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Abstract

In the first part of this paper we derive lower bounds and constructive upper
bounds for the bracketing numbers of anchored and unanchored axis-parallel boxes
in the d-dimensional unit cube.

In the second part we apply these results to geometric discrepancy. We derive
upper bounds for the inverse of the star and the extreme discrepancy with explicitly
given small constants and an optimal dependence on the dimension d, and provide
corresponding bounds for the star and the extreme discrepancy itself. These bounds
improve known results from [B. Doerr, M. Gnewuch, A. Srivastav. Bounds and con-
structions for the star-discrepancy via δ-covers. J. Complexity 21 (2005), 691-709],
[M. Gnewuch. Bounds for the average Lp-extreme and the L∞-extreme discrepancy,
Electron. J. Combin. 12 (2005), Research Paper 54] and [H. N. Mhaskar. On the
tractibility of multivariate integration and approximation by neural networks. J.
Complexity 20 (2004), 561-590].

We also discuss an algorithm from [E. Thiémard, An algorithm to compute
bounds for the star discrepancy, J. Complexity 17 (2001), 850-880] to approximate
the star-discrepancy of a given n-point set. Our lower bound on the bracketing
number of anchored boxes, e.g., leads directly to a lower bound of the running time
of Thiémard’s algorithm. Furthermore, we show how one can use our results to
modify the algorithm to approximate the extreme discrepancy of a given set.

1 Bracketing numbers for axis-parallel boxes

Let d ∈ N. Let L1([0, 1]d) be the set of real valued Lebesgue integrable functions on the
d-dimensional unit cube [0, 1]d, and let F be a subset of L1([0, 1]d). For δ > 0 and f, g ∈ F
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we call the set

[f, g]F := {h ∈ F | f ≤ h ≤ g everywhere on [0, 1]d}
a δ-bracket of F if its weight W ([f, g]F) satisfies

W ([f, g]F) :=

∫
[0,1]d

(
g(x) − f(x)

)
dx ≤ δ .

A finite subset Γ of F is a (one-sided) δ-cover of F if for every h ∈ F there exists a
δ-bracket [f, g]F with f, g ∈ Γ and h ∈ [f, g]F . A δ-bracketing cover of F is a set of
δ-brackets whose union is F .

By N[ ](F , δ) we denote the bracketing number of F , i.e., the smallest number of δ-
brackets whose union is F , and by N(F , δ) we denote the smallest cardinality of all
δ-covers of F . The notion of bracketing is well established in the theory of empirical
processes, see, e.g., [14, 16]. The notion of one-sided δ-covers was introduced in [11].

It is easy to see that we have the following relation:

N(F , δ) ≤ 2N[ ](F , δ) ≤ N(F , δ)(N(F , δ) + 1) . (1)

Let us introduce further helpful notation: Put [d] := {1, . . . , d}. For x, y ∈ [0, 1]d

we write x ≤ y if xi ≤ yi holds for all i ∈ [d]. We write [x, y] :=
∏

i∈[d][xi, yi] and use

corresponding notation for open and half-open intervals. We put Vx := λd([0, x]) and
Vx,y := λd([x, y]), where λd is the d-dimensional Lebesgue measure. Let us denote the
characteristic function of a set A ⊆ Rd by 1A. In this paper we consider the subsets

Cd := {1[0,x) | x ∈ [0, 1]d} and Rd := {1[x,y) | x, y ∈ [0, 1]d}
of L1([0, 1]d). The elements of Cd are called anchored (axis-parallel) boxes or simply
corners. The elements of Rd are called unanchored (axis-parallel) boxes. (Here the word
“unanchored” is of course meant in the sense of “not necessarily anchored”.) It is easy to
see that

N[ ](Cd, δ) ≤ N[ ](Rd, δ) and N(Cd, δ) ≤ N(Rd, δ) (2)

holds for all δ > 0. Indeed, let f = 1[x,z), g = 1[x′,z′), and let [f, g]Rd
be a δ-bracket of

Rd with [f, g]Rd
∩ Cd �= ∅. This implies x′ = 0, thus g ∈ Cd. Consider f−x := 1[0,z−x).

Obviously [f−x, g]Cd
is a δ-bracket of Cd. Let h = 1[0,y) ∈ [f, g]Rd

∩Cd. From f ≤ h follows
f−x ≤ h, hence h ∈ [f−x, g]Cd

. Therefore [f, g]Rd
∩ Cd ⊆ [f−x, g]Cd

. This establishes (2).
Let us identify the functions 1[0,x) in Cd with the corresponding points x ∈ [0, 1]d and

the functions 1[x,y) in Rd with the corresponding sets [x, y) ⊆ [0, 1]d. According to this
convention, we identify the bracket [1[0,x), 1[0,y)]Cd

with the d-dimensional box [x, y].

1.1 A lower bound for N[ ](Cd, δ)

In [3, Thm. 2.8] the following lower bound for N(Cd, δ) was stated:

N(Cd, δ) ≥
√
d e−dδ−d +O

(| ln(δ)|d−1
)
.
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According to (1), multiplying the right hand side by 1/2 gives us a lower bound for
N[ ](Cd, δ). Earlier, in [10, Proof of Thm. 2], Hinrichs proved a lower bound for the so-
called covering number of Cd, resulting in

N[ ](Cd, δ) ≥
√
πd/2 (4e)−dδ−d

(cf. [3, Remark 2.10]). In this section we will derive a better lower bound for N[ ](Cd, δ)
with a coefficient in front of the most significant term δ−d that is a constant and therefore
not exponentially decreasing in the dimension d.

As we will show in Lemma 1.2, the bracketing number N[ ](Cd, δ) is bounded from
below by the average of λd(Bδ(x))

−1 over all x ∈ [0, 1]d, where Bδ(x) is a δ-bracket with
maximum volume containing x. Thus for a lower bound of N[ ](Cd, δ) it is helpful to
determine first λd(Bδ(x)) for each x ∈ [0, 1]d. Let us start with the case where Vx ≥ δ.
We define the set U(d, δ) := {y ∈ [0, 1]d | Vy ≥ δ} and the function

hδ : U(d, δ) → [0, 1] , z 
→ (1 − (1 − δ/Vz)
1/d)dVz . (3)

Expanding (1 − δ/Vz)
1/d into a power series, we obtain for Vz > δ

hδ(z) = d−d δd

V d−1
z

(
1 +

∞∑
k=1

(k − 1/d)...(1 − 1/d)

(k + 1)!

