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NUMERICAL STUDY OF A MULTISCALE EXPANSION OF THE
KORTEWEG DE VRIES EQUATION

T. GRAVA AND C. KLEIN

ABSTRACT. The Cauchy problem for the Korteweg de Vries (KdV) equation with small
dispersion of order ε2, ε � 1, is characterized by the appearance of a zone of rapid modu-
lated oscillations. These oscillations are approximately described by the elliptic solution of
KdV where the amplitude, wave-number and frequency are not constant but evolve accord-
ing to the Whitham equations. Whereas the difference between the KdV and the asymptotic
solution decreases as ε in the interior of the Whitham oscillatory zone, it is known to be
only of order ε1/3 near the leading edge of this zone. To obtain a more accurate descrip-
tion near the leading edge of the oscillatory zone we present a multiscale expansion of the
solution of KdV in terms of the Hastings-McLeod solution of the Painlevé-II equation. We
show numerically that the resulting multiscale solution approximates the KdV solution, in
the small dispersion limit, to the order ε2/3.

1. INTRODUCTION

The mathematically rigorous study of the small dispersion limit of the Korteweg de
Vries (KdV) equation

(1.1) ut + 6uux + ε2uxxx = 0, ε� 1,

was initiated in the works of Lax-Levermore [23], which stimulated intense research both
numerically and analytically on the problem. The solution of the Cauchy problem of the
KdV equation in the small dispersion limit is characterized by the appearance of a zone of
rapid oscillations of frequency of order 1/ε, see for instance Fig. 1.

These oscillations are formed in the strong nonlinear regime and they have been ana-
lytically described in terms of elliptic functions, and in the general case in terms of theta
functions in [28], [5]; the evolution in time of the oscillations was studied in [25]. These
results give a good asymptotic description of the oscillations only near the center of the
oscillatory zone (see Fig. 2). In [15], which will henceforth be referred to as I, we have
studied numerically the small dispersion limit of the KdV equation for the concrete exam-
ple of initial data of the form

(1.2) u0(x) = − 1
cosh2 x

.

We have compared the asymptotic description given in the works [23, 28, 5] with the
numerical KdV solution. In I we have shown numerically that the difference between
the KdV solution and the elliptic asymptotic solution at the center of the oscillatory zone
scales like ε while this fails to be true at the boundary of the oscillatory zone. This fact
was also observed for the Benjamin-Ono in [20]. In particular at the left boundary, where
the oscillations tend to zero, the difference between the KdV solution and the elliptic as-
ymptotic solution scales like ε

1
3 . In this manuscript we show that the Painlevé-II equation

describes the envelope of the oscillations at the leading edge where the oscillations tend
to zero. Painlevé equations appear in many branches of mathematics. For example in the
study of self-similar solutions of integrable equations, in the study of the Hele-Shaw flow
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FIGURE 1. Numerical solution of the KdV equation for the initial data
u0(x) = −1/ cosh2 x and ε = 0.1.
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FIGURE 2. We plot for u0 = −1/cosh2x, t = 0.4 and ε = 10−2 from
top to bottom: 1) the numerical solution of KdV; 2) the asymptotic for-
mula (2.3) in terms of elliptic functions and the Hopf solution; 3) the
multiscale solution where the envelope of the oscillations is given by a
solution to the Painlevé-II equation.
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FIGURE 3. In (a) the difference between the upper two plots of Fig. 2 is
shown. The Whitham zone is shown in blue. In (b) one can see the same
situation as in (a) except for the region close to the leading edge of the
Whitham zone where the difference between the KdV and the multiscale
solution is shown in red.

near singularities [10], or in double-scaling limits in random matrix models (see e.g. [1],
[11],[2],[4]). In this work, following [22], we perform a double-scaling limit of the KdV
equation to derive the asymptotic description of the leading edge oscillations which are
formed in the KdV small dispersion limit. We show that the envelope of the oscillations
is determined by the Hastings-McLeod [18] solution of the Painlevé-II equation. Then we
compare numerically at the leading edge of the oscillatory front, the KdV solution with the
derived multiscale solution and show that the difference between the two solutions scales
like ε

2
3 . We identify a neighborhood of the leading edge of the Whitham zone where the

multiscale solution gives a better asymptotic description than the asymptotic solution based
on the elliptic and the Hopf solution. This allows to patch different asymptotic descriptions
to provide a more satisfactory treatment of the small dispersion limit of KdV as shown in
Fig. 3.

