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Abstract:

We demonstrate that many collective phenomena in multi-cellular systems can be explained
by models in which cells, despite their complexity, are represented as simple particles which
are parameterized mainly by their physical properties. We mainly focus on two examples
that nevertheless span a wide range of biological sub-disciplines: Unstructured cell popu-
lations growing in cell culture and growing cell layers in early animal development. While
cultured unstructured cell populations would apriori been classified as particularly suited for
a biophysical approach since the degree to which they are committed to a genetic program
is expected to be modest, early animal development would be expected to mark the other
extreme - here the degree of determinism according to a genetic program would be expected
to be very high. We consider a number of phenomena such as the growth kinetics and spatial
structure formation of monolayers and multicellular spheroids, the effect of the presence of
another cell type surrounding the growing cell population, the effect of mutations and the
critical surface dynamics of monolayers. Different from unstructured cell populations, cells
in early development and at tissue interfaces usually form highly organized structures. An
example are tissue layers. Under certain circumstances such layers are observed to fold.
We show that folding pattern again can largely be explained by physical mechanisms either
by a buckling instability or active cell shape changes. The paper combines new and pub-
lished material and aims at an overview of a wide range of physical aspects in unstructured
populations and growing tissue layers.

Keywords:
Individual cell based models, agent-based models, tumor growth, monolayer growth, cell pop-

ulations, biomechanics, early development, blastulation, gastrulation
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I. INTRODUCTION

After more than two decades of mainly focusing on genetic triggers and switches the role
of mechanics and physical interactions in the control of growth and pattern formation in
multi-cellular systems is attracting increasing interest (e.g. [1–5]).

For example, both the saturation size and the shape of three dimensional multi-cellular
aggregates growing in an embedding medium (”multi-cellular spheroids”) depend on the
mechanical properties of the embedding medium, namely, its rigidity [6]. In the experiments
by Helmlinger et. al. [6] the rigidity of the embedding medium was increased by increasing
its amount of agarose. An increase of the agarose concentration leads to a smaller saturation
size of the expanding multi-cellular spheroid. Cells either on flat substrates [7], or in epithe-
lial cell layers of the lung [8, 9] or the pancreas [10] may grow and divide faster if situated
at positions of large local tissue curvature. Cells may also use mechanical stress to adjust
their growth rate to the growth rate of other cells in a tissue sheet [11]. There are different
ways in which a cell can control its physical properties and mechanically communicate with
its environment depending on its state of differentiation, its type and on the properties of
its environment [1]. For example, a cell can reorganize its cytoskeleton and thereby change
its shape and mechanical rigidity. Or, a cell can control the number, placing and specificity
of adhesion molecules which it uses to anchor in a substrate or to form contacts to its neigh-
bor cells and thereby control the strength and specificity of its substrate and neighbor-cell
contacts [12].
Recently, more and more mathematical models are developed to explore potential explana-
tions on the role of biomechanics in the control of morphogenesis and growth (e.g. [13–17]).
Mathematical models can contribute to distinguish between effects that can be explained
purely by physical interactions and those effects that require (active) regulative changes of
the cell behavior or the cell properties. However, the possible benefit of model simulations
largely depend on in how far they can be experimentally validated.
A number of years ago the validation of predictions from mathematical models on multi-
cellular systems was very difficult - if not impossible. This situation is rapidly improving
now. The experimental abilities to collect information on the cell-biophysical, cell-biological
and cell-kinetic properties have improved significantly in the last years. For example, the cell
proliferation (cell division) activity can be determined by the markers Ki-67 [18], BrdU or
Thymidin [19], the apoptosis (programmed cell death) by Tunnel assay [18, 20], the diffusion
constant of cells by tracking labeled cells [21], the elastic modulus of cells by optical stretch-
ers [22], atomic force microscopy (AFM) [23], or acoustic microscopy [24], the strength of
cell-cell and cell/substrate adhesion by AFM [25, 26]. Recent cytometric (e.g. [27] and refs.
therein) and reconstruction methods of 3d tissues from 2d serial sections [28] provide the
conditions to quantify experimentally obtained spatial-temporal labeling pattern in tissues
and tissue morphotypes necessary for the comparison to the results of mathematical models.
Moreover the technical abilities are crossing the borders between different disciplines. For
example, methods that previously have only been used by cell-biologists such as cell-cycle
labeling are now also used by other disciplines such as engineering science and combined with
measurements on the mechanical stress within cell layers to identify the active and passive
properties within multi-cellular systems [7]. This will facilitate to construct mathematical
cell and tissue models that vice versa help to analyze further biological experiments given
these models properly represent the relevant cell parameters. On the level of an individual
cell these are for example cell-biological parameters such as the cycle time, the control of
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the cell cycle passage, apoptosis (programmed cell death) and cell-biophysical parameters
such as cell material parameters, cell shape, and the strength and specificity of cell-cell and
cell-substrate adhesion. The advantage of mathematical models is that they permit to test
hypotheses free from uncontrolled or unknown experimental influences and to make predic-
tions that help to select between competing hypotheses.
In this paper we illustrate by in-silico experiments that a number of experimental observa-
tions in different multi-cellular systems can largely be explained based on a description of
cells mainly as physical objects capable of pursuing only a minimum of additional actions.
The basic model-building strategy follows the same spirit as traffic simulations by agent
based physical models [29]: starting with very simple models successively more complex
regulation processes on the cellular and sub-cellular level are included. As long as the rules
that underlie cell regulation and differentiation have not been understood, the predictive
power of simulations of multi-cellular systems is limited. However, the point at which the
experimental system behavior starts to deviate from the simulated behavior demarcates
where cells might have changed their properties by regulation or differentiation; in so far
simulations may help to find such points.
We partly review some recent work, and partly present complementary and new material.
The basic model unit in most of our studies is an individual cell. In most biological examples
we consider a model type in which each cell is parameterized by characteristic measurable
cell-biological and cell-biophysical quantities. These models base upon a conceptual ap-
proach published some years ago [30]. We complement these by examples where each cell
is considered as a point object on a lattice. Recent reviews on individual-based cell models,
most of them defined on a lattice (cellular automata) can be found in refs. [27, 31–35]. The
multi-cellular systems we consider in this paper are 1. monolayers [36–39], 2. multi-cellular
spheroids [6, 40–42] and 3. one-layered tissue structures in which the layer is not attached
to a fixed surface; examples are multicellular structures in early development and epithelial
interfaces.
By growing monolayers we here mean cell populations growing on a flat substrate. Depend-
ing on the cell type and the substrate used they may form a sparse distribution of cells, a
one-cell-thick layer attached to the substrate, a quasi-monolayer in which some cells do not
have contact to the substrate anymore or even multi-layered structures. Besides the growth
kinetics and the morphotype (the spatial distribution) also the critical surface dynamics of
monolayers have been explored [36].
If those cell types that can grow independent of substrate contact are exposed to liquid
medium they form multi-cellular spheroidal aggregates.
Examples for the formation of highly organized one-layered structures are blastula formation
and gastrulation in species that form a one-cell-thick blastula such as sea urchin and synapta

digita [43, 44], and epithelial tissues that form a one-cell-thick interface such as intestinal
crypts [45–47], the lung [8] or the basal layer of the mucosa [48].
The paper is organized as follows. We firstly present selected examples on growing unstruc-
tured cell populations. This part is subdivided in growing monolayers and multi-cellular
spheroids. For growing monolayers we subsume findings on their growth kinetics (i.e., how
the population size and their spatial spread evolves in time), the morphotype of the ex-
panding cell populations and the critical surface dynamics of expanding cell populations.
In the same section we outline how the morphotype of a cell clone changes if it grows in
a co-culture of (non-dividing) cells which we believe can easily be tested by experiments.
As a step towards how invasive pattern may form, we study how mutations that affect the
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model parameters such as the length of the cell cycle time, the probability of programmed
cell death (apoptosis) or the sensitivity towards contact inhibition of growth may affect the
multicellular phenotype. Mutations have been shown to cause genetic heterogeneity of cells
in tumors and of micrometastases [49]. The subsection is followed by a model of growing cell
populations in liquid suspension i.e., of cell populations not attached to any substrate. The
multi-cellular aggregates formed under this condition are called ”multi-cellular spheroids”.
The second main section focuses on a simulated scenario in early development and presents
results on the modeling of buckling and folding events in one-layered tissues. Finally we
close the paper by a summary and a discussion.

II. MONOLAYERS AND MULTICELLULAR SPHEROIDS

Within the last decades biological in-vitro (as opposed to in-vivo, i.e., in the living or-
ganism) models of in-situ tumors and micrometastasis have been developed and extensively
studied in order to characterize their growth dynamics under various conditions ([41], [40]).
Commonly used techniques are monolayer cultures where cells grow on a petri dish coated
with proteins and liquid media containing specified quantities of small molecules such as
salts, glucose, amino acids, and vitamins, and furthermore growth factors and transferrin,
which carries iron into cells ([50], [51], [52], [53]). In-vitro cell cultures are important ex-
perimental tools in understanding and analyzing the mechanisms involved in the growth of
cell populations. Treatment strategies for a number of diseases may be tested in-vitro with
respect to their efficiency and their toxicity before being applied to in-vivo systems. This in
particular involves testing drug, radiation, and chemotherapy strategies against cancer [42].
Their advantage over in-vivo systems is that they can easily be manipulated.
Many types of normal animal cells need anchorage to grow and proliferate. When normal
fibroblasts or epithelial cells, for example, are cultured in suspension they round off and
usually do not divide [54]. In order to permit division they need to be anchored in the
substrate by focal contacts. Focal contacts are links of the actin cytoskeleton by cell-surface
matrix receptors (integrins) to extracellular matrix (ECM) molecules, such as laminin or
fibronectin. The binding of ECM molecules to integrins leads to the local activation of in-
tracellular signaling pathways that can promote the survival, growth and division of cells. As
a consequence normal cells usually stop division at confluence, i.e., if the cells form a closed
monolayer on the floor of the culture dish. In the next sub-section we will firstly introduce a
model to explain the observed growth pattern on flat substrates. Tumor cells are often able
to grow and divide anchorage-independent. I.e., they can be grown in suspension, not being
attached to a substrate, where they form growing spherical aggregates (tumor spheroids).
Whether cell lines basically grow as monolayers or also expand perpendicular to the substrate
depends on whether certain mechanisms that control growth and apoptosis work properly.
Different cell lines originating from the same tissue may grow very differently. E.g., while
HCT116 cells, a Human colon carcinoma cell line, grow mainly as a monolayer, WiDr cells,
a Human colon adenocarcinoma cell line, quickly expand into the direction perpendicular to
the plane of the substrate. After the study of perfect (one-cell-thick) monolayer we explore
the effect of simulated knockouts of growth mechanisms and show that the phenotype in
this case can dramatically change. This is followed by co-culture simulations of cell clones
growing in an environment of non-dividing cells, the critical surface dynamics generated by
cells at the monolayer border and the possible effects of mutations that affect the kinetic
cell parameters on the monolayer kinetics and phenotype. The second sub-section IIB will
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focus on tumor spheroids.

A. Monolayers

1. Perfect one-cell-thick monolayers on a flat substrate

Bru et. al. [36, 55] have grown two-dimensional tumor monolayers from C6 rat astrocyte
glioma cells. They observed a linear growth of the tumor diameter L with time t (Fig. 1A)
even if the monolayer was covered with additional nutrient medium. Thus even though all
cells were in contact to the nutrient medium the growth was not exponential but linear.
Moreover, although in monolayer cultures no shortage of glucose (or oxygen) occurs, a
characteristic proliferation pattern forms above a certain population size with the highest
proliferation activity close to the tumor boundary [55]. This suggests that the division of non-
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Figure 1: A: Growth kinetics of C6 rat astrocyte-cells in monolayer cultures. Experimental obser-

vation of the diameter L (black dots) and the simulated curve (straight line). Note that there is an

initial exponential growth of L(t). The dotted and dashed line are calculated from the simulated

cell population size N(t). The dashed line denotes
√

Nl/̺ where ̺ = 0.91 is the optimum packing

density of discs in two-dimensional space and l is the cell diameter. The dashed line would be

expected to collapse with the L(t) if no cell would be in the proliferation cycle and if all cells were

packed at maximal density. The dotted line denotes
√

2Nl/̺ which would be expected if all cells

were immediately before division hence having twice the volume of a non-proliferating cell. By a

least-mean square fit one finds that the average cell size of the cell population is ≈ 1.15l i.e., be-

tween the minimum cell size l and its maximum
√

2l. (For the simulations we used the basic model

described in the text.) B: Typical monolayer growth scenario. Shown are snapshots at N = 1,

10, 100, 250, 1000, 2500 and 12500 cells, respectively. The lighter the cells the shorter is their cell

cycle time. Above a certain monolayer size the main cell proliferation activity is close to the border

while the cell proliferation activity in the interior is very small. The parameters in this simulation

were l = 10µm (Bru, priv. communic.), τ = 18h (Bru, priv. communic.), E = 400Pa[56, 57],

D = 4 × 10−13cm2/s, δ = 0.2l, ǫ = ǫs, (obtained from ̺m ≈ 5 × 1014/m2 [25], [58], Ws = 25kBT ),

FT ≈ 6 × 10−16J [59], [60] (see text for details).

boundary cells may be repressed by a form of contact inhibition. This finding has stimulated
us to study whether the growth kinetics and spatial growth pattern can be explained by a
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mechanical form of contact inhibition.
The quantitative information available on growing cell populations is still insufficient to set
up a model that reproduces every minute detail of in-vitro tumors. Rather we follow the
view of Ref. [61] and illustrate how a (mechanistic) model that is based on characteristic
features of individual cells is capable of giving at least a partial explanation of the growth
dynamics of in-vitro tumors. Our model approximates each cell by an elastic, sticky particle
of limited compressibility and deformability capable of active migration, growth and division;
each model parameter can in principle be experimentally determined.

The major model features and assumptions are summarized below (additional technical
details can be found in Appendix A, alternative model variants are discussed below).
The basic model:

(A1) Since isolated cells in cultures or suspensions often have a spherical shape we assume
each model cell to be spherical directly after cell division. Cells that do not continue to grow
and divide (”to proliferate”) are assumed to maintain the spherical shape. Proliferating
cells grow and deform into a dumb-bell during mitosis until they divide into two spherical
daughter cells of equal size (Fig. 2(A)). The initial orientation of the dumb-bell axis is
random within the plane of the substrate (see also assumption A4 for further explanation).

(A2) Cells in contact can form adhesive bonds. With decreasing distance between cell
centers (e.g., upon compression) the contact area between them increases and with it, the
number of adhesive bonds, resulting in an increasing attractive interaction. On the other
hand, if cells in isolation are spherical, an increasing contact area is accompanied by an
increasing deformation which results in a repulsive interaction. Furthermore cells under
physiological conditions have only a moderate compressibility. We model the combination
of attractive and repulsive interactions by the interaction energy (Fig. 2(C)):

Vij =











ǫ
(

2d̃ij (t)

δ
+

√

ǫs

ǫ

)2

− ǫs if −δ ≤ d̃ij(t) ≤ 0

∞ if d̃ij < −δ
0 otherwise.

