�;�(�); hence�(�)��1� ����Z�I� g�(1� sign(I�))���� � �(�)�d�1jsp(�)j:



SHARP-INTERFACE LIMIT WITH RANDOM FIELD 31So far we have shown that for ! 2 e
 and �(n) su�ciently smallG�(m�)�G�(u+� ) � Z 1���1+�2pW (s)Per(fm� < sg)ds (6.9)�X� c0��(�)j ln(�(�))j + �(�)��d�1jsp�j; (6.10)and as by Corollary 5.6 for all ! 2 
�(n)X�2G(m) �d�1jsp(�)j � CF�(m�) < C 0;we have that the expression in (6.10) vanishes as �(n)! 0 for ! 2 e
:So it remains to bound (6.9). As m� ! u in L1(�) there exists a subsequence,denoted by m� again, which converges almost everywhere to u; and for this subse-quence we have 1fm�<sg(r) ! 1fu<sg(r), in L1(�). Further it is easy to prove byapplying Lemma 3.1 that juj = 1 almost everywhere. Then by lower semicontinuityof the perimeterlim inf Per(fm� < sg) � Per(u < 0g); for � 1 < s < 1;and, by Fatou's lemma,lim inf� Z 1���1+� �2pW (s)Per(fm� < sg)� ds �  Z 1���1+� 2pW (s)ds!Per(fu < 0g)� (CW � 2C�) Z� jruj:As � > 0 was arbitrary and independent of !; this proves the theorem.Lemma 6.3. There exists a set e
 � 
 with P(
 n e
) = 0 such that for any! 2 e
 the following holds: For any u 2 BV (�; f�1; 1g) which has the propertythat E := fx : u(x) = �1g has a smooth boundary, there exists m�(�; !) withkm�(�; !)� ukL1 ! 0 andlim supF�(m�) � CWPer(E) for CW as in (1.3):Proof. We construct a sequence with the required properties. To this end, let�m : R ! R be the increasing solution of�m00 =W 0( �m); limr!�1 �m(r) = �1:It is well known, [10], that there exist C; � > 0 such thatj(1� j �m(r)j)j + �m0(r) � Ce��jrj: (6.11)De�ne d(x) := � �dist(x;E); if x 2 � nE;dist(x;Rd nE); if x 2 E; d�(x) := d(x)�and m�(x; !) := v�� (x; !) + �m (d�(x)) 8! 2 
;where v�� solves (2.19). Obviously km�(�; !) � ukL1 ! 0 for all ! 2 
. In order toshorten notation we avoid to write in the following the explicit dependence on ! ofm� and v�� . Note that jrd(x)j = 1; thereforejrm�(x)j2 � ��2[ �m0(d�(x))]2 + 2��1jrv�� (x)j �m0(d�(x)) + jrv�� (x)j2;



32 NICOLAS DIRR AND ENZA ORLANDIand G�(m�)�G�(1 + v�� ) � Z� ��1[ �m0(d�(x))2 +W ( �m(d�(x))] (6.12)+2 Z� jrv�� (x)j �m0(d�(x)) (6.13)+1� Z� �W ( �m(d�(x)) + v�� (x)) �W (1 + v�� (x)) �W ( �m(d�(x)))� (6.14)+�� Z�( �m(d�(x)) � 1)g�(x) (6.15)+ Z� ��jrv�� (x)j2 + 1�W (1 + v�� (x)) + �� g�(x)(1 + v�� (x))� �G�(1 + v�� ):Clearly the term in the last line vanishes, and it is well known, see [15], that theexpression in (6.12) converges to CWPer(E): Next, we show that the term in (6.13)vanishes. We obtain from Proposition 7.2 for � su�ciently small jrv�� j � C 0�(�)��1:Hence by the co-area formula and (6.11) we estimateZ� 2jrv�� j �m0(d�) � 2C 0�(�)� 1Z�1 Hd�1(fd(x) = rg)e�� r� dr � C 00Per(E)�(�)! 