This manuscript is organized as follows. In section 2 we review the theory of the as-
ymptotic solution in the oscillatory zone of the KdV equation in terms of elliptic functions.
Then we consider the small amplitude limit for the elliptic solution. In section 3 we per-
form a multiscale expansion of the KdV solution when the oscillations tend to zero, and
we show that the envelope of the oscillations is given by a solution of the Painlevé-II equa-
tion. In section 4 we numerically compare the KdV solution with the multiscale solution
obtained in section 2. We show that the difference between the two solutions scales as
ε

2
3 which is in accordance with our analytical result. We identify a zone near the leading

edge where the multiscale solution provides a better description than the elliptic and the
Hopf solution and patch the solutions. In section 5 we summarize the results and add some
concluding remarks on future directions of research.

2. ASYMPTOTIC SOLUTION OF KDV IN THE SMALL DISPERSION LIMIT

We study initial data with a negative hump and with a single minimum value at x = 0
normalized to −1. The solution of the Cauchy problem for the KdV equation is char-
acterized by the appearance of a zone of fast oscillations of wave-length of order ε, see
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e.g. Fig. 1. These oscillations were called by Gurevich and Pitaevski dispersive shock
waves [17].
Following the work of [23], [28] and [5], the description of the small dispersion limit of
the KdV equation is the following:
1) for 0 ≤ t < tc, where tc is a critical time, the solution u(x, t, ε) of the KdV Cauchy
problem is approximated, for small ε, by u(x, t) which solves the Hopf equation

(2.1) ut + 6uux = 0.

Here tc is the time when the first point of gradient catastrophe appears in the solution

(2.2) u(x, t) = u0(ξ), x = 6tu0(ξ) + ξ,

of the Hopf equation. From the above, the time t c of gradient catastrophe can be evaluated
from the relation

tc =
1

maxξ∈R[−6u′0(ξ)]
.

2) After the time of gradient catastrophe, the solution of the KdV equation is characterized
by the appearance of an interval of rapid modulated oscillations. According to the Lax-
Levermore theory, the interval [x−(t), x+(t)] of the oscillatory zone is independent of
ε. Here x−(t) and x+(t) are determined from the initial data and satisfy the condition
x−(tc) = x+(tc) = xc where xc is the x-coordinate of the point of gradient catastrophe
of the Hopf solution. Outside the interval [x−(t), x+(t)] the leading order asymptotics
of u(x, t, ε) as ε → 0 is described by the solution of the Hopf equation (2.2). Inside the
interval [x−(t), x+(t)] the solution u(x, t, ε) is approximately described, for small ε, by
the elliptic solution of KdV [17], [23], [28], [5],

(2.3) u(x, t, ε) � +β1 + β2 + β3 + 2α+ 2ε2
∂2

∂x2
log θ(Ω(x, t); T )

where

(2.4) Ω =
√
β1 − β3

2εK(s)
[x− 2t(β1 + β2 + β3) − q]

and

(2.5) α = −β1 + (β1 − β3)
E(s)
K(s)

, T = i
K ′(s)
K(s)

, s2 =
β2 − β3

β1 − β3

with K(s) and E(s) the complete elliptic integrals of the first and second kind, K ′(s) =
K(

√
1 − s2); θ is the Jacobi elliptic theta function defined by the Fourier series

θ(z; T ) =
∑
n∈Z

eπin2T +2πinz .

For constant values of the βi the formula (2.3) is an exact solution of KdV well known
in the theory of finite gap integration [19], [7]. However in the description of the leading
order asymptotics of u(x, t, ε) as ε → 0, the quantities βi depend on x and t and evolve
according to the Whitham equations [29]

(2.6)
∂

∂t
βi + vi

∂

∂x
βi = 0, i = 1, 2, 3,

where the speeds vi are given by the formula

(2.7) vi = 4

∏
k �=i(βi − βk)
βi + α

+ 2(β1 + β2 + β3),

with α as in (2.5). The formula for q in the phase Ω in (2.4) that we are giving below was
introduced in [15] and looks different but is equivalent to the one in [5]

(2.8) q(β1, β2, β3) =
1

2
√

2π

∫ 1

−1

∫ 1

−1

dµdν
f−(1+µ

2 (1+ν
2 β1 + 1−ν

2 β2) + 1−µ
2 β3)√

1 − µ
√

1 − ν2
,
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where f−(y) is the inverse function of the decreasing part of the initial data u 0. The above
formula for q(β1, β2, β3) is valid as long as β1 > β2 > β3 > −1. When β3 reaches the
minimum value −1 and passes over the negative hump, then it is necessary to take into
account also the increasing part of the initial data f+(u) in formula (2.8). We denote by T
this time. For t > T > tc we introduce the variable X3 defined by u0(X3) = β3 which
is still monotonous. For values of X3 beyond the hump, namely X3 > 0, we have to
substitute (2.8) by the formula

(2.9) q(β1, β2, β3) =
1√
2π

∫ β1

β2

dλ

(∫ −1

β3
dµ f+(µ)√

λ−µ
+
∫ λ

−1
f−(µ)√

λ−µ

)
√

(β1 − λ)(λ − β2)(λ− β3)
.