(1)

d̃ij = dij − (Ri + Rj) where dij denotes the distance between the nearest spheres of the
neighboring dumb-bells i, j (here, Ri = Rj = R). ǫs ≈ ̺mAijWs is the cell-cell adhesion en-
ergy. Ws is the energy of a single membrane receptor bond of adjacent cells, Aij the contact
area between cells i, j and ̺m denotes the density of cell-cell adhesion receptors in the cell
membrane. The term ǫ(...) in the first line of eqn. (1) represents the elastic contributions.
ǫ ≈ Elδ2/8 includes the cell elastic modulus E of the cell, and δ/2 is the range over which a
cell may be stretched or compressed. The cell diameter of a cell immediately after division
is l ≈ 2R (while we define that the cell has an incompressible core with radius R − δ/2, see
Fig. 2).
(A3) In the absence of chemotactic signals, isolated cells in suspension or culture medium
have been observed to perform a random walk [21, 60]. We model this by a stochastic com-
ponent in the movment of each cell which we characterize by the cell diffusion constant D.
(A4) While in mechanical contact to other cells, proliferating cells exert a pressure on their
neighbors. The neighboring cells try to escape this pressure by moving against the friction
caused by the other neighbor cells and extracellular material (e.g. matrix). The stronger
the friction, the slower the cells move. We simulate a friction-dominated stochastic dynam-
ics driven by physical interactions by the standard Metropolis algorithm [67] with a proper
definition of timescales (e.g. [30, 68, 69]). Note that the movement may be active or passive
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Figure 2: A,B: Illustration of the two used cell division algorithms, C: Interaction potential energy

between the nearest spheres of the neighboring dumb-bells i, j (here, Ri = Rj = R). A: During

cell division, a cell deforms from a perfect sphere into a dumb-bell in small steps δa ≪ l. The

pictures show the incompressible core of the cells i.e. the cells in their maximal compressed state.

Each incompressible dumb-bell cores has the radius R − δ/2 and the size (diameter) l − δ. An

uncompressed and undeformed cell directly after division is spherical with diameter l = 2R. Our

algorithm mimics a linear increase of cell mass during the passage of a cell through the cell cycle

in agreement with the experimental observations [62]. B: Different from the division algorithm

in (A) the radius is first increased from R → 21/3R to mimic the doubling of the cell volume

followed by a cell deformation into dumb-bells at constant volume. C: Interaction potential energy

between the nearest spheres of the neighboring dumb-bells i, j (here, Ri = Rj = R). The shape

of Vij reflects the limited compressibility and deformability of the cells and contains direct cell-

cell adhesion. Three different models are shown, a harmonic-like interaction energy, a Hertz-like

approach [63] and the Johnson-Kendall-Roberts (JKR)-model (e.g. [64], [65], [66]) of adhesive,

deformable, isotropic and homogeneous elastic spheres. Within a realistic range for the effective

energy FT that models the migration activity of the cells and of the Young modulus within a range

of 300 − 600Pa, however, the approaches result in very similar shapes for the interaction energy

for dij/l ≤ 1. (For embryonic cells Beysens et. al. [59] found FT ≈ 2− 8× 10−15J , experiments by

Schienbein et. al. [60] with granulocytes suggest that FT =∼ 10−17J .) For dij > l the JKR-model

shows a hysteresis behavior if cells detach (red arrows in the upper figure where detachment occurs

dc
ij = l). For illustration purposes the Hertz I/Hertz II-potentials and the harmonic potential I

(where ǫs = ǫ ≈ −7.5FT ) were lowered by −6 (note that the dynamics is determined by the energy

differences only). The other parameters were the same for the Hertz I and the JKR interaction

energy curves. For the Hertz II-curve the surface tension was assumed to be 20% above those

for the Hertz I and JKR curves (we used an surface receptor density of 1015m−2 [25], [58] and a

binding strength of Ws = 15 − 25kBT for each receptor).

or both. The observations in Ref. [7], however, suggest that on a flat substrate cells migrate
rather than being pushed by dividing cells. The algorithm uses the interaction energy (A2,
eqn. (1), see also Fig. 2C), that can directly be related to forces. In our two-dimensional
monolayer simulations we perform on average one translation trial of size ξ and one orien-
tation trial of angle δα per cell within each time period ∆t and accept it with probability
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Pa = 1 if ∆V tot = V tot
t+∆t−V tot

t < 0 and with probability Pa = exp(−∆V tot/FT ) otherwise. α
is the rotation angle of the dumb-bell axis in the substrate plane. (For our three-dimensional
simulations in Figs. 3, 5, 9 we considered rotations around three space-fixed axes by an an-
gles δαi with i = 1, 2, 3 according to the algorithm of Barker and Watts (see ref. [70]).)
ξ and δα are random variables distributed uniformly in the intervals ξ ∈ [0, ξmax) and
δα ∈ (−δαmax, δαmax), respectively. Each translation step trial is performed into a random

direction. ξmax ≪ l, δαmax ≪ π. Here, V tot =
∑N

i<j Vij summarizes the attractive and repul-

sive cell-cell interactions, Vij denotes the interaction between cells i and j (Fig. 2B). Every
ng ≫ 1 translation and orientation trials, one growth trial of size δa uniformly distributed
in [0, δamax) is performed. FT is a reference energy[59] analogous to the thermal energy
kBT in fluids or gases (T : temperature, kB:Boltzmann const.). In order to use the Monte
Carlo method for kinetic simulations we have defined time scales for each of the processes
growth, division, migration and rotation. Consider migration as an example. Firstly we
build a list containing all cells at a certain point of time to insure that no cell is omitted
for a migration trial. We successively choose all cells from the list (in random order) and
perform one migration trial per cell. We perform this procedure consisting of 1. setting up
the list and 2. performing precisely one migration trial per cell ng-times in time intervals
of ∆t before performing a growth or division trial for each cell in the same way (building
a list, performing one trial per cell). The size and frequency of the migration and growth
(and division) trials is chosen in such a way, that the diffusion constant and the cycle time
of isolated cells are correctly reproduced so that a simulation mimics a realistic time de-
velopment of the multicellular configuration (further technical details on how the step size
variables ξmax and δamax as well as ng are related to measurable quantities such as the cycle
time τ and the diffusion constant D can be found in Appendix A). The use of the Monte
Carlo method is motivated by the observation that after each growth step all cells move
to relax the configuration at least into a local equilibrium [30]; the procedure used here
corresponds to the numerical integration of a master equation for the time development of
the multi-cellular configuration (compare Ref. [71]).
(A5) We assume an average intrinsic cell cycle time to be influenced at the level of individ-
ual cells by nutrients, regulatory factors and mechanical stress. We denote τ as the average
intrinsic cell cycle time of an isolated cell not affected by physical interactions with neigh-
boring cells. We assume that a cell within a multicellular aggregate can grow only if it is not
deformed or compressed greatly. In our model a growth trial is accepted only if the cell-cell
distance (or more precisely, the distance between the centers of neighboring dumb-bells)
doesn’t fall below the minimal distance dmin

ij = 2R− δ. Consequently the observed cell cycle
time of deformed cells is typically larger than the intrinsic cycle time.
(A6) We started our simulation with a single cell.

It is not necessary to model glucose or oxygen explicitly, since in the cultured monolayer
experiments by Bru et. al. [36] nutrients are equally accessible to all cells.
In order to relate the numbers on the computer to ”real” biological situations we introduced
a length, a time and an energy scale and referred all model parameters to groupings of
these reference scales.

We will firstly present simulation results obtained by simulations with this model. This
is followed by a discussion of a modification of some of the model assumptions, namely of a
modification of the cell division algorithm (A1), of the cell-cell interaction energy (A2) and
of the cell movement algorithm (A4).



10

Fig. 1B shows a typical time series of the monolayer morphology and a snapshots of
the layer-like proliferation pattern for population sizes of N = 1 to N = 12500 cells. The
highest proliferation activity is close to the monolayer boundary while in the interior almost
no proliferation can be found in agreement with the experimental observations. As shown
in Fig 1A the time development of the monolayer diameter is also in good agreement with
the experimental observations for C6 rat astrocytes.
As long as a monolayer is sufficiently small the number of cells that have to rearrange if a
cell in the monolayer interior grows or divides is small. Accordingly a growing cell in the
monolayer interior is in general able to exert a sufficiently strong force on its neighbors to
push these aside or stimulate them to actively migrate away. Since glucose and oxygen are
not limiting, cells divide everywhere in the monolayer hence the cell population size grows
exponentially fast. The cell cycle time τ can be experimentally determined from the slope
of the growth curve in the initial exponential growth regime of the cell population size (Fig.
9C illustrates this for multicellular spheroids) . Our model predicts that above a certain
monolayer size cells sufficiently far in the monolayer interior become jammed between so
many surrounding cells that they are neither capable of pushing their neighbors aside nor
is active migration of surrounding cells fast enough to generate sufficient space for interior
cells to divide. This results in a large stress inside the monolayer which relaxes toward its
boundary only within a small surface layer where cells are able to divide. In this regime,
dL/dt = v ≈ 2∆L/τ , where ∆L is the width of the proliferation zone (white in Fig. 1B)
and τ is the cycle time. Our explanation is supported by the observation of Bru et.al. (priv.
comm.) that almost each cell was in close contact to its neighbors. Alternatively, one may
think of contact inhibition initiated by the interaction of cell surface receptor molecules.
In this case, if cell-cell attraction is present, only the outermost cells of the monolayer
would be able to divide in which case the growth velocity would be 2l/τ ≈ 1µm/h (l: cell
diameter), i.e. smaller than the value of 5.8µm/h found by Bru et. al. [36]. Note that this
case corresponds to the assumption of the Eden model [72] in which cells occupy sites of a
lattice, at most one cell per lattice site, and cell division can only occur onto adjacent free
lattice sites.
Another possible alternative would be that the boundary cells detach from the monolayer
and freely migrate away from the monolayer center. Such a behavior can be observed for
invading tumor cells [73]. In this case the boundary of the monolayer would not be sharp but
disperse. Such a behavior is qualitatively modeled by the Fischer-KPP-equation in which
the local density of cells is assumed to change by logistic growth and diffusion (e.g. [74],
[75]). However, the observed shape of the cell aggregates by Bru suggests that at least for
HT-29 cells [55] and for C6 rat astrocyte cells (Bru, priv. communication) it is not the
migration of detached cells that is responsible for the observed linear growth regime.
From the above reasoning the expansion velocity can be changed by mechanisms that either
modify the thickness of the proliferation layer ∆L or modify the cell cycle time (τ). The
thickness of the proliferation layer can be increased in the model by decreasing the Young
modulus or the sensitivity for contact inhibition by increasing δ (since both lead to an
increase of the force necessary to cause an overcoming of the deformation or compression
threshold necessary to stop cell growth), or increasing the migration activity (for example, by
the parameter ng; since this facilitates cells to escape a critical deformation or compression
by migration).

Model variants:
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We have considered a number of model variants to test the robustness of the findings.
(AV1) Instead of modeling the cell deformation and the cell growth (i.e. the process which
increases the cell volume) at the same time by a deformation of a cell into a dumb-bell
with concomitant volume increase as shown in Fig. 2A, we have tested a cell division
algorithm in which the cell remains spherical until it has doubled its volume (i.e. until it
has adopted a diameter of 21/3l) followed by a deformation into a dumb-bell at constant cell
volume Fig. (2B). This division algorithm originally introduced in Ref. [30] distinguishes
between interphase and mitose phase. The interphase subsumes the first three sub-phases,
G1, S, G2 of the cell cycle [76]. During the mitosis phase the mitotic spindle forms and the
cell subsequently divides. This process lasts about 2 hours and is much shorter than the
interphase (the total cell cycle length is usually about 24 hours) [76]. We found that this
modification has (almost) no influence on the growth pattern (Fig. 3).
(AV2) Instead of using a simple harmonic-type interaction energy one may use other models.
If we approximate cells by adhesive, deformable, isotropic and homogeneous elastic spheres,
then suitable models are the classical Hertz-model [63] extended by a term that takes into
account cell-cell adhesion [77, 78] or the Johnson-Kendall-Roberts (JKR)-model (e.g. [64–
66]) which takes into account the hysteresis effect that occurs due to cell elongation if cells
are pulled apart (compare Fig. 2(C) for both models).
In Fig. 2(C) we represent the interaction energy of these two alternative models that are
calculated using the following relations:
(AV2.1): The extended Hertz-type interaction energy is

Vij = (Ri + Rj − dij)
5/2 1

5Ẽij

√

RiRj

Ri + Rj
+ ǫs. (2)

The first term on the rhs. models the repulsive, the second term the adhesive interaction.

Ẽ−1
ij =

3

4

(

1 − σ2
i

Ei
+

1 − σ2
j

Ej

)

. (3)

Here, Ei, Ej are the elastic moduli of the cells i, j, σi, σj the Poisson ratios of the spheres.
This takes into account that a homogeneous, isotropic elastic body is completely charac-
terized by two independent material constants, for example the Young modulus and the
Poisson ratio.
(AV2.2): The force Fij ≡ |F ij(dij)| in the JKR-model has to be calculated numerically from
the implicit equation:

δ =
a2

R̃
−

[

16πγ̂a/(3Ẽij)
]1/2

, (4)

where

a3 =
2R̃

Ẽij

[

Fij + 3πγ̂R̃ +
[

6πγ̂R̃Fij + (3πγ̂R̃)2)
]1/2

]

. (5)

R̃−1 = 1
Ri

+ 1
Rj

, and dij = Ri +Rj −δ (i.e., δ = δi +δj is the sum of the deformation along the

axis between the centers of the closest spheres of the dumb-bells of cell i and cell j), for Ẽ−1
ij

see equation (3). γ̂ ≈ ̺mWs, where ̺m ≈ 1015m−2 [25], [79] is the density of surface adhesion
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molecules in the contact zone and Ws = 15− 25kBT is the binding energy of a single bond.
Eqn. (5) has to be solved implicitly to give a(Fij). The value of a is plugged into eqn. (4)
to give δ(a) and, by dij = Ri + Rj − δ, dij(a). Plotting Fij vs. dij yields Fij(dij), which
cannot be given explicitly but can be easily fitted by a polynomial (we used a polynomial of
degree three). From this, the JKR-energy Vij can be investigated by integration using the
F ij = −(∂Vij/∂dij)(d(dij)/dx, d(dij)/dy, d(dij)/dz). The corresponding interaction energy
is shown in Fig. 2C.
As Fig 2C illustrates, the shape of the different interaction potential energies is very similar
for the harmonic-like, the Hertzian-like, and the JKR-interaction energy if two cells adhere.
The most important difference of the JKR-model to the Hertz-model is the hysteresis effect
that results from the strong attraction: when two spheres approach each other they spon-
taneously form a contact area of finite size at a distance dij = 2R while at limǫ→0 2R + ǫ
they had no contact. If they are pulled apart, however, they still have contact at distance
limǫ→02R + ǫ ≤ dij ≤ dc

ij (Fig. 2C). This leads to a marked difference in situations in which
cell detachment becomes important as we show in the next subsection where we consider a
piling up of monolayers.
Eventually, to insure quantitative predictions beyond qualitative tendencies, it is necessary
to measure all cell-biophysical and cell-biological parameters in the same biological system
to determine the cell-cell (and cell-substrate) interaction energy.
(AV4:) The Metropolis algorithm may be viewed as a numerical integration of a master
equation for the probability density distribution to find the multi-cellular configuration in a
state characterized by the cell variables such as their positions, orientations, sizes etc. [71].
A more intuitive way to model the cell movement may be by equations of motion for each
individual cell. We have studied Langevin-type equations of motion for each cell i given by

