Max-Planck-Institut
für Mathematik
in den Naturwissenschaften
Leipzig

The regularisation of the \(N \)-well problem by finite elements and by singular perturbation are scaling equivalent

by

Andrew Lorent

Preprint no.: 46 2007
THE REGULARISATION OF THE N-WELL PROBLEM BY FINITE ELEMENTS AND BY SINGULAR PERTURBATION ARE SCALING EQUIVALENT

ANDREW LORENT

Abstract. Let $K := SO(2) A_1 \cup SO(2) A_2 \ldots SO(2) A_N$ where $A_1, A_2, \ldots A_N$ are matrices of non-zero determinant. We establish a sharp relation between the following two minimisation problems.

Firstly the N-well problem with surface energy. Let $p \in [1, 2]$, Ω be a convex polytopal region. Define

$$I_p(\epsilon) = \int_{\Omega} d^p (D u (z), K) + \epsilon \| D^2 u (z) \|^2 dL^2 z$$

and let A_F denote the subspace of functions in $W^{2,2} (\Omega)$ that satisfy the affine boundary condition $Du = F$ on $\partial \Omega$ (in the sense of trace), where $F \notin K$. We consider the scaling (with respect to ϵ) of

$$m_p^\epsilon := \inf_{u \in A_F} I_p(\epsilon).$$

Secondly the finite element approximation to the N-well problem without surface energy. We will show there exists a space of functions $D^h F$ where each function $v \in D^h F$ is piecewise affine on a regular (non-degenerate) h-triangulation and satisfies the affine boundary condition $v = l_F$ on $\partial \Omega$ (where l_F is affine with $Dl_F = F$) such that for

$$\alpha_p (h) := \inf_{v \in D^h F} \int_{\Omega} d^p (Dv (z), K) dL^2 z$$

there exists positive constants $C_1 < 1 < C_2$ (depending on $A_1, \ldots A_N$, ς, p) for which the following holds true

$$C_1 \alpha_p (\sqrt{\epsilon}) \leq m_p^\epsilon \leq C_2 \alpha_p (\sqrt{\epsilon}) \text{ for all } \epsilon > 0.$$

The main goal of this paper is to show the equivalence (in the sense of scaling) of two different regularisations of a non-convex variational problem that forms a model of crystalline microstructure, specifically regularisation by second order gradients (otherwise known as singular perturbation) and regularisation by discretation via finite elements.

We focus on the simplest problem with non-trivial symmetries, the N-well problem in two dimensions. To set the scene let us take the Ball-James [3], [4], Chipot-Kinderlehrer [7] approach to crystal microstructure. We have an energy function I on the space of deformations $u : \Omega \subset \mathbb{R}^3 \to \mathbb{R}^3$ which has the form

$$I(u) = \int_{\Omega} W (Du (x)) dL^2 x,$$

(1)

where W is the stored energy density function that describes the various properties of the material. The function W has its minimum on a set of matrices known as the wells

$$K = SO (3) A_1 \cup SO (3) A_2 \ldots SO (3) A_N.$$

(2)

Roughly speaking the $A_1, A_2, \ldots A_N$ are symmetry related and represent the lattice states of the material.

ADDRESS: MIS MPG, INSELSTRASSE 22, D-04103 LEIPZIG.

2000 MSC CLASSIFICATION, 74N15. KEYWORDS, TWO WELLS, SURFACE ENERGY
Since \(w \) must be invariant with respect to rotation of the ambient space the wells \(K \) must have form (2). Functional \(\mathcal{I} \) is minimised over the space of functions that have affine boundary condition \(F \not\in K \).

A key point is that functional \(\mathcal{I} \) is not weakly lower semi-continuous. Minimising sequences form finer and finer oscillations, as is to be expected in any model designed to capture properties of microstructure.

Surprisingly for \(F \not\in K \) there exists an exact minimiser of \(\mathcal{I} \), this follows from work of Müller-Šverák [29], [30], see Sychev [34], [35] and Kirchheim [16], [17] for latter developments and Dacorogna-Marcellini [12] for a different approach to some related problems. The approach of Müller-Šverák uses the theory of “convex integration” (denoted by CI from this point) developed by Gromov, it is one of the simplest results of the theory.

Functional \(\mathcal{I} \) does not constrain oscillations of the gradient, it does not give a length scale or any restriction on the fine geometry of the microstructure. For many materials, the observed length scale of the microstructure is many orders larger than the atomic scale and for these materials functional \(\mathcal{I} \) is only a first approximation. To overcome this the following adaption of the functional \(\mathcal{I} \) is commonly made, see [33] Section 6

\[
\mathcal{I}_\epsilon (u) = \int_{\Omega} W(Du(z)) + \epsilon |D^2u(z)|^2 \, dL^2z.
\]

Roughly speaking this is a regularisation of \(\mathcal{I} \) that starts to constrain oscillations in the gradient below the \(\sqrt{\epsilon} \) scale. There have been a number of studies of simplified versions of functional \(\mathcal{I}_\epsilon \), [19], [8] and [27]. However these works focus on the case where the wells of \(\mathcal{I} \) are given by two rank-1 connected matrices. In this case (scaling) sharp upper and lower bounds has been proved. For functional with wells that have rotational invariance, i.e. of the form (2), nothing is known about the energy of minimisers.

Another way to constrain oscillation in the gradient is to minimise \(\mathcal{I} \) directly over the space of functions that are piecewise affine on a \(\sqrt{\epsilon} \) sized triangular grid. This is known as the finite element approximation of \(\mathcal{I} \). There are have been many studies of finite element approximations to functional of the form \(\mathcal{I} \), again for the simplified case where the wells are given by two or three rank-1 connected matrices, [5], [6], [20] and [25].

Our main achievement in this paper is to show that for the specific stored energy function \(W(\cdot) \sim d^p(\cdot, K) \) for some \(p \in [1, 2] \), we have that these two regularisations are scaling equivalent.

For the case where the wells of \(\mathcal{I} \) are given by sets of two or three matrices it is possible to calculate the scaling of the minimiser of \(\mathcal{I}_\epsilon \) and the minimiser of the finite element approximation to \(\mathcal{I} \), ([6], [20]), as such in this case the scaling equivalence of the energy is trivial.

The point of this paper is that we study functional \(\mathcal{I}_\epsilon \) with wells of the form \(SO(2) A_1 \cup \ldots SO(2) A_N \) and for these wells the scaling of the minimiser of \(\mathcal{I}_\epsilon \) is completely unknown, for this case our main theorem allows us to replace this question with a discrete minimisation problem.

To state our theorem we need to give some background. Given a polytopal region \(\Omega \) and some small constant \(\varsigma \in (0, 1) \) we say a collection of triangles \(\{\tau_i\} \) is an \((h, \varsigma) \)-triangulation of \(\Omega \) if \(\bigcup_i \tau_i = \Omega \) and every triangle \(\tau_i \) contains a ball of radius \(\varsigma h \) and has diameter less than \(\varsigma^{-1}h \).

Given \(w \in S^1 \) we denote by \(\Delta_\varsigma^h (w) \) the set of regular triangulations with respect to axis \(\langle w \rangle \), \(w^\perp \) axis, by this we mean every triangle \(\tau_i \) of distance \(\varsigma^{-1}h \) from \(\partial \Omega \) is a right angle triangle with sides parallel to \(\langle w \rangle \), \(w^\perp \). Finally we let \(\mathcal{F}^{\varsigma,h} (w) \) denote the space of functions that are piecewise affine on some triangulation in \(\Delta_\varsigma^h (w) \) and satisfy the affine boundary condition \(u = l_F \) on \(\partial \Omega \), where \(l_F \) is a fixed affine function with \(DL_F = F \).
For given triangulation \(\{ \tau_i \} \) and function \(u \in \mathcal{F}_F^h \) and triangle \(\tau_i \) we define the neighbouring gradients by

\[
N_i (u) = \begin{cases}
\{ Du_{\mid \tau_i} : v \cap \tau_i \neq \emptyset \} & \text{for } i \text{ such that } v \cap \partial \Omega = \emptyset \\
\{ Du_{\mid \tau_i} : v \cap \tau_i \neq \emptyset \} \cup \{ F \} & \text{for } i \text{ such that } v \cap \partial \Omega \neq \emptyset.
\end{cases}
\]

(3)

And for \(u \in \mathcal{F}_F^h \) we define the jump triangles by

\[
J (u) := \{ i : \exists A, B \in N_i (u) \text{ such that } |A - B| > \varsigma^{-1} \}.
\]

(4)

Finally given two connected subsets of matrices \(M, N \subset M^{2 \times 2} \) we say \(M \) and \(N \) are rank-1 connected if and only if there exists \(A \in M \) and \(B \in N \) and \(v \in S^1 \) such that \(Av = Bv \). The set of rank-1 directions connecting \(M, N \) are the set of vectors \(v \in S^1 \) satisfying \(Av = Bv \) for some \(A \in M, B \in N \).

Our main theorem is the following.

Theorem 1. Let \(K := SO (2) A_1 \cup SO (2) A_2 \ldots SO (2) A_N \) where \(A_1, A_2, \ldots A_N \) are matrices of non-zero determinant. Let \(\varsigma = \max \{ \| A_1 \|, \ldots, \| A_N \|, \| A_1^{-1} \|, \ldots, \| A_N^{-1} \| \} \).

Let \(\varsigma < \frac{\sigma}{\sigma_{\epsilon}} \) be some small positive number. Let \(w_1 \in S^1 \) be such that for \(w_2 \in w_1^1, w_1, w_2, \frac{w_1 - w_2}{|w_1 - w_2|} \) are not in the set of rank-1 directions connecting \(SO (2) A_i \) to \(SO (2) A_j \) for any \(i \neq j \). Let \(\Omega \) be a polytopal convex domain. Define

\[
P_p^\epsilon (w) := \int_{\Omega} D^p (Du (z), K) + \epsilon \| D^2 u (z) \|^2 dL^2 z.
\]

Let \(F \not\subset K \) and let \(A_F \) denote the subspace of functions in \(W^{2,2} (\Omega) \) that have boundary condition \(Du = F \) on \(\partial \Omega \) in the sense of trace. Let

\[
\mathcal{D}_F^h (w_1) := \left\{ v \in \mathcal{F}_F^h (w_1) : \sum_{i \in J(v)} \sum_{M \in N_i (v)} | Du_{\mid \tau_i} - M |^2 \leq \varsigma^{-1} \epsilon^{-1} \int_{\Omega} d^p (Dv, K) \right\}
\]

and define

\[
\alpha (\epsilon) := \inf_{w \in \mathcal{D}_F^h (w_1)} P^\epsilon (w) \quad \text{and} \quad m_p := \inf_{u \in A_F} P_p^\epsilon (u)
\]

there are positive constants \(C_1 < 1 < C_2 \) (depending only on \(\sigma, \varsigma, p \)) for which the following holds true

\[
C_1 \epsilon \alpha_p (\sqrt{\epsilon}) \leq m_p \leq C_2 \epsilon \alpha_p (\sqrt{\epsilon}) \quad \text{for all } \epsilon > 0.
\]

(5)

In truth our main motivation for establishing Theorem 1 was that we hoped to use it as a tool to understanding the minimiser of \(I_0 \). To explain this further we will simplify and take \(K = SO (2) \cup SO (2) H \) where \(H \) is a diagonal matrix of determinant 1 and we take \(p = 1 \).

As mentioned, nothing is known about the minimiser of the functional \(I_1 \). In particular it is completely unknown if for very small \(\epsilon \) the minimiser is something like the absolute minimiser of \(I_0 \) provided by C.I. In some sense this might seem reasonable, we refer to the \(\int |D^2 u|^2 \) term as the “surface energy” and the \(\int d (Du, K) \) term as the “bulk energy”, as \(\epsilon \to 0 \) the surface energy becomes less and less important, the main thing to be minimised is the bulk energy and of course C.I. solutions have zero bulk energy.

This question is best expressed by considering the scaling of \(m_1 \). An upper bound of \(m_1 \leq \epsilon^{1/2} \) is provided by the standard double laminate which follows from the characterisation of the quasiconvex hull of \(SO (2) \cup SO (2) H \) provided by [36] (we refer to [33] for background and precise definitions, see figure 1.

\[\footnote{We know it can not be a function u with I_0 (u) = 0 because the result of Dolzmann Müller [13], that any u with this property and with the property that Du is a BV has to be laminate} \]
If \(m_\epsilon \sim \epsilon^{1+\alpha} \) for \(\alpha > 0 \) then the minimiser will have to take a very different form than the double laminate. On the other hand if \(\alpha = 0 \) then energetically the minimiser does no better than the double laminate.

This question is important because CI solutions are important, many counter examples to natural conjectures in PDE have been achieved via CI, [31], [16], [32], [11]. Minimising functional \(I_\epsilon \) is the simplest problem that constrains oscillation in some slight way where we can hope to see the effect of the existence of exact minimisers of (1).

In the proof of Theorem 1 we have to work quite hard to establish the result for \(p = 1 \), we do so because functional \(I_1^\epsilon \) is particularly clean in the sense that it is not necessary to consider laminates with “domain branching” to construct upper bounds (contrast this with the case \(p = 2 \), [8], [19]) as such the upper bound is given by \(\epsilon R \) and is domain independent.

Let \(w_1 \in S^1 \) be such that for \(w_2 \in \overline{w_1} \) we have \(w_1, w_2, \overline{w_1-w_2} \) do not belong to the rank-1 connections between \(SO(2) \) and \(SO(2)H \). If \(\tilde{u} \in \mathcal{F}_F^h(w_1) \) and \(\tau_1, \tau_2 \in \Delta_h^\epsilon(w_1) \) are such that \(d(D\tilde{u}_{|\tau_1}, SO(2)) \approx 0 \) and \(d(D\tilde{u}_{|\tau_2}, SO(2)H) \approx 0 \), it is not too hard to see \(\tau_1 \) can not touch \(\tau_2 \), i.e. there must be a triangle \(\tau_3 \) between \(\tau_1 \) and \(\tau_2 \) for which \(d(Du_{|\tau_3}, K) \geq o(1) \).

For example if we have an interpolant of a laminate, and triangle \(\tau_i \) cuts through an interface of the laminate the affine map we get from interpolating the laminate on the corners of \(\tau_i \) will have its linear part some distance from the wells. See figure 2.

So we can not lower the energy of \(I_0 \) over \(\mathcal{F}_F^h(w_1) \) by simply making a laminate type function with finer layers, there is a competition between the surface energy as given by the error contributed from the interfaces and the bulk energy which in the case of the laminate is the width of the interpolation layer.

Let \(B_1 := \text{diag}(1, 0), B_2 := \text{diag}(-1, 1), B_3 := \text{diag}(-1, 1) \). See figure 1 (b). Define \(\tilde{I}(u) := \int_{\Omega} d(Du(z), \{B_1, B_2, B_3\}) dL^2z \). F.E. approximations of \(\tilde{I} \) over \(\mathcal{F}_F^h \) (where \(F_0 := \text{diag}(0, 0) \)) have been studied by Chipot [5] and the author [20]. It has been shown \(\inf_{u \in A_h^T} \tilde{I}(u) \sim h^\frac{1}{2} \), see [6] for an earlier, similar result. From Šverák’s characterisation [36] we know the exact arrangement of rank-1 connections between the matrices in the set \(SO(2) \cup SO(2)H \) and a
matrix in the interior of the quasiconvex hull of $SO(2) \cup SO(2)H$, see figure 1 (a). As we can see from figures 1 (a) and (b), the finite well functional I precisely mimics these rank-1 connections.

Conjecture 1. Let $K = SO(2) \cup SO(2)H$ where H is a diagonal matrix with eigenvalues σ, σ^{-1}. Let $w_1 \in S^1$ and $w_2 \in w_1^\perp$ be such that $w_1, w_2, \frac{w_1 - w_2}{|w_1 - w_2|}$ are not in the set of rank-1 connections between $SO(2)$ and $SO(2)H$. Let Ω be a polytopal convex region, $\varsigma \in (0, \frac{\sigma}{100})$. Given $F \in \text{int}(K^{qc})$. Let function space $F_{F, h}(w_1)$ denote the space of functions that are piecewise affine on some regular triangulation $\{\tau_i\} \in \Delta_h^\varsigma(w_1)$. There exists $c_0 = c_0(\sigma, \varsigma) > 0$ such that

$$\inf_{u \in F_{F, h}} I_0^F(u) \geq c_0 h^{\frac{1}{2}} \text{ for all } h > 0.$$

So from Theorem 1, if Conjecture 1 could be proved it would imply the scaling $m_\epsilon^1 \sim \epsilon^\frac{1}{2}$. Unfortunately even though the minimisation of I_0^F over $F_{F, h}$ is discrete problem, it appears to be quite hard to prove lower bounds.

1. Sketch of the Proof

Written out in detail, the proof of Theorem 1 is not short, however the basic ideas are quite simple. We give a sketch of the proof based on two lemmas that are only “morally true”, by this we mean that either we can not prove them, or only a weaker form hold true. This may be a bit unconventional, but it seems to us to be the best way to get to the heart of the matter without being flooded with details.

1.1. Lower bound. We focus on the case $p = 1$ and take $\Omega = Q_1(0)$. Let $M = \left[\epsilon^{-\frac{1}{2}}\right]$. We cut the square Ω into M^2 sub-squares of side length $\frac{1}{M}$, let $c_1, c_2, \ldots c_{M^2}$ be the centres of these
squares. So \(Q_i(0) = \cup_{i=1}^{M^2} Q_{\frac{i}{M}} \). Let \(C_1 = C_1(\sigma) \) be some small constant we decide on later. Now we define the “bad” squares to be

\[
B := \left\{ i : \int_{Q_{\frac{i}{M}}} |D^2 u|^2 \geq C_1 \right\}.
\]

“Morally true” lemma 1. For any \(i \in \{1, 2, \ldots, M^2\} \setminus B \) define \(v_i(z) = u(c_i + \frac{z}{M}) \). We have that there exists affine function \(L_i \) with \(DL_i \in K \) such that

\[
\|v_i - L_i\|_{L^\infty(Q_i(0))} \leq c \int_{Q_{\frac{i}{M}}(0)} d(Dv_i, K) + |D^2 v_i|^2.
\]

“Morally true” lemma 2. The minimiser \(u \) of \(I_\epsilon \) is Lipschitz.

Let us make it once again clear we cannot prove either “morally true” lemmas 1 or 2, they are simply a device to show the strategy of the proof. Now we split every sub-square \(Q_{\frac{i}{M}} \) into two right angle triangles, denote them \(\tau_i, \tau_{i+M^2} \) so the set \(\{\tau_1, \tau_2, \ldots, \tau_{2M^2}\} \) is a triangulation of \(\Omega \). Let \(\tilde{u} \) be the piecewise affine function we obtain from \(u \) by defining \(\tilde{u}|_{\tau_i} \) to be the affine map we get from interpolating \(u \) on the corners of \(\tau_i \).

Now for any \(i \not\in B \) let \(\omega^1_l, \omega^2_l, \omega^3_l \) denotes the corners of \(\tau_i \), so \(l, q \in \{1, 2, 3\} \)

\[
|D\tilde{u}|_{\tau_i} \left(\frac{\omega^1_l - \omega^1_q}{\omega^2_l - \omega^3_l} \right) - DL_i \left(\frac{\omega^1_l - \omega^1_q}{\omega^2_l - \omega^3_l} \right)
\leq M \left| \left(u(\omega^1_l) - u(\omega^1_q) \right) - \left(L_i(\omega^1_l) - L_i(\omega^1_q) \right) \right|
\leq \left| v_i \left(M(\omega^1_l - c_i) - L_i \left(M(\omega^1_l - c_i) \right) \right) \right| + \left| v_i \left(M(\omega^1_l - c_i) - L_i \left(M(\omega^1_q - c_i) \right) \right) \right|
\leq c \int_{Q_{\frac{i}{M}}(0)} d(Dv_i, K) + |D^2 v_i|^2.
\]

Since (7) holds true for every \(l, q \in \{1, 2\} \) we have \(|D\tilde{u}|_{\tau_i} - DL_i| \leq c \int_{Q_{\frac{i}{M}}(c_i)} M^2 d(Du, K) + |D^2 u|^2 \). In exactly the same way \(|D\tilde{u}|_{\tau_{i+M^2}} - DL_{i+M^2}| \leq c \int_{Q_{\frac{i}{M}}(c_i)} M^2 d(Du, K) + |D^2 u|^2 \). So

\[
\sum_{i \in \{1, 2, \ldots, M^2\} \setminus B} |D\tilde{u}|_{\tau_i} - DL_i| \leq c \int_{Q_{\frac{i}{M}}(c_i)} M^2 d(Du, K) + |D^2 u|^2. \]

Now for any \(i \in B \), since \(u \) is Lipschitz, for \(l, q \in \{1, 2, 3\} \) we have

\[
|D\tilde{u}|_{\tau_i} \left(\frac{\omega^1_l - \omega^1_q}{\omega^2_l - \omega^3_l} \right) = \left| \frac{u(\omega^1_l) - u(\omega^1_q)}{\omega^2_l - \omega^3_l} \right| \leq c.
\]
thus \(d \left(D\tilde{u}_{\{\tau_i\}}, K \right) \leq c \) and in the same way \(d \left(D\tilde{u}_{\{\tau_i+M^2\}}, K \right) \leq c \) so
\[
\sum_{i \in B} |D\tilde{u}_{\{\tau_i\}} - DL_i| L^2(\tau_i) + |D\tilde{u}_{\{\tau_i+M^2\}} - DL_{i+M^2}| L^2(\tau_i+M^2) \\
\leq \frac{c}{M^2} \text{Card}(B) \\
\leq \frac{c}{M^2} \sum_{i \in B} \int_{Q_{\frac{1}{2}}(c_i)} |D^2u|^2 \\
\leq cm^1_i. \tag{9}
\]

So as \(\{\tau_i\} \) is a \((\sqrt{\varepsilon}, \frac{c}{M})\)-triangulation and from (8), (9) we have \(\alpha (\sqrt{\tau}) \leq cm_i^1 \) which establishes the lower bound.