(
δ

Vz

)k
)d

, (4)

and for d ≥ 2 the right hand side of (4) is a strictly decreasing function in Vz.

Lemma 1.1. Let d ≥ 2, δ ∈ (0, 1], and let z ∈ [0, 1]d with Vz ≥ δ. Put

x = x(z, δ) :=

(
1 − δ

Vz

)1/d

z . (5)

Then [x, z] is the uniquely determined δ-bracket having maximum volume of all δ-brackets
containing z. Its volume is Vx,z = hδ(z).

Proof. Let us first prove that the point x in (5) is the uniquely determined maximum of
the function

g : {ξ ∈ [0, z] | Vξ = Vz − δ} → R , ξ 
→ Vξ,z .

If Vz = δ, then x = 0, and 0 is obviously the unique point where g takes its maximum.
So let Vz > δ. Put f : [0, z] → [0,∞), f(ξ) = Vξ, and M := {ξ | f(ξ) = Vz − δ}. Let y be
a local maximum of g on the compact set [0, z]∩M . It is obvious that yi �= 0 and yi �= zi

for each i ∈ [d], i.e., y ∈ (0, z) ∩M . Thus grad f(y) = Vy(y
−1
1 , ..., y−1

d ) �= 0, which implies
the existence of a Lagrangian multiplier λ ∈ R with grad g(y) = λ grad f(y). Since

grad g(y) = −Vy,z

(
(z1 − y1)

−1, ..., (zd − yd)
−1
)
,

y and z have to be necessarily linearly dependend. From this and Vy = Vz − δ we
obtain y = (1 − δ/Vz)

1/d z = x. The whole statement of Lemma 1.1 follows now from
Vx,z = (1− (1− δ/Vz)

1/d)dVz and the fact that Vx(z),z is a strictly decreasing function with
respect to the parameter Vz, see (4).
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Let us now consider the case where Vx ≤ δ. Let us assume that the δ-bracket Bδ(x) =
[v, w] has the maximum volume of all δ-brackets containing x. Then obviously Vw ≥ δ,
and we find an u ∈ Bδ(x) with Vu = δ and x ∈ [0, u]. Thus u is contained in the δ-brackets
[0, u] and Bδ(x). According to Lemma 1.1 [0, u] has the maximum volume of all δ-brackets
containing u, which implies λd([0, u]) ≥ λd(Bδ(x)). From the definition of Bδ(x) we get
additionally λd(Bδ(x)) ≥ λd([0, u]). Thus

λd(Bδ(x)) = δ for all x ∈ U(d, δ)c ,

where U(d, δ)c denotes the complement of U(d, δ) in [0, 1]d.

Lemma 1.2. Let d ≥ 2 and δ ∈ (0, 1]. We have

N[ ](Cd, δ) ≥
∫

U(d,δ)

hδ(z)
−1 dz + δ−1 λd(U(d, δ)c) .

Proof. Let B be a finite set of δ-brackets whose union is [0, 1]d. For each y ∈ [0, 1]d

choose a bracket Q(y) ∈ B with y ∈ Q(y) in such a way that C(Q) := {y |Q = Q(y)}
is measurable for all Q ∈ B. Clearly C(Q) ⊆ Q for all Q ∈ B and (C(Q))Q∈B forms a
partition of [0, 1]d. According to Lemma 1.1, we get hδ(y) ≥ λd(Q(y)) for any y with
Vy ≥ δ. Thus

|B| ≥
∑
Q∈B

λd(C(Q))

λd(Q)
=
∑
Q∈B

∫
C(Q)

λd(Q)−1 dy =

∫
[0,1]d

λd(Q(y))−1 dy

=

∫
U(d,δ)

λd(Q(y))−1 dy +

∫
U(d,δ)c

λd(Q(y))−1 dy ≥
∫

U(d,δ)

hδ(y)
−1 dy + δ−1 λd(U(d, δ)c) .

Lemma 1.3. Let f ∈ L1([0, 1]d) such that there exists an f̃ ∈ L1([0, 1]) with f(z) = f̃(Vz)
for all z ∈ [0, 1]d. Then we have∫

U(d,δ)

f(z) dz =
1

(d− 1)!

∫ 1

δ

f̃(ϑ) ln(ϑ−1)d−1 dϑ . (6)

Proof. Let us consider the transformation

Φ : (0,∞)d → (0,∞)d , (z1, ..., zd−1, zd) 
→ (z1, ..., zd−1, Vz)

and its inverse function given by Φ−1(ζ1, ..., ζd−1, ϑ) = (ζ1, ..., ζd−1, ϑ/Vζ), where Vζ =
ζ1 . . . ζd−1. The Jacobian determinant of Φ−1 is det(DΦ−1(ζ1, ..., ζd−1, ϑ)) = V −1

ζ . Then∫
U(d,δ)

f(z) dz =

∫ 1

δ

∫
U(d−1,ϑ)

(f ◦ Φ−1)(ζ, ϑ) | detDΦ−1(ζ, ϑ)| dζ dϑ

=

∫ 1

δ

( ∫
U(d−1,ϑ)

V −1
ζ dζ

)
f̃(ϑ) dϑ .

(7)
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If d = 2, then obviously
∫

U(1,ϑ)
V −1

ζ dζ = ln(ϑ−1). If d ≥ 3, then (7) implies

∫
U(d−1,ϑ)

V −1
ζ dζ =

∫ 1

ϑ

(∫
U(d−2,σ)

V −1
η dη

)
σ−1 dσ .

Hence a simple induction gives us
∫

U(d−1,ϑ)
V −1

ζ dζ = ln(ϑ−1)d−1/(d− 1)!.

Remark 1.4. With the help of Lemma 1.3 one can easily calculate the quantity λd(U(d, δ)c)
appearing in Lemma 1.2. From λd(U(d, δ)c) = 1 − λd(U(d, δ)) we get

λd(U(d, δ)c) = δ

d−1∑
k=0

ln(δ−1)k

k!
.

Notice that for fixed δ we have limd→∞ λd(U(d, δ)c) = δ exp(ln(δ−1)) = 1.