(

γ + Γf

cs

) dxi

dt
+

∑

j nn i

Γf

cc

(

dxi

dt
− dxj

dt

)

=
N

∑

j=1

F ij + ηi(t). (6)

Here, xi is the position of the center of cell i, γ denotes an effective friction coefficient that
determines the speed of an isolated cell subject to an external force. We have used the
division algorithm in Fig. 2B for which we found that each proliferating cell spends most
of its time in the spherical growth phase (and not in the dumb-bell-deformation phase).
For this reason we neglected rotations of dumb-bells by a torque. For spherical cells,

Γf

cy
= γ

(cy)
‖ nijnij + γ

(cy)
⊥

(

E − nijnij

)

. Here y = c denotes cell-cell, and y = s cell-substrate

interactions. nij =
xj−xi

|xj−xi|
. nijnij here denotes the dyadic product i.e. is a 3×3-matrix. γ

(cy)
‖

and γ
(cy)
⊥ are the parallel and perpendicular friction constants, respectively (for example,

(

E − nijnij

)

v is the projection of v onto a plane perpendicular to nij , so if v ⊥ nij , then

the friction is solely given by γ
(cy)
⊥ ). To calculate xi − xj if j = s denotes a flat substrate,

approximate the flat substrate by a sphere and consider the limit where the radius of the
sphere diverges.
In (radially) expanding monolayers the velocity of neigbhoring cells is very similar due to
the circular monolayer shape so that the friction between cells may be neglected and hence
the sum on the lhs. of eqn. (6) be dropped. The autocorrelation function of the noise
then is 〈ηi

m(t)ηj
n(t′)〉 = Aδijδmnδ(t − t′). If the cell-cell friction is neglected in the autocor-

relation function of the noise and if γ
(cs)
⊥ = γ

(cs)
‖ , then A = 2(γ + γ

(cs)
⊥ )FT . If the cell-cell

friction term is not neglected and if γ⊥ = γ‖ for both, cell-cell and cell-substrate-friction,
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then A = 2(γ +γ
(cs)
⊥ +γ

(cc)
⊥ )FT [77], [80]. Note that γ‖ and γ⊥ include the information about

the contact area. By the Stokes friction one can relate the friction constants with the radius
of the contact area and the viscosity of the medium.
Figure 3 shows a comparison between the Metropolis-method and the numerical integration
of the Langevin equations (note that the simulations shown in Fig. 3 are with the cell-cell
friction term). The curves show a reasonable agreement. For very small step sizes ξmax (at
large ng between subsequent growth trials) so that |∆Vij | ≪ FT , the curves should collapse.
We also studied the size of clones of successively born cells which be believe reflects the
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Figure 3: Comparison between Langevin and Monte Carlo simulation for a selected parameter

set. (1) denotes the cell division algorithm of Fig. 2A, (2) the cell division algorithm in Fig.

2B. A: Population size N(t). B: Diameter growth L(t). The model parameters were (in both

simulations, a JKR-model was used): l = 10µm, τ = 18h, D = 10−11cm2/s, E = 450Pa, ν = 0.4,

̺m = 10−15/m2, Ws = 25kBT , FT = 10−16J , and for Langevin: γ = 0.1Ns/m, γ
(cj)
‖ = γ

(cj)
⊥ ≈

0.03Ns/m for j = c, s (details see text).

competition of cells for free space. Our model predicts that nearby cells in the monolayer
can form sub-clones of largely different sizes as a consequence of a competition of growing
and dividing cells for free space (Fig. 4). Those cells which are under slightly smaller com-
pression can on the average more easily grow and divide than those cells which are under
larger compression. At the monolayer border, usually the cells at the tip of the border are
under smaller compression (compare the arrow in the magnification of Fig. 4A) which is
why their average cycle time length is usually smaller than the cycle time length of cells
at concave positions of the border so that their clones usually out-compete clones which
are formed by cells at convex border positions. One way to test this observation of clonal
competition found in our computer simulation is to label individual cells by markers such
as BrdU [19]. BrdU is passed on the daughter cells in case a cell divides.

2. Piling up of cells on a flat substrate

Many of the epithelial cell populations which are subject to cell-substrate contact
dependent proliferation and anoikis grow in a cell culture to confluent cell monolayers ([81],
[82], [83])and simultaneously establish a cell polarity. Epithelial cells form inner and outer
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Figure 4: Subclone sizes. (A) The three clones (red, blue, green) emerged from cells that were

born immediately one after the other. The average clone size is expected to behave as 〈Nk〉 =

q(N −k)/Np where k enumerates all cells in chronological order from k = 1, 2, ..., Np is the number

of proliferating cells and q is a fit parameter. Np = k in the exponential (k ∝ exp(t/τ)) and

Np = kds/d∆L/l, in the surface growth (k ∝ td) regime, where ds is the global surface dimension,

and d the dimension into which the tumor is expanding (for monolayers, ds = 1, d = 2). By

definition, Nk=1 = N . For the red, blue and green clone approximately the same clone sizes would

be expected while the observed clone sizes show significant differences. The arrow within the

magnification shows a cell at a locally convex position of the surface that has a larger probability

to form a large clone. (B) shows the gliding average Y ≡ N k,∆kNp/(N − k) ≈ q (where we have

approximated 〈Nk〉 by Nk,∆k with ∆k = 200 and chosen Np = k1/2) which fits well the mean-field

form although the true sub-clone size shows large fluctuations in the surface growth regime if the

proliferative activity is concentrated at the monolayer boundary. Here, ∆L has been defined by

v = dL/dt ≡ 2∆L/τ where v is the expansion velocity of the monolayer and τ the intrinsic cycle

time (set to τ ≈ 19h). v can be obtained from L(t) The cell diameter was assumed to l = 10µm.

The diffusion constant of isolated cells for the curves in Fig. 4(B), were D = 1.4×10−13cm2/s (blue

curve) and D = 2 × 10−12cm2/s (black curve), respectively. (For comparison: for the monolayer

growth curve in Fig. 1A, D ≈ 4 × 10−13cm2/s. The other parameters are as in Fig. 1.)

surfaces of the body [84]. Anoikis is a special type of selective programmed cell death that
normally occurs if cells loose contact to the substrate [85]. Confluent cell monolayers form
a one-cell-thick layer which covers the total area of the culture dish. The introduction
of different oncogenes into cultured epithelial cell lines affects their signal transduction
pathways ([86], [87], [88]). In cell lines which normally form cell monolayers this can result
in a break down of the epithelial cell polarity due to changes of the cellular adhesion
properties [87] and/or prevents anoikis interrupting apoptotic signaling pathways [88].
Thereby it may enable anchorage independent growth, which is characteristic for many
tumor cell lines ([89], [90]). The accumulation of such cells at confluence can lead to the
formation of multilayers [87] or to the formation of spheroidal aggregates [88]. To explain
these phenotypic differences between non-transformed and transformed cells biologists are
focusing on the molecular mechanisms to understand how molecular signals from other cells
or the substrate are transduced from the cell surface into the cell and affect the genetic
control of cell proliferation and death ([86], [87], [88]). As shown for endothelial cells,
another critical determinant that switches cells from life to death and between proliferation
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and quiescence may be cell shape [91]. Epithelial cells are also able to sense changes within
the local micro-environment by sensing the degree of their own extension or compression,
and thereby couple shape changes to cell migration and proliferation [92]. Hence, some
of the effects of cell contact formation and release during epithelial organization can be
directly attributed to the physical interaction between individual cells and their neighbors,
and between individual cells and their substrate [77].

Cells in the interior of the monolayer experience a force from surrounding proliferating
cells. Since monolayers are not completely flat but show small spatial fluctuations as a
consequence of the stochastic growth and re-arrangement processes the force that an interior
cell experiences from its surrounding cells is not completely parallel to the substrate. If the
outward pointing force component of the total force that is exerted on a cell perpendicular
to the plane of the monolayer overcomes the cell-substrate adhesion strength then cells may
be pushed out of the layer (Fig. 5). This occurs in particular for cell lines which are either
insensitive to contact inhibition or for which contact inhibition is completely switched off.
Usually cells that loose substrate contact do not proliferate anymore (anchorage-dependent
proliferation) and after a period of several hours undergo apoptosis (anchorage-dependent
apoptosis: anoikis). In Fig. 5 we study successive knock-outs of (I). contact inhibition, (II).
anchorage-dependent proliferation in addition to I and (III) anoikis in addition to II. As
long as anoikis is still present a quasi-monolayer is maintained and again a surface growth
regime with L ∝ t forms. Only if anoikis fails to work a significant piling up perpendicular
to the plane of the substrate occurs (Fig. 5).
For the simulated knock-outs we used both, an extended Hertz-model (eqn. (2)) and the
JKR-model (eqns. (4), (5)). The qualitative scenario is the same independently of whether
the Hertz-or JRK-model is used. The hysteresis that occurs in the JKR-model, however,
leads to a delay in the detachment process of cells from the substrate compared to the
extended Hertz-model (Fig. 5B). The qualitative results in our simulations are very robust
against changes of model details (e.g. [77]). Cells may also die by apoptosis before they are
pushed out of the uppermost cell layer. However, as long as apoptosis does not affect cells
in the proliferating rim the monolayer growth kinetics unaffected by apoptosis and as shown
in Fig. 1(A) [66].

3. Co-cultures

Tumors in-vivo do usually not grow in a liquid environment but in an environment of soft
tissue, organs, or at epithelial interfaces. In order to invade the surrounding tissue tumor
cells usually release degradative enzymes, notably matrix metalloproteinases and change the
expression and localization of certain proteins. E-cadherin, a cell surface adhesion receptor
involved in cell-cell contacts, has been found to disappear from cells at the edge of colon
carcinoma. Subsequently β-catenin migrates from the cytoplasm to the cell nucleus which
leads to an increase of cell proliferation [73].
The situation of tumor invasion may to some extend be mimicked in co-culture experiments
by seeding cell clones in an environment of another cell-type which we briefly illustrate here.
A detailed analysis including a sensitivity analysis of different model parameters will be pre-
sented elsewhere (Drasdo and Höhme, in preparation). We here focus on the situation before
the cell switches the above described mechanism on for invasion. Our simulations predict
that in a co-culture situation a characteristic spatial inhomogeneous pattern may form that
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Figure 5: Destabilization scenario of a monolayer adhered to a flat substrate in simulations by the

basic model using the Hertz-type interaction AV2.1 (A) and the JKR-interaction energy AV2.2

(B). The color is a relative measure of how far the cells are above the substrate (blue: direct

substrate contact, red: far above the substrate). The numbers (I), (II), (III) denote knocked-out

control mechanisms, namely (I) contact inhibition: a cell in which this mechanism is knocked out

is assumed to not stop to proliferate even if a critical compression or deformation threshold is

overcome, (II) anchorage-dependent proliferation: if this mechanism is absent cells do not stop to

proliferate if they have lost substrate contact, and (III) anchorage-dependent apoptosis (anoikis):

if this mechanism is knocked out cells do not undergo apoptosis after they lost substrate contact

while cells under normal control die a few hours after loss of substrate contact. (The same scenario

have been found in a slightly different model in which the cell migration and the change of cell

volume both have been modeled by a Langevin equation and a Hertzian-interaction energy have

been used; for details, see ref. [77].) The parameters in the Hertz and the JKR-model are the

same. As the consequence of the hysteresis in the JKR-interaction energy, much less cells detach

from the substrate for the JRK-interaction than for the Hertz-type interaction. For growth in

perfect one-cell-thick monolayers (uppermost case) the differences are negligible. The parameters

are: l = 10µm, τ = 18h, E = 450Pa, µ = 0.4, D = 1.27×1011cm2/s, ̺m = 1015/m2, Ws = 25kBT ,

FT = 10−16J .

is triggered by the proposed form of biomechanical growth inhibition (Fig. 6(B),(C)). In the
simulations a dividing cell clone was initially embedded in a monolayer of non-dividing cells
with otherwise the same properties as the dividing cell clone. In our simulations we varied
the motility of the embedding cells. If the motility of the embedding cells is sufficiently
large an approximately circular expanding clone forms while for less motile environmental
cells an inhomogeneous, fingering structure forms. The fingering structure is a consequence
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A B C

Figure 6: Morphologies of a monoclone growing as a perfect monolayer in (A) suspension, (B),(C)

co-culture. In (B), the motility of the embedding cells (light blue) is twenty times larger than

in (C). The colors in the right half of the pictures indicate the proliferative activity; the lighter

the cells the shorter is their cycle time. While the morphotype of the expanding clone in (A) is

circular, in (B) is compact and largely circular, it is finger-like in (C). Note that in monolayer

cultures almost all cells have a good access to glucose. (For the expanding cell clone we here used

the JKR-model with the same parameters as in Fig. 5. For the embedding cells we assumed an

initial distance of l on a square lattice, no cell-cell adhesion, and D = 1.27 × 10−11cm2/s in (B)

and D = 6 × 10−13cm2/s in (C).)

of density fluctuations of the embedding cells in that the growing enclosed monoclone forms
fingers into the direction where the density of the environmental cells is locally smaller. If
the embedding cells are very motile they migrate to escape the outgrowing sprouts. (The
situation is expected to be similar if the embedding cells are replaced by granular matter.)
Note, however, that at a certain degree of compression, apoptosis may be triggered. In case
the embedding cells are more sensitive to pressure and die at a smaller pressure than the
growing expanding clone then the growing cells eventually fill the whole space left by the
embedding cells.