It is easy to construct a counter example to the “morally true” lemma 1, however as a substitute we have Proposition 1, see Section 4. Since \(i \in B \) it should seem reasonable that there exists \(k_0 \) such that
\[
\int_{Q_{\frac{1}{2}}(0)} d(Dv_i, SO(2) A_{k_0}) \leq c \int_{Q_{\frac{1}{2}}(0)} d(Dv_i, K). \tag{10}
\]

This follows from a kind of capacity type argument that is Step 1 of Proposition 1. Alternatively imagine we had slightly more integrability of \(D^2u \) and hence we could show that
\[
\left(\int_{Q_{\frac{1}{2}}(0)} |D^2v_i|^{2+4d} \right)^{\frac{1}{2+4d}} \text{ is “small” (in fact } v_i \text{ satisfies a fourth order elliptic PDE coming from the Euler Lagrange equation of } u \text{ so we could indeed establish such higher integrability via reverse Holder inequalities), then by Sobolev embedding we would have that } Dv_i \text{ stays in a neighbourhood of some well } SO(2) A_{k_0} \text{ and so } \tag{10} \text{ trivially follows.}
\]

Now if we were considering the \(d^p (\cdot, K) \) distance from the wells then we could apply Theorem 2 to obtain sharp \(L^p \) control of the distance of \(Dv \) from a matrix in \(K \). For the \(p = 1 \) case Theorem 2 is false \[9\] and so we need to use the fact that the “tangent space” to the set \(SO(2) \) around the identity is the set of skew symmetric matrices. This allows us to apply the Korn type Poincaré inequality given by Lemma 1 to gain sharp control of the \(L^1 \) distance of \(v_i \) from the affine function.

Note that Proposition 1 is not enough since in the argument given in (7) we need to control the function exactly at the corners of the triangles. The trick to overcome this is the following. Let \(v : Q_M(0) \to \mathbb{R}^2 \) be defined by \(v(z) = u \left(\frac{z}{\sqrt{\varepsilon}} \right) M \). By the Co-area formula we can find a grid of squares of side length \(1 \), labelled \(S_1, S_2, \ldots, S_{M^2-4M} \) such that for each \(i \) there exists affine function \(L_i \) with \(DL_i \in K \) such that
\[
c \int_{\partial S_i} |v - L_i| + |D^2v|^2 + d(Dv, SO(2) \text{ sym}(DL_i)) \\
\leq \int_{N_i(S_i)} d(Dv, K) + |D^2v|^2 =: \alpha_i, \tag{11}
\]
\((\text{where sym}(A) \text{ denotes the symmetric part of matrix } A \text{ we obtain by polar decomposition). We can split } S_i \text{ into disjoint triangles } \tau_i, \tau_i+M^2. \text{ Let } a_i, b_i, c_i \text{ be the corners of } \tau_i \text{ where } [a_i, b_i] \cup [b_i, c_i] = \partial \tau_i \cap \partial S_i. \text{ The important point is that } Dv \text{ along } [a_i, b_i] \text{ varies by at most } \frac{1}{\sqrt{\varepsilon}} \text{ and so its not hard to show } Dv(z) \in B_{c_i} M (DL_i) \text{ for all } z \in [a_i, b_i]. \tag{11}
\]

For simplicity let us assume \(\text{sym}(DL_i) = Id. \)

Given \(\tilde{b}_i \in [a_i, b_i], \) by trigonometry this allows to conclude
\[
|v(a_i) - v(\tilde{b}_i)| \geq (1 - \cos \alpha_i) |a_i - \tilde{b}_i|.
\]
And very easily from (11) (since we have assumed $\text{sym}(DL_i) = I$) we have
\[|v(a_i) - v(b_i)| \leq (1 + \alpha_{a_i}) |a_i - b_i| \]

The point \tilde{b}_i can be easily chosen so that $|v(b_i) - L_i(b_i)| \leq \alpha_{b_i}$. In exactly the same way we can find $\tilde{c}_i \in [a_i, c_i]$ such that $|v(\tilde{c}_i) - L_i(\tilde{c}_i)| \leq \alpha_{c_i}$ and $\|v(a_i) - v(\tilde{c}_i)| - |a_i - \tilde{c}_i|| \leq \alpha_{c_i}$. Let $\gamma_1 = |a_i - \tilde{b}_i|$ and $\gamma_2 = |a_i - \tilde{c}_i|$, so (defining $N_\delta(A) := \{ x : d(x, A) < \delta \}$) we have
\[v(a_i) \in N_{\alpha_{a_i}}(\partial B_{\gamma_1}(\tilde{b}_i)) \cap N_{\alpha_{a_i}}(\partial B_{\gamma_2}(\tilde{c}_i)). \] (12)

See figure 4. From (12) it is not hard to show $v(a_i) \in B_{\alpha_{a_i}}(L_i(a_i))$. We can control the corners b_i, c_i in the same way. Therefore if we define l_i to be the affine map we get from interpolating v on $\{a_i, b_i, c_i\}$ we have $d(Dl_i, DL_i) \leq \alpha_{c_i}$. Since $\sum_i \alpha_i \leq c \varepsilon^{-1}m^p$ this gives the lower bound.

1.2. Upper bound. To obtain the upper bound we will have to convert a function v that is piecewise affine on a $(\sqrt{\varepsilon}, \varepsilon)$-triangulation into a function $u \in W^{2,2}(\Omega)$ with affine boundary condition $Du = F$ on $\partial \Omega$ (in the sense of trace), recall we denote the space of such functions by A_p. The most natural way to do this is to convolve v with a function ψ_ε where $\psi_\varepsilon(z) := e^{-1} \psi\left(\frac{z}{\varepsilon}\right)$ and $\psi \in C_0(\mathbb{R}_+)$ with $\psi(1) = 1$ on $B_\frac{1}{2}(0)$.

Let $G_0 := \{ i : d(Dv|_{\tau_i}, K) \leq \alpha_{SO(2), SO(2)}(\varepsilon)^{1/8} \}$ and define $E(x) := \{ i : \tau_i \cap B_{\sqrt{\varepsilon}}(x) \neq \emptyset \}$. Suppose $x \in \Omega$ is such that $E(x) \subset G_0$, for simplicity we will assume $d(Dv|_{\tau_i}, SO(2)) = d(Dv|_{\tau_i}, K)$ for every $i \in E(x)$. Since for any $k, l \in E(x)$ with $H^1(\tau_k \cap \tau_l) > 0$ we have that there exists $w \in S^1$ such that $Dv|_{\tau_k}w = Dv|_{\tau_l}w$ and thus $|Dv|_{\tau_k} - Dv|_{\tau_l}| \leq c\{d(Dv|_{\tau_i}, SO(2)) + d(Dv|_{\tau_i}, SO(2))\}$ because if $Dv|_{\tau_k} \in SO(2)$ and $Dv|_{\tau_l} \in SO(2)$ the fact that $Dv|_{\tau_k}w = Dv|_{\tau_l}w$ would imply $Dv|_{\tau_k} = Dv|_{\tau_l}$, so the difference between $Dv|_{\tau_k}$ and $Dv|_{\tau_l}$ is controlled by the distance of these matrices from $SO(2)$.

A relatively easy generalisation of this is that for any x where $E(x) \subset G_0$
\[|Dv|_{\tau_k} - Dv|_{\tau_l}| \leq c \max \{ d(Dv|_{\tau_i}, K) : i \in E(x) \} \]
so
\[Du(x) = \int \psi_\varepsilon(z-x) dL^2z \]
\[= \sum_{i \in E(x)} Dv|_{\tau_i} \int_{\tau_i} \psi_\varepsilon(z-x) dL^2z. \] (14)

Let's pick $i_0 \in E(x)$ we then have
\[|Du(x) - Dv|_{\tau_{i_0}}| \leq \sum_{i \in E(x)} \left(Dv|_{\tau_i} - Dv|_{\tau_{i_0}} \right) \int_{\tau_i} \psi_\varepsilon(z-x) dL^2z \]
\[\leq c \max \{ d(Dv|_{\tau_i}, K) : i \in E(x) \}. \] (15)

So for any $x \in \Omega$ such that $E(x) \subset G_0$, $d(Du(x), K)$ is comparable to $d(Dv|_{\tau_{i_0}}, K)$ with error given by $\max \{ d(Dv|_{\tau_i}, K) : i \in E(x) \}$ and thus
\[\int_{\{ x : E(x) \subset G_0 \}} d^p(Du(z), K) dL^2z \leq \sum_i d^p(Dv|_{\tau_i}, K) + c \sum_i d^p(Dv|_{\tau_i}, K) \]
\[\leq c \sum_i d^p(Dv|_{\tau_i}, K). \]
Now from (14) we know

\[
|Du(x)| = \left| \sum_{i \in E(x)} Dv_{|\tau_i} \int_{\tau_i} \psi_{,\tau}(z-x) dL^2z \right|
\]

\[
\leq c \sum_{i \in E(x)} |Dv_{|\tau_i}|
\]

and thus \(d^p(Du(x),K) \leq c \left(\sum_{i \in E(x)} d^p(Dv_{|\tau_i},K) + 1 \right)\) so as

\[
L^2(\{x \in \Omega : E(x) \not\subset G_0\}) \leq cL^2 \left(\bigcup_{i \in G_0} \tau_i \right) \leq cm_p^p,
\]

we have \(\int_{\{x \in E(x) \not\subset G_0\}} d^p(Du(x),K) \leq cm_p^p\).

So all that remains is to control the \(\int_\Omega |D^2u|^2\) term. For \(x \in \Omega\) such that \(E(x) \subset G_0\) this is relatively easy since

\[
D^2u(x) = -\int Dv(z) \otimes D\psi_{,\tau}(z-x) dL^2z
\]

(16)

and as \(\int D\psi_{,\tau}(z-x) dL^2z = 0\) we have

\[
D^2u(x) = -\int (Dv(z) - Dv_{|\tau_0}) \otimes D\psi_{,\tau}(z-x) dL^2z
\]

\[
\leq c\epsilon^{-2} \max \left\{ |Dv_{|\tau_j} - Dv_{|\tau_0}| : j \in E(x) \right\} L^2(\text{Spt} \psi_{,\tau})
\]

\[
\leq c\epsilon^{-2} \max \left\{ |Dv_{|\tau_j} - Dv_{|\tau_0}| : j \in E(x) \right\}.
\]

So

\[
|D^2u(x)|^2 \leq c\epsilon^{-1} \left(\max \left\{ |Dv_{|\tau_j} - Dv_{|\tau_0}| : j \in E(x) \right\} \right)^2
\]

\[
\leq c\epsilon^{-1} \left(\max \left\{ |Dv_{|\tau_j} - Dv_{|\tau_0}| : j \in E(x) \right\} \right)^p
\]

(13)

\[
\leq c\epsilon^{-1} \max \{ d^p(Dv_{|\tau_i},K) : i \in E(x) \}.
\]

Thus

\[
\int_{\{x : E(x) \subset G_0\}} |D^2u(x)|^2 dL^2x \leq c\epsilon^{-1} \sum_i d^p(Dv_{|\tau_i},K) L^2(\tau_i)
\]

\[
\leq c\epsilon^{-1} m_p^p.
\]

So far everything goes well simply by using (13), however for \(x \in \Omega\) such that \(E(x) \not\subset G_0\) we have a problem because the quantity we are interested in is \(|D^2u(x)|^2\) and from equation (16), if the jump from \(Dv_{|\tau_i}\) to \(Dv_{|\tau_0}\) is much greater than 1 we can not estimate \(|D^2u|^2\) by any \(L^1\) control of the distance of \(Dv\) from \(K\). Quite simply if we have an arbitrary function \(v \in F^{(\sqrt{\epsilon},\varsigma)}\) and we form function \(u\) by convolving it with \(\psi_{,\tau}\) it could be the case that \(\int_\Omega d^p(Du,K) + |D^2u|^2 >> m_p^p\). In order for the estimate we want to hold true we need some condition that bounds the square of all the jumps of order \(> 1\) by the quantity \(c^{-1} m_p^p\). The way we deal with this problem is by circumventing it: in establishing the lower bound we showed that from a function \(u \in A_p\) we can create a function \(\tilde{u}\) that is piecewise affine on a \((\sqrt{\epsilon},\varsigma)\) triangulation and \(\int_\Omega d(D\tilde{u},K) \leq cm_p^p\), if we were smarter we could show the function \(\tilde{u}\) that we created had even stronger properties. For example if \(u\) was Lipschitz then \(\tilde{u}\) would also be Lipschitz and our problems would be over. Unfortunately we can not prove \(u\) is Lipschitz,
however what we have for free is that $\int_{\Omega} |D^2 u|^2 \leq \epsilon^{-1} m^p$. It turns out that for sufficiently
careful choice of triangulation this is strong enough for us to be able to construct a function \tilde{u}
such that if we define $N_i (\tilde{u}), J (\tilde{u})$ by (3), (4) we have that
$$\sum_{i \in J(\tilde{u})} \sum_{M \in N_i(\tilde{u})} |D\tilde{u}|_{1,p}^2 \leq \epsilon^{-1} m^p. \tag{17}$$

So we define a function space we call $D_F^{(\epsilon,\sqrt{\epsilon})}$ to be the set of piecewise affine functions
in $F^{(\epsilon,\sqrt{\epsilon})}$ that satisfies (17) and we will show in the “lower bound” part of Theorem 1 that
given $u \in A_F$ with $P^F_p (u) \leq c m^p$ we can construct function $\tilde{u} \in D_F^{(\epsilon,\sqrt{\epsilon})}$ from it such that
$\int_{\Omega} d^p (D\tilde{u}, K) \leq cm^p$.

To prove the “upper bound” we will need to show that if $v \in D_F^{(\epsilon,\sqrt{\epsilon})}$ then we can construct
function $u \in A_F$ and $P^F_p (u) \leq c \int_{\Omega} d^p (Dv, K)$. It turns out that proceeding in the “naive” way
and simply defining $u = v*\psi$ inequality (17) is strong enough to conclude $\int_{\Omega} |D^2 u|^2 \leq \epsilon^{-1} m^p$,
in some sense from equation (16) this should come as no great surprise. Since we have already
shown $\int_{\Omega} d^p (Du, K) \leq m^p$ the upper bound is completed.

For the case $p > 1$ we can replace the bulk energy $d^p (\cdot, K)$ by a function $J_p : M^{2 \times 2} \to \mathbb{R}$
where $J_p (\cdot) \sim d^p (\cdot, K)$ and $J_p (M) = |M|^p$ for any $|M| > 1000 \sigma^{-2}$. Let $\bar{J}_p (u) := \int_{\Omega} J_p (Du)^p +
\epsilon |D^2 u|^2$. Clearly the energy of \bar{J}_p is within a constant of P^F_p and for the minimiser \tilde{u} of \bar{J}_p we
can apply Theorem 1.1 of [28] to conclude \tilde{u} is Lipschitz in any interior domain $\Omega_0 \subset \subset \Omega$. If we
could conclude that \tilde{u} is Lipschitz on the whole domain Ω we could greatly simplify the proof
and the statement of Theorem 1: it would allow us to simply define $D_F^{\epsilon,h}$ to be the space of
Lipschitz functions in $F_F^{\epsilon,h}$.

Given the method of proof of Theorem 1.1 of [28] it seems reasonable to hope the same
result holds true for $p > 1$ for the whole domain Ω, which would lead to a strong improvement
of Theorem 2 for the case $p > 1$. We hope to pursue this in a future paper.

Acknowledgements. Firstly we would like to thank Georg Dolzmann for pointing out
the connection between finite element approximations and problems which constrain surface
energy. In some sense this paper is nothing more than a precise formulation of this observation.
Secondly we owe a great debt to discussions with Stefan Müller, particularly with reference to
Proposition 1. Suggestions from him lead to a cleaner statement and a drastic simplification of
proof.

2. Background

We will need a couple of not so well known Poincaré inequalities. Firstly a Korn type
Poincaré inequality from [18], for a form more convenient for our purposes we refer to Theorem
6.5 [1]. The lemma we state is highly simplified version of Theorem 6.5.

Lemma 1. Let $u \in W^{1,1} (\Omega; \mathbb{R}^n)$ we have a constant $c_0 = c_0 (n)$ such that for any $B_r (x) \subset \Omega$
there exists vectors $a_{x,r}, b_{x,r} \in \mathbb{R}^n$
$$\int_{B_r (x)} |u(z) - b_{x,r} \cdot (z - x) - a_{x,r}| dL^n z \leq c_0 r \int_{B_r (x)} \left| \frac{Du(z) + Du^T(z)}{2} \right| dL^n z$$

Secondly a version of the more standard Poincaré inequality.
Lemma 2. Let \(a_0 > 0 \) be a fixed small constant. Let \(p \geq 1 \). Suppose \(u \in W^{1,p}(B_1(0)) \) is such that
\[
L^n(\{ x : u(x) = 0 \}) > a_0.
\]
There exists constant \(c_1 = c_1(a_0, n) \)
\[
\int_{B_1(0)} |u(z)|^p \, dL^n z \leq c_1 \int_{B_1(0)} |Du(z)|^p \, dL^n z
\]
(18)

Proof of Lemma 2. Since this lemma is essentially standard we only sketch its proof. Suppose (18) is false, then we have a sequence \(u_n \in W^{1,p}(B_1(0)) \) such that
\[
\left(\int_{B_1(0)} |u_n(z)|^p \, dL^n z \right) \left(\int_{B_1(0)} |Du_n(z)|^p \, dL^n z \right)^{-1} \to \infty.
\]
(19)
Let \(w_n(x) := u_n(x) \left(\int_{B_1(0)} |u_n(z)|^p \, dL^n z \right)^{-1} \). So \(\|w_n\|_{L^p(B_1(0))} = 1 \) and \(\|Du_n\|_{L^p(B_1(0))} \to 0 \) as \(n \to \infty \). By BV compactness theorem (see Theorem 3.22 [2]) there exists a subsequence of \(w_n \) that has a limit \(w \in BV(B_1(0)) \) where \(Dw = 0 \) and \(\int_{B_1(0)} w = 1 \) with \(L^2(\{ x : w(x) = 0 \}) \geq a_0 \), which is a contradiction.

A theorem that we will use many times is the following [15].