Let now ψ(x) := (x/d)d(1 − (1 − x)1/d)−d. The function ψ is obviously holomorphic
on {x ∈ C | |x| < 1} \ {0}. Expanding (1 − x)1/d into a power series for |x| < 1 we get,
similarly as in (4),

ψ(x) =

(
1 +

∞∑
k=1

(k − 1/d) . . . (1 − 1/d)

(k + 1)!
xk

)−d

, (8)

which shows that limx→0 ψ(x) = 1. Thus ψ is holomorphic on {x ∈ C | |x| < 1} and
can there be represented by a convergent power series ψ(x) = 1 +

∑∞
k=1 αkx

k. If we put
ψ(1) = d−d, then ψ is also continuous in x = 1. In particular, we can write ψ(x) =
1 + xψ(x) for all x ∈ [0, 1], where ψ is a continuous function on [0, 1]. Then Lemma
1.3 and identity (4) give us∫

U(d,δ)

hδ(z)
−1 dz = δ−d dd

(d− 1)!

∫ 1

δ

(ϑ ln(ϑ−1))d−1ψ(δ/ϑ) dϑ

= δ−d dd

(d− 1)!

{∫ 1

δ

(ϑ ln(ϑ−1))d−1 dϑ+ δ

∫ 1

δ

ϑd−2 ln(ϑ−1)d−1ψ(δ/ϑ) dϑ

}

≥ δ−d dd

(d− 1)!

{∫ 1

δ

(ϑ ln(ϑ−1))d−1 dϑ− δ max
0≤x≤1

|ψ(x)|
∫ 1

δ

ϑd−2 ln(ϑ−1)d−1 dϑ

}
.

Now

∫ 1

δ

(ϑ ln(ϑ−1))d−1 dϑ =

[
(d− 1)!

(
ϑ

d

)d d−1∑
k=0

dk ln(ϑ−1)k

k!

]1

ϑ=δ

=
(d− 1)!

dd

(
1 − δd

d−1∑
k=0

dk ln(δ−1)k

k!

)
.
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Furthermore,∫ 1

δ

ϑd−2 ln(ϑ−1)d−1 dϑ =

[
ϑd−1 ln(ϑ−1)d−1

d− 1

]1

ϑ=δ

+

∫ 1

δ

ϑd−2 ln(ϑ−1)d−2 dϑ

=
(d− 2)!

(d− 1)d−1

(
1 − δd−1

d−1∑
k=0

(d− 1)k ln(δ−1)k

k!

)
.

Thus we get from Lemma 1.2 the following lower bound for the bracketing number of
anchored boxes:

Theorem 1.5. For d ≥ 2 and δ ∈ (0, 1] there exists a constant cd, which may depend on
d, but not on δ, with

N[ ](Cd, δ) ≥ δ−d(1 − cdδ) . (9)

Remark 1.6. To get a more explicit lower bound than (9) one may expand ψ into a
McLaurin series. For |x| < 1 we have

ψ(x) =
∞∑

k=0

ψ(k)(0)

k!
xk

and ψ(0)(0) = ψ(0) = 1, ψ(1)(0) = −(d − 1)/2, and

ψ(2)(0) = (d− 1)

(
(d+ 1)

1 − 1/d

4
− 2 − 1/d

3

)
.

However, the larger k the more the number of summands of the explicit expression of
ψ(k) blows up. Alternatively, one can also get a bound with explicitly given constants by
estimating more rigorously. Let c := (2 ln 2)−2 > 0.52. It is straightforward to establish

N[ ](Cd, δ) ≥ cδ−d − cdd
d−1∑
k=0

|d ln(dδ)|k
k!

for all d ≥ 2 and all δ ∈ (0, 1] (10)

by using the estimates

hδ(z) ≤ d−d δd

V d−1
z

( ∞∑
k=0

1

k + 1

(
δ

Vz

)k
)d

and ∫
U(d,δ)

hδ(z)
−1 dz ≥

(
d

δ

)d
( ∞∑

k=0

d−k

k + 1

)−d ∫
U(d,dδ)

V d−1
z dz ;

an elementary analysis proves that the minimum of( ∞∑
k=0

d−k

k + 1

)−d

=
(− d ln(1 − 1/d)

)−d

is taken in d = 2. Although the leading coefficient c in (10) is smaller than the leading
coefficient 1 in (9), it is still a constant and in particular not decreasing with d.
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1.2 A lower bound for N[ ](Rd, δ)

Due to (2) the right hand side of (9) is also a lower bound of N[ ](Rd, δ), but one would
suspect it to be a rather poor one. Here we derive a better lower bound for N[ ](Rd, δ).

For our calculations it is convenient to identify Rd as a measure space with the set

R̃d := {(x, y) ∈ [0, 1]2d | x ≤ y}
endowed with the probability measure dµd(x, y) := 2d dx dy. Since the set Dd := {(x, x) ∈
[0, 1]2d} has µd-measure zero, it is not important that our map of identification Φ : R̃d →
Rd , (x, y) 
→ [x, y) is not injective on Dd.

As we will state in Lemma 1.8, the bracketing number N[ ](Rd, δ) is bounded from

below by the average µd(B(x, y, δ)) over all (x, y) ∈ R̃d, where B(x, y, δ) is a δ-bracket
of Rd with maximum µd-measure containing [x, y). Previously we calculate the value of
µd(B(x, y, δ)). For δ ∈ (0, 1] let us define Ũ(d, δ) :=

{
(x, y) ∈ [0, 1]2d | x < y, Vx,y > δ

}
and

h̃δ : Ũ(d, δ) → [0, 1] , (x, y) 
→ 2−d

(
1 −

(
1 − δ

Vx,y

)1/d
)2d

V 2
x,y .

A power series expansion (cf. (4)) leads to

h̃δ(x, y) = 2−dd−2d δ2d

V
2(d−1)
x,y

(
1 +

∞∑
k=1

(k − 1/d) . . . (1 − 1/d)

(k + 1)!

(
δ

Vx,y

)k
)2d

. (11)

Lemma 1.7. Let d ≥ 2, and let x, y ∈ [0, 1]d with Vx,y > δ. Put

ξ = ξ(x, y, δ) :=
1

2

((
1 +

(
1 − δ

Vx,y

)1/d
)
x+

(
1 −

(
1 − δ

Vx,y

)1/d
)
y

)

and

η = η(x, y, δ) :=
1

2

((
1 +

(
1 − δ

Vx,y

)1/d
)
y +

(
1 −

(
1 − δ

Vx,y

)1/d
)
x

)
.

Then B = B(x, y, δ) := [[ξ, η), [x, y)]Rd
is the uniquely determined δ-bracket having maxi-

mum µd-measure of all δ-brackets containing [x, y). Its measure is µd(B) = h̃δ(x, y).