4. Border fluctuations

As shown in Fig. 1, our computer simulations with the off-lattice model were able to ex-
plain the growth kinetics (L(t)) of the experiments by Bru et. al. [36]. Besides the growth
kinetics Bru et. al. studied the critical boundary properties of expanding monoclones by ap-
plying theoretical concepts from non-equilibrium statistical physics used to classify surface
growth phenomena into ”universality classes”. A universality class in homogeneous isotropic
interface growth of solids is usually characterized by three critical exponents, the growth ex-
ponent β, the roughness exponent α and the dynamic exponent z [93]. The exponents are
related by the scaling relation z = α/β hence only two exponents are independent and need
to be measured. Bru et. al. suggest that monolayer growth belong to the Molecular-Beam-
Epitaxy (MBE) universality class. MBE is characterized by a ”raining” or deposition of
particles on a surface. The particles then diffuse along the surface. The critical surface
dynamics have extensively been studied for Eden clusters which have been proposed as a
simple model of tumor growth [72]. The universality class of Eden clusters is believed be the
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Kadar-Parisi-Zhang (KPZ) universality class (e.g. [94], [93], [95] and refs. therein), hence
Eden clusters do not belong to the MBE universality class. KPZ-growth is characterized by
growth along the local normal of the surface which is stabilized by surface tension. For a one-
dimensional surface the KPZ-critical exponents are α = 0.5, β = 1/3 and z = 3/2 while the
MBE-critical exponents are α = 3/2, β = 3/8 and z = 4. Usually, the Eden-model has been
studied in geometries in which the interface is flat and not circular as for two-dimensional
monolayers. In order to systematically study the critical exponents of growing monolayers
of circular shape we transfer the growth process onto a random lattice in which a systematic
analysis of the critical growth properties including an average over many realizations of the
growth process is feasible. We have chosen a random lattice since on regular lattices we have
observed lattice artifacts in some parameter regions [96]. In off-lattice models, the too long
simulation time does currently not permit a sensitivity analyses over wide parameter ranges
or the formation of averages over many realizations of the growth process.
The cellular automaton model is constructed in such a way that it shows the same growth
kinetics as the lattice-free approach for expanding monolayers shown in Fig. 1A. In order to
avoid simulation artifacts from lattice symmetries we used a Dirichlet triangulation which
can best be understood from its dual graph, a Voronoi tesselation. Assume a random dis-
tribution of points in space. Within a Voronoi tesselation to each point that region in space
is assigned that is closer to this point that to any other point. The Dirichlet triangulation
results from linking each point to its neighbor points within the Voronoi tesselation. For
a random distribution of points the Dirichlet tesselation is a random lattice with on the
average six links to neighbor points. We assume each site on a Dirichlet lattice can at most
be occupied by one cell. The average area which is assigned to a point (= cell) is l2 which
we identify with the average cell area. We start our simulations with a single cell. Cell
division is possible only onto free lattice sites. A cell is able to divide if and only if the
next free lattice site is available at most ∆L/l lattice sites away. One interpretation is that
a dividing cell is able to exert a sufficiently large force to push at most ∆L/l cells aside
into a certain direction in order to obtain free space for its division. Another interpretation
of this rule is that only a limited number of cells can be stimulated to migrate away and
leave free space for a dividing cell. It is noteworthy that as ∆L → ∞ lattice asymmetries
in the growth patterns even disappear on a regular (square) lattice; usually ∆L/l ∼ 2 − 3
already gives reasonable results [97]. To determine the growth sites we draw a circle of
radius ∆L/l around the dividing cell and shift the neighbor cells of the dividing cell towards
the closest free neighbor site within this circle (shifts by more that ∆L/l lattice positions
are prohibited). If a division is permitted we place one of the daughter cells on the site
of the mother cell, and the other daughter cell on the neighbor site that has become free
as a consequence of the previous shift of neighbor cells. A biological interpretation of the
assumption of limited shifts is that a cycling cell stops in one of the cell cycle check points
if the division would require a shift of surrounding cells over a distance of more than ∆L/l
cell diameters. As a consequence, the size of the proliferating rim within the expanding
monolayer cannot exceed ∆L in case the cells are densely packed (as they are here) which is
why we call ∆L the proliferation depth. In the lattice model ∆L it is a free parameter while
in the off-lattice model introduced previously ∆L is a consequence of the biomechanical and
migration properties of the cells and may for example be influenced by the cell stiffness and
motility. Usually, ∆L is larger than the cell diameter ∼ l. In the classical Eden model [72],
however, ∆L = l since in this model cells can divide only on empty nearest neighbor sites.
The size ∆L of the proliferating rim controls the growth velocity in both, the off-lattice and
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the cellular automaton model. In computer simulations we found that v ≈ ∆L′/τeff with
τeff = τ/ω being the cell cycle time (results not shown; τ can be measured from the slope of
the growth curve in the exponential growth phase as illustrated in Fig. 9C for multi-cellular
spheroids). Here ∆L′/l ≈ [1 + (∆L/l − 1)0.685] and ω = (21/m − 1)m. The parameter
m ∈ [0, 1, 2, ...) controls the shape (and dispersion) of the cycle time distribution f(τ ′). The
dispersion of cycle time distribution thereby affects the expansion velocity of the monolayer.
We define f(τ ′) by

f(τ ′) = λm
(λmτ ′)m−1

(m − 1)!
exp{−λmτ ′}. (7)

Here we have chosen λm = m so that 〈τ ′〉 = τ = 1 (we refer all times on the intrinsic cycle
time τ and set the expectation value 〈τ ′〉 equal to the intrinsic cycle time). For m = 1, f(τ ′)
is a Poisson distribution and ω = 1. For m → ∞, f(τ ′) approaches a δ-distribution peaked
at τ ′ = τ and ω → ln(2). Hence the larger the dispersion of the cycle time distribution
(by choosing m to be smaller) the smaller is ω, and the larger are τeff and consequently
the expansion velocity v of the monolayer. At no dispersion the expansion velocity is the
smallest.
The factor 0.685 results from the order in which the cell divisions take place. Although
our simulations are in two dimensions, the occurrence of this factor can best be understood
if one considers a one-dimensional segment of a two-dimensional growing cell population,
ideally a one-cell-thick column ranging from the center of mass of the monolayer until its
surface.

If only the outermost cell is able to divide (∆L/l = 1), the increment within τ is ∆L.
However, if the proliferation depth is ∆L ≫ l then the order of divisions determines whether
a cell is able to divide or not. To see this assume an almost precise cell cycle length (i.e.,
a cycle time distribution sharply peaked at τ = 〈τ〉 which is obtained for m ≫ 1). Then,
if it is the innermost cell that divides first then all cells closer to the border are still able
to divide while, if it is not the innermost cell that divides first, then the innermost cell
cannot divide anymore since this would require to shift more than ∆L/l cells. So even if
f(τ ′) →∼ δ(τ ′ − τ) the order at which the cells divide matters since for ∆L > l the cell
divisions are not completely parallel. The factor ∼ 0.685 can be calculated from investigating
the expected growth increment from all permutations of choosing the cells in the proliferative
rim for division. Note that the factor ∼ 0.685 marks the difference between an asynchronous
and a parallel update. To understand this first note, that since we start each simulation
with a single cell, a precise length of the cycle time would mean that all cells divide at the
same point of time. The factor ∼ 0.685 results from the asynchrony as argued above. For a
parallel update this factor would not be expected; the expansion velocity should instead be
v ≈ ∆L/τ . (Note that in a circular geometry the expansion velocity may slightly deviate
from this value due to the boundary curvature which decreases with increasing monolayer
size as 1/r with r being the monolayer radius.)
Note also, however, that the factor ∼ 0.685 may disappear also in asynchronous updates if
the choice of how cells are divided is slightly changed. If one would assume that a cell that
once has passed the restriction point divides with probability one that is, if one assumes the
decision on whether a cell divides or not is made immediately after its birth and not when
it is chosen for division, then the dependency of the velocity from the order at which the
cell divisions in the proliferating rim are performed would no longer be expected.
Next we calculated the roughness exponent α and the dynamic exponent z from the dynamic
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structure function. The dynamic structure function S(k, t) is defined by

S(k, t) = 〈h(k, t)h(−k, t)〉, (8)

where h(k, t) is the Fourier-transform of the surface height h(s, t) and 〈...〉 the average over
different realizations of the growth process (e.g. [98]). s is here the arclength as in the
paper by Bru [36]. To calculate h(s, t) firstly all border cells of the monolayer have to be
determined. Then one starts with that cell that has the largest distance from the center
of mass (the center of mass is defined by r = (1/N)

∑N
i=1 xi) and moves by right turns in

counter-clock direction along the monolayer border. h(s, t) is the distance of the border cells
from the center of mass. Alternatively we have used the polar angle ϕ (i.e., studied h(ϕ, t))
but did not find noteworthy differences in the simulation results. Here,

h(k, t) =
1

Ld/2

∑

s

[

h(s, t) − h
]

exp(iks)∆s, (9)

where the factor ∆s takes into account that the arclength increases with time (otherwise
the dynamic structure function-curves do not collapse for different times since in a circular
geometry the total arclength increases with time). For self-affine surfaces in absence of any
critical length-scale the dynamic structure function S(k, t) has the Family-Vicsek scaling
form [99]:

S(k, t) = k−(2α+1)ŝ(kt1/z), (10)

The result shows that α = 0.5 (Fig. 7A) and z = 3/2 (Fig. 7B) as would be expected for
a KPZ behavior and disagrees with MBE [96]. We are currently exploring the effect of fast
cell migration on the scaling behavior. However, we like to note that a comment by Buceta
and Galeano [100] questions the interpretation of the experimental findings on the dynamic
structure function by Bru et. al. [36] namely, that the findings indicate a MBE-behavior.

We have validated that a small random movement of
√

〈(δr)2〉 ∼ O(l) along the cluster
border did not modify the observed exponents (this is the typical distance that a cell travels
on the scale of the cycle time in Ref. [55]).

5. Mutations

So far we assumed that all cells have the same properties and show only stochastic differences
for example, in the duration of their cell cycle, the direction of active random migration and
the direction of active cell division. We find that the qualitative growth kinetics under these
conditions is as depicted in Fig. 1 and insensitive to model details. If cells do not detach
from the cell population the initial growth is exponential for the population size and also
approximately for the diameter and crosses over into a linear expansion of the diameter and
a power-law-like growth N ∝ td for the population size.
However, aggressive tumors are characterized by their invasiveness which usually were pre-
ceded by mutations. Such mutations are known to cause genetic heterogeneity of the cells
in a tumor which is subsequently reflected by the heterogeneity of the micrometastases
[49]. The capability to invade a surrounding tissue can have many different origins; these
include a change of cell-cell and cell-substrate adhesion properties [101], a change of the
migration phenotype [102] or a loss of growth and apoptosis control [18]; often, combina-
tions of different changes are involved. For example NIH3T3-HER2 cells are known to suffer
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Figure 7: (A) Dynamic structure function S(k, t) at t = 60, 100, 120 (in units of the cycle time τ

[96]). The dashed line has a decay of −(2α+1) = −2. This suggests α = 0.5 as would be expected

from the KPZ universality class. The inset shows the contour of the expanding cell population in

a single realization of the growth process. The classification of the universality class furthermore

requires to determine either the growth exponent β or the dynamic exponent z. We rescaled the

axes due to S(k, t) → S(k, t)k2α+1 and k → kt1/z with the choices α = 0.5 and z = 3/2 (B). The

collapse of the data for small k in the rectangle at z = 3/2 is characteristic for KPZ; the growth

exponent can then be calculated from the scaling relation β = α/z and is β = 1/3. Note that these

results comply with results by Moro [94] obtained with the classical Eden model on a square lattice

in 1+1 dimensions in a geometry in which the initial state is a flat interface. The parameters were

m = 1, ∆L = 1.

from a limitation of cell cycle and apoptosis control [18]; in this cell line an oncogene that
encodes HER2/neu, a variant of the HER2-receptor, is expressed. HER2/neu transduces
growth-promoting and apoptosis-suppressing signals and have been found in several cancers;
different from its normal variant it stimulates proliferation already at very small extracel-
lular concentrations of the growth factor EGF. Besides invasiveness these mechanisms are
able to modify the fraction of proliferating cells and thereby the growth kinetics.
In this subsubsection we consider the possible effect of mutations that affect the model pa-
rameters in the previously introduced cellular automaton model on a Dirichlet lattice. As
an illustration of the potential effect of such a change we consider mutations that with equal
probability either increase or decrease the cycle time length by ∆τ/τ ∈ [−a, a] (Fig. 8).
This situation could be given if cells reduce the time their spend in the interphase as a con-
sequence of mutations. However, we found the same qualitative behavior if mutations affect
the probability of cells to undergo apoptosis. To test this we have seeded one progenitor cell
which we assumed to undergo apoptosis with a rate of γ = 0.4/τ and study how γ evolves in
the clone if mutations change γ to γ ± ξ (Fig. 8). ξ here is a uniformly distributed random
number in [0, ∆γ] with the constraint that γ ∈ [0, 1/τ ] (γ > 1/τ would model a decrease
of the total cell population size which should not be considered here). With increasing size
of the cell population the apoptosis rate of the border cells decreases revealing the same
principle as in the former example: Competition leads to a selection on those properties
that eventually lead to an enhancement of the growth of the total cell population. We have
also studied the effect of frozen disorder that affect the expected cell cycle time of a cell
dependent on its spatial position. The biological motivation was to mimic an inhomogeneous
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Figure 8: (A) Radius of gyration if mutations occur that affect the length of the cell cycle. The

radius of gyration is defined by Rgyr =
√

(1/N)
∑N

i=1(xi − x)2 where x = (1/N)
∑N

i=1 xi denotes

the center of mass of the monolayer. If the monolayer forms a perfect disc, Rgyr = r/
√

2 with r

being the radius of the monolayer. i: For the reference curve, we assumed ∆L/l = 1, γ = 0 (no

apoptosis), a = 0 (no mutations), ∆τsubst = 0 (the cycle time is a random Poissonian distributed

variable independent of the extracellular environment (substrate)). For the other curves only the

parameter that has been changed with respect to the reference curve is given in the legend. ii:

γ = 0.1 (dotted) means that cells die with an apoptosis rate of 0.1/τ , iii: ∆τsubst = 0.4 (dashed)

means that the average cycle time depends on the spatial position of a cell by a value of at most

∆τsubst = 0.4τ (for details, see text). iv: Further we considered mutations in the growth rate

∆τ/τ by at most a = 0.05 (dots linked by a dashed line), v: apoptosis with rate γ = 0.1 (as

in (ii)) but with mutations in the apoptosis rate γ of at most 0.4 (full line), and finally, vi: a

proliferation layer thickness of ∆L/l = 6. We find that apoptosis reduces the expansion velocity

(∝ dRgyr/dt) (see (ii)). If mutations that affect the apoptosis rate occur then the growth curve (see

(v)) approaches that without apoptosis (curve (i)) indicating that the apoptosis is down-regulated

to zero. In agreement with this observations, mutations that affect the length of the cell cycle time

leads to a shortening of the cycle time (see (iv)). A larger size of the proliferating rim increases the

expansion velocity (see (vi)). The expansion velocity is unaffected by frozen disorder (see (iii)).

(B) shows the proliferation pattern for ∆L/l = 6 ((vi) in (A), the reference case ∆L/l = 1 is used

in Fig. 7), (C) shows the proliferation pattern in case of γ = 0.1/τ , τsubst = 0.4 ((v) in (A)).

Note that cells proliferate also in the interior to fill the empty places that have emerged due to

apoptosis of interior cells. (D) shows the proliferation pattern in case mutations affect the length

of the cell cycle ((iv) in (A); simulation with a = 0.05); note that here the shape of the population

has changed markedly. (In all simulations, m = 1.)

growth environment in which the cell cycle length depends on the absolute position of the
cell in space. The underlying assumption was that inhomogeneities of the substrate may
affect the cell cycle time according to 〈τ ′(x, y)〉 = (1± ξsubst)〈τ〉 where ξsubst ∈ [0, ∆τsubst] is
an uniformly distributed random number. In our simulations this situation does not affect
the average growth velocity (Fig. 8).
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B. Multicellular spheroids

Tumor cells are often able to grow and divide anchorage-independent. I.e., they can be
grown in suspension, not being attached to a substrate, where they form growing spherical
aggregates (tumor spheroids). In contrast to monolayers, multicellular spherical aggregates
restore morphological and functional features of the original tissue, that is, they possess a
three-dimensional network of cell-to-cell and cell-to-matrix interactions with a very similar
architecture and function as in vivo [38]. They may contain an extensive extracellular matrix
that differs in the relative amount and assembly from the corresponding monolayer cultures.
Multicellular spheroids were found to be similar to avascular tumors nodules or microregions
of solid in-situ tumors with regard to of the growth kinetics and the spatial structure. Above
a certain tumor size of about 400 − 600µm they usually consist of proliferating (dividing),
quiescent (resting), and necrotic (dead) cells. If the proliferating cells are removed, the
quiescent cells re-enter the cell cycle. Cells undergoing necrosis (as opposed to apoptosis
[19]) first swell and then undergo lysis i.e. fragmentize into pieces. Subsequently, those cells
are usually not considered in the cell count N .
Freyer and Sutherland [103, 104] investigated the effect of glucose and oxygen on spheroid
growth of EMT6/Ro mouse mammary carcinoma cell spheroids. They reported that during
the first 3-4 days the number of cells N grew exponentially fast [103]. After 4 days, N
increased only sub-exponentially accompanied by a linear growth of the tumor diameter
L (Fig. 9D). Guided by the Gompertz growth law, which is characterized by exponential
growth in early stages and saturation at later stages, Freyer and Sutherland [103] concluded
that the sub-exponential regime of N indicates saturation. In reanalyzing that data we
found that plots of log(N) vs. log(t) (Fig. 9A) and N 1/3 vs. t (Fig. 9B) (t denotes time)
indicates a power-law-like behavior N ∝ t3 rather than a saturation as long as the glucose
and oxygen medium concentrations were not too small. This indicates that curve fitting by
purely phenomenological growth laws, such as the Gompertz law, can be misleading.