Theorem 2 (Friesecke, James, Müller). Let \(U \) be a bounded Lipschitz domain in \(\mathbb{R}^n \), \(n \geq 2 \). Let \(q > 1 \). There exists a constant \(C(U,q) \) with the following property. For each \(v \in W^{1,q}(U,\mathbb{R}^n) \) there exists an associated rotation \(R \in SO(n) \) such that
\[
\|Dv - R\|_{L^q(U)} \leq C(U,q) \|\text{dist}(Dv,SO(n))\|_{L^q(U)}.
\]
(20)

3. Rough lower bounds on \(m^p \)

Lemma 3. Let \(p \geq 1 \), define
\[
m^p := \inf_{u \in A_p} \int_{\Omega} d^p(Du(z),K) + \epsilon \|D^2u(z)\|^2 \, dL^2 z.
\]
(21)
We have positive constant \(c_1 \) (depending only on \(\sigma, p \)) such that
\[
m^p \geq c_1 \epsilon^{\frac{1}{2}} \text{ for all } \epsilon > 0.
\]
(22)
Proof. Let
\[
d_0 := \frac{1}{4} \inf \{|A-B| : A \in SO(2)A_1, B \in SO(2)A_j, i \neq j\}
\]
(23)
By density of smooth functions in \(W^{2,2}(\Omega) \) we can find a smooth function \(u \) satisfying \(u(x) = 1_F(x) \) for \(x \in \partial \Omega \) with
\[
\int_{\Omega} d^p(Du(x),K) + \epsilon \|D^2u(x)\|^2 \, dL^2 x \leq 2 m^p.
\]
(24)
Now suppose (22) is false, so for some small positive constant \(c_1 < d_0 \) we have \(m^p \leq c_1 \epsilon^{\frac{1}{2}} \). By Cauchy Schwartz inequality we have
\[
\int_{\Omega} d^p(Du(x),K) \|D^2u(x)\| \, dL^2 x \leq 2 c_1.
\]
(25)
Let \(U_i := \{ x \in \Omega : d(Du(x),SO(2)A_i) < c_1 \} \). There must exists \(i_0 \in \{ 1, 2, \ldots, N \} \) such that
\[
L^2(U_{i_0}) \geq \frac{L^2(\Omega) - c_1}{N}.
\]
Let \(E(x) = d^p(Du(x),K) \|D^2u(x)\| \) and \(\psi_z : \mathbb{R}^2 \to [0,2\pi) \) be defined by \(|x-z|e^{i\psi_z(x)} = x - z \). Note \(\psi_z \) is smooth in \(\mathbb{R}^2 \setminus \{(z_1, z_2 + \lambda) : \lambda \in \mathbb{R} \} =: U_z \) and
$|D\psi_z(x)| \leq \frac{1}{|z-x|}$ for any $x \in U_z$. Let $c_0 := \int_{\Omega} \frac{1}{|z-x|} dL^2 z$. We know via Fubini theorem

$$\int_{\Omega} \int_{\Omega} E(x) |D\psi_z(x)| dL^2 x dL^2 z = \int_{\Omega} E(x) \left(\int_{\Omega} |D\psi_z(x)| dL^2 z \right) dL^2 x$$

$$\leq \int_{\Omega} E(x) \left(\int_{\Omega} \frac{1}{|z-x|} dL^2 z \right) dL^2 x$$

$$\leq c_0 \int_{\Omega} E(x) dL^2 x$$

\[(25) \leq 2c_0 c_1. \]

So we can find a subset $G \subset \Omega$ such that $L^2(\Omega \setminus G) \leq 2c_0 c_1$ and for every $z \in G$ we have

$$\int_{\Omega} E(x) |D\psi_z(x)| dL^2 x \leq c_1.$$

Now by the Co-area formula, for each $z \in G$ we can find $\Psi_z \subset [0, 2\pi)$ with $L^1([0, 2\pi) \setminus \Psi_z) \leq c_1$. For every $\theta \in \Psi_z$ we have $\int_{\{ z + \langle e^{i\theta} \rangle \} \cap \Omega} E(x) dH^1 x \leq c_1$. We can assume c_1 is sufficiently small so $G \cap U_{i_0} \neq \emptyset$. Now we claim for each $z \in G \cap U_{i_0}$ we have that

$$\sup \left\{ d(Du(z), SO(2) A_{i_0}) : x \in \left(\bigcup_{\theta \in \Psi_z} (z + \langle e^{i\theta} \rangle) \right) \cap \Omega \right\} \leq 4c_1^{\frac{2}{2+p}}. \quad (26)$$

Suppose (26) is false. So there exists $z_0 \in G \cap U_{i_0}$ and $\theta_0 \in \Psi_{z_0}$ with $z_1 \in (z_0 + \langle e^{i\theta_0} \rangle) \cap \Omega$ such that $d(Du(z_1), SO(2) A_{i_0}) > 4c_1^{\frac{2}{2+p}}$. So as $d(Du(z_0), SO(2) A_{i_0}) < c_1$ we can find $z_2, z_3 \in [z_0, z_1]$ with the properties

$$d(Du(z_2), SO(2) A_{i_0}) = 4c_1^{\frac{2}{2+p}} \quad \text{and} \quad d(Du(z_3), SO(2) A_{i_0}) = 4c_1^{\frac{2}{2+p}}.$$

In addition we have

$$d(Du(z), SO(2) A_{i_0}) \in \left[c_1^{\frac{2}{2+p}}, 4c_1^{\frac{2}{2+p}} \right] \quad \text{for any} \quad z \in [z_2, z_3]. \quad (27)$$

So

$$c_1^{\frac{1}{2}} \geq \int_{z_2}^{z_3} E(z) dH^1 z$$

$$= \int_{z_2}^{z_3} d\Theta(Du(z), SO(2) A_{i_0}) \left| D^2 u(z) \right| dH^1 z$$

$$\geq c_1^{\frac{2}{2+p}} \int_{z_2}^{z_3} \left| D^2 u(z) \right| dH^1 z$$

$$= 3c_1^{\frac{2}{2+p}} c_1^{\frac{2}{2+p}}$$

$$= 3c_1^{\frac{1}{2}}$$

which is a contradiction. So pick $z_0 \in G \cap U_{i_0}$ and let $\Lambda = \left(\bigcup_{\theta \in [0, 2\pi) \setminus \Psi_{z_0}} (z_0 + \langle e^{i\theta} \rangle) \right) \cap \Omega$. Note that

$$L^2(\Omega \setminus \Lambda) \leq L^2 \left(\left(\bigcup_{\theta \in [0, 2\pi) \setminus \Psi_{z_0}} (z_0 + \langle e^{i\theta} \rangle) \right) \cap B_{\text{diam}(\Omega)}(0) \right)$$

$$\leq 2\pi \text{diam}(\Omega) L^1([0, 2\pi) \setminus \Psi_{z_0})$$

$$\leq 2\pi \text{diam}(\Omega) c_1^{\frac{1}{2}}. \quad (28)$$
So as for any \(x \in \Omega \setminus \Lambda \) we have \(d(Du(x), SO(2) A_{i_0}) \leq d(Du(x), K) + c \) thus
\[
\int_{\Omega} d(Du(x), SO(2) A_{i_0}) \, dL^2 x \leq \int_{\Omega} d(Du(x), K) \, dL^2 x + cL^2 (\Omega \setminus \Lambda) \leq 2\pi \text{diam}(\Omega) c_1^\perp + c c_2 \text{diam}(\Omega).
\]
So applying Proposition 2.6 [10] we have that there exists \(R_0 \in SO(2) \) such that
\[
\int_{\Omega} |Du(x) - R_0 A_{i_0}| \, dL^2 x \leq c c_1^\perp.
\]
Since \(R_0 A_{i_0} \neq F \) there must exist \(w \in S^1 \) such that \(R_0 A_{i_0} w \neq Fw \). We must be able to find \(c \in w^\perp \cap B_{\text{diam}(\Omega)}(0) \) such that
\[
\int_{\Omega \cap (c + \langle w \rangle)} |Du(z) - R_0 A_{i_0}| \, dL^1 z \leq c c_1^\perp.
\]
Let \(a, b \) denote the endpoints of \(\Omega \cap (c + \langle w \rangle) \). We have
\[
|F(a - b) - R_0 A_{i_0}(a - b)| = |u(a) - u(b) - R_0 A_{i_0}(a - b)| \leq \left| \int_a^b (Du(z) - R_0 A_{i_0}) w \, dL^1 z \right| \leq c c_1^\perp
\]
which is a contradiction assuming \(c_1 \) is chosen small enough. \(\square \)

4. PROOF OF THEOREM 1

Proposition 1. Suppose \(u \in W^{2,2}(B_1(0) : \mathbb{R}^2) \) satisfies the following properties
\[
\int_{B_1(0)} d^p(Du(z), K) \, dL^2 z \leq \beta \tag{29}
\]
\[
\int_{B_1(0)} |D^2 u(z)|^2 \, dL^2 z \leq \beta \tag{30}
\]
then in the case \(p > 1 \) there exists matrix \(M \in K \) such that
\[
\int_{B_1(0)} |Du(z) - M|^p \, dL^2 z \leq c\beta. \tag{31}
\]
And for the case \(p = 1 \) there exists \(i_0 \in \{1, 2, \ldots, N\} \) and affine function \(L : B_1(0) \rightarrow \mathbb{R}^2 \) with \(DL \in SO(2) A_{i_0} \) such that
\[
\int_{B_{1^2}(0)} |u(z) - L(z)| \, dL^2 z \leq c\beta \tag{32}
\]
and
\[
\int_{B_1(0)} d(Du(z), SO(2) A_{i_0}) \, dL^2 z \leq c\beta. \tag{33}
\]

Proof.

Step 1. Recall definition (23) of \(d_0 \), let \(d_1 = \frac{\epsilon_{\Omega}}{d_0} d_0 \) and let
\[
U_i := \{ x \in B_1(0) : d(Du(x), SO(2) A_i) < d_1 \} \text{ for } i = 1, 2, \ldots, N.
\]
We will show there exists \(i_0 \in \{1, 2, \ldots, N\} \) such that
\[
L^2(B_1(0) \setminus U_{i_0}) \leq c\beta. \tag{35}
\]
As a consequence we will establish (33).
Proof of Step 1. Since for any \(x \in B_1(0) \setminus \left(\bigcup_{i=1}^N U_i \right) \) we have \(d(Du(x), K) > d_1 \). So

\[
L^2 \left(B_1(0) \setminus \left(\bigcup_{i=1}^N U_i \right) \right) \leq \frac{1}{d_1^2} \int_{B_1(0)} d^p(Du(z), K) dL^2 z
\]

which implies there must exists \(i_0 \in \{1, 2, \ldots, N\} \) such that \(L^2(U_{i_0}) \geq \frac{c}{d_1} \).

Define \(P_0 : M^{2 \times 2} \to \mathbb{R}_+ \) by \(P_0(M) = (d(M, SO(2) A_{i_0}) - d_1) \), so note for any \(M \in N_{d_1}(SO(2) A_{i_0}) \) we have \(P_0(N) = 0 \). By a well known result of Stampachia \(f(z) := P_0(Du(z)) \) is in \(W^{1,1}(B_1(0)) \) with \(Df = D P_0(Du) D^2 u \) a.e. since \(P_0 \) is Lipschitz and \(D^2 u \in L^2(B_1(0)) \) this gives \(f \in W^{1,2}(B_1(0)) \) and we have \(|Df(z)| \leq c |D^2 u(z)| \), hence

\[
\int_{B_1(0)} |Df(z)|^2 dL^2 z \leq c \beta.
\]

We also know we have \(f(z) = 0 \) for any \(z \in U_{i_0} \) and so by Lemma 2 we have that

\[
\int_{B_1(0)} |f(z)|^2 dL^2 z \leq c \beta.
\]

As \(f(z) \geq d_1 \) for any \(z \in \bigcup_{i \in \{1, 2, \ldots, N\} \setminus \{i_0\}} U_i \) together with (36) this implies (35).

Note \((d(Du(z), K) + c)^p \leq d^p(Du(z), K) + c \)

\[
\int_{B_1(0)} d^p(Du(z), SO(2) A_{i_0}) dL^2 z
\]

\[
\leq \int_{U_{i_0}} d^p(Du(z), K) dL^2 z
\]

\[
+ \int_{B_1(0) \setminus U_{i_0}} (d(Du(z), K) + c)^p dL^2 z
\]

\[
\leq \int_{B_1(0)} d^p(Du(z), K) dL^2 z + c L^2(B_1(0) \setminus U_{i_0})
\]

\[
\leq \frac{c \beta.}{(29),(35)}
\]

(37)

Now for \(p > 1 \) by Theorem 2 there exists \(R_0 \in SO(2) \) such that

\[
\int_{B_1(0)} |Du(z) - R_0 A_{i_0}|^p dL^2 z \leq c \beta
\]

which establishes (31). Obviously inequality (37) also gives (33) for \(p = 1 \).

Step 2. Let \(P_0 \) be the affine function with \(P_0(0) = 0 \), \(DP_0 = A_{i_0}^{-1} \). Define \(v : B_{\sigma}(0) \to \mathbb{R}^2 \) by \(v(z) = u(P_0(z)) \). We will show there exists and affine function \(L_1 \) such that

\[
\int_{B_{\sigma}(0)} |v(z) - L_1(z)| dL^2 z \leq c \beta.
\]

(38)

Proof of Step 2. Firstly we apply the truncation theorem Proposition A.1. [15]. So there exists a Lipschitz function \(\tilde{v} \) with \(\|D \tilde{v}\|_{L^\infty(B_{\sigma}(0))} \leq C \) and

\[
L^2 \{x \in B_{\sigma}(0) : \tilde{v}(x) \neq v(x)\} \leq c \int_{\{x \in B_{\sigma}(0) : |Dv(z)| > C\}} |Du(z)| dL^2 z
\]

\[
\leq c \beta.
\]

(39)
and
\[\| Dv - \tilde{v} \|_{L^2(B_{\sigma}(0))} \leq c \int_{\{ x \in B_{\sigma}(0); \| Dv(x) \| > C \}} |Dv(z)| dL^2z \leq c\beta. \tag{40} \]

Note
\[\int_{B_{\sigma}(0)} d\left(D\tilde{v}(z), SO(2) \right) dL^2z \leq \int_{B_{\sigma}(0)} d\left(Dv(z), SO(2) \right) dL^2z + c\beta \]
\[= \int_{B_{\sigma}(0)} d\left(Du(P_0(z)) A_{\mathfrak{m}}^{-1}, SO(2) \right) dL^2z + c\beta \]
\[\leq c\beta. \tag{37} \]

Thus by Theorem 2 we have that there exists \(R_0 \) such that
\[\int_{B_{\sigma}(0)} |D\tilde{v}(x) - R_0|^2 dL^2x \leq c \int_{B_{\sigma}(0)} |D\tilde{v}(x), SO(2)| dL^2x \]
\[\leq c \int_{B_{\sigma}(0)} |D\tilde{v}(x), SO(2)| dL^2x \]
\[\leq c\beta. \tag{41} \]

Let \(l_{R_0} \) be an affine function with \(Dl_{R_0} = R_0 \) and \(l_{R_0}(0) = 0 \), we define \(w(x) = \tilde{v}(l_{R_0}(x)) \). So from (42) we have
\[\int_{B_{\sigma}(0)} |Dw(x) - Id|^2 dL^2x \leq c\beta. \tag{43} \]

Now Linearising \(d(\cdot, SO(2)) \) near the identity we have
\[d(G, SO(2)) = \left| \frac{1}{2} (G + G^T) - Id \right| + o \left(|G - Id|^2 \right) \]
\[= |\text{sym} (G - Id)| + o \left(|G - Id|^2 \right). \]

So we have
\[\int_{B_{\sigma}(0)} |\text{sym} (Dw(x) - Id)| dL^2x \leq c \int_{B_{\sigma}(0)} |Dw(x) - Id|^2 dL^2x \]
\[+ c \int_{B_{\sigma}(0)} d(Dw(x), SO(2)) dL^2x \]
\[\leq c\beta + \int_{B_{\sigma}(0)} d(D\tilde{v}(l_{R_0}(x)), SO(2)) dL^2x \]
\[\leq c\beta. \tag{41} \]

Now by Lemma 1 we have that there exists an affine function \(L_0 : B_{\sigma}(0) \rightarrow \mathbb{R}^2 \) such that
\[\int_{B_{\sigma}(0)} |w(x) - x - L_0(x)| dL^2x \leq c\beta \tag{44} \]
which gives us an affine function \(L_1 : B_{\sigma}(0) \rightarrow \mathbb{R}^2 \) with the property that
\[\int_{B_{\sigma}(0)} |\tilde{v}(x) - L_1(x)| dL^2x \leq c\beta. \tag{45} \]
Now note by Lemma 2 we know that
\[
\int_{B_{x_0}(0)} |\tilde{v} (x) - v(x)| \, dL^2 x \leq \int_{B_{x_0}(0)} |D\tilde{v} (x) - Dv(x)| \, dL^2 x \tag{40} \leq c\beta.
\]
Thus
\[
\int_{B_{x_0}(0)} |v(x) - L_1(x)| \, dL^2 x \leq \int_{B_{x_0}(0)} |\tilde{v} (x) - L_1(x)| \, dL^2 x \tag{45].} \\
+ \int_{B_{x_0}(0)} |\tilde{v} (x) - v(x)| \, dL^2 x \tag{46} \leq c\beta.
\]

Step 3. We will show there exists $R_0 \in SO(2)$ such that
\[
|DL_1 - R_0| \leq c\beta. \tag{47}
\]

Proof of Step 3. It is immediate from (30) that $\int_{B_{x_0}(0)} |D^2 v(x)|^2 \, dL^2 x \leq c\beta$. And so by Holder $\int_{B_{x_0}(0)} |D^2 v(x)| \, dL^2 x \leq c\sqrt{\beta}$. We also know that
\[
\int_{B_{x_0}(0)} d \left((Dv(x), SO(2)) \right) \, dL^2 x \leq c\beta. \tag{48}
\]

Let C_3 be some large positive number we decide on later
\[
H_0 := \{ x \in B_{x_0}(0) : |L_1(z) - v(z)| \leq C_3\beta \}. \tag{49}
\]
Assuming constant C_3 is large enough we have from (38) that
\[
L^2 (B_{x_0}(0) \setminus H_0) \leq \frac{\sigma^2}{1000}. \tag{50}
\]

Let $w \in S^1$. We define
\[
G^1_w := \left\{ y \in P_w^- (B_{x_0}(0)) : \int_{P_w^- (y) \cap B_{x_0}(0)} d \left((Dv(z), SO(2)) \right) \, dH^1 z \leq C_3\beta \right\}
\]
and
\[
G^2_w := \left\{ y \in P_w^- (B_{x_0}(0)) : \int_{P_w^- (y) \cap B_{x_0}(0)} \left| D^2 v(z) \right|^2 \, dH^1 z \leq C_3\beta \right\}.
\]
Assuming C_3 was chosen large enough we have that
\[
L^1 \left(P_w^- (B_{x_0}(0)) \right) \setminus G^1_w \leq \frac{\sigma^2}{1000} \quad \text{and} \quad L^1 \left(P_w^- (B_{x_0}(0)) \right) \setminus G^2_w \leq \frac{\sigma^2}{1000}.
\]

Now by (50) we can pick $y \in G^1_w \cap G^2_w$ such that
\[
L^1 \left(P_w^- (y) \cap B_{x_0}(0) \cap H_0 \right) > \frac{\sigma}{100}.
\]

So we can pick $a, b \in P_w^- (y) \cap B_{x_0}(0) \cap H_0$ such that $|a - b| > \frac{\sigma}{100}$. We have that
\[
\int_{[a,b]} d \left((Dv(z), SO(2)) \right) \, dH^1 z \leq c\beta \tag{51}
\]
and
\[
\int_{[a,b]} \left| D^2 v(z) \right| \, dH^1 z \leq c\sqrt{\beta}. \tag{52}
\]
For each \(z \in [a, b] \) let \(R(z) \in SO(2) \) be such that \(d(Dv(z), SO(2)) = |Dv(z) - R(z)| \). From (51) and (52) we have that there exists \(R_0 \in SO(2) \) such that

\[
\sup \{|Dv(z) - R_0| : z \in [a, b]\} \leq c \sqrt{\beta}.
\] (53)

Now note

\[
(v(a) - v(b)) \cdot R_0 v_1 = \left(\int_{[a,b]} Dv(z) v_1 dH^1 z \right) \cdot R_0 v_1
\] \[\geq \int_{[a,b]} R(z) v_1 \cdot R_0 v_1 dH^1 z - \int_{[a,b]} |Dv(z) - R(z)| dH^1 z
\] \[\geq \int_{[a,b]} R(z) v_1 \cdot R_0 v_1 dH^1 z - c \beta. \] (54)

By definition of \(R(z) \), we have that \(|Dv(z) - R(z)| \leq |Dv(z) - R_0| \) \((53)\). So

\[
|R(z) - R_0| \leq |Dv(z) - R_0| + |Dv(z) - R(z)| \leq c \sqrt{\beta}.
\] (55)

Let \(\psi \in [0, 2\pi) \) be such that

\[
R_0 = \begin{pmatrix}
\sin \psi & \cos \psi \\
-\cos \psi & \sin \psi
\end{pmatrix}
\]

and \(\psi(z) \in [0, 2\pi) \) be such that

\[
R(z) = \begin{pmatrix}
\sin \psi(z) & \cos \psi(z) \\
-\cos \psi(z) & \sin \psi(z)
\end{pmatrix}.
\]

We know \(\sup \{|\psi - \psi(z)| : z \in [a, b]\} \leq c \sqrt{\beta} \) so

\[
\int_{[a,b]} R(z) e_1 \cdot R_0 e_1 dH^1 z = \int_{[a,b]} \left(\begin{array}{c}
\sin \psi(z) \\
-\cos \psi(z)
\end{array} \right) \cdot \left(\begin{array}{c}
\sin \psi \\
-\cos \psi
\end{array} \right) dH^1 z
\]
\[= \int_{[a,b]} \cos (\psi(z) - \psi) dH^1 z
\]
\[\geq |a - b| - c \int_{[a,b]} |\psi(z) - \psi|^2 dH^1 z
\]
\[\geq |a - b| - c \beta.
\]

Putting this together with (54) we have \((v(a) - v(b)) \cdot R_0 v_1 \geq |a - b| - c \beta \) which of course implies

\[
|v(a) - v(b)| \geq |a - b| - c \beta.
\] (55)

Now

\[
|v(a) - v(b)| \leq H^1 (v([a, b]))
\]
\[= \int_{[a,b]} |Dv(z) \frac{a - b}{|a - b|} | dH^1 z
\]
\[\leq \int_{[a,b]} 1 + d(Dv(z), SO(2)) dH^1 z
\]
\[\leq |a - b| + c \beta.
\] (56)
Since \(a, b \in H_0\) we have
\[
||L_1 (a - b)| - |a - b|| \leq ||v(a) - v(b)| - |a - b|| + c \beta
\]
which gives
\[
||L_1 (w)| - 1| \leq c \beta
\]
for all \(w \in S^1\). (57)

Let us take three points \(x_1, x_2, x_3\) that form the corners of an equilateral triangle, i.e. \(|x_i - x_j| = 1\) for \(i, j \in \{1, 2, 3\}\). So \(L_1 (x_1), L_1 (x_2), L_1 (x_3)\) form the corners of a triangle which we denote by \(T_1\).

Let \(\theta_i\) denote the angle of the triangle \(T_1\) at the corner \(L_1 (x_i)\). Let \(A_1 = |L_1 (x_1) - L_1 (x_3)|, A_2 = |L_1 (x_1) - L_1 (x_2)|, A_3 = |L_1 (x_1) - L_1 (x_2)|\). Now by the law of sins \(\sin \theta_1 = \frac{\sin \theta_3}{A_1} = \frac{\sin \theta_2}{A_2} = \frac{\sin \theta_2}{A_3}\).