The function q = q(β1, β2, β3) is symmetric with respect to β1, β2 and β3, and satisfies a
linear over-determined system of Euler-Poisson-Darboux type. It has been introduced in
the work of Fei-Ran Tian [25]. The Whitham equations (2.6) can be integrated through the
so called hodograph transform, which generalizes the method of characteristics, and which
gives the solution in the implicit form [27]

(2.10) x = vit+ wi, i = 1, 2, 3,

where the vi are defined in (2.7) and thewi = wi(β1, β2, β3) are obtained from an algebro-
geometric procedure [21] by the formula [25]

(2.11) wi =
1
2

(
vi − 2

3∑
k=1

βk

)
∂q

∂βi
+ q, i = 1, 2, 3.

with q defined in (2.8) or (2.9). The initial value problem for the Whitham equations
consists in determining the solution of (2.6) with the following boundary conditions:
a) leading edge:

β1 = the Hopf solution (2.1)

β2 = β3,
(2.12)

b) trailing edge:

β2 = β1

β3 = the Hopf solution (2.1).
(2.13)

In [15] we have solved numerically the initial value problem for the Whitham equations.
In this way we could perform a numerical comparison between the KdV small dispersion
solution and the asymptotic formula (2.3) (see Fig. 3). While in the interior of the oscil-
latory zone the error scales numerically like ε, at the left boundary of the oscillatory zone
the error scales numerically like ε

1
3 . To derive a more satisfactory asymptotic approxi-

mation of the KdV small dispersion limit in the vicinity of this point, we perform in the
next section a double scaling expansion of the KdV equation, following the double scaling
limits appearing in random matrix theory. Before doing this analysis, we study the elliptic
solution (2.3) in the limit when the oscillations goes to zero.

2.1. Small amplitude limit of the elliptic solution. We study the elliptic solution (2.3)
near the leading edge, namely when oscillations go to zero. To avoid degeneracies, we
rewrite the system (2.10) in the equivalent form

(2.14)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(v1t+ w1 − x)(α + β1) = 0
v2t+ w2 − x = 0

1
(β2 − β3)

[(v2 − v3)t+ w2 − w3] = 0.

and perform the limit δ → 0 where

β2 = v + δ, β3 = v − δ, β1 = u.
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To simplify our calculation we restrict ourselves to the case tc < t < T . The following
limit holds:

(2.15)
E(s)
K(s)

= 1 − δ

v − β1
+

3
4

δ2

(v − β1)2
+O(δ3)

such that

(2.16) α = −v − δ2

4(u− v)
.

Furthermore the following identities hold

f−(u) =[2(u− v)∂uq(u, v, v) + q(u, v, v)](2.17)

Φ(v, u) =(v − u)∂u∂vq(u, v, v) + 3∂uq(u, v, v)(2.18)

=∂vq(u, v, v) + ∂uq(u, v, v)

where

(2.19) Φ(v, u) =
1

2
√

2

∫ 1

−1

dµ
f ′
−(1+µ

2 v + 1−µ
2 u)√

1 − µ
=

1
2
√
ξ − u

∫ v

u

dµ
f ′
−(µ)√
v − µ

.

Substituting (2.16) (2.17) and (2.18) into (2.14) we arrive at the system
(2.20)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

x = 6t+ f−(u) − δ2
(x− 6tu− f−(u) − 2(u− v)(6t+ Φ(v;u))

8(v − u)2
+O(δ4),

x = 6tu+ f−(u) + 2(v − u)[6t+ Φ(v, u)] + δ[6t+ Φ(v, u) + (v − u)∂vΦ(v, u)]

+
δ2

4(u− v)
[6t− 2(u− v)2∂vvvq(u, v, v) + 4(u− v)∂vv +

3
2
∂vq(u, v, v, )] +O(δ3)

0 = 6t+ Φ(v, u) + (v − u)∂vΦ(v, u) +O(δ).