To explore whether the expansion of the tumor spheroid is determined by nutrient lim-
itation as opposed to a biomechanical form of contact inhibition as for monolayers, we use
the basic model for monolayer and modify it in some points to fulfill the specific situation
of tumor spheroids.
(AMS.1): Within the cell cycle the cell volume increases by a factor of 1.9. The factor of
1.9 accounts for the volume decrease of the cells with the tumor diameter L in multicellular
spheroids over the experimental observation period, as observed in Ref. [103] (the assump-
tion that daughter cells are slightly smaller than their mother cell does not affect the main
conclusion of this section).
(AMS.2) We here assume glucose to be the limiting nutrient, and that cells can only pro-
liferate if the local glucose concentration c(r, t) exceeds a certain threshold. Freyer and
Sutherland [104] also studied the growth of multicellular spheroids at varying oxygen con-
centration. The model for this case would be similar as that for varying glucose concentration
which is why we omit it here. For our model of tumor spheroids in suspension we study
situations in which a fixed glucose concentration c0 is maintained outside the tumor. The
glucose can diffuse with a rate Dgluc and is locally consumed by the cells with a rate γgluc:

∂c(r, t)

∂t
=

∑

i

Dgluc
∂c(r, t)

∂ri
− γglucΘ(c(r, t))n(r, t) (11)

n(r, t) is the local density of cells at position r and time t. Θ(x) = 1 for x > 0 and zero
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Figure 9: Tumor growth kinetics. (A) Population size N(t) for tumor spheroids in experiments

[103, 104] in a log-log plot for different medium glucose c0 and oxygen o0 concentrations. (1): c0,

o0 not known [103], (2): c0 = 16.5mM , o0 = 0.28mM , (3): c0 = 16.5mM , o0 = 0.07mM , (4):

c0 = 0.08mM , o0 = 0.28mM . The time axis for the data (2)-(4) has been rescaled as indicated in

the legend to show all data approach a power-law behavior. (B) Computer simulations to the data

sets (2), (4) of Fig. 9A (full and dashed-dotted lines). Shown is N 1/d vs. t (d = 3 for spheroids).

(C) Initial growth of population size N for the data sets (2), (4) of Fig. 9A in a lin-log plot (see inset

in (B)). (D) Corresponding plots of the tumor diameter L vs t for the simulations in Fig. 9B. (E)

Simulated spatial growth patterns in a multicellular spheroid. Typical tumor growth scenario from

N(t = 0) = 1 until N = 250000 cells in the last picture (shown for a three-dimensional spheroid).

The arrows indicate the time direction. Cells in the outer boundary layer (light blue/grey) form

a proliferating rim enclosing a layer of quiescent (blue) cells and a necrotic core (black), where

glucose has been depleted. If the necrotic cells are removed (as has been done for the computer

simulation results in d = 3 of Figs. 9B-D), the same pattern as observed experimentally forms.

The further parameters were: l = 18µm [103] τ = 22h[104], E = 300Pa[56, 57], ̺ = 1015/m2,

D = 1.5 × 10−12cm2/s, δ = 0.2l, ǫ = ǫs (harmonic-like potential energy), Dgluc = 10−6cm2/s

[105], γgluc = 7.5 − 21mg/(cell h) [106], cells become necrotic if c(r, t) < 7.2 × 10−6mg/mm3 and

apoptotic, if their cycle time exceeds 3 × τ .
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otherwise. We assume that cells become necrotic if the local nutrient concentration c(r, t)
falls below a threshold. As explained above necrotic cells undergo lysis. We study the
case in which lysis is very fast and immediately remove necrotic cells from the simulation
(leaving free space at the positions of cells that had become necrotic, so necrotic cells are
not considered in the cell count N). We have also checked the case in which we did not
remove the dead cells from the core and labeled them as ”necrotic” i.e., did not take them
into account in calculating the total cell population size of the tumor. For this case we found
only a minor difference as a consequence of the pressure that the dead cells in the core exert
on the viable rim. However, this difference is very small since cells at the interface between
viable rim and necrotic cells cannot divide even if there is free space available since they
lack glucose (and oxygen).
(AMS.3) The initial number of cells from which an individual tumor spheroid emerges was
estimated from the experiments of Freyer and Sutherland to be N0 ≈ 30 − 100; we start
with N0 = 1 and shift the curve along the time-axis until a good fit to the experimental
data is obtained.
Fig. 9D shows a typical time series of the tumor morphology and snapshots of the layer-
like proliferation pattern in tumor spheroids for N ≤ 250000 cells. The highest proliferation
activity is close to the tumor boundary where the local concentration of glucose is the highest,
while inside the tumor a necrotic core forms. The corresponding time developments of the
tumor diameter and population size both show a very good agreement with the experimental
findings (Figs. 9B-D). After an initially exponential increase of the cell population size (Fig.
9C), N(t)1/3 ∝ t that is, N(t) ∝ t3 for larger times (Fig. 9B). Note, however, that although
the spread of the curves for N 1/3(t) for the two glucose medium concentrations c0 = 0.8mM
and c0 = 16mM is significant (Fig. 9B shows that N 1/3(t) grows much faster for c0 = 16mM
than for c0 = 0.8mM) there is almost no spread in the corresponding L(t)-curves (Fig. 9D
shows that L(t) is approximately the same for c0 = 0.8mM and c0 = 16mM). Hence, L(t)
is almost unaffected by the 20-fold change of the glucose medium concentration while N(t)
is not. Consequently the glucose medium concentration in the range 0.8mM ≤ c0 ≤ 16mM
seem to have no influence on the growth of the tumor diameter so the growth of the tumor
diameter cannot be determined by glucose control in this case. Since the cell population
size does change with increasing nutrient medium concentration, it is the size of the necrotic
core (but not that of the tumor) that is controlled by c0. The only mechanism that in
our model can be responsible for the control of the tumor size is the mechanical form of
contact inhibition that was already able to explain the existence of linear growth regime of
the monolayers diameter.

Note that since N ∝ t3 and L ∝ t, N ∝ L3 despite the (cell-free) necrotic core which
seems a contradiction at least for large necrotic core sizes. This pretended contradiction is
resolved if one takes into account that the median cell volume vc decreases with increasing
tumor diameter as vc ∝ 1/L [103]. This can immediately be seen in case the size ∆L of the
viable rim is much smaller than the tumor diameter L; in this case

vcN ∝ V =
4

3
π(r3 − r3

i ) ≈ πL2∆L

⇔ N ∝ L3, (12)

where vc ∝ 1/L has been used. Here ri = r − ∆L is the inner radius of the viable rim,
r = L/2 the tumor radius and V is the tumor volume. So interestingly, the decrease of the
median cell size and the cell loss due to necrosis in the center of the tumor spheroid occur
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in such a way, that still N ∝ L3 is maintained.
Individual-based models of multi-cellular spheroids have been studied by different authors
in recent papers. In ref. [78] cells are assumed to move deterministically by being pushed by
dividing cells. The authors obtain a good agreement of their results with the experimental
observations of the population size but unfortunately did not consider the tumor diameter.
Lattice-based models of tumor spheroid growth have been considered in refs. [107–109].
Dormann and Deutsch [109] consider a cellular automaton model in which a cell is repre-
sented by one lattice site and include the effect of nutrients. Stott et. al. [108] used a
generalized Potts model in which each cell is represented by many lattice sites but did not
include the effect of nutrients. Both models are two-dimensional and in both models the
authors compare their findings qualitative with the diameter growth observed in ref. [110]
but did not compare to data on the population size. Jiang et. al. [107] set up a multi-scale
stochastic Monte-Carlo simulation model also based on the generalized Potts model. Each
cell occupies up to 64 nodes on a three-dimensional lattice. The authors include an intra-
cellular regulatory Boolean network that controls the G1-S-phase transition. Their results
show a good agreement with the experimental data. The definition of a time scale in their
Monte-Carlo simulation is as in ref. [68], very similar as in this paper. However, they did not
adjust their biophysical parameters to experimental observations (for example, the cell-cell
and cell-matrix-interaction strengths are taken from simulations about cell-sorting scenarios
of Ref. [111] and seem to be markedly too large). Nevertheless the models on in-vitro tumor
spheroids are slowly converging. Off-lattice models as those presented in this paper have
the advantage that they permit the use of the same models for cell-cell and cell-matrix in-
teractions as experimentalists do to analyze their measurements on cells (for example, [65]).
Lattice models that use many lattice sites to represent an individual cell permit to represent
marked changes of the cell shape that may occur in the cause of morphogenetic processes. A
major challenge will be to combine the advantages of the off-lattice models with those from
the lattice models which use many sub-cellular lattice sites to represent an individual cell.
One way to do this may be to consider sub-cellular elements in lattice-free space instead
of on the lattice as suggested in ref. [112]. Another major challenge will be to set up a
hierarchy of models within a controlled and systematic procedure such that the models on
a coarser spatial scale keep that information of the models on a finer spatial scale that is
necessary to explain multi-cellular phenomena on the coarser scale.

III. TISSUE SHEETS AND EARLY DEVELOPMENT

For tissue cell sheets which are not attached to an underlying solid, immobile surface and
hence can also move in the direction perpendicular to the sheet, the models have to be
extended. Many tissue sheets are one-cell-thick. Examples are the intestinal mucosa [48]
and intestinal crypts [46, 113], glands [10], and the blastula of sea urchin and synapta digita

[43, 44]. Intestinal crypts are one-cell-thick pockets in the intestinal wall and the cell pro-
liferating machineries responsible for the fast cell turnover of the intestinal wall. After
X-ray-irradiation and during adenoma formation crypt fission, i.e. folding of a crypt have
been observed. Crypt fission, a process during which one crypt splits into two crypts is also
believed to be responsible for the increase of the crypt population.
Finally, during early development in some species a series of cell division from the zygote
(the fertilized oocyte) eventually leads to a hollow blastula. At a population size of about
1000 cells gastrulation occurs, an invagination (= inward budding) from which eventually
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the digestive tract emerges. In all of these tissues the orientation of cell division has to
insure that a one-cell-thick-layer is maintained. This includes that in case of an increasing
population of cells the extra cell mass must be placed into the one-cell-thick layer. If growth
and division occur faster than the tissue sheet can be shifted or rearranged to incorporate the
extra cells that emerged from the cell division a characteristic fold by a buckling instability
can occur. The fold can be initiated by random fluctuations as will be illustrated below
for some example. Buckling has separated from the controlled folding that occurs during
gastrulation or physiological crypt fission. Budding and buckling can be observed in many
tissues such as the lung [8, 9] and in the branching pattern of pancreatic cell cultures [10].
In this section we briefly review the Drasdo-Forgacs model [5] originally introduced in refs.
[68, 114] and present additional and new material including precise model parameter defi-
nitions that were omitted in the previous publications; the simulation results obtained with
this model provide a potential explanation of mechanisms underlying the observed folding
patterns of refs. [8, 10].

A. Blastulation and gastrulation

After fertilization of the oocyte of a deuterostome (this class includes chordates, as hu-
man, horse etc, and echinoderms, as sea urchin, sea cucumber, starfish [43]), successive
radial cleavage (=cell division without cell mass increase) leads to the formation of a hollow
spherical blastula composed of a polarized epithelium and enclosing a central cavity, called
blastocoel (e.g. [44]). The increase in cell number follows an exponential growth law until
several thousands of cells have been formed within about one day ([43]). Depending on the
species considered, the sphere may either be fully symmetric and one cell thick (this is called
radial holoblastic cleavage and occurs for example in the sea cucumber Synapta digita) or
possess a lower symmetry. The degree of symmetry is determined by the degree of synchro-
nization of cell division as well as by the orientation of the cell division planes. In the group
of animals that show radial holoblastic cleavage, synchronization may either be perfect (as in
the sea cucumber) or in later stages show differences between the vegetal and animal half as
in the sea urchin [43]. In the sea urchin it has been shown, that timing and placement of each
sea urchin cleavage is independent of preexisting cleavages for the first three cleavages [115].
Two theories have been offered to explain the formation and expansion of a blastocoel. Dan
[116] hypothetisized, that the motive force of this expansion is the blastocoel itself. As the
blastomeres secrete proteins into the blastocoel, the blastocoel fluid becomes syrupy. This
blastocoel sap absorbs large quantities of water by osmosis, thereby swelling and putting
pressure on the blastomeres to expand outward. Wolpert and Mercer [117] have proposed,
that pressure from the blastocoel is not needed to get this effect. They emphasize the role
of differential adhesiveness between the cells and the hyaline layer enclosing them. As long,
as the cell remains strongly attached to the hyaline layer, the cells have no alternative but
to expand.
Here we study a simple alternative mechanism to blastocoel formation in the case of per-
fect holoblastic cleavage. Such simulations in three dimensions are still much more time
consuming than those of multi-cellular aggregates. Our simulations in this work are there-
fore two-dimensional, equivalent to considering only spherically (e.g. sea urchin) or axially
symmetric (e.g. sea cucumber) embryos. However, drosophila, for example forms a hollow
ellipsoid embryo with approximately circular cross-section (since two of the principle axes
are equal, [118]) and one axis which is much longer than the other two axes. Thus, all the
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Figure 10: Schematic sequence of cell divisions (shown in two dimensions)for holoblastic cleavage.