Let \(i, j \in \{1, 2, 3\}\),
\[
\sin \theta_i = \frac{\sin \theta_j}{A_j} = \frac{\sin \theta_j}{A_i} + \sin \theta_j \left(\frac{1}{A_j} - \frac{1}{A_i}\right).
\]
So
\[
\frac{\sin \theta_i - \sin \theta_j}{A_i} = \sin \theta_j \left(\frac{A_i - A_j}{A_j A_i}\right).
\]
Note \(A_1 = |L_1 (x_1 - x_3)| \in (1 - c \beta, 1 + c \beta)\). In the same way
\[
1 - c \beta \leq A_i \leq 1 + c \beta \text{ for } i = 2, 3
\]
so
\[
|\sin \theta_i - \sin \theta_j| \leq c |A_i - A_j| < c \beta.
\]
Now assuming \(\beta\) is small enough we must have
\[
\theta_i \in \left(0, \frac{999\pi}{2000}\right) \text{ for } i = 1, 2, 3
\]
since otherwise
\[
\text{max} \{|L_1 (x_i) - L_1 (x_j)| : i, j \in \{1, 2, 3\}, i \neq j\} > \sqrt{2} - \frac{1}{50}
\]
which contradicts (57). So
\[
|\theta_i - \theta_j| \leq c \left|\int_{\theta_i}^{\theta_j} \cos x \, dL^1 x\right|
\leq c |\sin \theta_i - \sin \theta_j|
\leq c \beta.
\]
Since \(\theta_1 + \theta_2 + \theta_3 = \pi\) this gives \(|\theta_i - \frac{\pi}{3}| \leq \beta\) for \(i = 1, 2, 3\) which implies there exists rotation \(R_0 \in SO(2)\) such that \(|DL_1 - R_0| \leq c \beta\) which completes the proof of Step 3.

Proof of Proposition 1 completed. Let \(L_0\) be the affine function with \(L_0 (0) = L_1 (0)\) and \(DL_0 = R_0\) where \(R_0 \in SO(2)\) satisfies (47) of Step 3. So from (38) we know
\[
\int_{B_{x'(0)}} |v(x) - L_0 (x)| \, dL^2 x \leq c \beta.
\]
As \(u(z) = v(P_0^{-1} (z))\) we have that
\[
\int_{B_{x(0)}} |u(z) - L_0 (P_0^{-1} (z))| \, dL^2 z = \int_{B_{x'(0)}} |v(P_0^{-1} (z)) - L_0 (P_0^{-1} (z))| \, dL^2 z.
\]
Let \(y = P_0^{-1}(z) \), \(dL^2 y = \det(A_{0w}) dL^2 z \) so

\[
\int_{B_2(0)} |v(z) - L_0(P_0^{-1}(z))| \, dL^2 z \leq c \int_{P_0^{-1}(B_{\epsilon z}(0))} |v(y) - L_0(y)| \, dL^2 y
\]

\[
\leq c \beta, \tag{59}
\]

Define \(L := L_0 \cdot P_0^{-1} \), so \(DL = DL_0 \cdot DP_0^{-1} = R_0 A_0 \in K \) so \(L \) satisfies (32) which completes the proof of Proposition 1. □

Proposition 2. We will show that for some enough \(\zeta = \zeta(\sigma) \) we can find \(\tilde{u} \in \mathcal{D}_F^{\sqrt{2}} \) such that

\[
\int_\Omega d^p(D\tilde{u}(z), K) \, dL^2 z \leq cm_p^p. \tag{60}
\]

Proof. Let \(C_0 = C_0(\sigma, \zeta) \) be some small number we decide on later. We claim we can assume

\[
m_p^p \leq C_0. \tag{61}
\]

Suppose (61) is false, then we can simply define \(\tilde{u} = l_F \), clearly \(l_F \in \mathcal{D}_F^{\sqrt{2}} \) and

\[
\int_\Omega d^p(Dl_F, K) \, dL^2 z \leq c,
\]

so inequality (60) is satisfied. So we can assume (61) or there is nothing to show.

Let \(u \in A_F \) be such that \(p_i^p(u) \leq cm_p^p \). So we \(\int_\Omega |D^2 u(z)|^2 \, dL^2 z \leq c^{-1}m_p^p \). Define \(v(z) := \frac{u(\sqrt{2}z)}{\sqrt{2}}. \) Recall \(\Omega_{\epsilon - \frac{1}{2}} = \epsilon^{-\frac{1}{2}}\Omega \). Note

\[
\int_{\Omega_{\epsilon - \frac{1}{2}}} d^p(Dv(z), K) \, dL^2 z \leq c\epsilon^{-1}m_p^p \tag{62}
\]

and

\[
\int_{\Omega_{\epsilon - \frac{1}{2}}} |D^2 v(z)|^2 \, dL^2 z \leq c\epsilon^{-1}m_p^p. \tag{63}
\]

Let \(T_1 := \{k w_2 + (w_1) : k \in \mathbb{Z}\} + tw_2 \) and \(T_2 := \{k w_2 + (w_1) : k \in \mathbb{Z}\} + tw_1 \).

Define \(L_1 : \Omega_{\epsilon - \frac{1}{2}} \to [0, 1] \) to be such that \(L_1^{-1}(s) = T_1 \cap \Omega_{\epsilon - \frac{1}{2}} \) and \(L_2 : \Omega_{\epsilon - \frac{1}{2}} \to [0, 1] \) to be such that \(L_2^{-1}(s) = T_2 \cap \Omega_{\epsilon - \frac{1}{2}} \). It is easy to see \(|DL_1| \leq 1, |DL_2| \leq 1 \).

Now \(Dv = F \) in the sense of trace on \(\partial\Omega_{\epsilon - \frac{1}{2}} \). By Theorem 2 Section 5.3 [14] this implies

\[
\lim_{r \to 0} \int_{B_r(x) \cap \Omega_{\epsilon - \frac{1}{2}}} |Dv(z) - F(z)| \, dL^2 z = 0 \text{ for } H^1 \text{ a.e. } x \in \partial\Omega_{\epsilon - \frac{1}{2}}. \tag{64}
\]

Let \(S_1, \ldots, S_{p_0} \) denote the sides of \(\partial\Omega_{\epsilon - \frac{1}{2}} \). For simplicity we make the assumption that none of the sides \(S_1, S_2, \ldots, S_{p_0} \) are parallel to \(w_1, w_2 \). Let \(i \in \{1, \ldots, p_0\} \), there exists \(\tilde{S}_i \subset S_i \) with \(L^1 \left(S_i \setminus \tilde{S}_i \right) = 0 \) such that for any \(x \in \tilde{S}_i \) we can find \(r_x \in (0, \epsilon) \) with the property that for any \(r \in (0, r_x] \) we have \(\int_{B_r(x) \cap \Omega_{\epsilon - \frac{1}{2}}} |Dv(z) - F(z)| \, dL^2 z \leq cr^2 \).

So there exists \(\delta \in (0, 1) \) such that for each \(i \) we can find subset \(S_i \subset \tilde{S}_i \) with \(L^1 \left(S_i \setminus S_i \right) \leq \epsilon \) and for each \(x \in S_i, r_x \geq \delta \).

Let \(q \in \{1, 2\}, i \in \{1, \ldots, p_0\} \). The set of intervals \(\left\{ P_{w_2^q}(B_{\delta q}(x)) : x \in S_i \right\} \) forms a cover of \(P_{w_2^q}(S_i) \) and so by the 5r Covering Theorem, Theorem 2.1 [26] we can extract a subset \(\{x_1, x_2, \ldots, x_{j_q}\} \subset S_i \) such that

\[
\left\{ P_{w_2^q}(B_{\delta q}(x_n)) : n \in \{1, 2, \ldots, j_q\} \right\} \text{ are disjoint} \tag{65}
\]
and
\[P_{w_1^n} (S_i) \subset \bigcup_{n=1}^{J_0} P_{w_1^n} (B_\delta (x_n)). \] (66)

Let \(C_i^v := \left\{ z \in B_\delta (x_n) \cap \Omega \ : |Dv (z) - F| \leq 1 \right\} \) so \(L^2 (B_\delta (x_n) \setminus C_i^v) \leq \epsilon \delta^2 \). This implies
\[L^1 \left(P_{w_1^n} (B_\delta (x_n)) \setminus P_{w_1^n} (C_i^v) \right) \leq c \epsilon \delta. \] (67)

Let \(\Sigma_i = \bigcup_{n=1}^{J_0} C_i^v \). We have
\[L^1 \left(P_{w_1^n} (S_i \cap H (0, w_q)) \setminus P_{w_1^n} (\Sigma_i \cap H (0, w_q)) \right) \]
\[\leq L^1 \left(P_{w_1^n} (S_i \cap H (0, w_q)) \setminus \left(\bigcup_{n=1}^{J_0} P_{w_1^n} (C_i^v \cap H (0, w_q)) \right) \right) \]
\[+ \sum_{n=1}^{J_0} L^1 \left(P_{w_1^n} \left((B_\delta (x_n) \setminus C_i^v) \cap H (0, w_q) \right) \right) \]
\[\leq c J_0 \epsilon \delta \] (68)

By exactly the same argument
\[L^1 \left(P_{w_1^n} (S_i \cap H (0, -w_q)) \setminus P_{w_1^n} (\Sigma_i \cap H (0, -w_q)) \right) \leq c \epsilon. \] (69)

Define
\[A_0 := \bigcup_{i=1}^{p_0} \Sigma_i. \] (70)

Note that
\[A_0 \subset N_1 \left(\partial \Omega_{e^{-\frac{1}{2}}} \right). \] (71)

Let \(q \in \{1, 2\} \) and let \(l \) be such that \(\{l\} = \{1, 2\} \setminus \{q\} \). Let
\[Q_l^q = \inf \left\{ k \in \mathbb{Z} : (kw_l + (w_q)) \cap \Omega_{e^{-\frac{1}{2}}} \neq \emptyset \right\} \]
and let
\[Q_l^q = \sup \left\{ k \in \mathbb{Z} : (kw_l + (w_q)) \cap \Omega_{e^{-\frac{1}{2}}} \neq \emptyset \right\}. \]

Step 1. For \(q \in \{1, 2\} \) and \(l \) be such that \(\{l\} = \{1, 2\} \setminus \{q\} \)
\[P_{q^+} := \{ t \in [0, 1] : (w_q R_+ + (t + k) w_l) \cap A_0 \neq \emptyset \text{ for every } k \in \{Q_l^q, Q_l^q + 1, \ldots, Q_l^q - 1\} \} \] (72)
and
\[P_{q^-} := \{ t \in [0, 1] : (w_q R_- + (t + k) w_l) \cap A_0 \neq \emptyset \text{ for every } k \in \{Q_l^q, Q_l^q + 1, \ldots, Q_l^q - 1\} \} \] (73)
we will show \(L^1 ([0, 1] \setminus P_{q^+}) \leq c \sqrt{e} \) and \(L^1 ([0, 1] \setminus P_{q^-}) \leq c \sqrt{e} \).

Proof of Step 1. We argue only for the set \(P_{q^+} \). For each \(t \in [0, 1] \setminus P_{q^+} \) let
\[N_t := \{ k : (w_1 R_+ + (t + k) w_2) \cap A_0 = \emptyset, k \in \{Q_l^q, Q_l^q + 1, \ldots, Q_l^q - 1\} \} \] (74)
and let \(n(t) := \min N_t \).

So \([0,1] \setminus P_1^+ = \bigcup_{k \in \{Q_1^1,Q_1^1+1,...,Q_2^1-1\}} n^{-1}(k) \) and thus there must exist \(k_0 \) such that

\[
L^1 \left(n^{-1}(k_0) \right) \geq \frac{L^1 \left([0,1] \setminus P_1^+ \right)}{|Q_1^1| + |Q_2^1|} \geq \frac{\sqrt{\epsilon}}{5} L^1 \left([0,1] \setminus P_1^+ \right). \tag{75}
\]

However by definition since for every \(t \in n^{-1}(k_0) \), \(k_0 = n(t) \in N_t \) and by (74) we have

\[
(w_1 \mathbb{R}_+ + (t + k_0) w_2) \cap A_0 = \emptyset \text{ for any } t \in n^{-1}(k_0) \tag{76}
\]

\(^2\)We define \(n(t) \) to be the minimum only to produce a well defined function, we could just as well take the maximum.
hence \(((t + k_0)w_2) \cap P_{w_1^\perp}(A_0 \cap H(0, w_1)) = \emptyset\) for any \(t \in n^{-1}(k_0)\), i.e.

\[
(n^{-1}(k_0) + k_0)w_2 \cap P_{w_1^\perp}(A_0 \cap H(0, w_1)) = \emptyset.
\] (77)

Since \(k_0 \in \{Q_1^1, Q_1^1 + 1, \ldots Q_1^1 - 1\}\) we have

\[
(n^{-1}(k_0) + k_0)w_2 \subseteq P_{w_1^\perp} \left(\Omega_{\epsilon^{-\frac{1}{4}}} \right) = P_{w_1^\perp} \left(\partial \Omega_{\epsilon^{-\frac{1}{4}}} \right)
\]

and by convexity of \(\Omega\) this implies

\[
(n^{-1}(k_0) + k_0)w_2 \subseteq P_{w_1^\perp} \left(\partial \Omega_{\epsilon^{-\frac{1}{4}}} \cap H(0, w_1) \right)
\]

so for some \(a \in \{1, 2, \ldots, p_0\}\) we must have

\[
L^1 \left(P_{w_1^\perp}(S_a \cap H(0, w_1)) \cap \left((n^{-1}(k_0) + k_0)w_2\right)\right) \geq \frac{L^1(n^{-1}(k_0))}{p_0}
\] (78)

and by (77) (and recalling definition (70)) we have

\[
P_{w_1^\perp}(S_a \cap H(0, w_1)) \cap \left((n^{-1}(k_0) + k_0)w_2\right) \subseteq P_{w_1^\perp}(S_a \cap H(0, w_1)) \setminus P_{w_1^\perp}(\Sigma_a \cap H(0, w_1))
\]

and thus from (68), (78) we have \(c \epsilon \geq L^1(n^{-1}(k_0))\) by (75) \(c \sqrt{\epsilon} \geq L^1([0, 1] \setminus P_1^1)\), this completes the proof of Step 1.

Step 2. Let \(\{c_i : i = 1, 2, \ldots, N_0\}\) be an ordering of the set of points

\[
\left\{ k_1w_1 + k_2w_2 : k_1, k_2 \in \mathbb{Z}, k_1w_1 + k_2w_2 \in \Omega_{\epsilon^{-\frac{1}{4}}} \setminus \Sigma_{32\epsilon \rightarrow \Sigma}(\partial \Omega_{\epsilon^{-\frac{1}{4}}}) \right\}.
\]

Let \(C_1\) be some small positive number we decide on later. Let

\[
B_1 := \left\{ i \in \{1, 2, \ldots, N_0\} : \int_{B_{32\epsilon^{-\frac{1}{2}}}(c_i)} |D^2v(z)|^2 dL^2z > C_1 \right\}
\] (79)

and

\[
B_2 := \left\{ i \in \{1, 2, \ldots, N_0\} : \int_{B_{32\epsilon^{-\frac{1}{2}}}(c_i)} d^p(Dv(z), K) dL^2z > C_1 \right\}.
\] (80)

Note

\[
\text{Card}(B_1) + \text{Card}(B_2) \leq C_1 \sum_{i \in B_1} \int_{B_{32\epsilon^{-\frac{1}{2}}}(c_i)} |D^2v(z)|^2 dL^2z
\]

\[+ C_1 \sum_{i \in B_2} \int_{B_{32\epsilon^{-\frac{1}{2}}}(c_i)} d^p(Dv(z), K) dL^2z \leq \tag{62}(63) \leq c \epsilon^{-1}m^p.
\] (81)

Define \(G_0 = \{1, 2, \ldots, N_0\} \setminus (B_1 \cup B_2)\).

For the case \(p = 1\), for each \(i \in G_0\) by Proposition 1 we have the existence of \(q(i) \in \{1, 2, \ldots, N\}\) and an affine function \(L_i : B_{32}(c_i) \rightarrow \mathbb{R}^2\) with \(DL_i \in SO(2)A_q(i)\) and

\[
\int_{B_{32}(c_i)} |v(z) - L_i(z)| dL^2z \leq \int_{B_{32\epsilon^{-\frac{1}{2}}}(c_i)} d(Dv(z), K) + |D^2v(z)|^2 dL^2z
\] (82)

and

\[
\int_{B_{32}(c_i)} d(Dv(z), SO(2)A_q(i)) dL^2z \leq \int_{B_{32\epsilon^{-\frac{1}{2}}}(c_i)} d(Dv(z), K) + |D^2v(z)|^2 dL^2z.
\] (83)
For $p > 1$ for each $i \in G_0$ by Proposition 1 we have a matrix $M_i \in K$ such that
\[
\int_{B_{2^2 \epsilon} - 2 \epsilon} |Dv(z) - M_i| dL^2 z \leq \int_{B_{2^2 \epsilon} - 2 \epsilon} d^p (Dv(z), K) + |D^2 v(z)|^2 dL^2 z.
\]
(84)

Define
\[
P(z) = \begin{cases}
\sum_{i \in G_0} \chi_{B_{2^2 \epsilon}(\epsilon)} \left(|v(z) - L_i(z)| + d(Dv(z), SO(2) A_q(i)) \right), & \text{if } p = 1 \\
0, & \text{if } p \in (1, 2]
\end{cases}
\]
(85)

And define
\[
Q(z) = \begin{cases}
\sum_{i \in G_0} \chi_{B_{2^2 \epsilon}(\epsilon)} |Dv(z) - M_i|^p, & \text{if } p \in (1, 2] \\
0, & \text{if } p = 1.
\end{cases}
\]
(86)

Note
\[
\int_{\Omega_+} Q(z) + P(z) dL^2 z \leq \alpha^{-1} m_p^n.
\]
(87)

By the Co-area formula we can find $\sigma_1 \in P_1^+ \cap P_1$ and $\sigma_2 \in P_2^+ \cap P_2^-$ such that
\[
\int_{\Sigma_{(\sigma_1)}^{-1}} d^p (Dv(z), K) + |D^2 v(z)|^2 dH^1 z \leq \alpha^{-1} m_p^n \quad \text{for } i = 1, 2
\]
(88)

and
\[
\int_{\Sigma_{(\sigma_1)}^{-1}} P(z) + Q(z) dH^1 z \leq \alpha^{-1} m_p^n \quad \text{for } i = 1, 2.
\]
(89)

Now set
\[
\mathfrak{A} := \Omega_+ \setminus \left(\Sigma_{(\sigma_1)}^{-1} \cup \Sigma_{(\sigma_2)}^{-1} \right).
\]
(90)

Let $\mathcal{R}_1, \mathcal{R}_2, \ldots, \mathcal{R}_{N_1}$ denote those among them that form complete squares. Let $\{\tau_1, \tau_2, \ldots, \tau_{2N_1}\}$ be a collection of right angle triangles with $\tau_i \cup \tau_{i+N_1} = \mathcal{R}_i$ for each $i = 1, 2, \ldots, N_1$.

Let
\[
G_1 := \left\{ i \in \{1, 2, \ldots, N_1\} : \mathcal{R}_i \cap \{\epsilon_i : i \in G_0\} \neq \emptyset \right\}.
\]
(91)

Note that from (81) we have
\[
\text{Card} (G_1) \geq N_1 - \alpha^{-1} m_p^n.
\]
(92)

For each $i \in \{1, 2, \ldots, N_1\}$ let l_i denote the affine function we obtain from interpolation of v on the corners of τ_i. We will show
\[
\sum_{i \in G_1} d^p (Dl_i, K) + d^p (Dl_i + N_1, K) \leq \alpha^{-1} m_p^n.
\]
(93)

Proof of Step 2. Case $p > 1$. Firstly we will deal with the simpler case.

For any $i \in G_1$, τ_i has two sides parallel to w_1, w_2. Let $\{a, b, e\}$ denote the corners of τ_i where we have ordered them so that $\frac{a-b}{|a-b|} = w_1$ and $\frac{e-b}{|e-b|} = w_2$.