From the above we deduce that, in the limit δ → 0, the hodograph transform (2.14) reduces
to the form (see [25][14])

(2.21)

⎧⎪⎨
⎪⎩

6ut+ f−(u) − x = 0

Φ(v, u) + 6t = 0

∂vΦ(v, u) = 0.

The above system enables one to determine x, u and v as a function of time. This time
dependence will be denoted x = x−(t), u = u(t) and v = v(t). We are interested in
studying the behavior of the elliptic solution (2.3) near the leading edge, namely when
x− x−(t) is small and x > x−(t). For this purpose we introduce two unknown functions
of x and t,

δ = δ(x− x−(t)), ∆ = ∆(x− x−(t))
which tend to zero as x → x−(t). We are going to derive the dependence of ∆ as a
function of x− x−(t). Let us fix

(2.22) β2 = v + δ, β3 = v − δ, δ → 0 β1 = u+ ∆, ∆ → 0.

Using the first equation of (2.20) we obtain

0 � x− 6t− f−(β1) + δ2
(x− 6tβ1 − f−(β1) − 2(β1 − v)(6t+ Φ(v;β1))

8(β3 − u)2
+O(δ4).

Expanding the above expression near β1(x, t) = u(t) + ∆(x, t), using the identity

(2.23)
∂

∂β1
Φ(β3;β1) =

Φ(β3;β1) − Φ(β3;β1)
2(β3 − β1)

and (2.21) we arrive at the expression

(2.24) 0 � x− x−(t) − (6t+ f ′
−(u))∆ +

δ2

8(v − u)2
(x− x−(t))
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so that

(2.25) ∆ � x− x−(t)
6t+ f ′

−(u)
.

Using the second equation in (2.20) we arrive at

(2.26) x− x−(t) � δ2 c

where c = [6t − 2(u − v)2∂vvvq(u, v, v) + 4(u − v)∂vv +
3
2
∂vq(u, v, v, )]/4(u − v).

Therefore
δ2

∆
= O(1).

Theorem 2.1. The elliptic solution (2.3) in the limit (2.22) takes the form
(2.27)

u(x, t, ε) � u(t)+
x− x−(t)
6t+ f ′

−(u)
+2δ cos

(
2π

Ω−

ε

)
+

δ2

2[u(t) − v(t)]

(
cos
(

4π
Ω−

ε

)
− 1
)

where the phase Ω− takes the form

(2.28) 2πΩ− = θ0 + θ1

with

(2.29) θ0(t) = −16
∫ t

tc

(u(τ) − v(τ))
3
2 dτ, θ1(x, t) = 2

√
u(t) − v(t)(x− x−(t)),

and u(t), v(t) and x−(t) solve the system (2.21).

Proof. We first prove the relation (2.28). Using the expansion

K(s) =
π

2

(
1 +

s2

4
+

9
64
s4 +O(s6)

)
,

and (2.17) we obtain the following limit for the phase Ω in (2.4)

2πΩ|β2,3=v±δ = 2
√
β1 − v(1 − 3δ2

16(β1 − v)2
)[x− 6tβ1 − f−(β1)

+ 2(β1 − v)(2t+ ∂β1q(β1, v, v) −
δ2

4
∂2

vq(β1, v, v)] +O(δ4).

Using the identity

∂2
vq(β1, v, v) = ∂vΦ(v, β1) − ∂β1∂vq(β1, v, v),

(2.21) and (2.18) we can rewrite the above in the form

∂2
vq(β1, v, v) =

3(2t+ ∂β1q(β1, v, v))
2(v − β1)

+
3
4

6t+ f ′
−(u)

(v − u)2
∆ +O(∆2)

so that the phase Ω takes the form

(2.30) 2πΩ|β2,3=v±δ � 4(β1 − v)
3
2 (2t+ ∂β1q(β1, v, v)) −

δ2

8
x− x−(t)
(v − u)

3
2
.