(i) - (iv) illustrate an idealized situation with the daughter cells occupying the original volume of

the zygote. (v) shows a particular daughter cell from the eight-cell stage. Its membrane, at the

periphery and at the center of the cell configuration shown in (iv) has extremely sharp turns. The

edges have very high bending energy and, as a consequence, experience a force ~F1 + ~F2 opposing

the curve, as indicated in (vi) (forces are shown only for the center). Depending on the mechanical

stiffness of the cell cortex and the bending rigidity of the cell membrane, the rounding of each

cell in (iv) results in a cell configuration similar to (vii) (small stiffness), or, (viii) (large bending

stiffness). The requirement that a change in cell shape preserves the total cell mass and total cell

volume, leads to a net displacement of cell mass away from the center.

figures showing cell configurations should be interpreted as two-dimensional projections of
three dimensional structures.
Our model is based on the following assumptions:
B1.) cells remain approximately cuboidal during cleavage [43] (i.e. sharp bends of the cell
membrane that would result in a large bending energy are disfavored, see Fig. 10). This
assumes that cells have a tendency to adopt a spheroidal shape as cells generally do in iso-
lation under culture conditions and that deviations from the spheroidal shape are basically
a consequence of the interaction of cells with other cells and the layer they are attached to,
see also Fig. 13.
B2.) cell division proceeds at constant embryo mass (Fig. 12A). As observed for example
in sea urchin and synapta digita [43] each division is oriented in such a way that a one-cell-
thick structure is maintained (Fig. 12B). The cell divisions are synchronized, i.e. all cells
(or groups of cells) in the developing organism divide at the same time.
B3.) Cells in the early embryo are polar and, as a consequence of the inhomogeneous
distribution of their adhesion molecules, form cell-cell contacts in special regions of their
membrane, resulting in preferred cell configurations [44] which we believe correspond to
local minima in the (free) energy. Deviations from preferred cell shapes and configurations
increase the energy. In our model, the energy of a cell configuration contains the following
contributions: (i) A nearest-neighbor interaction energy that results from the competition
between attractive interactions due to adhesion molecules anchored in the cell membranes,
and repulsive contributions from the limited cell deformability and compressibility. For this
contribution we assume a similar interaction energy as in the previous section II (see eqn.
(14)). (ii) A bending energy that takes into account the polarity of the cell layer (eqn.
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Figure 11: (a) Preferred individual cell shapes depending on the location of adhesion molecules

(black areas). In this two-dimensional representation, the angle β0 uniquely determines the pre-

ferred shape of the cell and therefore the local spontaneous curvature, cs. Circles with the associated

angles demarcate the simplified shape we use to represent cells in the simulations. The optimal

configuration of a sheet containing only cells with preferred shapes (i) or (iii) is a closed surface

with the basal lamina oriented either towards the interior ((i), β0 < π), or towards the exterior

((iii) , β0 > π). (b) Preferred cell shape (ii) (β0 = 0), results in an optimal configuration with an

open, planar cell sheet and equal distance between the centers of (identical) cells. (c) Deviation

from the optimal configuration shown in (b). For cell type (ii) any bend (characterized by finite

local radius of curvature r and deviation angle β) increases the bending energy. (Here the radius of

curvature and the deviation angle is shown only for cell 2.) Note that for cell type (i) the illustrated

configuration is optimal if βj = β0, where j denotes any cell in the sheet [68].

(17)). Cells in a one-cell-thick layer have characteristic apical and basal surfaces. They form
contacts with their neighbors along the lateral part. The preferred geometry of the layer
and the shape of the cells within the layer depend on the location of cell adhesion molecules
as shown schematically in Fig. 11. In the computer model we demarcate an individual cell
by a circle that represents the cell in its maximum compressed state. Immediately after
the m-th cell division the radius of the circle is R(m) = R(0)/f(m) where f(m) =

√
2

m
to

take into account that the total embryo mass (the mass of a cell is identified with the cell
area) is constant during cleavage. During cell division, the circle deforms into a dumb-bell
at constant area (Fig. 12A). The orientation of the dumb-bell axis is assumed to be optimal
if it coincides with the tangent to the local radius of curvature (Fig. 12B). This condition
can be translated into the energy contribution which contains an ”optimal’ angle. For cell
i:

V rot
i = γ(αi − αopt

i )2(γ ≫ 1). (13)
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Figure 12: (A) Cell division in the simulations. We approximate the observed scenario (i) by the

scenario (ii). The cell deforms by decreasing its instantaneous radius (in its maximally compressed

state) R̂(t) = ζ(t)R̂ (ζ(t) < 1) from R̂ (at t = 0) → R̂/
√

2(at t = τR) in small steps ξ, where

ξ is a uniformly distributed random number in the interval 0 ≤ ξ ≤ ξmax with ξmax ≪ R̂. The

quantity ζ(t) contains information on the cumulative effect of these small steps. Accordingly, the

axis a(t) increases to keep the total area of the cell constant during one division cycle. The dumb-

bell shape ensures constant area. On a time scale larger than the cell cycle time this choice of

the cell division algorithm should not influence the final results. R̂ denotes the radius of a cell

in its maximally compressed state, which corresponds to the minimal distance d0 (see Fig. 13)

between the centers of neighboring cells (immediately after division) or the centers of the nearest

circles of neighboring dumb bells (during cleavage). (B) Determination of the cell division plane

in the simulation. The angle α2 (shaded area) between its axis a(t) (see Fig. 12A) and the x-axis

determines the instantaneous orientation of cell 2. In our two-dimensional model this orientation

is optimal if a(t) is tangential (denoted by the dotted line) to the local radius of curvature r2

constructed according to Fig. 12B. The optimal orientation of a(t) defines αopt, the optimal value

of α2 (see text for further details).

Here, αopt
i describes the ”optimal”, αi the momentary orientation of the cell axis. αi is

optimal if the cell axis is oriented along the tangent to the local radius of curvature i.e. it is
constructed in such a way that the daughter cells of a cell for which αi = αopt fit well into the
tissue sheet (Fig. 12B). For the zygote, the division plane is arbitrary, in the two-cells-state,
cells deform in order to form a rectangle after the next cell division. We assume that the
elastic properties of the cell layer and the surrounding hyaline layer determine the shape of
the nearest-neighbor interaction energy within δ by the parameter ǫ according to the energy
contribution

V NN
ij =







ǫ

(

[

1 − 2dij−2{Ri+Rj}
δ

]2

− 1

)

: Ri + Rj − δ ≤ dij ≤ Ri + Rj

∞ : otherwise.
(14)

Note that R̂ = R−δ/2 denotes the radius of a cell in its maximally compressed state. In our
two-dimensional simplification we assume that the tissue layer changes its geometry only in
the x-y plane while its extension in the z-direction remains lz = 50µm (the size of the zygote
of sea urchin). Note that we here assumed that contacts between cells are irreversible in
contrast to the interaction energy in eqn. (1). (The first line of eqn. (1) can be obtained by
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Figure 13: (A) Sketch of a cell with the hyaline layer. The hyaline layer has a thickness hy = 1 µm.

The linear dimensions of the cell in the x, y and z directions are, respectively, lx, ly and lz. Fig. 11

shows the projection of the cell onto the x-y plane and defines the quantities r and β. (B) Bending

rigidity vs. cell number. The total bending rigidity is the sum of the bending rigidities from the

cell layer, κC and the hyaline layer, κH . For small N , ly ≫ hy hence κC and κH are determined

by the cell size ly. κC ∝ N−3/2 and κH ∝ N−1. For large N , κH → EHhzh
3
y/12, κC → 1/

√
N .

setting ǫ = ǫs in eqn. (14)). The extension of a cell in the x-direction is (see Fig. 13):

lx = 2Ri +
di,i−1 − Ri − Ri−1

2
+ ai +

di,i+1 − Ri − Ri+1

2
. (15)

ai is the length of the dumb-bell axis (compare Fig. 12A). For a cell i that adopts its most
favored shape within a cell assembly,

di,i−1 − Ri − Ri−1

2
=

di,i+1 − Ri − Ri+1

2
= −δ

4
(16)

hence its size parallel to its axis is lx = 2Ri + ai − δ/2 = 2R̂i + ai + δ/2 (R̂i denotes the
radius of cell i in the cells’ maximal compressed, R in its relaxed, interaction-free state).
Thus, the true size of a circular cell (ai = 0) depends both on Ri, its radius in its maximally
compressed state and on the range of cell-cell interactions. Since the cell size shrinks with
each cell division, so does δ. After m cell divisions, δ(m) = δ/f(m) as R(m). Accordingly,
ǫ is also m-dependent (see below).
The polarity of the cells in a one-layered tissue and the stiffness of the layer is modeled by
a bending energy according to

V bend =
κ

2

N
∑

i=1

(
1

ri

− ci)
2riβi. (17)

κ is the bending rigidity, cs the spontaneous curvature, rj the local radius of curvature and
βj the local angle of curvature. N is the number of cells at a given point of time.
The total energy of a given cell configuration can be summarized to

V tot =
∑

i<j

V NN
ij +

∑

i

V bend
i +

∑

i

V rot
i . (18)
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ǫ and κ can be expressed in terms of the material properties and the geometry of a cell layer
comparing a tissue layer with a continuous, isotropic tissue layer composed of a cell and a
hyaline layer (Fig. 13). The parameters ǫ then reads

ǫ = −(EHhy
lz
ly

+ EC
ǫ lz)

δ2

12
. (19)

EH and EC are the Young moduli of the hyaline layer and the cell layer, respectively. For
the definition of the other quantities, see Fig. 13A.
The total tissue-layer bending rigidity is the sum of the bending rigidities for the cell and
the hyaline layer,

κ = κH + κC . (20)

These are given by

κH = EH 1

3
hz

(

y3
0 − (y0 − hy)

3
)

(21)

κC = EC 1

3
lz

(

(y0 − hy)
3 − (y0 − hy − ly)

3
)

, (22)

where y0 denotes the neutral axis of the layer [119], obtained from the condition that in
equilibrium the total force on the system consisting of hyaline and cell layer is zero:

y0 =
EH h2

y

2
+ EC

(

hyly +
l2y
2

)

EHhy + ECly
. (23)

As in the previous section on unstructured cell populations we introduced a length, a time
and an energy scale and referred all model parameters to groupings of these reference scales
in order to obtain a quantitative description on the computer. As the length scale we have
chosen the size of the zygote and for the time scale the cycle time τ(= 1h). For the energy
scale we again use the ”metabolic energy” FT (here = 10−15J , close to the value in ref. [59])
and for the multicellular dynamics we again use the Metropolis algorithm both as in section
II. The method has been compared to direct integration of stochastic over-damped equations
of motion for related biological problems as those presented here and have been found to work
well as long as the noise influence is not too small compared to directed forces and provided,
the step sizes for migration and orientation changes are chosen sufficiently small in order to
insure a linear velocity-force relation. If the deterministic forces exerted on a cell are much
larger than the random forces that represent the active random component of cell movement,
however, equations of motion are more appropriate (see for example refs. [47, 78, 120, 121]).
Different from section II we assume in most of the simulations shown below that the growth
step size δa ∈ [0, δamax(m)) and the migration step size ξ ∈ [0, ξmax(m)) depend on the cell
size (indicated by m, the number of divisions a cell has performed). The m-dependencies
of the maximum growth and migration step sizes are determined by the requirements that
(i) the cycle time is independent of the cell size and (ii) the diffusion constant scales as
the inverse of the cell size. However, the qualitative behavior does not change if the latter
assumption is dropped [114]. The simulation is performed as explained in section II (compare
also Appendix A for further details). Fig. 14 shows a typical simulation run. We started our
simulations with a single zygote and stopped it at the 1024 cells-stage. The zygote divides
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Figure 14: The evolution of the cellular pattern in the computer simulation for ǫ(0) = 5 × 10−14J

and κ(0) = 3.5 × 10−16Jm. As explained in the text the magnitudes of these parameters vary

with the size of the cells, i.e. with the number of cell divisions, m. The above values refer to the

zygote (m = 0). For the chosen values of ǫ and κ configurations (i)-(vii) correspond to normal

development. A dynamical instability sets in after the 64-cell stage (vii), which in a spherical

embryo would correspond to about 2000 cells. (Due to the uncertainties in the experimental values

of ǫ(0) and κ(0), such an instability would not necessarily occur at the 2000 cell stage.) With

further growth of the cell population the folding of the blastula becomes more pronounced, as seen

in patterns (viii)-(xi). The observed scenario that follows configuration (vii) is an invagination

as shown in (VIII) - (X) (denoted by ”∗”). At stage (VIII) 11 cells are assumed to change their

cytoskeleton in such a way that the spontaneous curvature locally becomes negative. From the

leftmost cell 1 to the rightmost cell 11 the spontaneous curvatures follow the pattern c1, c2, c3,

c4, c5, c6, c5, c4, c3, c2, c1 with ci = ∆ × i (i.e. cells 1 and 11, 2 and 10, etc. have pairwise the

same spontaneous curvatures). Here, ∆ = −2. Note that the all cells change shape simultaneously

in the whole invagination region as pointed out by [118], [122]. (X) shows the developed gastrula

stage.

a number of times until the embryo becomes a circle, the 2-D analog to a one-cell-thick
hollow blastula. The cell population grows exponentially as observed in experiments [43]

and the perimeter U develops with U ∝
√

N =
√

2t/τ (Fig. 15). We predict that in the
three dimensional-analog the growth of the blastula diameter should be U ∝ 2t/(6τ) which
results from a small calculation. This may well be tested in synapta digita since in this
animal all cells are of equal size at a given point of time until N > 1000 (in contrast to
sea urchin, where cells of the animal pole perform more cell divisions than those of the
vegetal pole). Above a certain size of about ∼ 64 cells in d = 2 the circle (blastula) becomes
unstable and buckles (Fig. 14(viii)-(x)). At the onset of buckling the stabilizing forces (here:
bending forces) are no longer large enough to balance the de-stabilizing forces that emerge
as a consequence of cell division. Small stochastic fluctuations are sufficient to cause small
undulations of the blastula cell layer that are enhanced by cell divisions. Hence eventually
the layer buckles and forms spatial patterns as those presented in Fig. 14(viii)-(x). The
existence of the buckling does not depend on the choice of the parameters, only the size of
the blastula at which it occurs does. Below we study the onset of the instability in some
more detail. Such a buckling instability would derail normal development and hence it must
be suppressed during morphogenesis. At about 1000 cells corresponding to about 50 cells
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Figure 15: The cell population size N and the perimeter U vs. time for the parameters of Fig.

14(i)-(xi). m = t/τ is the number of division cycles the zygote has performed. N = 2m and for the

perimeter U ∝
√

N (the equivalent relation in d = 3 would be U ∝ N 1/3). Note that N ∝ 2t/τ as

experimentally observed [43] and note the step-like increase of the cell population size that occurs

as a consequence of the synchronization of cell division.

along the perimeter of in the two-dimensional circular cut of the blastula cell division stops
and an inward budding (gastrulation) occurs. From this invagination later the digestive tract
emerges. We model the invagination by assuming a differentiation takes place in a small
”contractile region” which changes the spontaneous curvature to negative values cs < 0
(Fig. 14 (VII) - (IX)). This is motivated by experimental observations of a simultaneous
movement of the cell nuclei from the outer (apical) towards the inner (basal) cell membrane
resulting in an active shape change of cells and macroscopically in an invagination [122]. In
the simulations of Fig. 14 we assumed that cs decreases from the border of the invaginating
region with a gradient of cs towards the center of the invaginating region; for constant cs the
invaginating region has a more circular cross-section and deviates from the approximately
tube-like shape that has been experimentally observed in sea urchin (Fig. 16; [43]). For
the parameters chosen in our simulations the size of the circle at the instability corresponds
well to the size of a 2d-section of the blastula at the stage where gastrulation sets in. The
change of the spontaneous curvature locally increases the energy (Fig 16). The relaxation
of the energy then provides the driving force the invagination. Buckling, on the other hand,
increases the configuration energy.