THE REGULARISATION OF THE N-WELL PROBLEM BY FINITE ELEMENTS
\[|D_{1}w_{1} - M_{i}w_{1}| = \left| \frac{v(a) - v(b)}{|a - b|} - M_{i}\left(\frac{a - b}{|a - b|} \right) \right| \]
\[= |a - b|^{-1} \left| \int_{[a,b]} (Dv(z) - M_{i})w_{1} dH^{1}z \right| \]
\[\leq c \int_{[a,b]} |Dv(z) - M_{i}| dH^{1}z \]
\[\leq c \left(\int_{[a,b]} |Dv(z) - M_{i}|^{p} dH^{1}z \right)^{\frac{1}{p}} \]
\[\leq c \left(\int_{[a,b]} Q(z) dH^{1}z \right)^{\frac{1}{p}}. \]

So \(|D_{1}w_{1} - M_{i}w_{1}|^{p} \leq c \int_{[a,b]} Q(z) dH^{1}z, \) in the same way \(|D_{1}w_{2} - M_{i}w_{2}|^{p} \leq c \int_{[b,c]} Q(z) dH^{1}z. \) Assume without loss of generality \(|D_{1}w_{1} - M_{i}w_{1}| \leq |D_{1}w_{2} - M_{i}w_{2}| \) so
\[|D_{i} - M_{i}|^{p} \leq c \left(|(D_{i} - M_{i})w_{1}| + |(D_{i} - M_{i})w_{2}| \right)^{p} \]
\[\leq c \left(|D_{i} - M_{i}| w_{1} + |D_{i} - M_{i}| w_{2} \right)^{p} \]
\[\leq c \left(\int_{[b,c]} Q(z) dH^{1}z \right)^{p} \]
\[\leq c \int_{\partial R_{i}} Q(z) dH^{1}z. \]

So \(d^{p}(D_{1}, K) \leq c \int_{\partial R_{i}} Q(z) dH^{1}z \) in exactly the same we have \(d^{p}(D_{1+N_{1}}, K) \leq c \int_{\partial R_{i}} Q(z) dH^{1}z. \) Thus
\[\sum_{i \in G_{1}} d^{p}(D_{1}, K) + d^{p}(D_{1+N_{1}}, K) \leq \sum_{i \in G_{1}} \int_{\partial R_{i}} Q(z) dH^{1}z \]
\[\leq c \int_{\mathbb{R}^{1}(\sigma_{1})} Q(z) dH^{1}z \]
\[\leq c \epsilon^{-1} n_{*}^{p}. \]

Case \(p = 1. \) Now we tackle the more difficult case. Let \(i \in G_{1}. \) So there exists \(p(i) \in G_{0} \) such that \(c_{p(i)} \cap \overline{R_{i}} \neq \emptyset. \) Let
\[\alpha_{i} = \int_{\partial R_{i}} P(z) + |Dv(z)|^{2} dH^{1}z + \int_{\overline{B}_{2\sigma_{2}^{-2}}(c_{p(i)})} d(Dv(z), K) + P(z) + |D^{2}v(z)|^{2} dL^{2}z. \]

So there exists \(R_{p(i)} \in SO(2) \) such that \(DL_{p(i)} = R_{p(i)}A_{s(i)} \) for some \(s(i) \in \{1, 2, \ldots, N\} \) (note that \(s(i) = q(p(i)), \) see (83)). Let \(\{a, b, d, e\} \) denote that corners of \(R_{i} \) where \(\frac{a - b}{|a - b|} = w_{1}, \)
\[\frac{e - b}{|e - b|} = w_{2}. \]

By definition of \(\alpha_{i} \) there exists \(x_{1}, x_{2} \in [a, b], \) \(|x_{1} - x_{2}| > c, \) \(P(x_{1}) \leq c\alpha_{i} \) and \(P(x_{2}) \leq c\alpha_{i}. \) So
\[|v(x_{1}) - L_{p(i)}(x_{1})| \leq c\alpha_{i}, \quad |v(x_{2}) - L_{p(i)}(x_{2})| \leq c\alpha_{i}, \]
thus
\[|v(x_{1}) - v(x_{2}) - R_{p(i)}A_{s(i)}(x_{1} - x_{2})| \leq c\alpha_{i}. \]

Since \(\int_{[a,b]} |D^{2}v(z)| dH^{1}z \leq c\sqrt{\alpha_{i}} \) there exists \(R_{0} \) such that
\[\sup \{|Dv(z) - R_{0}A_{s(i)}| : z \in [a, b]\} \leq c\sqrt{\alpha_{i}}. \]
\[|v(x_1) - v(x_2) - R_0 A_{s(i)}(x_1 - x_2)| = \left| \int_{[x_1, x_2]} (Dv(z) - R_0 A_{s(i)}) \frac{x_1 - x_2}{|x_1 - x_2|} dH^1z \right| \]

Putting this together with (95) gives

\[|R_0 - R_{p(i)}| \leq c\sqrt{\alpha_i}. \]

Putting this together with (95) gives

\[|R_0 - R_{p(i)}| \leq c\sqrt{\alpha_i}. \]

For \(z \in [a, b] \) define \(R(z) \in SO(2) \) to be such that \(d(Dv(z), SO(2) A_{s(i)}) = |Dv(z) - R(z) A_{s(i)}| \).

So note that \(\int_{[a, b]} d(R(z), SO(2)) dH^1z \leq c\alpha_i \). Note also that from (96) and (97) we have

\[\text{sup} \{ |R(z) - R_{p(i)}| : z \in [a, b] \} \leq c\sqrt{\alpha_i}. \]

Arguing as in Step 3, Proposition 1. Let \(\theta, \theta_2 \in [0, 2\pi) \) so that \(R(z) = \begin{pmatrix} \sin \theta(z) & -\cos \theta(z) \\ \cos \theta(z) & \sin \theta(z) \end{pmatrix} \)

and \(R = \begin{pmatrix} \sin \theta & -\cos \theta \\ \cos \theta & \sin \theta \end{pmatrix} \). We have

\[R(z)e_1 \cdot Re_1 = \sin \theta(z) \sin \theta + \cos \theta(z) \cos \theta = \cos (\theta(z) - \theta) \]

\[\geq 1 - c\alpha_i \text{ for any } z \in [a, b]. \]

We can pick point \(\tilde{a} \in [a, b] \) with \(|b - \tilde{a}| > c \) and \(\tilde{c} \in [b, c] \) with \(|\tilde{c} - b| > c \) where

\[|v(\tilde{c}) - L_{p(i)}(\tilde{c})| \leq c\alpha_i \text{ and } |v(\tilde{a}) - L_{p(i)}(\tilde{a})| \leq c\alpha_i. \]

Let \(\gamma_1 = |\tilde{a} - b| |A_{s(i)} w_1| \) and \(\gamma_2 = |\tilde{c} - b| |A_{s(i)} w_2| \). We claim

\[v(b) \in N_{c\alpha_i} (\partial B_{\gamma_1} (v(\tilde{a}))) \]

and

\[v(b) \in N_{c\alpha_i} (\partial B_{\gamma_2} (v(\tilde{c}))). \]

To see this note that

\[|(v(\tilde{a}) - v(b)) \cdot R_{p(i)} A_{s(i)} (-w_1)| = \left| \left(\int_{[\tilde{a}, b]} -Dv(z) w_1 dH^1z \right) \cdot R_{p(i)} A_{s(i)} (-w_1) \right| \]

\[\geq \left| \int_{[\tilde{a}, b]} R(z) A_{s(i)} w_1 \cdot R_{p(i)} A_{s(i)} w_1 dH^1z \right| - c\alpha_i \]

\[\geq |A_{s(i)} w_1|^2 \left| \int_{[\tilde{a}, b]} R(z) e_1 \cdot R_{p(i)} e_1 dH^1z \right| - c\alpha_i \]

\[\geq \left| A_{s(i)} w_1 \right|^2 |\tilde{a} - b| (1 - c\alpha_i). \]

Which implies \(|v(\tilde{a}) - v(b)| \geq |A_{s(i)} w_1| |\tilde{a} - b| (1 - c\alpha_i) = \gamma_1 - c\alpha_i \). Now

\[|v(\tilde{a}) - v(b)| = \left| \int_{[\tilde{a}, b]} -Dv(z) w_1 dH^1z \right| \]

\[\leq \left| \int_{[\tilde{a}, b]} -R(z) A_{t_o} w_1 dH^1z \right| + c\alpha_i \]

\[\leq \gamma_1 + c\alpha_i. \]
Which establishes (101). Inclusion (102) can be shown in exactly the same way. So putting (100) together with (101), (102) we have established that

\[v(b) \in N_{\alpha_i} \left(\partial B_{\gamma_1} \left(L_{p(i)}(\tilde{a}) \right) \right) \cap N_{\alpha_i} \left(\partial B_{\gamma_2} \left(L_{p(i)}(\tilde{e}) \right) \right). \]

Now the set \(N_{\alpha_i} \left(\partial B_{\gamma_1} \left(L_{p(i)}(\tilde{a}) \right) \right) \cap N_{\alpha_i} \left(\partial B_{\gamma_2} \left(L_{p(i)}(\tilde{e}) \right) \right) \) consists of two disjoint connected components which we denote \(C_1 \) and \(C_2 \), see figure 4. It is quite straightforward to see that \(\text{diam} \left(C_i \right) \leq \alpha_i \) for \(i = 1, 2 \).

Let \(C_1 \) be the component that contains \(L_{p(i)}(b) \). We will show \(v(b) \in C_1 \). We argue by contradiction, suppose \(v(b) \in C_2 \). By Proposition 1, inequality (33) (recall \(s(i) = q(p(i)) \)) we know

\[
\int_{B_{22} \left(\varepsilon_{p(i)} \right)} d(\nabla v(z), SO(2)A_{s(i)}) dL^2 z \leq c \int_{B_{22} \left(\varepsilon_{p(i)} \right)} P(z) dL^2 z (85) \leq c\alpha_i. \]
So by Proposition 2.6, \[10\] we have that there exists \(R_0 \in SO(2) \) such that
\[
\int_{B_{32} (c_p(i))} |Dv(z) - R_0 A_z(i) dL^2 z \leq c \log (\alpha_i^{-1}) \alpha_i.
\]
(103)

Now by Sobolev embedding theorem there exists matrix \(M_i \) such that
\[
\left(\int_{B_{32} (c_p(i))} \left| Dv(z) - M_i \right|^3 dL^2 z \right)^{\frac{1}{3}} \leq c \left(\int_{B_{32} (c_p(i))} |D^2 v(z)|^2 dL^2 z \right)^{\frac{1}{2}} \leq c \sqrt{\alpha_i}.
\]
(104)

So
\[
|M_i - R_0 A_z(i)| \leq c \left(\int_{B_{32} (c_p(i))} |Dv(z) - M_i| dL^2 z + \int_{B_{32} (c_p(i))} \left| Dv(z) - R_0 A_z(i) \right| dL^2 z \right)
\]
\[
\leq c \sqrt{\alpha_i}.
\]
(105)

Let \(\Lambda_i : B_{32} (c_p(i)) \rightarrow \mathbb{R}^2 \) be such that \(D\Lambda_i = R_0 A_z(i) \) and \(\Lambda_i(0) = 0 \). Define
\[w_i(z) = \Lambda_i(z) + \int_{B_{32} (c_p(i))} v(x) - \Lambda_i(x) dL^2 x, \]
so
\[\int_{B_{32} (c_p(i))} v(z) - w_i(z) dL^2 z = 0. \]
(106)

And
\[
\left(\int_{B_{32} (c_p(i))} |Dv(z) - Dw_i|^3 dL^2 z \right)^{\frac{1}{3}} \leq c \left(\int_{B_{32} (c_p(i))} |Dv(z) - M_i|^3 dL^2 z \right)^{\frac{1}{3}} + c |M_i - R_0 A_z(i)|
\]
\[
\leq c \sqrt{\alpha_i}. \]
(105) (104)

So by Morrey’s inequality Theorem 3, Section 4.5.3 [14] together with (106) this implies
\[
\|v - w_i\|_{L^\infty (B_{32} (c_p(i)))} \leq c \sqrt{\alpha_i}.
\]
(107)

Since (82), (94) \[\int_{B_{32} (c_p(i))} |v(z) - L_{p(i)}(z)| dL^2 z \leq c \alpha_i \] we have
\[
\int_{B_{32} (c_p(i))} \left| w_i(z) - L_{p(i)}(z) \right| dL^2 z \leq c \sqrt{\alpha_i}.
\]

Since \(w_i \) and \(L_{p(i)} \) are both affine this implies \(|Dw_i - DL_{p(i)}| \leq c \sqrt{\alpha_i} \) and thus
\[
\|w_i - L_{p(i)}\|_{L^\infty (B_{32} (c_p(i)))} \leq c \sqrt{\alpha_i}.
\]
(108)

Putting this together with (107) we have that
\[
\|v - L_{p(i)}\|_{L^\infty (B_{32} (c_p(i)))} \leq c \sqrt{\alpha_i}.
\]
(108)

Recall we are arguing by contradiction, as we supposed \(v(b) \in C_2 \), from (108) this implies that \(L_{p(i)}(b) \in N_{c \sqrt{\alpha_i}}(C_2) \) however as we also know \(L_{p(i)}(b) \in C_1 \) and \(d(C_1, C_2) > c \) this is a contradiction.

Thus we have that
\[
v(b) \in C_1 \subset B_{c \alpha_i} (L_{p(i)}(b)).
\]
(109)
Arguing in exactly the same way we can establish the same thing for the other corners of R_i, i.e. we can show
\[v(a) \in B_{c\alpha_i} \left(L_{p(i)}(a) \right), v(d) \in B_{c\alpha_i} \left(L_{p(i)}(d) \right), v(e) \in B_{c\alpha_i} \left(L_{p(i)}(e) \right). \tag{110} \]

Recall l_i and l_{i+N_1} are the affine maps we obtained from interpolating v on the corners of triangle τ_i and τ_{i+N_1} where $\overline{\tau_i} \cup \overline{\tau_{i+N_1}} = \overline{\tau}$. Recall also that $DL_{p(i)} = R_{p(i)}A_{\eta(i)}$ where $R_{p(i)} \in SO(2)$, $s(i) \in \{1, 2, \ldots, N\}$. From (109) and (110) we have
\[
|DL_i w_1 - R_{p(i)} A_{\eta(i)} w_1| = \left| \left(\frac{v(a) - v(b)}{|a-b|} \right) - \left(\frac{L_{p(i)}(a) - b}{|a-b|} \right) \right|
\leq c\alpha_i.
\]

In the same way we can show $|DL_i w_2 - R_{p(i)} A_{\eta(i)} w_2| \leq c\alpha_i$, which gives $|DL_i - R_{p(i)} A_{\eta(i)}| \leq c\alpha_i$, and hence $d(DL_i, K) \leq c\alpha_i$. In exactly the same way we can show $d(DL_{i+N}, K) \leq c\alpha_i$. Thus using (62), (63), (87), (88) and (89) for the last inequality
\[
\sum_{i \in G_1} d(DL_i, K) + d(DL_{i+N_1}, K)
\leq c \sum_{i \in G_1} \alpha_i
\leq c \sum_{i \in G_1} \int_{\partial R_i} P(z) + |D^2v(z)|^2 dH^1 z
+ c \int_{B_{2L_2}(\tau_{p(i)})} d(Dv(z), K) + P(z) + |D^2v(z)|^2 dL^2 z
\leq c \int_{L_i^{-1}(\sigma_1) \cup L_i^{-1}(\sigma_2)} P(z) + |D^2v(z)|^2 dH^1 z
+ c \sum_{i \in G_0} \int_{B_{2L_2}(\tau_i)} d(Dv(z), K) + P(z) + |D^2v(z)|^2 dL^2 z
\leq c \alpha^{-1} m_1^p.
\]

Thus we have shown (93) in the case $p = 1$. This completes the proof of Step 2.

Step 3. We will show
\[
\sum_{i \in \{1, 2, \ldots, N_i\} \setminus G_1} d^p(DL_i, K) + d^p(DL_{i+N}, K) \leq c \alpha^{-1} m_1^p. \tag{111}
\]

Proof of Step 3. Let $i \in \{1, 2, \ldots, N_1\} \setminus G_1$ and let $\{a_i, b_i, c_i\}$ denote the corners of τ_i where we have ordered them so that $\frac{a_i - b_i}{|a_i - b_i|} = w_1$ and $\frac{a_i - c_i}{|a_i - c_i|} = w_2$. Let DL_i denote the affine map we obtain from interpolation of v on the corners of τ_i. Note
\[
|DL_i w_1|^p = \left| \frac{v(a_i) - v(b_i)}{|a_i - b_i|} \right|^p
\leq c \int_{a_i}^{b_i} |Dv(z)|^p dH^1 z
\leq c \int_{\partial R_i} |Dv(z)|^p dH^1 z + c.
\]
In exactly the same way we have $|Dl_iw_2|^p \leq c \int_{\partial R_i} d^p (Dv(z), K) dH^1 z + c$ which gives

$$|Dl_i|^p \leq c \int_{\partial R_i} d^p (Dv(z), K) dH^1 z + c$$

in exactly the same way $|Dl_{i+N}|^p \leq c \int_{\partial R_i} d^p (Dv(z), K) dH^1 z + c$. As $d^p (Dl_i, K) \leq c |Dl_i|^p + c$ and $d^p (Dl_{i+N}, K) \leq c |Dl_{i+N}|^p + c$ thus

$$\sum_{i \in \{1,2,\ldots,N\} \setminus G_1} d^p (Dl_i, K) + d^p (Dl_{i+N}, K) \leq \sum_{i \in \{1,2,\ldots,N\} \setminus G_1} c |Dl_i|^p + c |Dl_{i+N}|^p$$

$$\leq c \sum_{i \in \{1,2,\ldots,N\} \setminus G_1} \int_{\partial R_i \cup \partial \tau_{i+N}} d^p (Dv(z), K) dH^1 z$$

$$\leq c \text{card} (\{1,2,\ldots,N\} \setminus G_1)$$

Putting (112) together with (93) gives (111).

Step 4. Recall $\{R_1, R_2, \ldots, R_{N_i}\}$ denote the connected components of A (see (90)) that form complete squares, and $\{\tau_1, \tau_2, \ldots, \tau_{2N_i}\}$ are triangles where $\tau_i \cup \tau_{i+1} = R_i$. Let

$$V_0 (i) := \{j \in \{1,2,\ldots,2N_i\} : H^1 (\tau_i \cap \tau_j) > \varsigma\}$$

(133)

For any $j \in \{1,2,\ldots,2N_i\}$ let l_j denote the affine map we get by interpolating v on the corners of τ_j. Define

$$\Upsilon_0 := \{i \in \{1,2,\ldots,2N_i\} : \text{there exists } j \in V_0 (i) \text{ such that } |Dl_i - Dl_j| > \varsigma^{-1}\}$$

(144)

We will show

$$\sum_{i \in \Upsilon_0} \sum_{j \in V_0 (i)} |Dl_i - Dl_j|^2 \leq c \varsigma^{-1} m_i^p.$$

(155)

Proof of Step 4. For any $i \in \{1,2,\ldots,2N_i\}$ define

$$\rho(i) := \begin{cases} i & \text{if } i \in \{1,2,\ldots,N_i\} \\ i - N_i & \text{if } i \in \{N_i + 1,\ldots,2N_i\}. \end{cases}$$

To start we will show that if $i \in \{1,2,\ldots,2N_i\}$ and $j \in V_0 (i)$ then

$$|Dl_i - Dl_j| \leq c \left(\int_{\partial (R_{\rho(i)} \cup R_{\rho(j)})} |D^2 v(z)|^2 dH^1 z \right)^{\frac{1}{2}}.$$

(166)

So see this we will argue as follows. Note $R_{\rho(i)} \cup R_{\rho(j)}$ forms a rectangle, thus $\tau_i \cup \tau_j$ must form a regular parallelogram with two opposite sides that intersect $\partial (R_{\rho(i)} \cup R_{\rho(j)})$ see figure 5.

Let U_i denote the side of $\partial \tau_i$ that intersects $\partial (R_{\rho(i)} \cup R_{\rho(j)})$ and U_j denote the side of $\partial \tau_j$ that intersects $\partial (R_{\rho(i)} \cup R_{\rho(j)})$. Let $q \in \{1,2\}$ be such that U_i and U_j are parallel to w_q. Now by the fundamental theorem of Calculus (and Holder’s inequality) there must exist $M \in M^{2 \times 2}$ such that

$$\sup \{ |Dv(z) - M| : z \in \partial (R_{\rho(i)} \cup R_{\rho(j)}) \} \leq c \left(\int_{\partial (R_{\rho(i)} \cup R_{\rho(j)})} |D^2 v(z)|^2 dH^1 z \right)^{\frac{1}{2}}.$$

(177)

Let $\{\omega_1', \omega_2', \omega_3'\}$ denote the corners of τ_1 and $\{\omega_1', \omega_2', \omega_3'\}$ the corners of τ_j where we have chosen to label these points such that $\omega_3' - \omega_2 = \omega_2' - \omega_1'$ and $\omega_1' = \omega_2'$, $\omega_2' = \omega_3'$, see figure 5,
note \(\{ \omega_i^3, \omega_i^2 \} = \partial U_i \) and \(\{ \omega_j^3, \omega_j^1 \} = \partial U_j \), again see figure 5. Recall we know triangles \(\tau_i, \tau_j \) are conjugate to each other and hence \(|\omega_i^3 - \omega_i^2| = |\omega_j^3 - \omega_j^1| \). By definition

\[
Dl_i \left(\frac{\omega_i^3 - \omega_i^2}{|\omega_i^3 - \omega_i^2|} \right) = \frac{l_i (\omega_i^3) - l_i (\omega_i^2)}{|\omega_i^3 - \omega_i^2|} = \frac{v (\omega_i^3) - v (\omega_i^2)}{|\omega_i^3 - \omega_i^2|}.
\]

(118)

And in the same way

\[
Dl_j \left(\frac{\omega_j^3 - \omega_j^1}{|\omega_j^3 - \omega_j^1|} \right) = \frac{v (\omega_j^3) - v (\omega_j^1)}{|\omega_j^3 - \omega_j^1|}.
\]

(119)
Let \(l_M \) denote an affine function with \(Dl_M = M \)

\[
\left| v \left(\omega^1_2 \right) - v \left(\omega^1_1 \right) - l_M \left(\omega^1_2 - \omega^1_1 \right) \right| = \left| \int_{\left[\omega^1_1, \omega^1_2 \right]} Dv \left(z \right) \frac{\omega^1_2 - \omega^1_1}{|\omega^1_2 - \omega^1_1|} dH^1 z - l_M \left(\omega^1_2 - \omega^1_1 \right) \right|
\leq \int_{\left[\omega^1_1, \omega^1_2 \right]} |Dv \left(z \right) - M| dH^1 z
\leq \left(\frac{117}{c} \right) c \left(\int_{\partial \left(R_{\rho_1(i)} \cup R_{\rho_2(i)} \right)} \left| D^2v \left(z \right) \right|^2 dH^1 z \right)^{\frac{1}{2}}.
\] (120)

In the same way

\[
\left| v \left(\omega^2_2 \right) - v \left(\omega^2_1 \right) - l_M \left(\omega^2_2 - \omega^2_1 \right) \right| \leq c \left(\int_{\partial \left(R_{\rho_1(i)} \cup R_{\rho_2(i)} \right)} \left| D^2v \left(z \right) \right|^2 dH^1 z \right)^{\frac{1}{2}}.
\] (121)

Thus as \(\omega^2_2 - \omega^2_1 = \omega^1_2 - \omega^1_1 \) (see figure 5) we have from (120), (121)

\[
\left| \frac{v \left(\omega^2_2 \right) - v \left(\omega^2_1 \right)}{|\omega^2_2 - \omega^2_1|} - \frac{v \left(\omega^1_2 \right) - v \left(\omega^1_1 \right)}{|\omega^1_2 - \omega^1_1|} \right| \leq c \left(\int_{\partial \left(R_{\rho_1(i)} \cup R_{\rho_2(i)} \right)} \left| D^2v \left(z \right) \right|^2 dH^1 z \right)^{\frac{1}{2}}.
\] Which from (118) and (119) implies

\[
\left| Dl_i \left(\frac{\omega^1_2 - \omega^1_1}{|\omega^1_2 - \omega^1_1|} \right) - Dl_j \left(\frac{\omega^2_2 - \omega^2_1}{|\omega^2_2 - \omega^2_1|} \right) \right| \leq c \left(\int_{\partial \left(R_{\rho_1(i)} \cup R_{\rho_2(i)} \right)} \left| D^2v \left(z \right) \right|^2 dH^1 z \right)^{\frac{1}{2}}.
\] (122)

Recall again (see figure 5) the endpoints of \(\tau_i \cap \tau_j \) are given by \(\omega^1_i, \omega^1_j \). So

\[
Dl_i \left(\omega^1_i - \omega^1_j \right) = Dl_j \left(\omega^1_i - \omega^1_j \right)
\] (123)
and as

\[
\frac{\omega^2_1 - \omega^2_2}{|\omega^2_1 - \omega^2_2|} = 0
\]
so (116) follows from (122) and (123).