0:Let �� := �� ln(�(�)) = � ln ln(1=�) > 0; and��� := fx : jd(x)j < ��g:Split the expression in (6.14) in an integral over ��� and the rest. Set L :=sups2[�2;2] jW 0(s)j. On ��� we havejW ( �m+ v�)�W ( �m)j � Lkv��k1; W (1 + v�� ) � 12C0 kv�� k21:This helps to estimate��1 Z��� (W ( �m+ v�� )�W (1 + v�� )�W ( �m)) � j��� j� C �L�(�) + 12C0��(�)� C 0�(�) ln� 1�(�)�Per(E):To estimate the integral over � n ��� , we use that for x so that jd(x)j > �j ln(�)jjW ( �m(d�))j � 12C0 ( �m(d�)� 1)2 � C22C0 e�2�d(x)=�and thenjW ( �m(d�) + v�� )�W (1 + v�)j � " supjs�1j�C�(�)W 0(s)#Ce��d(x)=� � C 0�(�)e�d(x)=�:Here the symmetry of the wells was used. The constants depend on the secondfundamental form of E. We obtain��1 Z�n��� ([W ( �m+ v�� )�W (1 + v�� )]�W ( �m))� ��1 Z�n��� �C 0�(�)e�d(x)=� + C22C0 e�2�d(x)=�� :By the co-area formula and a change of variables d=� = r this is bounded byC (Per(E))"(�(�) + 1) Z 1j ln(�(�))j e��rdr# � C 0 (Per(E))�(�)! 0:



SHARP-INTERFACE LIMIT WITH RANDOM FIELD 33The term in (6.15), which depends on the random �eld, can be bounded byC 0Per(E)�(�) + 2�(�)� ZE g�:Note that there exists a constant C(d) depending only on the dimension, such thatthe following holds: There exists for any E as above an �0(E) such that for any� < �0(E) there exists a set E� which is a union of cubes of sidelength � with centerson �Zd andC(d)�1Per(E�) � Per(E) � C(d)Per(E�); jE��Ej ! 0 as �! 0:This can be shown e.g. by approximating the smooth manifold @E by polygonsand then by faces of cubes with centers on the lattice �Zd: Hence in arguing thatthe term in the fourth line vanishes we can use Lemma 5.4 with �(n); �(�(n)) as inthe proof of Lemma 6.2 to show that�����(�)� ZE g����� � C�(�)Per(E):Hence the Lemma is proven.Proof of Theorem (2.3): From Lemma 3.1 we get immediately that F� ! +1if juj is di�erent from 1 on a set of positive Lebesgue measure. By general arguments([15, Lemma 1]) it is su�cient to consider the upper bound in the case where Ehas a smooth boundary. Now the theorem follows from the Lemmas 6.3 and 6.2together with (6.1). 7. Appendix7.1. Appendix I: Probabilistic Estimates. LetR be the set of connected unionof cubes of size 1 containing the origin. We denote by R an element of R and byj@Rj the surface of R. We haveProposition 7.1. For d � 3, for any S0 > 0 there exists c0 � c0(S0; d) so that forall S > S0, we obtainP249R 2 R : 0 2 R; ������ Xz2Zd:(z+[0;1]d)\R�R g(z; !)������ � Sj@Rj35 � 2e�S2c0 :Proof. We haveP249R 2 R : 0 2 R; ������ Xz2Zd:(z+[0;1]d)\R�R g(z; !)������ � Sj@Rj35�Xn�1P24 supj@Rj=n:02R;R2R ������ Xz2Zd:(z+[0;1]d)\R�R g(z; !)������ � Sj@Rj35 : (7.1)To estimate each addend we de�ne a sequence of sets R` 2 D(`), ` 2 N, the partitionof Rd in cubes of side 2`, with one of them having center 0. The R`, ` 2 N, areconstructed by a \coarse grained" procedure from the original connected regionR0 � R. We denote by R` : R0 ! R` the map which associate to R0 the set ofcubes in D(`) so that jC(`) \ R0j � 122d`;R` is the union of such cubes. Note that R` is in general not connected. One canprove, see Proposition 1 of [11], thatj@R`j � C(d)j@R0j; (7.2)