We define

η0(β1, u) :=4
√
β1 − v[2(β1 − v)t+ (β1 − v)∂β1q(β1, v, v)]

=2
∫ β1

v

√
β1 − λ[Φ(λ, β1) + 6t]dλ,(2.31)

so that, by (2.21)

η0(β1, v) = η0(u, v) + φ1(x, t) +
∆2

2
√
u− v

(f ′
−(u) + 6t+ 2(u− v)f ′′

−(u)) +O(∆3)

(2.32)
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where φ1(x, t) is defined in (2.29). To show that η0(u, v) defined in (2.31) coincides with
the one defined in (2.29), we differentiate (2.31) with respect to time,

2
d

dt

∫ u

v

√
u− λ[Φ(λ, u) + 6t]dλ = −16(u− v)

3
2

where we have used the identity (2.23) and ∂ tu(t) = 12
(v − u)

6t+ f ′
−(u)

. Integrating the r.h.s

of the above expression with respect to t from tc to t we obtain the formula (2.29).
Using (2.32) and (2.25) we rewrite the phase (2.30) in the form

(2.33)

2πΩ|β1=u+∆
β2,3=v±δ

� φ0 + φ1 −
δ2(x − x−(t))

8(u− v)
3
2

+
∆2

2
√
u− v

(f ′
−(u) + 6t+ 2(u− v)f ′′

−(u))

where φ0 and φ1 are defined in (2.29). Neglecting the higher order terms in δ and ∆ of the
above expansion one obtains (2.28).

Now we are ready to expand the theta-function expression in the limit of small ampli-
tudes. Using (2.16) and

eiπT =
δ

8(u− v)
(1 − ∆

u− v
) +O(δ3 log δ),

one derives the small amplitude limit of the θ-function

θ(z; τ) = 1 +
δ

4(u− v)
(1 − ∆

u− v
) cos(2πz) +O(δ4).

Substituting the above expansion in (2.3) one obtains

u(x, t, ε) � u(t)+
x− x−(t)
6t+ f ′

−(u)
+2δ(x, t) cos(2πΩ−/ε)+

δ2

2[u(t) − v(t)]
(
cos(4πΩ−/ε) − 1

)
.

which coincides with (2.27). �

3. PAINLEVÉ EQUATIONS AT THE LEADING EDGE

In this section we present a multiscale description of the oscillatory behavior of a so-
lution to the KdV equation in the small dispersion limit close to the leading edge x−(t)
where β2 = β3 = v and β1 = u. We are interested in the double scaling limit to the
solution of the KdV equation (1.1) as x→ x−(t) and ε→ 0 in such a way that the limit

lim
x→x−(t),ε→0

ε−2/3(x− x−(t)) = c

where c = c(t) is a nonzero function of time.
We introduce the rescaled coordinate y near the leading edge,

(3.1) y = ε−2/3(x− x−(t)),

which transforms the KdV equation (1.1), to the form

(3.2) ε
2
3ut + ε

2
3 uyyy + (6u− x−t )uy = 0,

where x−t =
d

dt
x−(t). The substitution (3.1) has the effect that the linear term of (3.2) is

just the Airy equation ut + uyyy = 0 which has oscillatory solutions.
It is known [6],[22] that the corrections to the Hopf solution near the leading edge are

of the order ε1/3. We thus make the ansatz

(3.3) u(y, t, ε) = U0 + ε1/3U1 + ε2/3U2 + εU3 + . . . ,
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where U0 = u(t) is the solution at the leading edge. We assume that Uk≥1 contains
oscillatory terms with oscillations of the order 1/ε. In particular

(3.4) U1 = a(y, t) cos
(
ψ(y, t)
ε

)
,

where

(3.5) ψ(y, t) = ψ0(y, t) + ε1/3ψ1(y, t) + ε2/3ψ2(y, t) + εψ3(y, t) + . . . .

Similarly we put

(3.6) U2 = b1(y, t) + b2(y, t) cos
(

2ψ(y, t)
ε

)
,

and

(3.7) U3 = c0(y, t) + c2(y, t) sin
(

2ψ(y, t)
ε

)
+ c3(y, t) cos

(
3ψ(y, t)

ε

)
.

Terms proportional to sin(ψ/ε) can be absorbed by a redefinition of ψ. Since we impose
no further restrictions on ψ here, such terms are therefore omitted in all orders. We only
consider terms proportional to cos(ψ/ε) in order ε1/3 and the necessary terms in higher
order to compensate the terms due to the nonlinearities in (3.2).

If we enter equation (1.1) with this ansatz, we immediately obtain from the term of
order ε0 that ψ0,y = ψ1,y = 0. From the term of order ε

1
3 we get

(3.8) ψ3
2,y − (6U0 − x−t )ψ2,y − ψ0,t = 0.