Thus

\[
\sum_{i=1}^{2N_1} \sum_{j \in V_0(i)} |Dl_i - Dl_j|^2 \leq \sum_{i=1}^{2N_1} \sum_{j \in V_0(i)} \int_{\partial \left(R_{\rho_1(i)} \cup R_{\rho_2(i)} \right)} \left| D^2v \left(z \right) \right|^2 dH^1 z
\leq c \int_{\Omega^{-\frac{1}{2}} \setminus \cup_{\sigma_1} \left(\sigma_1 \right)} \left| D^2v \left(z \right) \right|^2 dH^1 z
\leq c c^{-1} m^p.
\]

Step 5. Recall \(\mathcal{R}_1, \mathcal{R}_2, \ldots, \mathcal{R}_{N_2} \) are the connected components of \(\mathfrak{A} \) (see (90)). Let \(\mathcal{D}_1, \mathcal{D}_2, \ldots, \mathcal{D}_{N_2} \) denote the connected components of

\[
\left(\Omega_{\epsilon^{-\frac{1}{2}}} \setminus \cup_{i=1}^{N_1} \left(\mathcal{R}_i \right) \right).
\]

Note that each \(\mathcal{D}_i \) forms a polygon. As before for simplicity we will assume none of the sides of \(\partial \Omega_{\epsilon^{-\frac{1}{2}}} \) is parallel to \(w_1 \). Let \(c_{\Omega} \) denote the length of the shortest side of \(\partial \Omega \), we can assume without loss of generality \(\sqrt{\epsilon} < c_{\Omega} \), so we have that any \(\mathcal{D}_i \) will intersect at most two sides of \(\partial \Omega_{\epsilon^{-\frac{1}{2}}} \). Let \(E_1 := \{ i \in \{1, 2, \ldots, N_2 \} : \partial \mathcal{D}_i \text{ has 4 sides} \} \). So any \(i \in \{1, 2, \ldots, N_2 \} \setminus E_1 \) is such that \(\partial \mathcal{D}_i \) has 5 or 3 sides.
Let $E_2 := \{i \in \{1, 2, \ldots, N_2\} : \partial D_i \text{ has 5 sides}\}$. For any $i \in E_2$ let a_i, b_i be the endpoints of $\partial \Omega_{\epsilon^{-\frac{1}{2}}} \cap \overline{D_i}$ and let c_i, d_i denote the corners of the polytope D_i that do not intersect $\partial \Omega_{\epsilon^{-\frac{1}{2}}}$.

Define $\overline{D_i} = \text{conv}(a_i, b_i, c_i, d_i)$ for $i \in E_2$ and define $\overline{D_i} = D_i$ for $i \in E_1$. Finally define $T_i := D_i \setminus \overline{D_i}$ for $i \in E_2$, note each T_i forms a triangle.

For each $i \in E_1 \cup E_2$ we can split each $\overline{D_i}$ into two triangles τ^1_i, τ^2_i, each of which has a side parallel to w_1 (i.e. $\overline{D_i} = \tau^1_i \cup \tau^2_i$). Let $\{\tau_{2N_1+1}, \tau_{2N_1+2}, \ldots, \tau_{N_3}\}$ denote the additional set of triangles that are formed by

$$\{\tau_0^q : i \in E_1 \cup E_2, \ q \in \{1, 2\}, \ \{D_i : i \in \{1, 2, \ldots, N_2\} \setminus (E_1 \cup E_2)\} \text{ and } \{T_i : i \in E_2\} \}.$$

And let

$$\mathbb{B}_d := \left\{ i \in \{1, 2, \ldots, N_2\} : \tau_i \subset N_{64\sigma^{-2}} \left(\partial \Omega_{\epsilon^{-\frac{1}{2}}} \right) \right\}.$$ \hspace{1cm} (124)

Firstly will show that

$$N_3 - 2N_1 \leq cc^{-\frac{1}{2}} \text{ and } \text{Card}(\mathbb{B}_d) \leq cc^{-\frac{1}{2}}.$$ \hspace{1cm} (125)

Secondly let ℓ_1 be the affine interpolation of v on the corners of τ_i for $i \in \mathbb{B}_d$ we will also show

$$\sum_{i \in \mathbb{B}_d} |D\ell_1|^2 \leq cc^{-\frac{1}{2}}.$$ \hspace{1cm} (126)

Proof of Step 5. To start with since $\bigcup_{i \in \mathbb{B}_d} \tau_i \subset N_{64\sigma^{-2}} \left(\partial \Omega_{\epsilon^{-\frac{1}{2}}} \right)$ and since $L^2(\tau_i) > c$ for any $i \in \mathbb{B}_d$. So

$$\text{Card}(\mathbb{B}_d) \leq cL^2 \left(N_{64\sigma^{-2}} \left(\partial \Omega_{\epsilon^{-\frac{1}{2}}} \right) \right) \leq cc^{-\frac{1}{2}}$$

note also $\{2N_1 + 1, \ldots, N_3\} \subset \mathbb{B}_d$ which gives (125).

For any $i \in E_1 \cup E_2$ we will order the triangles τ^1_i, τ^2_i so that two of the corners of τ^2_i intersects $\partial \Omega_{\epsilon^{-\frac{1}{2}}}$ and two of the corners of τ^1_i intersects $\bigcup_{i \in \{1, 2, \ldots, 2N_1\}} \overline{\tau_i}$.

So let $\{a_i, b_i, c_i\}$ denote the corners of τ^1_i we can order them so that $\frac{a_i - b_i}{|a_i - b_i|} = w_1$ and $\frac{c_i - b_i}{|c_i - b_i|} = w_2$. So $[a_i, b_i] \subset \mathbb{R}^{-1}_i(\sigma_1), [c_i, b_i] \subset \mathbb{R}^{-1}_i(\sigma_2)$. So by definition of $\mathbb{R}^{-1}_i(\sigma_1)$ we have that

$$[a_i, b_i] \subset (\mathbb{R}_+ w_1 + (t + k_1) w_2) \cup (\mathbb{R}_- w_1 + (t + k_1) w_2)$$

for some $k_1 \in \{Q_1^1, Q_1^1 + 1, \ldots, Q_2^1 - 1\}, \sigma_1 \in P_1^1 \cap P_1^1$. By definition (72) and by (71) we have that $[a_i, b_i] \cap A_0 \neq \emptyset$. So there exists $x_i \in [a_i, b_i]$ such that $d(Dv(x_i), K) \leq 1$. Thus

$$\sup \{|Dv(z)| : z \in [a_i, b_i] \cup [b_i, c_i]| \leq c + \int_{[a_i, b_i] \cup [b_i, c_i]} |D^2v(z)| \ dH^1 z.$$ \hspace{1cm} (127)

Let L^1_i be the affine function we obtain from the interpolation of v on the corners of τ^1_i. We have

$$|DL^1_i w_1| = \frac{|L^1_i(a_i) - L^1_i(b_i)|}{|a_i - b_i|} \leq c |v(a_i) - v(b_i)| \leq c \int_{[a_i, b_i]} |Dv(z)| \ dH^1 z \leq c + c \int_{[a_i, b_i] \cup [b_i, c_i]} |D^2v(z)| \ dH^1 z.$$
And in exactly the same way we have

\[
|DL^1_i w_2| = \left| \frac{L^1_i(c_i) - L^1_i(b_i)}{|c_i - b_i|} \right| \\
\leq c + c \int_{[a_i, b_i][c_i, c_i]} |D^2 v(z)| \, dH^1 z.
\]

Thus

\[
|DL^1_i|^2 = c \left(|DL^1_i w_1|^2 + |DL^1_i w_2|^2 \right) \\
\leq c + c \left(\int_{[a_i, b_i][c_i, c_i]} |D^2 v(z)| \, dH^1 z \right)^2 \\
\leq c + c \int_{\sigma^i \cap \left(L^1_i^{-1}(\sigma_1) \cup L^1_i^{-1}(\sigma_2) \right)} |D^2 v(z)|^2 \, dH^1 z. \tag{128}
\]

Now let us consider the triangle \(\tau^2_i \). Let \(\{a_i, b_i, c_i\} \) denote the corners of \(\tau^2_i \) where we have ordered \(a_i, b_i, c_i \) such that \(\frac{a_i - b_i}{a_i - c_i} = w_1 \) and \(b_i, c_i \in \partial \Omega_{\epsilon, - \frac{1}{2}} \). Let \(L^2_i \) denote the affine map we get from interpolation of \(v \) on the corners of \(\tau^2_i \). Arguing exactly as we have before we can show that

\[
|DL^2_i w_1|^2 \leq c + c \int_{\sigma^i \cap \left(L^1_i^{-1}(\sigma_1) \cup L^1_i^{-1}(\sigma_2) \right)} |D^2 v(z)|^2 \, dH^1 z.
\]

Now

\[
|DL^2_i \left(\frac{b_i - c_i}{b_i - a_i} \right)|^2 \leq |l_F(b_i) - l_F(c_i)|^2 \leq c. \quad \text{Since } w_1 \text{ and } \frac{b_i - c_i}{b_i - a_i} \text{ are not parallel this implies}
\]

\[
|DL^2_i|^2 \leq c + c \int_{\sigma^i \cap \left(L^1_i^{-1}(\sigma_1) \cup L^1_i^{-1}(\sigma_2) \right)} |D^2 v(z)|^2 \, dH^1 z. \tag{129}
\]

Now for any \(i \in \{1, 2, \ldots, N_2\} \setminus (E_1 \cup E_2) \), \(D_i \) forms a triangle with the corners in \(\partial \Omega_{\epsilon, - \frac{1}{2}} \), let \(I_i \) be the affine map we obtain by interpolating \(v \) on the corners of \(D_i \), then \(I_i \) has the property that

\[
|DJ_i| \leq c \text{ for any } i \in \{1, 2, \ldots, N_2\} \setminus (E_1 \cup E_2). \tag{130}
\]

For any \(i \in E_2 \) let \(J_i \) be the affine function we get from interpolating \(v \) on \(T_i \), since again the corners of \(\tau_i \) belong to \(\partial \Omega_{\epsilon, - \frac{1}{2}} \) we have

\[
|DJ_i| \leq c \text{ for any } i \in E_2. \tag{131}
\]

Let \(I_i \) be the affine map we obtain from interpolating \(v \) on \(\tau_i \) for \(i \in \mathbb{B}_d \). For any \(i \in \mathbb{B}_d \setminus \{2N_1 + 1, \ldots, N_3\} \) let \(\{a_i, b_i, c_i\} \) denote the corners of \(\tau_i \) where \(\frac{a_i - b_i}{a_i - c_i} = w_1 \) and \(\frac{b_i - c_i}{b_i - a_i} = w_2 \). Exactly as in the case where we considered triangle \(\tau^1_i \) for \(i \in E_1 \cup E_2 \) we must have that \([a_i, b_i] \subset L^1_i(\sigma_1) \) and \([c_i, b_i] \subset L^1_i(\sigma_2) \). We will assume \(a_i, b_i \) are ordered so that \(d(a_i, \partial \Omega_{\epsilon, - \frac{1}{2}}) < d(b_i, \partial \Omega_{\epsilon, - \frac{1}{2}}) \). Let \(d_i \in \partial \Omega_{\epsilon, - \frac{1}{2}} \) be such that \([a_i, b_i] \subset [d_i, b_i] \). By definition of \(\mathbb{B}_d \) we know \(|d_i - b_i| < 32 \sigma^{-2} \). Let \(\Gamma_i := [d_i, b_i] \cup [b_i, c_i] \), by arguing exactly the same way as we did to show (128) we have

\[
|DI_i|^2 \leq c + \int_{\Gamma_i} |D^2 v(z)|^2 \, dH^1 z \tag{132}
\]
So let \(l_i \) be the affine map we obtain from interpolating \(v \) on \(\tau_i \) for \(i \in \mathbb{B}_d \) we have by (128), (129), (130), (131) and (132)

\[
\sum_{i \in \mathbb{B}_d} |Dl_i|^2 \leq c \text{Card}(\mathbb{B}_d)
\]

\[
+ \sum_{i=2N_1}^{N_3} c \int_{\partial \tau_i \cap (L_i^{-1}(\sigma_1) \cup L_i^{-1}(\sigma_2))} |D^2v(z)|^2 dH^1 z
\]

\[
+ \sum_{i \in \mathbb{B}_d \setminus \{2N_1 + 1, \ldots, N_3\}} c \int_{\Gamma_i} |D^2v(z)|^2 dH^1 z
\]

\[\leq \epsilon^{-\frac{1}{2}} + c \int_{L_i^{-1}(\sigma_1) \cup L_i^{-1}(\sigma_2)} |D^2v(z)|^2 dH^1 z\]

\[\leq \epsilon^{-\frac{1}{2}} + c \text{Card}(\mathbb{B}_d)
\]

\[\leq \epsilon^{-1} m_p^p.
\]

Step 6. Let \(w \in \mathcal{F}_{P_n}^{\mathbf{	au}^\times} \) be defined by \(w(z) = l_i(z) \) for \(z \in \tau_i, i = 1, 2, \ldots, N_3 \). We will show that

\[
\sum_{i \in J(w)} \sum_{M \in N_i(w)} |Dw|_{\tau_i} - M|^2 \leq \epsilon^{-1} m_p^p.
\]

Proof of Step 6. Let

\[V_1(i) = \{ j \in \{1, 2, \ldots, N_3\} : H^1(\tau_i \cap \tau_j) > 0 \}. \]

Let

\[\mathbb{I}_0 := \{ i \in \{1, 2, \ldots, N_3\} : \tau_i \subset \Omega \setminus N_{32\sigma^{-2}}(\partial \Omega) \}.
\]

Note that for any \(i \in \{1, 2, \ldots, N_3\} \setminus \mathbb{I}_0, V_1(i) \subset \mathbb{B}_d \). So

\[
\sum_{J(w) \setminus \mathbb{I}_0} \sum_{M \in N_i(w)} |Dw|_{\tau_i} - M|^2 \leq \sum_{i \in J(w) \setminus \mathbb{I}_0} \left(\sum_{j \in V_1(i)} |Dl_i - Dl_j|^2 + |Dl_i - F|^2 \right)
\]

\[
\leq c \sum_{i \in \mathbb{B}_d} |Dl_i|^2 + c \text{Card}(\mathbb{B}_d)
\]

\[\leq \epsilon^{-1} m_p^p.
\]

Also note that if \(i \in \mathbb{I}_0 \) then \(V_1(i) \subset \{1, 2, \ldots, 2N_1\} \) and \(V_1(i) = V_0(i) \) (see definition (113)) in addition we know \(\partial \tau_i \cap \partial \Omega = \emptyset \) so \(N_i(w) = V_0(i) \) and \(J(w) \cap \mathbb{I}_0 = \emptyset \) (see (114)). So

\[
\sum_{i \in J(w) \cap \mathbb{I}_0} \sum_{M \in N_i(w)} |Dw|_{\tau_i} - M|^2 = \sum_{i \in \mathbb{I}_0} \sum_{j \in V_0(i)} |Dl_i - Dl_j|^2
\]

\[\leq \epsilon^{-1} m_p^p.
\]

Now

\[
\sum_{i \in J(w)} \sum_{M \in N_i(w)} |Dw|_{\tau_i} - M|^2 = \sum_{i \in J(w) \cap \mathbb{I}_0} \sum_{M \in N_i(w)} |Dw|_{\tau_i} - M|^2
\]

\[+ \sum_{i \in J(w) \setminus \mathbb{I}_0} \sum_{M \in N_i(w)} |Dw|_{\tau_i} - M|^2
\]

\[\leq \epsilon^{-1} m_p^p.
\]
Step 7. We will show
\[
\sum_{j=1}^{N_3} d^p(\mathcal{D}w_{\tau_j}, K) \leq c^{-1} m_p^p.
\] (139)

Proof of Step 7. Since for any \(j \in \{2N_1 + 1, \ldots, N_3\} \) we have
\[
d^p(\mathcal{D}w_{\tau_j}, K) \leq c + |\mathcal{D}w_{\tau_j}|^p \leq c + |\mathcal{D}w_{\tau_j}|^2
\] (140)
so using the fact \(\{2N_1 + 1, \ldots, N_3\} \subset B_d \) for the last inequality
\[
\sum_{j=1}^{N_3} d^p(\mathcal{D}w_{\tau_j}, K) = 2N_1 \sum_{j=1}^{N_3} d^p(\mathcal{D}w_{\tau_j}, K) + \sum_{j=2N_1+1}^{N_3} d^p(\mathcal{D}w_{\tau_j}, K)
\] (111),(140)
\[
\leq c^{-1} m_p^p + c(N_3 - 2N_1 + 1) + \sum_{j=2N_1+1}^{N_3} |\mathcal{D}w_{\tau_j}|^2
\] (22),(125),(126)
\[
\leq c^{-1} m_p^p.
\]

Step 8. We will show that (for small enough \(\varsigma \)) there exists function \(\bar{u} \in H^h_p \) such that
\[
\int_{\Omega} d^p(D\bar{u}(z), K) dL^2 z \leq cm_p^p.
\] (141)

Proof of Step 8. Recall definition of \(d_0 \), see (23). Let
\[
\mathcal{G}_0 := \{ i \in \{1, 2, \ldots, N_3\} : d(\mathcal{D}w_{\tau_i}, K) \leq d_0 \}.
\]
Recall \(V_i \) is defined by (135). Let \(\mathcal{V}(i) := \bigcup_{k \in V_i} V_i \) (k) and (recall the definition of \(I_0 \), see (136)) let \(\mathcal{G}_0 \) := \(\{ i \in I_0 : \forall (i) \subset \mathcal{G}_0 \} \). Note Card(\(\mathcal{V}(i) \)) \(\leq 12 \). Let \(A_0 := \bigcup_{i \in I_0 \setminus \mathcal{G}_0} \), so
\[
L^2(A_0) \geq c \text{Card}(I_0 \setminus \mathcal{G}_0).
\] (142)

Let \(O_i := \bigcup_{j \in \mathcal{V}(i)} \), to by applying the 5th Covering Theorem (see Theorem 2.1. [26]) we can find a subset \(\{ i_1, i_2, \ldots, i_{P_1} \} \subset I_0 \setminus \mathcal{G}_0 \) such that
\[
A_0 \subset \bigcup_{k=1}^{P_1} N_{00}(O_{i_k})
\] (143)
and \(\{ O_{i_1}, O_{i_2}, \ldots, O_{i_{P_1}} \} \) are disjoint. Note (143), (142) imply \(P_1 \geq c \text{Card}(I_0 \setminus \mathcal{G}_0) \) and since for every \(k \in \{1, 2, \ldots, P_1\} \) since \(\mathcal{V}(i_k) \subset \mathcal{G}_0 \) (by definition of \(\mathcal{G}_0 \)) we can find \(q_k \in \{1, 2, \ldots, N_3\} \) such that \(\tau_{q_k} \subset O_{i_k} \) and \(d(\mathcal{D}w_{\tau_{q_k}}, K) > d_0 \). We also know that \(\{ \tau_{q_1}, \tau_{q_2}, \ldots, \tau_{q_{P_1}} \} \) are disjoint. So
\[
d_0^p P_1 \leq P_1 \sum_{k=1}^{P_1} d^p(\mathcal{D}w_{\tau_{q_k}}, K)
\] (139)
\[
\leq c^{-1} m_p^p.
\]