34 NICOLAS DIRR AND ENZA ORLANDIand that the volume of the corridor between R` and R`�1 when R` 6= ;, is estimatedby jR`�R`�1j � j@R0j2`; (7.3)where for two sets A and B, A�B = (A nB) [ (B nA). DenoteF (R0; !) = Xz2Zd:(z+[0;1]d)\R0�R0 g(z; !):We start estimatingP" supj@R0j=n:02R0;R02RF (R0; !) � Sj@R0j# :Write, for any choice of k(n) 2 Z,F (R0; !) = F (Rk(n); !)+ [F (Rk(n)�1; !)�F (Rk(n); !)]+ :::::[F (R0; !)�F (R1; !)]:Set z = Sj@R0j = Sn:We haveP" supj@R0j=n:02R0 F (R0; !) > z# � k(n)X̀=1 P" supj@R0j=n:02R0 fF (R`�1; !)� F (R`; !)g > z`#+ P" supj@R0j=n:02R0 F (Rk(n); !) > zk(n)+1# (7.4)for any sequences z` withPk+1`=1 z` � z. Since F is a sum of i.i.d.r.v. it is immediateto see that P [fF (R`; !)� F (R`�1; !)g > z`] � e� z2̀jR`�R`�1j : (7.5)The (7.5) represents the probability that a particular coarse grained corridor has alarge �eld. ThereforeP" supj@R0j=n:02R0 fF (R`; !)� F (R`�1; !)g > z`# � A`�1;nA`;ne� z2̀supfj@R0j=n:02R0g jR`�R`�1j(7.6)where A`;n is the number of image points in R` that are reached when mappingany of the R0 occurring in the sup, i.e. those so that j@R0j = n and containingthe origin. In [11], Proposition 2, it has been shown that there exists a constantC = C(d) so that A`;n � e� C`n2(d�1)` �: (7.7)Therefore we obtain from (7.6) and (7.3)P" supj@R0j=n:02RF (R0; !) > z# � k(n)X̀=1 A`�1;nA`;ne� z2̀n2`+Ak(n);ne� z2k+1supfj@R0j=n:02R0g jRk(n)j : (7.8)By isoperimetric inequality and (7.2) we havesupj@R0j=n:02R0 jRk(n)j � C(d)n dd�1 :



SHARP-INTERFACE LIMIT WITH RANDOM FIELD 35By (7.7) P" supj@R0j=n:02R0 F (R0; !) > z# � k(n)X̀=1 e� 2C`n2(d�1)(`�1) �e� z2̀n2`+ e� Ck(n)n2(d�1)k(n) �e� z2k+1n dd�1 : (7.9)Choose then k(n), the number of times one repeats the coarse graining procedure,so that the �nal coarse-grained volume does not have an anomalous large total �eld,Rk(n)�1 6= ; and the sum in the right hand side of (7.9) is small. Take2k(n) = n 13 ; z` = S2 ǹ2 ;and notice that k(n) ' logn and S2 Pk(n)+1`=1 ǹ2 � Sn [1 � 12 1k(n)+1 ] � z. We obtain,since zk(n)+1 = S2 n(k(n)+1)2 ' S2 n(lnn+1)2 and k(n)n2(d�1)k(n) ' n lnnn 13 (d�1) thate� Ck(n)n2(d�1)k(n) �e� z2k+1n dd�1 = e Cn 13 (4�d) lnn�S2 nd�2d�1(lnn+1)4!:One readily sees that for 7 d � 3limn!1 e Cn 13 (4�d) lnn� S2 nd�2d�1(lnn+1)4! = 0: (7.10)To analyze the other term in (7.9)k(n)X̀=1 e�C(`�1)n2(d�1)` �e�S2 n2``4 (7.11)note that when d � 3 one can choose S0 � S0(d) > 0 so that for S � S0C(`� 1)n2(d�1)` � nS22``4 = n`S22` � CS2 (`� 1)2(d�2)`` � 1̀5� < 0 8` � 1: (7.12)Then it is possible to �nd c = c(S0; d) so that for all S � S0 (7.11) is boundedabove by k(n)X̀=1 e�S2 2̀` nc � k(n)X̀=1 e�S2`n 23 c � e�S2n 23 c:Then, see (7.1)P249R 2 R : 0 2 R ������ Xz2Zd:(z+[0;1]d)\R�R g(z; !)������ � Sj@Rj35 � 2Xn�1 e�cS2n 23 � 2e�S2c0 :7Note that in d = 2 the choice done of k(n) makes the last term in the sum (7.9) diverging.Namely we have e�Cn 23 lnn� S2(lnn+1)4 � !1 when n!1:Further in d = 2 the sum (7.11), independently of the choice of k(n) is always diverging.