Sketch of the proof. Similar as in Lemma 1.1 one can use the elementary properties of
Lagrangian multipliers to prove that the function

g̃ : {(v, w) | x ≤ v ≤ w ≤ y, Vv,w = Vx,y − δ} → R , (v, w) 
→ µd
([

[v, w), [x, y)
]
Rd

)
takes its uniquely determined maximum in (ξ, η). By direct calculation one gets µd(B) =
h̃δ(x, y) and h̃δ(x, y) is obviously a strictly decreasing function in Vx,y, see (11). From this
follows easily µd(B) > µd(B′) for all δ-brackets B′ �= B containing [x, y).
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Let now x, y ∈ [0, 1]d with x ≤ y and Vx,y ≤ δ. Let u, v ∈ [0, 1]d with u ≤ x ≤ y ≤ v
and Vu,v = δ. Then [∅, [u, v)]Rd

has maximum µd-measure of all δ-brackets containing
[x, y), namely µd([∅, [u, v)]Rd

) = V 2
u,v = δ2. Notice that this measure differs from the value

lim
δ<Vx,y→ δ

µd(B(x, y, δ)) = 2−dδ2 .

Similar as in the proof of Lemma 1.2 one can verify the next lemma.

Lemma 1.8. Let d ≥ 2 and δ ∈ (0, 1]. Then we have

N[ ](Rd, δ) ≥
∫

Ũ(d,δ)

h̃δ(x, y)
−1 dµd(x, y) + δ−2µd(Ũ(d, δ)c) ,

where Ũ(d, δ)c denotes the complement of Ũ(d, δ) in R̃d.

Lemma 1.9. For all δ ∈ (0, 1) and all l ∈ N0 we have∫
Ũ(d,δ)

V l
x,y dµ

d(x, y) =
2d

(l + 1)d(l + 2)d
+ 2dδl+1

d−1∑
k=0

(α
(l)
d,k + β

(l)
d,kδ)

(ln δ)k

k!
,

where the constants α
(l)
d,k, β

(l)
d,k, k = 1, . . . , d− 1, do not depend on δ.

Sketch of the proof. We put

I(d, l, δ) := 2−d

∫
Ũ(d,δ)

V l
x,y dµ

d(x, y) .

We have

I(1, l, δ) =

∫ 1−δ

0

∫ 1

x+δ

(y − x)l dy dx =
1

(l + 1)(l + 2)
− 1

l + 1
δl+1 +

1

l + 2
δl+2

and

I(d+ 1, l, δ) =

∫ 1−δ

0

∫ 1

x+δ

(y − x)l I

(
d, l,

δ

y − x

)
dy dx .

Therefore it is straightforward to verify by induction that

I(d, l, δ) =
1

(l + 1)d(l + 2)d
+ δl+1

d−1∑
k=0

(
α

(l)
d,k + β

(l)
d,kδ
) (ln δ)k

k!
,

with coefficients not depending on δ. More precisely, we have for an arbitrary l ∈ N

α
(l)
1,0 = − 1

l + 1
, β

(l)
1,0 =

1

l + 2
,

α
(l)
d+1,0 = − 1

(l + 1)d+1(l + 2)d
+

d−1∑
ν=0

(
−α(l)

d,ν + (−1)νβ
(l)
d,ν

)
,

β
(l)
d+1,0 =

1

(l + 1)d(l + 2)d+1
−

d−1∑
ν=0

(
−α(l)

d,ν + (−1)νβ
(l)
d,ν

)
,

α
(l)
d+1,k = −

d−1∑
ν=k−1

α
(l)
d,ν , β

(l)
d+1,k = −

d−1∑
ν=k−1

(−1)ν+kβ
(l)
d,ν
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for k = 1, . . . , d.

With the help of Lemma 1.9 we can now estimate the integral
∫

Ũ(d,δ)
h̃δ(x, y)

−1 dµd(x, y).

Let ψ be the function from (8). Then there exists a continuous function ψ̃ with ψ(x)2 =
1 + xψ̃ for all x ∈ [0, 1]. Thus we have∫

Ũ(d,δ)

h̃δ(x, y)
−1 dµd(x, y) = 2dd2dδ−2d

∫
Ũ(d,δ)

V 2(d−1)
x,y ψ(δ/Vx,y)

2 dµd(x, y)

= 2dd2dδ−2d

{∫
Ũ(d,δ)

V 2(d−1)
x,y dµd(x, y) + δ

∫
Ũ(d,δ)

V 2d−3
x,y ψ̃(δ/Vx,y) dµ

d(x, y)

}

≥ 2dd2dδ−2d

{∫
Ũ(d,δ)

V 2(d−1)
x,y dµd(x, y) − δ max

0≤x≤1
|ψ̃(x)|

∫
Ũ(d,δ)

V 2d−3
x,y dµd(x, y)

}
.

From Lemma 1.8 and Lemma 1.9 we now get the following theorem:

Theorem 1.10. Let d ≥ 2 and δ ∈ (0, 1). There exists a constant cd, not depending on
δ, with

N[ ](Rd, δ) ≥ δ−2d

((
1 − 1

2d

)−d

− cdδ

)
.

We have 16/9 ≥ (1 − 1/(2d))−d ≥ √
e and limd→∞ (1 − 1/(2d))−d =

√
e.

Remark 1.11. One can prove the following analog of Lemma 1.3: Let g ∈ L1([0, 1]2d)
such that there exists a g̃ ∈ L1([0, 1]) with g(x, y) = g̃(Vx,y) for all (x, y) ∈ R̃d. Then

∫
Ũ(d,δ)

g(x, y) dµd(x, y) =

∫ 1

δ

g̃(ϑ)ϕd(ϑ) dϑ

for all δ ∈ (0, 1), where

ϕd(ϑ) = (−1)d−12d
d−1∑
j=0

((
2(d− 1) − j

d− 1

)(
(−1)j − ϑ

) ln(ϑ−1)j

j!

)
.

Since the density function ϕd is rather complicated, it seemed to us more convenient to
use Lemma 1.9 to prove Theorem 1.10.

1.3 An upper bound for N[ ](Cd, δ)

In [3, Thm. 2.7] an upper bound for N(Cd, δ) was derived implying

N[ ](Cd, δ) ≤ dd

d!

(
δ−1 +

d+ 1

4

)d

. (12)

9



The major drawback of this bound, in particular with regard to the applications we have in
mind, see Section 2, is its super-exponential dependence on d. Here we give a modification
of the construction in the proof of [3, Thm. 2.7], which is more sophisticated.