Thus Card(\(I_0 \setminus \mathcal{G}_0 \)) \(\leq c^{-1} m_p^p \leq c \mathcal{C}_0 \epsilon^{-1} \). Now Card(\(I_0 \)) \(\geq c \epsilon^{-1} \) so
\[
\text{Card}(I_0 \cap \mathcal{G}_0) \geq c \epsilon^{-1} - c \mathcal{C}_0 \epsilon^{-1}.
\]
Assuming constant \(\mathcal{C}_0 \) at the start of Proposition 2 was chosen small enough we have
\[
\text{Card}(I_0 \cap \mathcal{G}_0) \geq c \epsilon^{-1}.
\] (144)
Note that again by applying the 5r covering Theorem we can find subset \(\{ j_1, j_2, \ldots j_P \} \subset \mathbb{R} \cap G \) such that
\[
\bigcup_{i \in \mathbb{R} \cap G} \tau_i \subset \bigcup_{k=1}^{P_k} N_{50} (O_{j_k})
\]
(145)
and \(\{ O_{j_1}, O_{j_2}, \ldots O_{j_{P_k}} \} \) are disjoint. Inequalities (144) and (145) imply that
\[
P_2 \geq c \sigma^{-1}.
\]
(146)
We denote the corners of \(\tau_i \) by \(\{ \omega_1^i, \omega_2^i, \omega_3^i \} \) for any \(i = 1, 2, \ldots, N_3 \). Let \(q \in \{ 1, 2, \ldots P_k \} \) and pick \(c_q \in \{ \omega_1^i, \omega_2^i, \omega_3^i \} \). Let \(\mathbb{W} (j_q) \subset \mathbb{V} (j_q) \) be defined by \(\mathbb{W} (j_q) := \{ k \in \mathbb{V} (j_q) : \tau_k \cap c_q \neq \emptyset \} \). Note that for any \(k \in \mathbb{W} (j_q) \), since \(\mathbb{V} (j_q) \subset G_q \) we have
\[
| w (\omega_k^a) - w (c_q) | \leq 4 \sigma^{-1} \text{ for any } a \in \{ 1, 2, 3 \}.
\]
(147)
For each \(k \in \mathbb{W} (j_q) \) define the affine map \(\tilde{l}_k : \tau_k \to \mathbb{R}^2 \) by
\[
\tilde{l}_k (b) = \begin{cases}
 w (b) & \text{for } b \in \{ \omega_1^k, \omega_2^k, \omega_3^k \} \setminus \{ c_q \} \\
 w (c_q) + 30 \sigma^{-1} e_1 & \text{for } b = c_q.
\end{cases}
\]
For simplicity we order the corners \(\{ \omega_1^k, \omega_2^k, \omega_3^k \} \) so that \(\omega_1^k = c_q \). Note
\[
\left| D \tilde{l}_k \left(\frac{\omega_1^k - \omega_2^k}{|\omega_1^k - \omega_2^k|} \right) \right| = \left| \omega_1^k - \omega_2^k \right|^{-1} \left| \tilde{l}_k (\omega_1^k) - \tilde{l}_k (\omega_2^k) \right|
\]
(148)
\[
= \left| \omega_1^k - \omega_2^k \right|^{-1} \left| w (\omega_1^k) - w (\omega_2^k) + 30 \sigma^{-1} e_1 \right|
\]
\[
\geq 15 \sigma^{-1} - \left| w (\omega_1^k) - w (\omega_2^k) \right|
\]
\[
\geq 10 \sigma^{-1}.
\]
In exactly the same way we have \(\left| D \tilde{l}_k \left(\frac{\omega_2^k - \omega_3^k}{|\omega_2^k - \omega_3^k|} \right) \right| \geq 10 \sigma^{-1} \) which implies
\[
\left| D \tilde{l}_k \right| \geq 10 \sigma^{-1}.
\]
(149)
In a very similar way we can show
\[
\left| D \tilde{l}_k \left(\frac{\omega_1^k - \omega_2^k}{|\omega_1^k - \omega_2^k|} \right) \right| \leq 60 \sigma^{-1} \text{ and } \left| D \tilde{l}_k \left(\frac{\omega_2^k - \omega_3^k}{|\omega_2^k - \omega_3^k|} \right) \right| \leq 60 \sigma^{-1}.
\]
(149)
And thus
\[
\left| D \tilde{l}_k \right| \leq 60 \sigma^{-1}.
\]
(149)
From (148) we know
\[
\sum_{k \in \mathbb{W} (j_q)} d^p \left(D \tilde{l}_k, K \right) L^2 (\tau_k) \geq d^p \left(D \tilde{l}_j, K \right) L^2 (\tau_j)
\]
(148)
\[
\geq 9 \sigma^{-p} L^2 (\tau_j).
\]
(150)
And
\[
\sum_{k \in \mathbb{W} (j_q)} d^p \left(D \tilde{l}_k, K \right) L^2 (\tau_k) \leq 120^2 \sigma^{-2p} L^2 \left(\bigcup_{k \in \mathbb{W} (j_q)} \tau_k \right)
\]
\[
\leq 120^2 \sigma^{-2} \times 100 \sigma^{-2}.
\]
(151)
Note recall from (146) $P_2 \geq c \epsilon^{-1} \frac{m_p}{\epsilon}$ so we can define piecewise affine function $\tilde{v} : \Omega_{z} \rightarrow \mathbb{R}^2$ by

$$\tilde{v} (z) = \begin{cases} w(z) & \text{for } z \in \tau_i, \ i \in \{1, 2, \ldots, N_3\} \setminus \left(\bigcup_{q=1}^{[\epsilon^{-1}r]} W(j_q) \right) \\ \bar{v}_i(z) & \text{for } z \in \tau_i, \ i \in \left(\bigcup_{q=1}^{[\epsilon^{-1}r]} W(j_q) \right). \end{cases}$$

So

$$\int_{\Omega_{z} \rightarrow \mathbb{R}^2} d^p \left(D\tilde{v} (z), K \right) dL^2 z \quad = \quad \sum_{i \in \{1, 2, \ldots, N_3\}, V_i (i) \cap \left(\bigcup_{q=1}^{[\epsilon^{-1}r]} W(j_q) \right) = \emptyset} d^p \left(D\tilde{v} (z), K \right) L^2 (\tau_i)$$

$$+ \sum_{i \in \left(\bigcup_{q=1}^{[\epsilon^{-1}r]} W(j_q) \right)} d^p \left(D\bar{v}_i, K \right) L^2 (\tau_i)$$

$$\leq c \epsilon^{-1} m_p^p + c \left[\epsilon^{-1} m_p^p \right]$$

$$\leq c \epsilon^{-1} m_p^p. \quad \text{(152)}$$

And

$$\int_{\Omega_{z} \rightarrow \mathbb{R}^2} d^p \left(D\tilde{v} (z), K \right) dL^2 z \quad \geq \quad \sum_{q=1}^{[\epsilon^{-1}r]} \int_{\Omega_{z} \rightarrow \mathbb{R}^2} d^p \left(D\tilde{v} (z), K \right) dL^2 z$$

$$\geq c \left[\epsilon^{-1} m_p^p \right]. \quad \text{(153)}$$

Let $Y := \left\{ i \in \{1, 2, \ldots, N_3\} : V_i (i) \cap \left(\bigcup_{q=1}^{[\epsilon^{-1}r]} W(j_q) \right) = \emptyset \right\}$. Note

$$\text{Card} \left(\{1, 2, \ldots, N_3\} \setminus Y \right) \leq c \epsilon^{-1} m_p^p. \quad \text{(154)}$$

And note

$$\sum_{M \in N_i (i)} \left| D\tilde{v}_{|\tau_i} - M \right|^2 \leq \sum_{M \in N_i (w)} \left| Dw_{|\tau_i} - M \right|^2 + c \text{ for any } i \in J (\tilde{v}) \setminus Y \quad \text{(155)}$$

so as $J (\tilde{v}) \cap Y = J (w) \cap Y$ and $D\tilde{v}_{|\tau_j} = Dw_{|\tau_j}$ for every $j \in \bigcup_{i \in J (\tilde{v}) \cap Y} V_i (i)$ we have

$$\sum_{i \in J (\tilde{v})} \sum_{N_i (i)} \left| D\tilde{v}_{|\tau_i} - M \right|^2 = \sum_{i \in J (w) \cap Y M \in N_i (w)} \sum_{M \in N_i (w)} \left| Dw_{|\tau_i} - M \right|^2$$

$$+ \sum_{i \in J (\tilde{v}) \cap Y M \in N_i (\tilde{v})} \sum_{M \in N_i (\tilde{v})} \left| D\tilde{v}_{|\tau_i} - M \right|^2$$

$$\leq c \epsilon^{-1} m_p^p + c \text{Card} \left(J (\tilde{v}) \setminus Y \right)$$

$$\leq c \epsilon^{-1} m_p^p. \quad \text{(154)}$$

Thus

$$\int_{\Omega_{z} \rightarrow \mathbb{R}^2} d^p \left(D\tilde{v} (z), K \right) dL^2 z \quad \geq \quad c \sum_{i \in J (\tilde{v}) \cap Y M \in N_i (\tilde{v})} \sum_{M \in N_i (\tilde{v})} \left| D\tilde{v}_{|\tau_i} - M \right|^2. \quad \text{(157)}$$

Define $\dot{u} (z) = \tilde{v} (\sqrt{\epsilon z}) \epsilon^{-\frac{1}{2}}$. We have that

$$\int_{\Omega} d^p \left(D\dot{u} (z), K \right) dL^2 z \quad = \quad \epsilon \int_{\Omega_{z} \rightarrow \mathbb{R}^2} d^p \left(D\tilde{v} (z), K \right) dL^2 z = \epsilon \int_{\Omega_{z} \rightarrow \mathbb{R}^2} d^p \left(D\tilde{v} (z), K \right) dL^2 z \quad \text{(158)}$$
And thus
\[\int_{\Omega} d^p (D\tilde{u} (z), K) dL^2 z \geq c \epsilon \sum_{i \in J(\tilde{u})} \sum_{M \in N_i(\tilde{u})} |D\tilde{v}_{|\tau_i} - M|^2. \] (157)

Now (for small enough \(\varsigma \)) \(\{\sqrt{\tau_i}\} \) forms a \((h, \varsigma)\) triangulation of \(\Omega \) and it is easy to see that
\[\sum_{i \in J(\tilde{u})} \sum_{M \in N_i(\tilde{u})} |D\tilde{u}_{|\sqrt{\tau_i}} - M|^2 = \sum_{i \in J(\tilde{u})} \sum_{M \in N_i(\tilde{u})} |D\tilde{v}_{|\tau_i} - M|^2. \]

Thus (again assuming \(\varsigma \) is small enough) we have from (159)
\[\sum_{i \in J(\tilde{u})} \sum_{M \in N_i(\tilde{u})} \epsilon |D\tilde{u}_{|\sqrt{\tau_i}} - M|^2 \leq \frac{1}{2} \int_{\Omega} d^p (D\tilde{u} (z), K) dL^2 z. \] (160)

Thus we have that \(u \in D_F^p \sqrt{\tau} \). We also know from (158) and (152) that \(\tilde{u} \) satisfies (141). \(\Box \)

Proposition 3. Let \(w_1 \in S^1 \) be such that \(w_2 \notin w_1^1 \) we have that \(w_1, w_2 \) and \(\frac{w_1 - w_2}{|w_1 - w_2|} \) are not in the set of rank-1 connections between \(SO(2) A_i \) and \(SO(2) A_j \) for any \(i \neq j \). Let \(F \notin K \), given function \(u \in D_F^p \sqrt{\tau} \) we define \(w : \Omega_2 \rightarrow \mathbb{R}^2 \) by
\[\tilde{w} (z) = \begin{cases} u (z) & \text{if } z \in \Omega \\ I_F (z) & \text{if } z \in \Omega_2 \setminus \Omega. \end{cases} \] (161)

We will show there exists a small positive constant \(\eta = \eta (w_1, A_1, \ldots, A_N) \) such that for \(\tilde{w} = w * \rho_{\eta \sqrt{\tau}} \) and
\[w (z) = \tilde{w} \left(\frac{z}{1 + \eta \sqrt{\epsilon}} \right) (1 + \eta \sqrt{\epsilon}) \] (162)
then \(w \in A_F \) and \(w \) satisfies
\[\int_{\Omega} d^p (Dw (z), K) + \epsilon |D^2 w (z)| dL^2 z \leq c \int_{\Omega} d^p (Du (z), K) dL^2 z. \] (163)

Proof. Firstly note \(u \) is piecewise affine on a triangulation which we will label \(\{\tau_1, \tau_2, \ldots, \tau_{N_N}\} \). Given triangle \(\tau_i \) we define the *neighbouring gradients* \(N_i (u) \) by (3) and we define the jump triangles \(J_i (u) \) by (4). Now since \(u \in D_F^p \sqrt{\tau} \) we have
\[\sum_{i \in J(\tilde{u})} \sum_{M \in N_i(\tilde{u})} |Du_{|\tau_i} - M|^2 \leq \varsigma^{-1} \epsilon^{-1} \int_{\Omega} d^p (Du (z), K) dL^2 z. \] (164)

Let \(v (z) = u (\sqrt{\tau} z) \epsilon^{-1/2} \). Let
\[\alpha_0 = \int_{\Omega \setminus \frac{1}{\sqrt{\epsilon}} \tilde{\tau}} d^p (Du (z), K) dL^2 z. \] (165)

Let \(V (j) := \{k : H^1 ([\tau_k \cap \tau_j] > 0)\} \). Define \(V_0 (i) := \bigcup_{j \in V (i)} V (j) \) and \(V_1 (i) := \bigcup_{j \in V_0 (i)} V (j) \).

Let \(G_0 := \{i : d \{Dv_{|\tau_i} \leq \eta\} \}. \) Let \(A_1, A_2, \ldots, A_{N_i} \) denote the connected components of \(\bigcup_{i \in G_0} \tilde{\tau} \). Let
\[G_k := \{i : \tau_i \subset A_k\} \] and define \(\tilde{A}_k := \bigcup_{\{i : V_1 (i) \subset G_k\}} \tilde{\tau}_i \). (166)

Define
\[E (z) = \{i : \tau_i \cap B_\eta (z) \neq \emptyset\} \text{ for any } z \in Q_{\epsilon^{-1/2} + \eta} (0). \] (167)

Note \(\text{Card} \ (E (z)) \leq c \) and note
\[E (z) \subset V_1 (i) \text{ for any } z \text{ such that } B_{\frac{3}{4} \epsilon} (z) \cap \tilde{\tau} \neq \emptyset. \] (168)
Step 1. Given $k \in \{1, 2, \ldots, N\}$, we will show there exists $k_0 \in \{1, 2, \ldots, N\}$ such that
\begin{equation}
\frac{d \left(Dv_{\tau_1}, SO(2) A_{k_0}\right)}{d \left(Dv_{\tau_1}, K\right)} = \frac{d \left(Dv_{\tau_1}, K\right)}{d \left(Dv_{\tau_1}, K\right)} \text{ for every } i \in G_k.
\end{equation}

Proof of Step 1. Suppose this is not true. So we can find $k_0 \in \{1, 2, \ldots, N\}$ and some $N_0 \in \{2, 3, \ldots, N\}$ for which we have disjoint subsets $\Omega_1, \Omega_2, \ldots, \Omega_{N_0} \subset G_{k_0}$ with $\bigcup_{i=1}^{N_0} \Omega_i = G_{k_0}$ and for each $k \in \{1, 2, \ldots, N_0\}$ there exists $p_k \in \{1, 2, \ldots, N\}$ such that
\begin{equation}
\frac{d \left(Dv_{\tau_1}, SO(2) A_{p_k}\right)}{d \left(Dv_{\tau_1}, K\right)} = \frac{d \left(Dv_{\tau_1}, K\right)}{d \left(Dv_{\tau_1}, K\right)} \text{ for all } i \in \Omega_k \text{ for } k = 1, 2, \ldots, N_0.
\end{equation}
Since $\bigcup_{i \in \Omega_0} \tau_i = A_{k_0}$ and A_{k_0} is connected we must be able to find $i_1 \in \Omega_1$ and $i_2 \in \Omega_2$ such that $H^1(\partial \tau_{i_1} \cap \partial \tau_{i_2}) \geq \varsigma$. Let a, b be the endpoints of $\partial \tau_{i_1} \cap \partial \tau_{i_2}$, since (by definition of G_0) $d \left(Dv_{\tau_1}, SO(2) A_{p_1}\right) \leq \eta$ and $Dv_{\tau_1}(a - b) = Dv_{\tau_2}(a - b)$ we must have that for some $R_1, R_2 \in SO(2)$,
\begin{equation}
|R_1 A_{p_1}(a-b) - R_2 A_{p_2}(a-b)| \leq 3\eta
\end{equation}
since $u \in D^p_{\tau_1}$ the edges of the triangles are parallel to w_1, w_2 and $\frac{w_1 w_2}{|w_1 w_2|}$. Thus (assuming a, b are ordered correctly) $\frac{a - b}{|a - b|} \in \{w_1, w_2, \frac{w_1 - w_2}{|w_1 - w_2|}\}$. Recall we chose w_1, w_2 so that $\left\{w_1, w_2, \frac{w_1 - w_2}{|w_1 - w_2|}\right\}$ are not in the set of rank-1 connections between $SO(2) A_{p_1}$ and $SO(2) A_{p_2}$. So $A_{p_1} \left(\frac{a - b}{|a - b|}\right) \neq A_{p_2} \left(\frac{a - b}{|a - b|}\right)$, we can assume without loss of generality there is a constant $c_4 = c_4(w_1, w_2) > 1$ such that $A_{p_1} \left(\frac{a - b}{|a - b|}\right) > c_4 A_{p_2} \left(\frac{a - b}{|a - b|}\right)$. Assuming we chose η small enough this contradicts (170) this completes the proof of Step 1.

Step 2. Given $k_0 \in \{1, 2, \ldots, N\}$ and $x \in \bar{A}_{k_0}$ we will show that
\begin{equation}
\max \left\{|Dv_{\tau_1} - Dv_{\tau_1}| : i,l \in E(x)\right\} \leq c \max \left\{d \left(Dv_{\tau_j}, K\right) : j \in E(x)\right\}.
\end{equation}

Proof Step 2. Firstly by change of variables we can assume k_0 is such that $Dv_{\tau_1} \in N_\eta(SO(2))$ for any $i \in G_0$. We introduce some notation, let $j \in \{1, 2, \ldots, N\}$ for any $p \in V(j)$ define
\begin{equation}
a(j, p) := \max \left\{d \left(Dv_{\tau_j}, SO(2)\right), d \left(Dv_{\tau_s}, SO(2)\right)\right\}
\end{equation}
so there exists $R_j \in SO(2)$, $R_p \in SO(2)$ such that
\begin{equation}
\frac{|Dv_{\tau_j} - R_j|}{|Dv_{\tau_j} - R_j|} \leq 2a(j, p), \frac{|Dv_{\tau_j} - R_j|}{|Dv_{\tau_j} - R_j|} \leq 2a(j, p).
\end{equation}
Since $H^1(\tau_j) \geq \varsigma$, let a, b denote the endpoints of $\tau_j \cap \tau_j$, so as $Dv_{\tau_j}(a - b) = Dv_{\tau_j}(a - b)$ we have $|R_j(a - b) - R_j(a - b)| \leq 4a(j, p)$ which implies $|R_p - R_j| \leq 4\varsigma^{-1}a(j, p)$. Putting this together with (172) gives
\begin{equation}
|Dv_{\tau_j} - Dv_{\tau_j}| \leq ca(j, p).
\end{equation}
Pick $i, l \in E(x)$, now (see figure 6) we must be able to find $i_1, i_2, \ldots, i_{M_1} \in E(x_0)$ with the following properties
\begin{enumerate}
\item $i_0 = i, i_{M_1} = l$
\item $i_{r+1} \in V(i_r)$ for $r = 0, 1, \ldots, M_1 - 1$
\item $i_{r_1} \neq i_{r_2}$ for $r_1 \neq r_2$
\item $E(x_0) \subset \bigcup_{i=r_0}^{M_1} V(i_r)$
\end{enumerate}
\footnote{Since $B_n(x)$ is open and $\tau_1 \cap B_n(x) \neq \emptyset, \tau_1 \cap B_n(x) \neq \emptyset$ we have $H^1(\partial B_n(x) \cap \tau_1) > 0$ and $H^1(\partial B_n(x) \cap \tau_1) > 0$. Pick point $s_0 \in \tau_1 \cap \partial B_n(x)$ and a point $s_{M_1} \in \tau_1 \cap \partial B_n(x)$, since all but finitely many points on $\partial B_n(x)$ are contained in $\bigcup_{i=r_0}^{M_1} \tau_1$ we can go clockwise from s_1 to s_{M_1} the first triangle τ_1 we encounter after τ_1 with $H^1(\tau_1 \cap \partial B_n(x)) > 0$ will have the property that $\tau_1 \cap B_n(x) \neq \emptyset$ (and hence $j \in E(x_0)$) and $j \in V_1(i)$ so define $i_1 = j$. We can then define i_2 to be the first τ_1 we encounter going clockwise on $\partial B_n(x)$ after $\tau_1 \cap \partial B_n(x)$, continuing in this way gives us the sequence $i_1, i_2, \ldots, i_{M_1}$ with the properties we want.}
We have

\[
\left| Dv_{\tau_0} - Dv_{\tau_{M_1}} \right| \leq \sum_{r=0}^{M_1-1} \left| Dv_{\tau_r} - Dv_{\tau_{r+1}} \right| \\
\leq c \sum_{r=0}^{M_1-1} a(i_r, i_{r+1}) \\
\leq c M_1 \max \{d(Dv_{\tau_r}, SO(2)) : r \in E(x)\}.
\]

Since from property (3) we know \(M_1 \leq c \text{Card}(E(x_0)) \leq c\) this gives (171).