36 NICOLAS DIRR AND ENZA ORLANDI7.2. Appendix II : Global and local minimizers in one single well. LetV (s) = 12C0 s2 8s 2 Rand consider for u 2 H1(�) the functionalF�(u; !) � Z���jru(y)j2 + 1� V (u(y))� dy + 1��(�)� Z� dyg�(y; !)u(y): (7.13)As in Lemma 3.1, one has for all u 2 H1(�)F�(t ^ u _ (�t); !) < F�(u; !) 8t > C0�(�)�; P = 1: (7.14)The minimizer of F�(u; !) is obviously v�� , the solution of the Euler- Lagrangeequation (2.19). Next we report the properties of v�� used all along the paper.Proposition 7.2. The v�� is Lipschitz continuous in � with Lipschitz constantbounded by ��1L0 = ��1C(kgk1)�(�)� andjv�� (r; !)j � C0�(�)�kgk1 r 2 �; P = 1: (7.15)The v�� is a Gaussian process with meanE [v�� (r; �)] = 0 r 2 � (7.16)and covariance for d � 3E [v�� (r; �)v�� (r0; �)] � C(d)�2�2(�)e� 12�p2C0 jr�r0j: (7.17)Proof. The proof of the Lipschitz continuity in � goes as in Proposition 3.2 8. Thebound (7.15) is a consequence of (7.14). Writev�� (r; !) = �(�)2�2 � Z�G�(r; r0)g�(r0; !)dr0 r 2 �; (7.18)where G�(r; r0) is the Green function solution of the following problem:��rG�(r; r0) + 1�2 12C0G�(r; r0) = �(r � r0) r; r0 2 �@G�@n (r; r0) = 0 r0 2 �; a:e: for r @�: (7.19)From (7.18) immediately one deduces that v�� is a Gaussian process with mean(7.16). It is well known9 , see Dautray- Lions, [3], vol 1, pag 635, that in d � 3 one8Note that Lipschitz constant in �� is bounded by L0 = C(kgk1)�.9It is known that G�(r) = 12d dXi=1 hG(0)� (r) +G(0)� (r(i))i pointwisewhere r(i)j = rj when i 6= j and when j = i, r(i)i = ei � ri, with ei the unit vector in the directioni and G(0)� (r; r0) solves the in�nite volume problem��rG(0)� (r; r0) + 1�2 12C0G(0)� (r; r0) = �(r � r0) with limjrj!1G(0)� (r; r0) = 0; (7.20)see Dautray- Lions, [3], vol 1, pag 635. In dimension d � 3 the solution of (7.20) is equal toG(0)� (x) = 1� � k2�jxj� d2�1 K d2�1(kjxj); k = 1� 1p2C0and Kn is the Bessel function of second type of degree n. In d = 3,G(0)� (x) = 14�jxje�kjxj:In d > 3 one can estimate the Bessel function of second type according to (7.21).