In order ε2/3 we obtain the following equations

b2 −
a2

2ψ2
2,y

= 0(3.9)

ψ3,y(3ψ2
2,y − 6U0 + x−t ) − ψ1,t = 0(3.10)

d

dy
[a2(3ψ2

2,y − 6U0 + x−t )] = 0.(3.11)

In order ε we get

U0,t + (6U0 − x−t )b1,y + 3aay = 0(3.12)

ψ2,y
d

dy

(
a2ψ3,y

)
= 0(3.13)

2a2ψ3,y = 0(3.14)

ψ2
2,yayy + a(2b1ψ2

2,y +
1
3
ψ2,yψ2,t) +

1
2
a3 = 0(3.15)

c2 = − aay

ψ3
2,y

(3.16)

c3 =
3a3

16ψ4
2,y

(3.17)

A solution to (3.10), (3.11) and (3.14) is

(3.18) 3ψ2
2,y = 6U0 − x−t +

C(t)
a2

, ψ1,t = 0.

Note that

(3.19) U0(t) = u(t), x−t = 12v(t) − 6u(t),

where u(t) and v(t) are defined in (2.21). The above implies that

ψ2
2,y = 4(u− v) +

C(t)
a2

.
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Comparing the above relation with the formula (2.29) of the phase in the small amplitude
expansion we can conclude that

(3.20) C(t) = 0,

so that

(3.21) ψ2
2,y = 4(u− v).

From (3.8), (3.19) and (3.21) we derive that

ψ0,t = −16(u− v)
3
2 ,

namely

(3.22) ψ0 = −16
∫ t

tc

(u(τ) − v(τ)
3
2 dτ.

From (3.12) we find

b1 = − a2

2ψ2
2,y

− yU0,t

3ψ2
2,y

+ k(t)

= − a2

8[u(t) − v(t)]
+

y

6t+ f ′
−(u)

+ k(t),
(3.23)

where k(t) is a free function of t. It will be fixed by matching with the elliptic solution in
the Whitham zone. Substituting (3.23) and (3.21) into (3.15) we arrive at the equation

(3.24) 4(u(t) − v(t))ayy − 2
3
vt(t)a

(
y − 12k(u(t) − v(t))

vt(t)

)
=
a3

2
.

This is just the Painlevé-II equation,

(3.25) Azz = zA+A3,

where

(3.26) A =
a√

2(2vt/3)1/3(4(u− v))1/6
, z =

(
vt

6(u(t) − v(t))

)1/3

(y − y0)

with

(3.27) y0 =
12k(u(t)− v(t))

vt
.

The relevant solution for our purposes is the Hastings-McLeod solution [18] which is fixed
by the boundary condtions at infinity:

lim
z→−∞

A(z)√
−z

= 1, lim
z→−∞

A(z)
Ai(z)

= 1

where Ai(z) is the Airy function.
Since we are only interested in terms up to order ε1/3 in u(x, t, ε), the terms b1, b2, c0,

c2 and c3 are not important for us. However, we had to go to order ε to determineψ 3 which
will contribute to the ε1/3 terms in u.

To sum up we get for u(x, t, ε)
(3.28)

u(x, t, ε) = u(t)+ε1/3a cos
(
ψ

ε

)
+ε2/3

[
a2(cos(2ψ/ε) − 1)

8(u(t) − v(t)
+ k(t) +

y

6t+ f ′
−(u))

]
+O(ε)

where

ψ(y, t) = −16
∫ t

tc

(u(τ) − v(τ)
3
2 dτ + ε

2
3 [2y

√
u(t) − v(t) + k1(t)] + ψ3(t)ε+O(ε

4
3 ).
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There are free functions of t in the integration of the multi-scale equations, namely the
functions k1(t), k(t) and ψ3(t). We fix these constants by comparing at y = 0 the mul-
tiscale solution (3.30) with the elliptic solution (2.27) at the border of the Whitham zone.
Indeed comparing (3.28), (2.27) and (2.33) we obtain

δ = O(ε
1
3 ), ∆ = O(ε

2
3 )

and

(3.29) k1(t) = 0, k(t) = 0, ψ3(t) = 0.

Therefore the multiscale solution takes the form
(3.30)

u(x, t, ε) = u(t) + ε1/3a cos
(
ψ

ε

)
+ ε2/3

[
a2(cos(2ψ/ε)− 1)

8(u(t) − v(t)
+

y

6t+ f ′
−(u))

]
+O(ε)

where

ψ(y, t) = −16
∫ t

tc

(u(τ) − v(τ)
3
2 dτ + 2ε

2
3 y
√
u(t) − v(t) +O(ε

4
3 ).