Before we start to prove the new upper bound for N[ ](Cd, δ), we introduce further
useful notation.

Definition 1.12. Let δ ∈ (0, 1] and S be a subset of [0, 1]d. We define N[ ](S, δ) to
be the smallest number of brackets [x, z], x, z ∈ [0, 1]d, whose union contains S. Let
a(d, δ) := (1 − δ)1/d and δ(d, k) := 1 − (1 − δ)(d−k)/d. We shall apply the shorthands
δ(k) := δ(d, k) and δ′ := δ(1). Furthermore, let Sd([a, b]) := [0, b]d\[0, a)d for 0 ≤ a ≤ b ≤ 1.

Some elementary observations are listed in the following lemma.

Lemma 1.13. Let d ∈ N and δ ∈ (0, 1].

1. If S, T ⊆ [0, 1]d, then N[ ](S ∪ T, δ) ≤ N[ ](S, δ) +N[ ](T, δ).

2. If λ > 0 and S, λS ⊆ [0, 1]d, then N[ ](S, δ) = N[ ](λS, λ
dδ).

The lemma below is a generalization of [3, Lemma 2.6].

Lemma 1.14. Let d ≥ 2, δ ∈ (0, 1] and k ∈ [d − 1]. For every subset S ⊆ [0, 1]d−k we
have

N[ ](S × [a(d, δ), 1]k, δ) ≤ N[ ](S, δ
(k)) . (13)

Proof. Let first k = 1 and put a = a(d, δ). Let x′, z′ ∈ [0, 1]d−1 such that [x′, z′] is a
δ′-bracket in dimension d − 1. Define the d-dimensional vectors x = (x′, a), z = (z′, 1).
Then x ≤ z. If Vx′ ≥ 1 − δ′, then Vz − Vx = Vz′ − aVx′ ≤ 1 − a(1 − δ′) = δ. If
Vx′ ≤ 1 − δ′, then Vz − Vx = Vz′ − Vx′ + (1 − a)Vx′ ≤ δ′ + (1 − a)(1 − δ′) = δ. Thus [x, y]
is a δ-bracket in dimension d and [x, z] ∩ (S × [a, 1]) = ([x′, z′] ∩ S) × [a, 1]. Therefore
N[ ](S × [a, 1], δ) ≤ N[ ](S, δ

′).
Suppose now, we have already shown (13) for a fixed k ∈ [d−1] and any S ⊆ [0, 1]d−k.

Then, since a(d, δ) = a(d− k, δ(k)), we get for S ′ ⊆ [0, 1]d−k−1

N[ ](S
′ × [a(d, δ), 1]k+1, δ) = N[ ](S

′ × [a(d, δ), 1], δ(k))

=N[ ](S
′ × [a(d − k, δ(k)), 1], δ(k)) ≤ N[ ](S

′, (δ(k))′) .

Note that (δ(k))′ = δ(k)(d− k, 1), since the set S ′ × [a(d− k, δ(k)), 1] is actually a (d− k)-
dimensional one. From (δ(k))′ = δ(k+1) we get N[ ](S

′ × [a(d, δ), 1]k+1, δ) ≤ N[ ](S
′, δ(k+1)).

Theorem 1.15. Let d ∈ N and 0 < δ ≤ 1. Then

N[ ](Cd, δ) ≤ 2d−1d
d

d!
(δ−1 + 1)d . (14)

10



Proof. We put n := �δ−1� and proceed by induction. If d = 1, then we have obviously
N[ ](Cd, δ) ≤ n ≤ δ−1 + 1.

Consider now d ≥ 2. Define ai := (1 − iδ)1/d for i = 0, ..., n − 1 and an := 0.
Furthermore, let δi := δ/ad

i−1 for all i ∈ [n− 1]. From ai/ai−1 = a(d, δi) and Lemma 1.13
we get

N[ ](Cd, δ) ≤
n∑

i=1

N[ ]

(
Sd([ai, ai−1]), δ

) ≤ n−1∑
i=1

N[ ]

(
Sd([a(d, δi), 1]), δi

)
+ 1 .

For i ∈ [n − 1] we can subdivide Sd([a(d, δi), 1]) into sets that are, after suitable per-
mutations of coordinates, of the form [0, a(d, δi)]

d−k × [a(d, δi), 1]k for k = 1, ..., d. Since
bracketing numbers are obviously invariant under permutations of coordinates, Lemma
1.13 and 1.14 ensure

N[ ]

(
Sd([a(d, δi), 1]), δi

) ≤ d∑
k=1

(
d

k

)
N[ ]

(
[0, a(d, δi)]

d−k × [a(d, δi), 1]k, δi
)

≤
d−1∑
k=1

(
d

k

)
N[ ]

(
Cd−k,

δ
(k)
i

1 − δ
(k)
i

)
+ 1 .

Our induction hypothesis, a change in the order of summation, and the inequality δ
(k)
i ≥

d−k
d
δi lead to

N[ ](Cd, δ) ≤
d−1∑
k=1

(
d

k

)
2d−k−1 dd−k

(d− k)!

(
n−1∑
i=1

(δ−1 − i+ 1)d−k

)
+ δ−1 + 1 .

Due to γd−k ≤ ((γ + τ)d−k + (γ − τ)d−k)/2 for all γ ≥ 0 and τ ∈ [−1/2, 1/2], we get

n−1∑
i=1

(δ−1 − i+ 1)d−k ≤
∫ n−1/2

1/2

(δ−1 − x+ 1)d−k dx ≤ (δ−1 + 1/2)d−k+1

d− k + 1
,

implying

N[ ](Cd, δ) ≤
d−2∑
k=0

(
d

k + 1

)
2d−k−2 d

d−k−1

(d− k)!
(δ−1 + 1/2)d−k + δ−1 + 1 .

If we compare the coefficients in the last term and in

2d−1d
d

d!
(δ−1 + 1)d =

d∑
k=0

(
d

k

)
2d−k−1d

d

d!
(δ−1 + 1/2)d−k ,

it becomes evident that (14) holds.
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Remark 1.16. The comparison of coefficients at the end of the proof of Theorem 1.15
indicates that our estimate (14) can to some extend be improved. If we are, e.g. just
interested in the coefficient of the highest power of δ−1, then it is easy to see that
N[ ](Cd, δ) ≤ dd

d!
δ−d +O(δ−d+1) (cf. also [3, Theorem 2.7]). Furthermore, one can show

N[ ](Cd, δ) ≤ α(d)
dd

d!
(δ−1 + 1)d with α(d) < 2d−1 for all d ≥ 2. (15)

Nevertheless, for the subsequent investigation we would like to have an estimate of the
form

N[ ](Cd, δ) ≤ Cdd
d

d!
(δ−1 + 1)d , C > 0 a constant independent of d. (16)

If we start with the induction hypothesis (15), our proof approach gives us

N[ ](Cd, δ) ≤
d−2∑
k=0

(
d

k + 1

)
α(d− k − 1)

dd−k−1

(d− k)!
(δ−1 + 1/2)d−k + δ−1 + 1 .