SHARP-INTERFACE LIMIT WITH RANDOM FIELD 37can bound G�(r) � C(d) 14�jxjd�2 e�kjxj; k = 1� 1p2C0 : (7.21)From (7.18), (7.21) and the properties of independence of the random �eld overcubes of size � computing Gaussian integral one obtains (7.17).Note that the solution v�� of (2.19) must be so that1j�j Z� v�� (r; !)dr = �C02 �(�)� 1j�j Z� g�(r; !)dr (7.22)since R��v(r)dr = 0.Next we consider local minimizer in one single well with Dirichlet Boundary con-ditions. Let D � � and consider the following boundary value problem���u(r) + 1� 12C0u(r) + 12��(�)�g�(r; !) = 0 in D; u = v0 on @D;(7.23)where v0 2 H1(�). We have the following boundary in
uence decay for the solutionof (7.23).Proposition 7.3. For d � 3, there exists a positive constant C(d) so that for P = 1the following holds: Let v be the solution of (7.23) we havejv(x; !)j � C(d) supy2@D jv0(y)je� 1�4p2C0 d(x;@D) + C0�(�)kgk1� x 2 D: (7.24)For solutions of (7.23) with di�erent boundary conditions we obtainjv1(x; !)� v2(x; !)j � C(d) supy2@D jv1(y)� v2(y)je� d(x;@D)4�p2C0 ; x 2 D;(7.25)jr(v1(x; !)� v2(x; !))j � bC(d)� supy2@D jv1(y)� v2(y)je� d(x;@D)4�p2C0 ; (7.26)for x 2 D and d(x; @D) > �:Proof. The decay stated in (7.24) can be easily seen representing the solution of(7.23) as the following,v(x; !) = Ex [v0(B�D )e� 12�2C0 �D ]+ 12�2�(�)�Ex �Z �D0 dse� 12�2C0 sg�(Bs; !)� ; x 2 Dwhere Ex denotes the mean with respect to fPxgx2Rd, a d� dimensional Brownianfamily, fBt;Ft; 0 � t <1g and �I , where I � � is the stopping time de�ned as�I � infft � 0 : Bt 2 Icg; (7.27)i.e the time of the �rst exit from I of a Brownian path, starting from zero. Sinceeach component of B is almost surely unbounded, soPx[�I <1] = 1 8x 2 I � Rd ; I bounded :The solution can be estimated as following:jv(x)j � supy2@D jv0(y)jEx [e� 12�2C0 �D ] + C0�(�)kgk1�Ex [1� e� 12�2C0 �D ]� supy2@D jv0(y)jEx [e� 12�2C0 �D ] + C0�(�)kgk1� x 2 D: (7.28)To estimate the Laplace transform of �D , Ex [e��2�D ] when �2 = 12C0�2 , we proceedas following. Let R0 = d(x; @D) be the distance between x 2 D and the boundary of



38 NICOLAS DIRR AND ENZA ORLANDID and B(x;R0) the sphere of center x and radius R0. Let �B(x;R0) be the stoppingtime de�ned as in (7.27). SinceP[! : �B(x;R0) � �D ] = 1we have that Ex [e��2�D ] � Ex [e��2�B(x;R0) ]:Set u(x) � Ex [e��2�B(x;R0) ]. It is readily seen that u solves� 12�u+ �2u = 0 y 2 B(x;R0)u(y) = 1 jy � xj = R0: (7.29)One has, see [3], vol 1, pag 637, thatu(x) = 1c(d;R0; �)�dRd�10 j@B(x;R0)jwhere �d is the surface area of the unit sphere in Rd andc(d;R0; �) = 2p� �(d2 )�(d�12 ) Z 10 cosh(�R0t)(1� t2) d�32 dt� C(d) Z 3=41=4 cosh(�R0t)(1� t2) d�32 dt� C 0(d) cosh��4R0� � C 0(d)e�4R0 (7.30)Hence, see (7.28) and (7.24), we get (7.24). In order to prove the (7.26) , note thatu = v1 � v2 solves for x 2 D; d(x; @D) > ��u = f in B�(x);u = g on @B�(x);with f(y) = ��2[v1(y)� v2(y)]; g(y) = v1(y)� v2(y): Let bG be the Green functionfor the Laplacian on a ball with homogeneous Dirichlet data, then(ru)(x) = ZB�(x) brG(x � y)f(y) + Z@B�(x)rx@�y bG(x� y)g(y):(7.25) together with the fact that the singularity of k-th derivatives of bG is of orderjx� yj2�d�k implies (7.26).7.3. Appendix III. In this section we show for a simpli�ed functional that se-quences that approximate a function with a 
at jump set are not microscopically