Step 3. Let \(\tilde{v} : = v * \rho_\eta\) we will show

\[
\sum_{k=1}^{N_1} \int_{\tilde{A}_k} d^6 (D\tilde{v}(z), K) dL^2 z \leq c \alpha_0.
\]

\(\text{(174)}\)

Proof of Step 3. Let \(\mathbb{D} := \{i : \partial \tau_i \cap \partial \Omega \neq \emptyset\}\). We define \(p : Q_{\epsilon - \frac{1}{2} + \eta}(0) \to \{1, 2, \ldots N_3\}\) by

\[
p(z) := \begin{cases}
\min \{i : z \in \tau_i\} & \text{for } z \in \Omega_{\epsilon - \frac{1}{2}} \\
\min \{i \in \mathbb{D} : B_{2\eta}(z) \cap \tau_i \neq \emptyset\} & \text{for } z \in \Omega_{\epsilon - \frac{1}{2} + \eta} \setminus \Omega_{\epsilon - \frac{1}{2}}.
\end{cases}
\]

\(\text{(175)}\)
Fix $k_0 \in \{1, 2, \ldots, N_1\}$, assume $\mathcal{A}_{k_0} \neq \emptyset$. Let $y \in \mathcal{A}_{k_0}$. Pick $i_0 \in E (y)$ and let $R_0 \in K$ be such that $d \left(Dv_{|\tau_{i_0}}, K \right) = | Dv_{|\tau_{i_0}} - R_0 |$. Now

$$| D\tilde{v} (y) - R_0 | = \int (Dv (y + z) - R_0) \rho (z) dL^2 z$$

$$= \left| \sum_{j \in E(y)} \int (Dv_{|\tau_j} (x) - R_0) \rho (x - y) dL^2 x \right|$$

$$\leq c \sum_{j \in E(y)} | Dv_{|\tau_j} - R_0 |$$

$$\leq c \sum_{j \in E(y)} \left(| Dv_{|\tau_j} - Dv_{|\tau_{i_0}} | + | Dv_{|\tau_{i_0}} - R_0 | \right)$$

$$\leq c \max \left\{ d \left(Dv_{|\tau_j}, K \right) : j \in E (y) \right\}.$$ \hspace{1cm} (176)

Define $c (i) \in V_1 (i)$ to be such that

$$d \left(Dv_{|\tau_{c (i)}}, K \right) = \max \left\{ d \left(Dv_{|\tau_j}, K \right) : j \in V_1 (i) \right\}.$$ \hspace{1cm} (177)

Note for any $z \in Q_{c \cdot \frac{1}{4 + \epsilon}} (0)$ from (168) we know (recall definition (167)) that $E (y) \subset V_1 (p (y))$, so

$$d^p \left(D\tilde{v} (y), K \right) \leq c d^p \left(Dv_{|\tau_{c (i)}}, K \right).$$ \hspace{1cm} (178)

Now

$$\int_{\mathcal{A}_{k_0}} d^p \left(D\tilde{v} (z), K \right) dL^2 z = \sum_{\{i \in V_1 (i) \subset \mathcal{G}_{k_0}\}} \int_{\tau_i} d^p \left(D\tilde{v} (z), K \right) dL^2 z$$

$$\leq \sum_{\{i \in V_1 (i) \subset \mathcal{G}_{k_0}\}} L^2 (\tau_i) \sup \left\{ d^p \left(D\tilde{v} (z), K \right) : z \in \tau_i \right\}$$

$$\leq \sum_{\{i \in V_1 (i) \subset \mathcal{G}_{k_0}\}} c d^p \left(Dv_{|\tau_i}, K \right).$$ \hspace{1cm} (179)

Now max \{ Card $c^{-1} (i) : i \in \mathcal{G}_{k_0}$ \} \leq c and so

$$\int_{\mathcal{A}_{k_0}} d^p \left(D\tilde{v} (z), K \right) dL^2 z \leq c \sum_{i \in \mathcal{G}_{k_0}} d^p \left(Dv_{|\tau_i}, K \right).$$

Thus summing over $k_0 = 1, 2, \ldots, N_1$ gives (174).

Step 4. We will show that

$$\int_{Q_{c \cdot \frac{1}{4 + \epsilon} \cdot (0)}} d^p \left(D\tilde{v} (z), K \right) dL^2 z \leq c a_0 + c \epsilon^{1 \cdot \frac{1}{4}}.$$ \hspace{1cm} (179)

Proof of Step 4. Let $\mathcal{D} := \{ i : \partial \tau_i \cap \partial \Omega \neq \emptyset \}$. Note (recalling definition (175), (167))

$$p (z) \in E (z) \text{ for any } z \in \Omega_{c \cdot \frac{1}{4}}.$$ \hspace{1cm} (180)
so

\[|D\bar{v}(z)| = \left| \int Dv(z + x) \rho_\eta(x) dL^2 x \right| \]

\[= \left| F \int_{B_\eta(z)} (a - z) dL^2 a + \sum_{i \in E(z)} Dv_{\tau_i} \int_{\tau_i} \rho_\eta(a - z) dL^2 a \right| \]

\[\leq c |F| + c \sum_{i \in E(z)} |Dv_{\tau_i}| \]

\[\leq c + c \sum_{i \in V_1(p(z))} \left(\int_{\tau_i} \rho_\eta(a) dL^2 a \right) \]

\[\leq c + c \sum_{i \in V_1(p(z))} \left(\int_{\tau_i} \rho_\eta(a) dL^2 a \right) \]

Thus

\[d^p(D\bar{v}(z), K) \leq (|Dv(z)| + c)^p \]

\[\leq c |Dv(z)|^p + c \]

\[\leq \left(c + c \sum_{i \in V_1(p(z))} \left(\int_{\tau_i} \rho_\eta(a) dL^2 a \right) \right)^p + c \]

\[\leq c + c \sum_{i \in V_1(p(z))} \left(\int_{\tau_i} \rho_\eta(a) dL^2 a \right) \]

Let \(B := \{ i : V_1(i) \not\subset G_0 \} \). Note that if \(i \) is such that \(V_1(i) \subset G_0 \) then \(V_1(i) \subset G_k \) for some \(k \in \{1, 2, \ldots N_1\} \) (and recall definition (166)) and hence \(\tau_i \subset \bar{A}_k \), thus

\[\bigcup_{i \in B} \tau_i = \Omega_{\epsilon - \frac{1}{2}} \setminus \left(\bigcup_{k=1}^{N_1} \bar{A}_k \right). \]

So

\[\int_{\bigcup_{i \in B} \tau_i} d^p(D\bar{v}(z), K) dL^2 z \]

\[\leq \sum_{i \in B} L^2(\tau_i) \left(c + c \sum_{j \in V_1(i)} (|Dv_{\tau_j}|, K) \right) \]

\[\leq c\alpha_0 + c \text{Card}(B). \]

By an easy application of the 5r Covering Theorem (Theorem 2.1. [26]) we know

\[\text{Card}(B) \leq c \{1, 2, \ldots N_3\} \setminus G_0 \leq c\alpha_0. \]

Now

\[\tau_p(z) \subset \Omega_{\epsilon - \frac{1}{2}} \setminus \Omega_{\epsilon - \frac{1}{2} - 10\kappa^{-1}} \text{ for any } z \in \Omega_{\epsilon - \frac{1}{2} + \eta} \setminus \Omega_{\epsilon - \frac{1}{2}}, \]
Let \(\{l_1, l_2, \ldots, l_{N_1}\} \) be an ordering of the set \(\{p(z) : z \in \Omega_{e^{-\frac{1}{2} + \eta}} \setminus \Omega_{e^{-\frac{3}{2}}} \} \) we have that \(X_1 \leq e \zeta \). And thus
\[
\int_{\Omega_{e^{-\frac{1}{2} + \eta}}} d^\rho \left(D\tilde{v}(z), K \right) dL^2 z
\]
\[
= \sum_{k=1}^{X_1} \int_{\Omega_{e^{-\frac{1}{2} + \eta}}} d^\rho \left(D\tilde{v}(z), K \right) dL^2 z
\]
\[
\leq \sum_{k=1}^{X_1} \int_{\Omega_{e^{-\frac{1}{2} + \eta}}} \left(c + \sum_{i \in V_1(l_k)} c d^\rho \left(Dv_{|\tau_i}, K \right) \right) dL^2 z
\]
\[
\leq c \sum_{k=1}^{X_1} L^2 \left(p^{-1}(l_k) \setminus \Omega_{e^{-\frac{1}{2}}} \right) + \sum_{k=1}^{X_1} \sum_{i \in V_1(l_k)} c d^\rho \left(Dv_{|\tau_i}, K \right)
\]
\[
\leq c_\eta e^{-\frac{1}{2}} + c_\alpha_0 \quad \text{(187)}
\]
So putting things together, by (174), (183), (184), (185) and (187) we have
\[
\int_{\Omega_{e^{-\frac{1}{2} + \eta}}} d^\rho \left(D\tilde{v}(z), K \right) dL^2 z = \int_{\bigcup_{i \in E(\tau)} \mathcal{A}_k} d^\rho \left(D\tilde{v}(z), K \right) dL^2 z
\]
\[
+ \int_{\bigcup_{j=1}^{N_1} \mathcal{A}_k} d^\rho \left(D\tilde{v}(z), K \right) dL^2 z
\]
\[
+ \int_{\Omega_{e^{-\frac{1}{2} + \eta}(0)}} d^\rho \left(D\tilde{v}(z), K \right) dL^2 z
\]
\[
\leq c_\alpha_0 + c \eta e^{-\frac{1}{2}},
\]
which completes the proof of (179).

Step 5. We will show
\[
\sum_{k=1}^{C_1} \int_{\mathcal{A}_k} \left| D^2 \tilde{v}(y) \right|^2 dL^2 y \leq c_\alpha_0.
\]

Proof of Step 5. Let \(y \in \bigcup_{k=1}^{N_1} \mathcal{A}_k \), for each \(j \in E(\tau) \) define \(A_j := \int_{\tau_j} \rho_\eta(x - y) dL^2 x \), note \(\sum_{j \in E(\tau)} A_j = 0 \). So
\[
D^2 \tilde{v}(y) = \int -Dv(y + z) \otimes \rho_\eta(z) dL^2 z
\]
\[
= \sum_{j \in E(\tau)} \int_{\tau_j} -Dv_{|\tau_j} \otimes \rho_\eta(x - y) dL^2 x
\]
\[
= \sum_{j \in E(\tau)} -Dv_{|\tau_j} \otimes A_j.
\]
So we have \(D^2 \tilde{v}(y) = \sum_{j \in E(\tau)} \left(Dv_{|\tau_j} - Dv_{|\tau_j(\rho)} \right) \otimes A_j \) and so
\[
\left| D^2 \tilde{v}(y) \right|^2 \leq c \sum_{j \in E(\tau)} \left| Dv_{|\tau_j} - Dv_{|\tau_j(\rho)} \right|^2
\]
\[
\leq c \left(\max \left\{ d \left(Dv_{|\tau_l}, K \right) : l \in E(\tau) \right\} \right)^2 \quad \text{(171)}.
\]
Thus (recall the definition $c(i)$, (177)) we have

$$
\int_{\tilde{A}_h} |D^2 \tilde{v}(y)|^2 dL^2 y = \sum_{\{i: \mathcal{V}_1(i) \subseteq \tilde{A}_h\}} \int_{\tau_i} |D^2 \tilde{v}(y)|^2 dL^2 y
$$

(168),(190)

$$
\leq \sum_{\{i: \mathcal{V}_1(i) \subseteq \tilde{A}_h\}} c \left(\max \left\{ d \left(Dv_{|\tau_i}, K \right) : l \in \mathcal{V}_1(i) \right\} \right)^2
$$

$$
= c \sum_{i \in \tilde{D}_h} d^2 \left(Dv_{|\tau_i}, K \right)
$$

$$
\leq c \sum_{i \in \tilde{D}_h} d^p \left(Dv_{|\tau_i}, K \right).
$$

Thus summing over $k = 1, 2, \ldots N_1$ gives (189).

Step 6. We will show

$$
\int_{\Omega_{\frac{1}{2} + \eta}} \left| D^2 \tilde{v}(z) \right|^2 dL^2 z \leq c a_0 + c q e^{-\frac{\delta}{2}}. \quad (191)
$$

Proof of Step 6. Now let $y \in \Omega_{\frac{1}{2} + \eta}$. Note that if $B_\eta(y) \subseteq \Omega_{\frac{1}{2}}$ then define $A_y := \int_{B_\eta(y) \setminus \Omega_{\frac{1}{2}}} D\rho_\eta(x - y) dL^2 x$ otherwise define $A_y = 0$.

As in Step 5 for each $j \in E(y)$ define $A_j = \int_{\tau_j} D\rho_\eta(x - y) dL^2 x$. So we have

$$
\sum_{j \in E(y)} A_j + A_y = 0. \quad (192)
$$

So as in Step 5

$$
-D^2 \tilde{v}(y) = \int Dv(y + z) \otimes D\rho_\eta(z) dL^2 z
$$

$$
= \int_{B_\eta(y) \setminus \Omega_{\frac{1}{2}}} F \otimes D\rho_\eta(x - y) dL^2 x + \sum_{j \in E(y)} \int_{\tau_j} Dv_{|\tau_j} \otimes D\rho_\eta(x - y) dL^2 x
$$

$$
= F \otimes A_y + \sum_{j \in E(y)} Dv_{|\tau_j} \otimes A_j
$$

$$
= \left(F - Dv_{|\tau_{p(y)}} \right) \otimes A_y + \sum_{j \in E(y)} \left(Dv_{|\tau_j} - Dv_{|\tau_{p(y)}} \right) \otimes A_j.
$$

Thus for any $y \in Q_{\frac{1}{2} + \eta}(0)$

$$
|D^2 \tilde{v}(y)|^2 \leq c \left| F - Dv_{|\tau_{p(y)}} \right|^2 \left| A_y \right|^2 + c \sum_{j \in E(y)} \left| Dv_{|\tau_j} - Dv_{|\tau_{p(y)}} \right|^2
$$

(168)

$$
\leq c \left| F - Dv_{|\tau_{p(y)}} \right|^2 \left| A_y \right|^2 + c \sum_{j \in \mathcal{V}_1(p(y))} \left| Dv_{|\tau_j} - Dv_{|\tau_{p(y)}} \right|^2. \quad (193)
$$
Now as in Step 1 for any \(i, j \in \mathbb{V}_1(p(y))\) we can find a finite sequence \(l_1, l_2, \ldots l_{N_j} \in \mathbb{V}_1(p(y))\) such that \(l_1 = i\), \(l_{a+1} \in V(l_a)\) for \(a = 1, 2, \ldots, N_j - 1\) and \(l_{N_j} = j\) so
\[
|Dv_{l_1} - Dv_{l_j}|^2 \leq c \sum_{a=1}^{N_j-1} |Dv_{l_{a+1}} - Dv_{l_a}|^2 \\
\leq c \sum_{l \in \{l_1, l_2, \ldots, l_{N_j-1}\}} \sum_{k \in V(l)} |Dv_{l} - Dv_{l_k}|^2 \\
\leq c \sum_{l \in \mathbb{V}_1(p(y))} \sum_{k \in V(l)} |Dv_{l_1} - Dv_{l_k}|^2.
\]
So from (193) for any \(y \in Q_{\epsilon_{\frac{1}{2}} + \eta}(0)\) we have
\[
|D^2 \tilde{v}(y)|^2 \leq c |F - Dv_{l(y)}|^2 |A_y|^2 + c \sum_{l \in \mathbb{V}_1(p(y))} \sum_{k \in V(l)} |Dv_{l_1} - Dv_{l_k}|^2 \\
\leq c |F - Dv_{l(y)}|^2 |A_y|^2 + c \sum_{l \in \mathbb{V}_1(p(y))} \sum_{k \in V(l)} |Dv_{l_1} - Dv_{l_k}|^2 + c.(194)
\]
Recall \(D = \{ i : \partial \tau_i \cap \partial \Omega_{\epsilon_{\frac{1}{2}}} \neq \emptyset \}\). Note if \(y \in \bigcup_{i \in B} \tau_i\) then \(B_0(y) \subset \Omega_{\epsilon_{\frac{1}{2}}} \) and so \(A_y = 0\).
For \(i \in B\) let \(y_i \in \tau_i\) be such that \(|D^2 \tilde{v}(y_i)| = \sup \{|D^2 \tilde{v}(y)| : y \in \tau_i\}\), thus
\[
\int_{\Omega_{\epsilon_{\frac{1}{2}}}} |D^2 \tilde{v}(y)|^2 dL^2y \\
\overset{(183)}{=} \int_{\bigcup_{i \in B} \tau_i} |D^2 \tilde{v}(y)|^2 dL^2y \\
\leq \sum_{i \in B} L^2(\tau_i) |D^2 \tilde{v}(y_i)|^2 \\
\overset{(194)}{\leq} c \sum_{i \in B} \sum_{l \in \mathbb{V}_1(i) \cap J(v)} \sum_{k \in V(l)} |Dv_{l_1} - Dv_{l_k}|^2 \\
+ c \sum_{i \in B} \sum_{l \in \mathbb{V}_1(i) \cap J(v)} \sum_{k \in V(l)} |Dv_{l_1} - Dv_{l_k}|^2 + c \sum_{i \in B} |F - Dv_{l_1}|^2 + c \text{Card}(B) \\
\leq c \sum_{i \in B} \sum_{l \in \mathbb{V}_1(i) \cap J(v)} |Dv_{l_1} - Dv_{l_k}|^2 + c \sum_{i \in B} |F - Dv_{l_1}|^2 + c \text{Card}(B) \\
\leq c \sum_{l \in J(v)} \sum_{k \in V(l)} |Dv_{l_1} - M|^2 + c a_0 \\
\overset{(185)}{\leq} c \sum_{l \in J(v)} |M|^2 + c a_0.
\]
Now to estimate \(\int_{\Omega_{\epsilon_{\frac{1}{2}}}} |D^2 \tilde{v}(z)|^2 dL^2z\) we argue as in Step 3, let \(\{l_1, l_2, \ldots l_{X_1}\}\) be an ordering of the set \(\{p(z) : z \in \Omega_{\epsilon_{\frac{1}{2}} + \eta} \setminus \Omega_{\epsilon_{\frac{1}{2}}}\}\), recall we have \(X_1 \leq c \epsilon^{-\frac{1}{2}}\). And of course,
from (175) we have \(\{l_1, l_2, \ldots, l_{X_1}\} \subset D\). So

\[
\int_{\Omega - \frac{1}{2} + y} |D^2 \tilde{v}(z)|^2 \, dL^2 z \leq \sum_{a=1}^{X_1} \int_{p^{-1}(l_a)} |D^2 \tilde{v}(z)|^2 \, dL^2 z
\]

Putting this together with (195) gives (191).

Proof of Proposition 2. Let \(w(z) := \frac{\hat{v}((e^{-\frac{1}{2} + y}) z)}{e^{-\frac{1}{2} + y}}\), it is clear \(w\) can also be defined by equation (162). So from (191) and (189) we have

\[
\int_\Omega |D^2 w(z)|^2 \, dL^2 z \leq \alpha_0 + c_\eta e^{-\frac{1}{2}}.
\]

(196)

And

\[
\int_\Omega d^p (Dw(z), K) \, dL^2 z = \int_\Omega d^p (D\tilde{v}((e^{-\frac{1}{2} + \eta}) z), K) \, dL^2 z
\]

\[
= \int_{\Omega - \frac{1}{2} + y} d^p (D\tilde{v}(y), K) (e^{-\frac{1}{2} + \eta})^{-2} \, dL^2 y
\]

\[
\leq \frac{\int_{\Omega - \frac{1}{2} + y} d^p (D\tilde{v}(y), K) \, dL^2 y}{e^{-1} + 2e^{-\frac{1}{2} \eta} + \eta^2}
\]

\[
= \frac{\int_{\Omega - \frac{1}{2} + y} d^p (D\tilde{v}(y), K) \, dL^2 y}{\eta^{-1} + 2\eta + c_\eta^2}
\]

(179)

(179)

Putting this together with (196) gives

\[
\int_\Omega d^p (Dw(z), K) + \epsilon |D^2 w(z)|^2 \, dL^2 z \leq \alpha_0 + c_\eta e^{-\frac{1}{2}}.
\]

(197)

(197)

Now by (22) we have that there exists some small constant \(c_1 = c_1 (\sigma)\) such that

\[
c_1 e^{-\frac{1}{2}} \leq \int_\Omega d^p (Dw(z), K) + \epsilon |D^2 w(z)|^2 \, dL^2 z
\]

so assuming we have chosen \(\eta\) small enough we have that

\[
\int_\Omega d^p (Dw(z), K) + \epsilon |D^2 w(z)|^2 \, dL^2 z - c_\eta e^{-\frac{1}{2}} \geq \frac{1}{2} \int_\Omega d^p (Dw(z), K) + \epsilon |D^2 w(z)|^2 \, dL^2 z
\]

(198)
hence from (198) we have
\[
\int_{\Omega} dp \left(Dw(z), K \right) + \epsilon \left| D^2 w(z) \right|^2 dL^2 z \leq c \epsilon a_0 \tag{165}
\]
which completes the proof of (163). □

4.1. The proof of Theorem 1 completed. By Proposition 2 for any $\epsilon > 0$ we can find $u \in D_{F}^{\sqrt{\epsilon}}$ such that $\int_{\Omega} dp \left(Du(z), K \right) dL^2 z \leq cm_p \epsilon$ which obviously implies there must exist constant $C_1 < 1$ such that $C_1 \alpha (\sqrt{\epsilon}) \leq m_p$. Let $u \in D_{F}^{\sqrt{\epsilon}}$ be such that $\int_{\Omega} dp \left(Du(z), K \right) dL^2 z \leq ca_p (\sqrt{\epsilon})$. By Proposition 3 function w defined by (161) and (162) has the property that
\[
I_\epsilon (w) \leq c \int_{\Omega} dp \left(Du(z), K \right) dL^2 z \leq ca_p (\sqrt{\epsilon})
\]
which implies there exists a constant $C_2 > 1$ such that $m_p \leq C_2 a_p (\sqrt{\epsilon})$. □

REFERENCES