For the numerical comparison in the following section, we consider terms up to order ε 1/3

in u,

u(x, t, ε) = u(t) + ε1/3a cos
(
ψ

ε

)
+O(ε2/3)

where ψ is as given above.

4. COMPARISON OF THE MULTISCALE EXPANSION AND THE ASYMPTOTIC SOLUTION

TO THE SMALL DISPERSION KDV

The numerical evaluation of the asymptotic solution based on the Hopf and the elliptic
solution is described in I. To evaluate the multiscale solution (3.30), one needs in addition
to the quantities computed there the Hastings-McLeod solution to the Painlevé-II equation.
This solution was calculated numerically by Tracy and Widom [26] with standard solvers
for ordinary differential equation and by Prähofer and Spohn [24, 30] with in principle
arbitrary precision with a Taylor series approach. Solutions to Painlevé-II in the complex
plane were studied by Fokas and Tanveer in [10]. We use here an approach based on
spectral methods which is described briefly in the appendix. This approach is both efficient
and of high precision and can directly be combined with the numerics of I.
Times t� tc. Close to breakup the multiscale expansion is expected to be inefficient since
it is best near the leading edge, and since at breakup both the leading and the trailing edge
coincide. We will discuss this solution close to breakup below, but first we will study it
for time t = 0.4 � tc = 0.216 . . .. In Fig. 4 one can see that the multiscale solution
gives an excellent approximation of the KdV solution for x < x−(0.4) = −3.2297 and in
the Whitham zone close to x−. For larger values of x, the solutions are out of phase and
the values of the multiscale solution are shifted towards positive values. The difference
of the two solutions is shown in Fig. 5. From this figure it is even more obvious that the
multiscale solution is a valid approximation in the Whitham zone near the leading edge,
but the difference increases rapidly for |x| � x−.
ε dependence. In I it was shown that the asymptotic description becomes more accurate
with decreasing ε. The same is true for the multiscale solution as can be seen in Fig. 6.
The zone, where the multiscale solution gives a better approximation than the asymptotic
elliptic solution, shrinks with ε. For x � x−(t), the multiscale solution is always only
a poor approximation to the KdV solution. The maximal difference ∆ max of the KdV
solution and the multiscale solution near this edge decreases roughly as ε 2/3. More pre-
cisely the error can be fitted with a straight line by a standard linear regression analysis,
− log10 ∆max = −a log10 ε + b with a = 0.63, b = 0.41. The correlation coefficient is
r = 0.999, the standard error is σa = 0.02.
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FIGURE 4. The blue line is the solution of the KdV equation for the
initial data u0(x) = −1/ cosh2 x and ε = 10−2 for t = 0.4, and the
green line is the corresponding multiscale solution given by formula
(3.30).
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FIGURE 5. The difference of the KdV and the multiscale solution for
the initial data u0(x) = −1/ cosh2 x and ε = 10−2 for t = 0.4. The
curve is plotted in green in the Whitham zone.

Comparison and matching with the asymptotic solution. The aim of this paper is to im-
prove the asymptotic description of the small dispersion limit of KdV near the leading
edge. In Fig. 7 it can be seen that the multiscale solution will indeed be a much better
approximation near this edge. Near the leading edge, the multiscale solution provides a
superior description of the KdV solution, whereas the elliptic asymptotic solution is much
better for x � x−(t) in the Whitham zone. In fact it is possible to identify a zone where
the multiscale solution is more satisfactory than the asymptotic solution. Due to the strong
oscillations of the solutions, there is a certain ambiguity in the definition of this zone. We
define the limits of the zone as the last intersection (or where the solutions come closest)
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FIGURE 6. Difference of the KdV and the multiscale solution in order
ε1/3 for the initial data u0(x) = −1/ cosh2 x and several values of ε for
t = 0.4. The curves are plotted in green in the Whitham zone.
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FIGURE 7. The difference of the KdV and the multiscale solution (blue)
and the difference of the KdV and the asymptotic solution (green) for the
initial data u0(x) = −1/ cosh2 x and ε = 10−2 for t = 0.4.

on which the other solution has an error with larger oscillations. In this zone it is possi-
ble to replace the asymptotic solution by the multiscale solution. The result of this patch
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work approach is shown in Fig. 8. It can be seen that the resulting amended asymptotic
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x

∆ 2
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FIGURE 8. Difference of the KdV and the multiscale solution (blue) and
the KdV and the asymptotic solution (green) for the initial data u 0(x) =
−1/ cosh2 x at t = 0.4 for two values of ε.

description has an accuracy near the leading edge of the same order as in the interior of the
Whitham zone. The maximal difference between the KdV and the asymptotic solution still
occurs near the leading edge.