A comparison with the coefficients of

α(d)
dd

d!
(δ−1 + 1)d =

d∑
k=0

(
d

k

)
α(d)

dd

d!

(δ−1 + 1/2)d−k

2k

shows that α(d) has to satisfy conditions of the form

2k

k + 1

(d− 1) . . . (d− k)

dk
α(d− k − 1) ≤ α(d)

for k = 0, . . . , d−2. Hence we find for every given ε > 0 integers d0 and k (where d0 � k)
such that for all d ≥ d0 (

α(d)

α(d− k − 1)

)1/k+1

≥ 2 − ε .

This makes clear that, without reasonable modifications, our way of proof could not lead
to an estimate of the form (16) with a constant C < 2.

1.4 An upper bound for N[ ](Rd, δ)

In this subsection we provide two lemmas, which demonstrate how one can use δ/2-covers
and bracketing covers of Cd to construct δ-covers and bracketing covers of Rd respectively.
Let 1 be the d-dimensional vector (1, ..., 1).

Lemma 1.17. Let δ > 0. If Γ ⊆ Cd is a δ/2-cover of Cd, then

Γ̃ = {[x, z) | 1 − x, z ∈ Γ}
is a δ-cover of Rd. In particular, N(Rd, δ) ≤ N(Cd, δ/2)2.
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Proof. Let x, z ∈ [0, 1]d. As Γ is a δ/2-cover of Cd, we find points x′, x′′ and z, z ∈ Γ with
x′ ≤ 1− x ≤ x′′, z ≤ z ≤ z and Vx′′ − Vx′ ≤ δ/2 and Vz − Vz ≤ δ/2. Defining x := 1− x′′

and x := 1 − x′ gives us x ≤ x ≤ x and Vx,1 − Vx,1 ≤ δ/2. Hence, since z ≤ 1 and 0 ≤ x,

Vx,z − Vx,z = Vx,z − Vx,z + Vx,z − Vx,z ≤ Vx,1 − Vx,1 + Vz − Vz ≤ δ .

Since [x, z), [x, z) ∈ Γ̃ and [x, z) ∈ [[x, z), [x, z)]Rd
, Γ̃ is a δ-cover of Rd.

It is straightforward to prove a corresponding lemma in terms of bracketing:

Lemma 1.18. Let δ > 0, and let x(1), ..., x(n), z(1), ..., z(n) ∈ [0, 1]d such that [x(1), z(1)],...,
[x(n), z(n)] form a δ/2-bracketing cover of Cd. Then the non-empty sets of[

[1 − x(i), x(j)), [1 − z(i), z(j))
]
Rd
, i, j ∈ [n] , (17)

form a δ-bracketing cover of Rd. In particular, N[ ](Rd, δ) ≤ N[ ](Cd, δ/2)2.

2 Applications to geometric discrepancy

Let P be an n-point set in [0, 1]d. We define the star discrepancy of P by

d∗∞(P ) = sup
C∈Cd

∣∣∣∣λd(C) − 1

n
|P ∩ C|

∣∣∣∣ ,
where |P ∩C| denotes the cardinality of the finite set P ∩C. The extreme (or unanchored)
discrepancy of P is given by

de
∞(P ) = sup

C∈Rd

∣∣∣∣λd(C) − 1

n
|P ∩ C|

∣∣∣∣ .
The smallest possible star discrepancy of any n-point configuration in [0, 1]d is

d∗∞(n, d) = inf
P⊆[0,1]d;|P |=n

d∗∞(P ) .

The inverse of the star discrepancy is given by

n∗
∞(ε, d) = min{n ∈ N | d∗∞(n, d) ≤ ε} .

Similarly, we define the smallest possible extreme discrepancy of any n-point set de
∞(n, d)

and its inverse ne
∞(ε, d).

It is well known that discrepancy is related to the error of multivariate numerical
integration of certain function classes (see, e.g., [4, 9, 12, 13]). For this application it is of
interest to calculate the discrepancy of a given n-point set efficiently up to some admissible
error δ. Furthermore, it is desirable to have useful bounds for the smallest possible
discrepancy of any n-point set and to be able to construct point sets of moderate size (in
particular, non-exponentially in d) satisfying these bounds. The classical upper bounds
of the form d∗∞(n, d) ≤ Cd ln(n)d−1n−1 (which also hold for the extreme discrepancy) are
not very useful for high-dimensional integration, since the constant Cd depends crucially
on d, and ln(n)d−1n−1 is an increasing function in n for n ≤ ed−1. In particular, we cannot
use the classical bounds to get helpful information about the discrepancy of point sets of
moderate size.
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2.1 Low-discrepancy sets of moderate size

In [8] Heinrich, Novak, Wasilkowski, and Woźniakowski proved the bounds

d∗∞(n, d) ≤ C

√
d

n
and n∗

∞(ε, d) ≤ �C2dε−2� , (18)

where C is a universal constant. The proof uses a theorem of Talagrand on empirical
processes [14, Thm. 6.6] combined with a celebrated upper bound of Haussler on so-called
covering numbers of Vapnik-Červonenkis classes [7]. Since the theorem of Talagrand holds
not only under a condition on the covering number of the set system S under consideration,
but also under the alternative condition that the δ-bracketing number of S is bounded
from above by (Cδ−1)d, C some constant [14, Thm. 1.1], we can reprove (18) by using
our bracketing result Theorem 1.15 instead of the result of Haussler.