B. Generic behavior of buckling

In the morphogenetic and tissue maintenance processes of one-layered tissues that follow
blastulation neither a cell mass conservation nor a strict synchronization of cell division is
found. Examples are buckling in embryonic lung tissue [9] and the branching pattern of pan-
creatic cell cultures [10]. In these patterns labeling experiments show that cell proliferation
is larger in regions of larger curvature. In order to test whether our model can explain such
labeling pattern we ran equivalent simulations as those for blastulation firstly dropping the
assumption of the total cell mass be constant. The result (Fig. 17) clearly illustrates that
buckling does not depend on the presence of synchronization. Moreover cells in regions of
larger local curvature are found to be smaller than cells in regions of smaller local curvature.
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Figure 16: Total configuration energy of the cells at the transition from a blastula to a gastrula

after a differentiation of cells that results in a change of the cell shape. Immediately after the

differentiation that leads to a negative spontaneous curvature (arrow at the x-axis), the mechanical

energy increases and presents the driving force for the invagination. We compare simulations where

all cells within the invaginating region have the same spontaneous curvature with a situation where

the cell in the middle of the invaginating region has the largest negative spontaneous curvature

increasing towards the border of the region by an increment of ∆. The curves A,B represent

simulations where the energy in the invaginated state is different. The energy value for the blastula

without invagination represents the stage (xi) in Fig. 14; note that at the point where the buckling

instability occurs (denoted by an arrow at the x-axis), the energy rapidly increases (the big black

dot denotes the termination of the computer simulation for this case). As illustrated by the two

figures for curve A on the right, the invagination pattern is more tube-like if cs changes gradually

(upper picture) compared to the case of constant cs that generates a circular cross-section of the

invaginated region (lower picture). Eventually the cell configuration relaxes into a new equilibrium.

Generally, the smaller cs the more pronounced is the invagination and the larger is the energy in

the minimum free energy state (curve A with a gradual change in the spontaneous curvature

corresponds to the invaginated state (X) in Fig. 14).

This occurs since cells in regions of larger local curvature have performed more divisions
than cells at regions of smaller local curvature (and hence are smaller due to the used cell
division algorithm in Fig. 12A), in agreement with the experiments that have shown that
the cell proliferation activity is larger in regions with large bends [9], [8].

Next we dropped the assumption that the total cell mass be constant using the division
algorithm sketched in Fig. 2A and again found the same type of buckling instability (Fig.
18). For large κ and τ a buckling occurs in the power-law growth regime (indicated by an
upwards bend in the growth curve of Fig. 18(C,D)).

However, as seen for gastrulation, a reliable invagination requires a differentiation that
changes locally the properties of the cells. Alternatively to a locally negative curvature,
one may think of a line tension which would occur if neighboring cells of different types are
disfavored to form cell-cell contacts (Fig. 19). In this case, however, the pre-bend structure
determines whether an inward budding or an outward budding occurs; the minimum free
energy configuration may again not be attainable. Such mechanisms could be involved in
the fission of intestinal crypts either in the large or small intestine [45, 123, 124].

The results of the simulations for both, multicellular aggregates (monolayers and multi-
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Figure 17: Folding patterns at N = 512 cells at constant embryo mass if synchronization is dropped.

(In order to study the possible spectrum of behavior we here and in the following figures vary κ

and ǫ independently; such a behavior can be obtained by anisotropic material properties of the

cell layer and proper migration parameters.) The configurations in the top line are still growing

exponentially and in the bottom line according to a sub-exponential growth law. The picture pairs

(A) and (B) differ only by the ǫ-value, (C) and (D) by the bending rigidity, (E) and (F) by the cell

division rate. (In particular: (A) τ = τ0/2, κ = 300, ǫ = 2000, (B) τ = τ0/2, κ = 300, ǫ = 20, (C)

τ = τ0/2, κ = 100, ǫ = 200, (D) τ = τ0/2, κ = 1000, ǫ = 200, (E) τ = 5τ0, κ = 300, ǫ = 200, (D)

τ = 0.2τ0, κ = 300, ǫ = 200). The snapshots (A), (C) and (E), all taken from exponentially growing

cell configurations are very similar, in these cases the thickness of the cell chains is homogeneous

over the configurations. Different from that, in (B), (D) and (F) the cells at strong bends appear

thinner than those at small bends. (B) and (D) indicates that small ǫ have the same effect on the

cell configuration as large κ values: the ratio ǫ/κ determines if the contribution of the interaction

energy or the contribution due to bending is more important. (F): large growth rates drive the

system far from equilibrium (the equilibrium state is a perfect circle).

cellular spheroids) and tissue layers are remarkably robust. A change of the potential energy
from harmonic to the Hertzian or the JKR-model (Fig. 2C; and for some cases even square-
well, see Fig. 18(E),(F)), a replacement of the combination of the isotropic potential cell-cell
interaction energy and the bending energy by a polar potential energy shown in Fig 20, or
the use of overdamped equations of motion (of the type outlined in eqn. (6)) for each cell
instead of the Metropolis algorithm that was used here did not change the results for the
selected cases we looked at.
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Figure 18: (A) Number of cells N vs. time t/τ for growing closed 1d multi-cellular manifolds

in the absence of synchronization and if the total mass of the cell configuration is not conserved

(i.e. using the division algorithm of Fig. 2A); the first row in the legend denotes τ/τ0 (here, τ0

is a reference cycle time), the second row κ/103. For very large cycle times τ (or equivalently, a

very large cell motility) the closed one-dimensional cell manifolds again grow exponentially fast.

(B) N and perimeter U vs. t for τ = τ0, κ = 1000 and ǫ = 10 without explicit synchronization

of cell division and the corresponding cell configurations at N = 8, 16, 32, 64, 128, 256 cells. The

cells divide nearly synchronously as long as the configuration corresponds to a perfect circle. With

increasing deviation from a perfect circle, the synchronization breaks down. Note that for small τ

(or equivalently, a small cell motility) the growth of the circular (hollow) multicellular geometry

is no longer exponentially fast but as U ∝
√

t (C,D). (C): U/(2πR0) (R0 = R + δ/4) vs. t for

different choices of τ in a regime where τ is small and (D) different choices of κ. In all simulations,

ǫ = 20. The arrows in (C), (D) indicate the points where an instability occurs; the smaller are τ

and κ, the earlier the instability occurs. (E) We have also varied ǫ: the larger ǫ is, the smaller is

the domain size at which a bucking occurs. (F) shows the corresponding diagram of N vs. t; the

earlier the instability occurs the earlier a de-synchronization of cell division sets in. (In (E,F) we

added a curve with a simple square-well potential illustrating the robustness of the results.)
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Figure 19: Reliable folding requires either an active cell shape change or may be driven by a

line tension. (A) start configuration after the differentiation. The (NA = 14) cells of type A

(black) have different physical properties than the (NB = 50) white ones of type B. Differential

adhesiveness between the A-cells and the B-cells may result in an edge energy E edge = σ̺ where

̺ denotes the linear size of the patch of region A. (B) To obtain an invagination as shown in (D)

and (F), the cells have to pass over configuration (B), where the region of A-cells is stretched and

thus ̺ as well as the edge energy Eedge has an maximum. (C) shows the equilibrium configuration

for cA
0 = cB

0 = 0 and σ = 4× 105. In order to minimize the edge energy the system shows budding,

but different from a system with negative spontaneous curvature, outward not inward budding.

(D) Perfect invagination obtained for rA ≈ cA
0 = −1/43, rB ≈ cB

0 = 1/12. (E) If the system has

a line tension and a negative spontaneous curvature (cA
0 = −1/43, cB

0 = 1/12 and σ = 4 × 105),

despite the fact that the global energy maximum is an inward bud (F), the system buds outward

into a local energy minimum. The reason for this is a kinetic one: each system invaginating has to

pass configuration (B) which for large σ requires a too large activation energy. (F) configuration

of minimum energy for (cA
0 = −1/43, cB

0 = 1/12 and σ = 4 × 105), calculated by ”switching on”

the edge energy after configuration (B) has been passed. Different from (D) where σ = 0, the edge

length is smaller causing the invaginated bud to be smaller as well.

IV. DISCUSSION

Recent experimental findings, often complemented by a comparison to results of
mathematical models suggest that mechanical interactions play an important role in growth
and pattern formation phenomena of multi-cellular systems. Examples are multi-cellular
spheroids embedded in agarose gel [6], cell monolayers growing on properly dissected sur-
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Figure 20: Instead of a bending energy in combination with a homogeneous cell-cell adhesion

potential to model the cell polarity we have also used a direct approach with a polar cell-cell

adhesion energy. There we assumed a small contact region (denoted by the symbol Φ); adhesion

is only present if the contact regions of neighbor cells overlap (which is the case for cells 1,2 and

2,3 but not for cells 3,4). Contacts in which the connecting line between neighbor cells separates

the contact region in two equally large segments (as, for example for cells 2,3) are favored. After

each cell division contacts were assumed to be re-organized. The qualitative results were as those

for the bending energy.

faces [7] and imaginal disc growth [11]. Based on previous findings in growing monolayers of
tumor cells in-vitro and recent results of in-vivo situations Bru et. al. [125] have speculated
that after stimulation of a immune response neutrophils may stop tumor expansion mainly
as a consequence of the competition of cells for free space. We have demonstrated by
computer simulations based in individual-cell based models that the observed growth
kinetics in both, monolayers and multi-cellular spheroids may largely be explained by a
biomechanical form of contact inhibition. Our simulations were based on the assumptions
that a growth stop maybe triggered by a certain degree of deformation or compression.
Without a mechanism that controls a growth stop, a perfect monolayer would never form
but cells would be pushed out of the monolayer if the stress generated by the growth would
overcome a certain threshold value that is given by the strength of cell-substrate adhesion.
We here focused on compact cell aggregates; some monolayer phenotypes in particular
fibroblasts show initially a sparse distribution of cells; however, it may be argued that their
expansion is expected to qualitatively follow a Fisher-Kolmogorov-Petrovskii-Piskounov
(FKPP)-equation-like dynamics such that these eventually again form dense aggregates
[97]. Recent findings suggest that cells are able to regulate their properties such that stress
within monolayers is relaxed [7]. Fig. 21 shows that down-regulation of the cytoskeleton
stiffness of interior cells at a critical stress is able to stabilize a quasi-monolayer even
in case the contact inhibition is not sufficient to prevent cells from being pushed out of
the monolayer. Cells that experience larger deformation or compression on average have
a longer cell cycle length than cells which experiences less deformation or compression;
isolated cells are assumed to have the smallest (average) cell cycle length. We suggested to
test our proposed mechanism either by tracking the fate of individually labeled cells which
we predict form clones of largely varying sizes even in case they emerged at almost the
same time during the growth process, or in co-cultures of cells growing in an environment of
non-dividing cells where we predict that the spatial pattern depends largely on the physical
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Figure 21: (A) If the cell-substrate adhesion is not strong enough to prevent cells from being

pushed out of the monolayer, cells pile up in the absence of anoikis. The intensity of the red color

denotes the distance to the substrate. Here we assumed that cells can re-enter into the cell cycle

if the stress is relaxed and their degree of compression falls below a critical threshold. (B) If the

interior cells can actively relax stress by down-regulating the stiffness of their cytoskeleton (here,

we assumed that the Young modulus changed from E = 450Pa → E = 200Pa) then the interior

cells relax stress and almost all stay in the monolayer.

properties of the embedding medium. For example, if the cells that enclose an expanding
clone have a large motility the geometric shape of the expanding clone should be more
compact while in case the motility of the environmental cells is small, finger-like growth
patterns should form. Finger-like growth patterns can also be triggered by a large adhesion
between the environmental cells; in this case the environmental cells adhere in small patches
leaving free space between the patches for the growing cell clone to expand (Drasdo and
Hoehme, in preparation). We expect that the same qualitative growth scenario would be
found if instead of cells colloidal particles would be used as an embedding medium. Such
experiments would be a natural extension of the experiments by Jain and co-workers ([126],
[127], [6]). Interestingly, random fluctuations in the cell cycle length result in a larger
growth velocity of a cell population compared to cell populations where cell division occurs
synchronized even in case the expectation value of the cell cycle length is the same [97].
This phenomenon may be an explanation for the observation that Glasgow osteosarcoma in
mice grow faster if the circadian rhythm, that regulates the synchronization of cell division
in the intestine, are suppressed [128].
Mutations are known to affect the control of apoptosis and of the cell cycle [18]. How is
a tumor expected to evolve in case the apoptosis is increasingly down-regulated or the
length of the (or passage into the) cell cycle is increasingly upregulated? Our simulations
for this case suggest that a selection on cells which show a faster passage through the cell
cycle occurs i.e., a selection on cells that grow and divide faster and undergo less apoptosis.
This modifies the shape of the growth curve qualitatively since it generates a drift of the
average effective cell cycle length (or in other words, growth time) towards smaller values.
Hence random mutations here are a source of diversity of properties which - by selection -
eventually leads to an overall increase of the growth velocity of the cell population.
The microscopic processes of growing tumor interfaces can be concluded to a large extend
from the critical exponents that characterize the fluctuations of the interface. Bru et. al.
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[36] suggested that the growth pattern in tumor monolayers belong to the Molecular Beam
Epitaxy class. Buceta and Galeano [100] question this. We have performed simulations
in 2d-monolayers which clearly suggest a KPZ-like behavior; however, in our simulations
the hopping was neglected or chosen to be of the order of the cell diameter; however, very
recent simulations with a larger hopping rate indicate that the surface dynamics remains
KPZ-like [96].
As a second example we studied the stability of growing tissue layers that are not attached
to a fixed surface (as opposed to monolayers that grow on a flat fixed substrate in a petri
dish). An example for this situation is the blastula formation of species that form a one
cell thick hollow blastula (geometrically a hollow sphere). Here, the one-cell-thick layer is
stabilized by mechanical energy. Starting from a model introduced in Ref. [68] we have
shown that buckling occurs if the stress generated by the growing and dividing cells can
no longer be balanced by the stabilizing mechanical energy (here, the bending energy;
similar effects can be observed for expanding elastic shells if shear stress plays a role [129]).
The origin of the layer-stabilizing mechanical energy is the cell polarity. This differs from
monolayers growing on fixed substrates in that a piling up of cells rather than a buckling
occurs if the monolayer gets unstable. We have shown examples that clearly suggest that
the emergence of buckling does not depend on specific mechanisms that are observed in
blastula formation such as a synchronized cell division or a conservation of the total embryo
mass but that this effect is generic. This line of argument is supported by observations
for example in lung [9] and pancreatic cells [10] which show that cell division is stronger
at positions of larger local curvature; this is precisely the result that we found in our
simulations.
Hence, in summary, many experimental observations in multicellular systems can be
explained by assuming cells are simple physical particles, performing (active) random moves
and moving under the influence of external forces, and being able to grow and divide. Such
a dynamics may be modeled by a master equation (e.g. [66, 69]) or a system of Langevin
equations [120], [77].
By comparison of the model results with experimental findings it is largely possible to
identify at which point in a growth or pattern formation process regulatory or genetic
changes of cells or groups of cells must have occurred. At this point the simulated (model)
scenario deviates from the one that is experimentally observed. Examples for this are the
growth stop of monolayers at confluence observed for many cell lines and gastrulation, i.e.
the invagination that occurs prior to the potential occurrence of a (buckling) instability in
early development.
Noise is inherently present in biological systems. We have shown that it can be the
source for instabilities and even modify the expansion velocity of growing multicellular
aggregates. Moreover, as explained above the fluctuation structure of the interface between
an expanding cell clone and its environment may permit to conclude the migration and
growth behavior on the single-cell level. However, significant qualitative differences in the
system behavior of cell populations where found in our simulations only in case of random
mutations that affect the cell-biological properties of the cells (in our case the apoptosis or
growth control).