at. First we give some de�nitions. From now on d = 3; x = (x1; x2; x3);� = (�1=2; 1=2)3: As a simpli�cation we replace the part of the functional G�which consists of the gradient part and the double well potential directly by itssharp-interface limit and and we restrict to functions which are BV with values inf+1;�1g Ĝ�(u; !) = ( R� �jruj+ �(�)� g�u� if u 2 BV (�; f�1; 1g)+1 elseRecall that the Heaviside function H(x) : R ! R is de�ned as H(x) = 1 for x > 0;H(0) = 0; and H(x) = �1 for x < 0: We will show that perturbations of the\planar" function U(x) := H(x3) decrease the energy. More precisely we consider\graph-like" perturbations, i.e. functions V : � ! f�1; 1g for which there existfunctions ' : (�1=2; 1=2)2 ! (�1; 1) so that fV = �1g = fx : x3 � '(x1; x2)g andosc(') := sup(�1=2;1=2)2 '� inf(�1=2;1=2)2 '� �:



SHARP-INTERFACE LIMIT WITH RANDOM FIELD 39This indicates that the minimizer under boundary conditions that enforce a\planar" jump are not planar on small scales. We make another assumption whichis not automatic because the g� here is constant on deterministic cubes:H2 There is a � > 0 so that for any measurable set AP�ZA g� > �3=2pjAj� � 12P�����ZA g����� > �3=2pjAj� � � > 0and the random variables RA g�; RA0 g� are independent and identically distributedfor dist(A; A0) > �:Theorem 7.4. Let U(x) := H(x3); 0 < � < 1, � = 1n and assume H2. Thereexists a function '�(�; !) : [�1; 1]2 ! [0; h�); h� = �(�)�(2�+1)=3 such that P-almostsurely for any i 2 Z2lim�!0h�1�  sup��(i+[�1;1]2)�[�1;1]2 ('�(�; !))� inf��(i+[�1;1]2)�[�1;1]2 ('�(�; !))! > 0:Further, denote by V�(x; !) : � ! f�1; 1g the function so that fV = �1g = fx :x3 � '(x1; x2; !)g, then there exists C > 0 such thatP hĜ(U)� Ĝ(V�(!)) > C�2=3(1��)�(�)2i! 1:Proof. Let r� = ��; and divide the square (�1=2; 1=2)2 in cubes Qr(xi) of sidelength2r� centered at xi = ��i 2 (�1=2; 1=2)2, for i 2 Z2.We denote by P� � R3 the pyramid with center at the origin, base (�r�; r�)2 �fx3 = 0g and height h�: The excess area (surface of the pyramid minus area ofthe base) is rpr2 + h2 � r2: We translate the basis of the pyramid on the plane(�1=2; 1=2)2 and denote it by P� + (xi; 0) for all i 2 Z2 so that xi = i�� 2(�1=2; 1=2)2. Next we de�ne a random variable which indicates whether a per-turbation is convenient or not.�i(x; !) = 8<: 1; if RP�+(xi;0) �(�)��1g� > 2r2� (p1 + (h�=r�)2 � 1); x 2 Qr(xi);0 elseNow let 'r�(x1; x2) : Qr�(0) ! [0; h�] be such that 'r�(x2; x2) is the graph of P�and denote 'r�(x; !) = Xi2Z2:xi2(�1=2;1=2)2 �i(x; !)'r�(x� xi):The theorem follows immediately from a Borel-Cantelli argument if we are able toshow that 1 > P(�(0) = 1) > 0: The upper bound follows from the symmetry of therandom �eld, which yields P(�(0) = 1) � 1=2: The lower bound is a consequence of(H2): The volume of the pyramid is 1=3r2�h2� ; i.e. (H2) impliesP��(�)��1 ZP� g� > �1=2�(�)(1=3)r�ph�� > �;and for � su�ciently small�1=2�(�)p(1=3)r�ph�2r2� (p1 + (h�=r�)2 � 1) � �1=2�(�)����+1=2�(�)3=2 = 1�(�) 12 > 1:Remark 7.5. The error in the upper bound, Lemma 6.3, is of order �(�) � �2=3;therefore the error when replacing G� by the functional Ĝ� de�ned in this appendixis larger than the e�ect described here. Hence this is not a proof that minimizingsequences of F� with plane-like constraints are not 
at. However, a careful analysisof the next order for the functional G� would be beyond the scope of this paper.
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