An advantage of (18) is that the dependence of the inverse of the discrepancy on d is
optimal. This was verified in [8] by a lower bound for the inverse, which was improved by
Hinrichs [10] to n∗

∞(d, ε) ≥ c0dε
−1. A disadvantage of (18) is that so far no good estimate

for the constant C has been published 1.
Bracketing numbers for axis-parallel boxes can also be used to derive different bounds

for the discrepancy and its inverse with an optimal behavior in the dimension d and
explicitly given, small constants. The idea is to “discretize” the discrepancy and use the
following approximation property:

Let Γ be a δ-cover of Cd. Then for all finite subsets P of [0, 1)d we have

d∗∞(P ) ≤ max
x∈Γ

∣∣∣∣Vx − |P ∩ [0, x)|
|P |

∣∣∣∣+ δ . (19)

(See, e.g., [3, Lemma 3.1].) An analogous bound holds for the extreme discrepancy of P
and arbitrary δ-covers of Rd. The discretization of the set of test boxes can be employed in
the following probabilistic approach (see, e.g., [3, Thm. 3.2]): Let τ1, . . . , τn be uniformly
distributed, independent random variables in [0, 1]d. Due to (19) we have

Pr{d∗∞(τ1, . . . , τn) ≤ 2δ} > 0 if Pr{d∗Γ(τ1, . . . , τn) ≤ δ} > 0 . (20)

Since Γ is a finite set, we can succesfully use the large deviation bound known as Hoeffd-
ing’s inequality to deduce that the last inequality in (20) is satisfied if 2δ2n > ln |Γ|+ ln 2
holds. Let now Γ be a δ-cover of minimal cardinality. Then (1) and (14) imply the
following theorem:

Theorem 2.1. Let d ≥ 2 and ε ∈ (0, 1]. Then

n∗
∞(ε, d) ≤

⌈
2ε−2

(
d ln

(
6e

ε

)
+ ln(2)

)⌉
. (21)

1A. Hinrichs presented at the Dagstuhl Seminar 04401 “Algorithms and Complexity for Continuous
Problems” in 2004 a more direct approach to prove (18) with C = 10. He estimated the expected
discrepancy of random points with the help of Dudley’s metric entropy bound and Haussler’s result on
packing numbers of VC-classes. Since there exist versions of Dudley’s bound in terms of bracketing, one
can derive similar bounds with the help of Thm. 1.15.
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If n ≥ 2d ln(6e), we have

d∗∞(n, d) ≤ n−1/2
(
d ln

(
C
n

d

)
+ 2 ln(2)

)1/2

, (22)

where C ≤ 18e2/ ln(6e).

In [3, Thm. 3.2(i)] we proved almost the same bound for the inverse of the star
discrepancy, but under the additional constraint ε ≤ 8/(d + 1). (This is due to the fact
that we used the somehow unpractical bound (12) there.) In this respect, (21) improves
upon [3, Thm. 3.2(i)]2. Observe that our bound (22) is asymptotically better than the
bounds for the star discrepancy in [3, Thm. 3.2]. Recall that the inverse of the star
discrepancy (as well as the inverse of the extreme discrepancy) depends linearly on the
dimension d. Thus the practically most relevant choice of n seems to be n proportional
to d. In this case (22) behaves asymptotically as the bound for the star discrepancy in
(18).

Using the approximation property with respect to the set system Rd, the upper bound
(14) and Lemma 1.17, one can easily modify the probabilistic approach described above
to derive similar results for the extreme discrepancy:

Theorem 2.2. Let d ≥ 2 and ε ∈ (0, 1]. Then

ne
∞(ε, d) ≤

⌈
2ε−2

(
2d ln

(
10e

ε

)
+ ln(2)

)⌉
. (23)

If n ≥ 4d ln(10e), we have

de
∞(n, d) ≤

√
2n−1/2

(
d ln

(
C
n

d

)
+ ln(2)

)1/2

, (24)

where C ≤ 25e2/ ln(10e).

The upper bound (23) for the inverse of the extreme discrepancy improves upon the
estimate

ne
∞(ε, d) ≤ 9 · 25(1+1/2k)k1−1/kd ε−2−1/k for all k ∈ N,

which was proved in [5] with the help of upper bounds for the average Lp-extreme dis-
crepancy, 2 ≤ p <∞.

The upper bound (24) for the extreme discrepancy improves upon the bound given
by Mhaskar [11]. Theorem 3.1(a) in [11] is a quite general result on the discrepancy of
set systems of axis-parallel boxes (or “cells”) in Rd. For the sake of explicit constants it
was derived by a probabilistic approach similar to the one described above (cf. also [3,
Remark 3.5]). Theorem 3.1(a) provides the following bound for the extreme discrepancy
(we have to choose the parameters R = 1/2 = R1 and µ as the Lebesgue measure on
[−1/2, 1/2]d there, resulting in M = 1 = γ):

2Notice also that bound (21) is better than bound (18) with , e.g., C = 10 for all ε ≥ e−47, i.e., for all
practically interesting values of ε.
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Let G = 4/(3 ln 3 − 2) � 3.0868 and B(d) = ln(22d2+3d+1 d2d). If n ≥ GB(d), then

de
∞(n, d) ≤ 2

√
Gn−1/2

(
B(d) + d ln

(
n

GB(d)

))1/2

. (25)

Apart from the constants this bound is not as good as (24), since B(d) ≥ Ω(d2). In
particular, the bound (25) is not applicable (for large d) if n depends linearly on d.

A comparison of Theorem 2.1 and Theorem 2.2 shows that one get the bounds (23) and
(24) for the extreme discrepancy from the corresponding bounds of the star discrepancy
more or less by replacing d with 2d (cf. also [6]). Similar transference results hold for
bounds based on the average Lp-discrepancy [5] and for the bounds in (18) (see [8]). In
fact (18) holds for (almost) arbitrary systems S of measurable subsets of [0, 1]d—one just
has to replace d by the Vapnik-Červonenkis (VC) dimension of S. It is easy to see that
the VC dimension of Cd is d, and the VC dimension of Rd is 2d.

The probabilistic approach via δ-covers and Hoeffding’s inequality described above has
the advantage that it is known how to derandomize it to construct small samples satis-
fying bounds like (21), (22), (23), and (24). Such a derandomized algorithm for the star
discrepancy was provided in [3]; it is essentially a point-by-point construction using the
method of conditional probabilities and so-called pessimistic estimators. Unfortunately,
it is not trivial to implement and the proven upper bound for the worst case running
time is exponential in d. B. Doerr and the author found a different approach [2] based
on special δ-covers (or bracketing covers) and on recent results on generating randomized
roundings with cardinality constraints [1]. Compared with the algorithm in [3] the new
algorithm is easier to implement and has a reasonably better worst case running time.
Nevertheless it is still exponential in d. (This is maybe not too suprising, since all the
known deterministic algorithms for the seemingly easier problem of approximating the
star discrepancy of arbitrary given point sets have a running time exponential in d—see
also the discussion in the next subsection.)