Still, most models are not at a level where they permit quantitative predictions. However,
the advance in experimental techniques increasingly permit to study the effect of molecular
changes on the multi-cellular phenotype of tissues and tumors. This requires to spatially
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Figure 22: Highly simplified sketch of a simulated regeneration scenario after a cut–like lesion of a

two-dimensional model tissue (skin), composed of epithelial cells that represent the key component

of the epidermis and fibroblasts representing an important component of the dermis. The dermis

is located below the epidermis and consists of the papillary and reticular dermis. The papillary

dermis is directly located below the epidermis and has a high density of fibroblasts while the

reticular dermis is a loose connected tissue with a much lower density of fibroblasts. A scar is

often accompanied by an over-production of soft tissue (hypertrophic scars, kelloids) which then

leads to a local protrusion of the skin. In out model the initial configuration, cells at the surface

of the lesion are switched into the proliferating state as is known from observation [130]. Epithelia

are marked pink, with black (quiescent) or red (prolif.) boundaries. They are assumed to grow

by directed cell division and to form polar contacts to their neighbors at their side membranes.

Fibroblasts are drawn in yellow, with grey (quiescent) or blue (prolif.) boundaries. (Usually the

fibroblast density is smaller than in the picture. One may interpret the yellow elastic circles also

as soft tissue composed of both, extracellular components and fibroblasts.) The scenario A-C

show different mechanisms how the lesion could be closed. In order to prevent budding (shown

in (A)) which would occur in the absence of a growth stop, a correct closure of the lesion as in

(B),(C) requires an an active switch from prolif. → quiescent. Scenario (B) leads to a gradual

differentiation of fibroblasts by signals from their nearest neighbors (since cells at the inner border

of the lesion drawn in blue have less neighbors they continue to proliferate until the lesion has been

closed). In (C) a transition from prolif→quiescent for fibroblasts occurs as a consequence of a too

large compression of the cells. Epithelial cells stop growing if they come into contact at their side

membranes; this also models a biomechanical form of growth stop.
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and temporally resolve the intracellular regulatory mechanisms. Some attempts into the
direction of multi-cellular models that include an internal structure has been made recently
in the context of develoment and morphogenesis (e.g. [35, 131, 132]) and in the context
of tumor growth (e.g. [107, 133]). Studies along this line, performed in close contact with
experiments, will eventually permit to improve the models such that they can be used for
analysis and predictions in biotechnological applications [134, 135], cancer treatment (e.g.
[136–139]), and regenerative medicine (see Fig. 22 for a sketch of the regeneration of a
cut-like region; examples where single-cell based models are a proper choice compared to
continuum mechanical models are epithelial regeneration processes as in skin [140] or in liver
after toxification or partial hepatectomy [141]).
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Appendix A: Time scales and step sizes in the Monte Carlo simulation

Each growth trial that doesn’t result in an forbidden large compression of a cell (i.e.
dij < Ri + Rj − δ which denote excluded volume (EV) interactions) is accepted. The cycle
time of a cell not subject to EV interactions after m divisions is

τ =
2R(m + 1)ng∆t

δa(m + 1)
(24)

where δa(m) = δamax(m)/2 is the average growth step size, ng is the number of migration
trials between two successive growth trials, R(m) is the cell size after the cell has performed
m divisions, ∆t the time interval between two successive migration trials and ng∆t the
time between two successive growth trials. In the monolayer simulations, the cell size is
independent of the number of divisions a cell has performed so R(m) and δamax(m) do not
depend on m. In the tumor spheroid simulations and in the blastula formation simulations,
however, the cell size decreases with m. Eqn. (24) should express that in the absence
of external influences the number of growth steps between two successive divisions which
determine the cell cycle length has to be invariant under a change of the cell size. Consider a
zygote (here: m = 0, and the radius of the zygote is R(0)). Then in passing from the zygote
to the two-cells stage, τ = 4R(1)ng∆t/δamax(1) should be the same as in passing from size

R(m) to R(m+1), given by eqn. (24). R(m) = (R(0)/
√

2
m

and δamax(m) = δamax(0)/
√

2
m

so that τ = 4R(0)ng∆t/δamax(0) in eqn. (24) becomes independent of m. For tumor
spheroid growth as well as for blastula formation R(m)/δamax(m) must be independent of

m, so we may generally set amax(m) = amax(0)/f(m) and R(m) = R(0)/f(m) (f(m) =
√

2
m

for the blastula, and f(m) = 0.95−m/3 for the growing tumor spheroid.
The scaled time interval becomes

∆t̂ ≡ ∆t

τ
=

δamax(0)

2R(0)ng
(25)

For cells subject to EV interactions the cycle time is τR ≥ τ .
In the absence of drift the diffusion constant D can be calculated from

〈(δr)2〉 =

∫

r2P (r)ddr = 2dD∆t (26)

where d is the dimension and P (r) the probability to find a step of size r. The integration
is performed over a spherical volume of radius ξmax(m). Assuming an isotropic distribution
P (r) = 1/V with V =

∫

ddr, we find D = ξ2
max/(8∆t) in d = 2. Non-dimensionalizing all

quantities yields

D̂(m) =
ξ̂max(m)2

(8∆t̂)
(27)
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In d = 3 the denominator becomes 15∆t̂. So given D, l and τ , D̂ is calculated. The
step sizes ξmax should be chosen sufficiently small in order to insure a linear force-velocity
relationship. Then ∆t̂ follows from the last equation and, after insertion into the equation
for ∆t̂ = ..., permits to calculate either ng, if δamax(0) is chosen, or δamax(0), if ng is chosen.
δamax(0) determines the cycle time distribution of an isolated cell so the possible range for
δamax(0) is fixed if the cell cycle distribution is known (which is usually not the case). ng

has to be sufficiently large to insure that a cell performs sufficiently many migration trials
to be not kinetically trapped in an energetically unfavorable state. We have chosen the
number of rotation trials to be as large as the number of migration trials.
If one would still assume the Stokes-Einstein relation were true then D must scale as
the inverse cell size, ξ̂max(m)2 ∝ 1/R(m) hence ξ̂max(m)2 = ξ̂max(0)2f(m). However, this
relation is very questionable for cells as least in cases where cells can be assumed to perform
an active motion.

Appendix B: Mathematical discussion of buckling instability

The robustness suggests the instability be generic. An explanation can be given by a
continuum model as has been briefly outlined in ref [114]. Connecting the middle-points of
the cells in the configurations found in the simulations for N ≥ 4 we get a one-dimensional
closed curve in two dimensions. As in Goldstein and Langer [142] we may parameterize the
closed curve by the position vector r(α, t) where α ∈ [0, 1) is a parameter, t is the time.
r(α, t) is periodic in α, i.e. r(α = 1, t) = r(α = 0, t), the same holds for all derivatives, i.e.
∂r(α,t)

∂α

∣

∣

∣

α=0
= ∂r(α,t)

∂α

∣

∣

∣

α=1
. Note that U =

∫ 1

0

√
gdα where g = ∂r(α,t)

∂α
∂r(α,t)

∂α
is the determinant

of the metric tensor.
The mechanisms that contributes to the dynamics are (a) local proliferation of arclength due
to cell division, (b) stabilization of stretched structures by a bending energy, (c) constant
(at least on the average) perimeter if cell division is switched off. We only consider cell
configurations which show sufficiently small deviations from a circle which is surely true at
the onset of the instability. For such configurations intersections of the curve with itself
cannot occur. Thus we can neglect the excluded volume effect which would have to be
represented by a term ∼

∫

ds′
∫

ds(δ(r(s) − r(s′)) with the arclength ds =
√

gdα (e.g.
[143]). According to our assumptions (a) - (c) we make the formal ansatz:

ζ
∂r(α, t)

∂t

∣

∣

∣

∣

α

= − 1√
g

δF

δr
(28)

where the pre-factor 1√
g

ensures reparametization invariance and a damping constant (=

inverse of the mobility) has been absorbed into the timescale.
Further

F = F0(α, t) −
∫ 1

0

Λ(α, t)
√

gdα (29)

where Λ(α, t) is a Lagrangian multiplier field which ensures that the condition for the pro-
liferation of length (cf. condition (a)) which will be specified below, is fulfilled.

F0 = κ/2

∫ 1

0

[(c(α, t) − c0)
2]
√

gdα (30)
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is the bending energy (c(α, t) is the local, c0 the spontaneous curvature). To get a closed
set of equations, we have to fix now a condition for the local metric g:

∂
√

g

∂t
≡ f(c). (31)

(In the following, we use ∂t ≡ ∂
∂t

, ∂α ≡ ∂
∂α

, etc.) After performing the variation in eqn. (28),
we obtain with eqn. (31) a set of two equations of motion:

ζ∂tr =
[κ

2
(c3 − cc2

0 + 2∂2
sc) + Λc

]

n − ∂sΛt (32)

and

ζ
∂
√

g

∂t
=

√
g

(κ

2

[

c4 − c2c2
0 + 2c∂2

s c
]

+ Λc2 − ∂2
sΛ

)

≡ f(c) (33)

with n being the local normal and t the local tangent to the curve. The normal is directed
outward. By the transformation λ ≡ Λ − κ/2c2

0, one can absorb the spontaneous curva-
ture into the Lagrangian, i.e., in d = 2 dimensions, the physics is independent of a global
spontaneous curvature (this has also been found for a stability analysis of two-dimensional
vesicles by Seifert [144]). To study perturbations of the homogeneous solutions it is con-
venient to turn to polar coordinates (r, θ), and present r and λ as functions of θ, t, i.e.

r = r(θ, t), λ = λ(θ, t) with θ ∈ [0, 2π). Now ds =
√

r2 + (∂θr)2dθ and the boundary con-
ditions read r(θ = 0, t) = r(θ = π, t) and ∂θr(θ, t)|θ=0 = ∂θr(θ, t)|θ=π. The homogeneous
solution is then given by:

ζ∂tr = f(c) (34)

To understand the meaning of f(c), we make the transformation λ̃ ≡ Λ− f(c)√
gc2

, thus eq. (32)

becomes

∂tr =

[

κ

2
(c3 + 2∂2

s c) + λ̃c +
f(c)√

gc

]

n − ∂s(λ̃ +
f(c)√
gc2

)t. (35)

The term Gn ≡ f(c)√
gc

describes the growth normal to the line. Here, λ̃ insures the conservation

of arclength and has been separated from the term that is responsible for the growth. In the
regime where U ∝ t0.5 a cell performs a growth step into the direction of the local normal
with a probability proportional to the opening angle β to its neighbors (Fig. 11C). For
small angles, β can be shown to correspond to the product of the local curvature with the
cell-cell distance in lowest order of a taylor expansion, i.e., local length proliferation due
to cell division corresponds to a negative line tension (∼ c(α, t)l(α, t)n; note that for non-
conserved mass the cell-cell distance, l(α, t) ≈ constant and can be absorbed in the growth
rate while for total conserved mass l(α, t) ∼ 1/(

√
2)m(α,t), where m(α, t) is the generation of

the cell at position α. For synchronized cell division m(t) = log(N(t))/log(2) thus l ∼ 1/
√

N
independent of α.). Comparison with eq. (35) leads to f(c) = σ

√
gc2 where σ is a growth

rate. For the homogeneous case, this corresponds to f(c) = 1/r thus r ∼
√

t. This is
the result found in the simulations (Fig. 18 (B-D)). In the exponential growth regime, the
ansatz f(c) = σ0

√
g yields r ∼ exp{σ0t} i.e., exponential growth as observed in Fig. 18A.
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A general ansatz may hence be f(c) = σk
√

gc2k with (k = 0, 1, 2, ...). In the following we
linearize around the homogeneous state. From eq. (33) it is obvious that the dynamics of Λ is
determined by that of r. Now we linearizing around r = r0(t), Λ = Λ0 = 1

2
(−κ/r2

0 +κc2
0)+σ

where r0 is the solution of dr0/dt = σ/r0 by the ansatz r(θ, t) = r0(t)+δr(θ, t) and Λ(θ, t) =
Λ0 + δΛ(θ, t). With δr(θ, t) = ξ(t)exp(imθ) (m = 0, 1, 2, 3, ....), δΛ(θ, t) = η(t)exp(iqθ)
(q = 0, 1, 2, 3, ....), and taking into account q = m ∀m, q (because the dynamics of Λ follows
that of r) obtain get with ξ(t) ∼ ξ0exp(w(q)t) the dispersion relation

w(q) = −κq6 − q4(σr2
0 + 2κ) + κq2 + σr2

0

(1 + q2)r4
0

= −κq2(q2 − 1)2 − σr2
0(q

4 − 1)

(1 + q2)r4
0

(36)

The mode q = 0 has the equation w(0) = −σ/r2
0 which means, that every homogeneous

perturbation would be damped out compared to the unperturbed homogeneous perturbation
(the q = 0-mode doesn’t measure changes with respect to a stationary but to a homogeneous
solution which grows itself, so the difference decreases with time after a perturbation. The
direction of movement does even not change if w(0) would be positive). w(q = 1) = 0:
Up to linear order, the q = 1-mode describes a translation of the circle which is marginally
stable [144]. Note that for the general growth function f(c) = σk

√
gc2k (k = 0, 1, 2, ...),

(q4 − 1) → (q2 − 1)(q2 − 1 + 2k) in the numerator of the 2nd. term on the rhs. of eqn. (36).
For q2 ≫ max(1, 2k − 1), ω(q) ≈ −Aq4 + Bq2 with A = κ/(r4

0ζ), B = σk/r
2k
0 (for q ≫ 1

one obtains a dispersion relation as for particular cases of dendritic growth [145]). If no
growth occurs (σk = 0) the circle is the only stable solution. Otherwise, ω(q = 0) = σ0 > 0
for exponential growth, so homogeneous deviations grow. For the power-law growth regime
U ∝ t0.5, ω(0) = −σ1/r

2
0, so homogeneous perturbations are damped out. ω(q = 1) = 0,

i.e. a translation of the circle is marginally stable [144] (compare above). ω has a second
zero at q2

c = X for k = 0 and q2
c = [1 + X + {(1 − X)2 + 8Xk}0.5]/2 for k > 0, with

X ≡ B/A = ζσkr
4−2k
0 /κ. For 1 < q < qc, ω(q) > 0. For q → ∞, ω(q) < 0 i.e., short

wavelength perturbations are damped out. The fastest growing mode is q2
m ≈ X/2 (if

qm ≫ 1). qc and qm grow with increasing X. The buckling instability occurs at domain
sizes ∝ q−1

c that decrease with increasing growth strength and decreasing bending rigidity,
in agreement with the tendencies found in the computer simulations.
In the computer simulations we observed in the power-law growth regime that the buckling
occurs at domain sizes that increase with τ and κ and decrease with ǫ . This can be
qualitatively understood as follows: The larger κ is the better is the bending energy able
to damp out small deviations of the cell configuration from a perfect circle. A large cycle
time has the same effect: the cell configuration has more time to relax into the minimum
energy configuration. A large ǫ has the opposite effect. The nearest-neighbor energy is
minimized if cells avoid configurations where the distance between nearest neighbors falls
below the equilibrium value, e.g. by increasing small deviations perpendicular to the circular
configuration. These are disfavored by the bending energy which decreases as 1/r. Hence
the larger ǫ is the earlier the bending energy becomes unable to balance the energy increase
of nearest-neighbor energy. It is possible to analytically calculate the point at which the
buckling instability occurs within the power-law growth regime based on a Langevin equation
for each cell and the assumption that buckling occurs if the bending force becomes of the
same order as the de-stabilizing forces due to cell growth and division.