Although the new algorithm seems to be a step into the right direction, further im-
provements are desirable (see also the discussion in [3]).

2.2 Aproximating the discrepancy of a given set

In [15] Thiémard described and tested an algorithm that calculates in moderate dimension
d for a given n-point set its star discrepancy up to an admissible error δ. The algorithm
uses the following idea:

Let B = Bδ be a δ-bracketing cover of [0, 1]d. If we define for each B = [x, y] ∈ B half-
open boxes B− := [0, x) and B+ := [0, y), and furthermore for each finite set P ⊂ [0, 1]d

with |P | = n

B(B, P ) := max
B∈B

max

{ |P ∩ B+|
n

− λd(B−) , λd(B+) − |P ∩ B−|
n

}
,

and

C(B, P ) := max
B∈B

max

{∣∣∣∣ |P ∩B−|
n

− λd(B−)

∣∣∣∣ ,
∣∣∣∣ |P ∩B+|

n
− λd(B+)

∣∣∣∣
}
,
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then it is easy to see that

C(B, P ) ≤ d∗∞(P ) ≤ B(B, P ) and B(B, P ) − C(B, P ) ≤ δ .

(This is more or less a reformulation of the approximation property (19).) For a given n-
point set P , and a given admissible error δ, Thiémard’s algorithm generates a δ-bracketing
cover Bδ of [0, 1]d and calculates B(Bδ, P ) and C(Bδ, P ).

The costs of generating Bδ are of order Θ(d|Bδ|). If we count the number of points in
B− ∩ P and B+ ∩ P for each B ∈ Bδ in a naive way, this results in an overall running
time of Θ(dn|Bδ|) for the whole algorithm. As Thiémard pointed out, this orthogonal
range counting can be done more effectively by employing data structures based on so-
called range trees. This approach reduces in moderate dimension d the time O(dn) that
is needed for the naive counting to O((logn)d). Since a range tree for n points can be
generated in O(Cdn(log n)d) time, C > 1 some constant, this results in an overall running
time of

O((d+ (logn)d)|Bδ| + Cdn(log n)d) .

But since we cannot get rid of the factor |Bδ|, and the major part of the costs is due to
|Bδ|, we are not interested in these technicalities here and refer to [15] for details of the
implementation.

Our bound (9) tells us that

|Bδ| ≥ δ−d(1 − cdδ) ,

implying a lower bound for any algorithm based on the approach of Thiémard, regardless
of the particular δ-bracketing cover generated. Note that even the time for generating
the δ-bracketing cover is bounded from below by Ω(dδ−d). The question is now, given an
n-point set P in dimension d, what is a reasonable choice of the admissible error δ? Since
the expected star-discrepancy of uniformly distributed, independent random variables τ1,
. . . , τn is of order O(d1/2n−1/2) (see Subsection 2.1), and since only choices δ ≤ O(d∗∞(P ))
seem to be of interest, it is natural to choose δ ≤ O(n−1/2). Notice that if one prefers
to choose δ < n−1, then one should not use Thiémard’s algorithm, but calculate the
discrepancy exactly. Indeed, using the grid G = G1 × · · · ×Gd, where Gi contains 1 and
the ith coordinates of all points of P , one gets

d∗∞(P ) = max
x∈G

{
Vx − |P ∩ [0, x)|

n
,
|P ∩ [0, x]|

n
− Vx

}

and the right hand side can be computed in O(d(n + 1)d) time. The choice δ ∼ n−1/2

and the lower bound (9) lead to |Bδ| ≥ Ω(nd/2), which shows that we can expect only in
moderate dimension d good estimates for low-discrepancy points by using the algorithm
of Thiémard.

For the special δ-bracketing cover Pd
δ that is used in his algorithm, Thiémard proved

the upper bound

|Pd
δ | ≤

(
d+ h

d

)
, where h =

⌈
d ln(δ)

ln(1 − δ)

⌉
.
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This leads to

|Pd
δ | ≤ ed

(
ln ε−1

ε
+ 1

)d

,

a weaker bound than the bounds |Bd
δ | ≤ edε−d + Cdε

−d+1 and |Bd
δ | ≤ 2d−1ed(ε−1 + 1)d we

established for our construction Bd
δ from the proof of Theorem 1.15.

Although the approach of Thiémard has limitations, it would be of practical interest
to close the gap between the lower bound (9) and the constructive upper bounds for the
cardinality of δ-bracketing covers. Thiémard’s empirical data suggests that N[ ](Cd, δ) ≤
d δ−d holds. (However, the discussion in Remark 1.16 underlines, that even if such an
estimate holds in low-dimensions, it does not necessarily hold for all dimensions.)

If one wants to approximate the extreme discrepancy of a given n-point set P up to an
admissible error δ, one can modify Thiémard’s algorithm in the following way: Generate
a δ/2-bracketing cover B of Cd. Instead of considering B− = [0, x) and B+ = [0, y) for
each B = [x, y] ∈ B, it is more convenient to work with the set

Γ := {z | ∃B = [x, y] ∈ B : z = x ∨ z = y} ,
which is a δ/2-cover of Cd. According to Lemma 1.17 the set

Γ̃ = {[x, z] | 1 − x, z ∈ Γ}
is a δ-cover of Rd. We have

max
[x,z)∈Γ̃

∣∣∣∣Vx,y − |P ∩ [x, y)|
n

∣∣∣∣ ≤ de
∞(P ) ≤ max

[x,z)∈Γ̃

∣∣∣∣Vx,y − |P ∩ [x, y)|
n

∣∣∣∣ + δ .

For counting the points in P ∩ [x, z), [x, z) ∈ Γ̃, we again may use orthogonal range
counting based on range trees, as proposed in [15]. The running time of this modified
algorithm is of the same order as the running time of the original algorithm, apart from
the fact that we have to substitute the factor |B| by |B|2.

Let us finish by mentioning a disadvantage of generating the δ-cover Γ̃ via Lemma
1.17: In Thiémard’s original algorithm the δ-bracketing cover Pd

δ of Cd has not to be
stored, since counting the number of points of P that lie inside a δ-bracket B can be done
on the fly, i.e., directly after B is generated. But for the generation of Γ̃ we obviously
have to store the whole set Γ, which has cardinality at least Ω((2δ−1)d). Here maybe more
sophisticated constructions could help to overcome this drawback.
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