As already mentioned, the zone where the multiscale solution provides a better approx-
imation to the KdV solution than the asymptotic solution, shrinks with ε as can be inferred
from Fig. 9. The width of this zone decreases roughly as ε 2/3 which shows the self consis-
tency of the used rescaling of the spatial coordinate near the leading edge. More precisely,
we find a scaling εa with a = 0.66, correlation coefficient r = 0.9996 and standard error
σa = 0.015. It can be seen that the zone is not symmetric around the leading edge, it
extends much further into the Hopf region than in the Whitham zone. This is due to the
fact that the multiscale solution is quickly out of phase with the rapid oscillations in the
Whitham zone, and that the Hopf solution does not have oscillations.
Breakup time. In I it was shown that the elliptic asymptotic solution is worst near the
breakup of the Hopf solution. The multiscale expansion obtained in the previous section
is not defined for times before tc, and it will be worst there, since it can be understood as
an expansion around the leading edge of the Whitham zone. At breakup, however, leading
and trailing edge coincide. Thus the approximation is rather crude there, but it increases
in quality with time as can be seen in Fig. 10. It is, however, interesting to study at which
times the multiscale solution starts to give a better asymptotic description than other ap-
proaches. Dubrovin conjectured [8] that the asymptotic behavior of the KdV solution close
to the breakup of the corresponding Hopf solution is given by a particular solution to the
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FIGURE 9. Boundary values of the zone where the multiscale solution
provides a better approximation to the KdV solution than the asymptotic
solution. The x-values of the boundary of this zone (normalized by x−)
for t = 0.4 are shown for several values of ε.

second equation in the Painlevé-I hierarchy. In [16] we provided strong numerical evidence
for the validity of this conjecture. The natural question is whether Painlevé-I2 description
near the critical point provides a satisfactory asymptotic solution for KdV till times where
the the multiscale solution studied in the present paper provides a valid description near
the leading edge. A comparison of Fig. 10 with a similar figure in [16] shows that this is
qualitatively the case. In Fig. 10 the multiscale solution is shown for x < x+(t). Near
breakup the approximation is only acceptable close to the breakup point. For larger times,
more and more oscillations are satisfactorily reproduced by the multiscale solution. As can
be seen, the solution is also a good approximation in the Whitham zone near the leading
edge, but not near the trailing edge. For smaller values of ε, the picture is qualitatively the
same as can be seen from Fig. 11. There are more oscillations in this case, and the first few
are well described for times close to tc. But the multiscale solution will only be a better
approximation of the oscillations than the Hopf solution for times t� t c.

5. OUTLOOK

In the present work we have considered a multiscale solution to the KdV equation in
the small dispersion limit close to the leading edge of the oscillatory zone. We studied
the solution up to order ε1/3. Free functions of time appearing in the integration of the
relations for the multiscale solution following from the KdV equation were fixed by a
matching to the asymptotic elliptic solution in the Whitham zone. The validity of the
approach in the considered limit was shown numerically. The double scaling expansion
of the KdV solution in the small dispersion limit will be investigated with the Riemann-
Hilbert approach as done in [5]. This project will be the subject of our future research.

As can be seen from Figure 3, the asymptotic solution of the KdV equation does not
give a satisfactory description of the KdV small dispersion limit also at the trailing edge of
the oscillatory zone. This problem will be investigated in a subsequent publication too.
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FIGURE 10. The blue line is the solution of the KdV equation for the
initial data u0(x) = −1/ cosh2 x and ε = 10−2, and the green line is the
corresponding multiscale solution given by formula (3.30). The plots are
given for different times near the point of gradient catastrophe (x c, tc)
of the Hopf solution. Here xc � −1.524, tc � 0.216.

APPENDIX A. NUMERICAL SOLUTION OF THE PAINLEVÉ-II EQUATION

We are interested in the numerical computation of the Hastings-McLeod solution to the
Painlevé-II equation

(1.1) PIIA := Azz − zA−A3 = 0

which is subject to the asymptotic conditions [18]

(1.2) A �
√
−z for z → −∞,

and

(1.3) A � Ai(z) for z → ∞,

where Ai(z) is the Airy function. Numerically we will consider equation (1.1) on a finite
interval [zl, zr] (typically [−10, 10]). The asymptotic solution near ±∞, which will be
discussed in more detail below, is truncated in a way that the truncation error at z l, zr

is below 10−10. At these points we impose the values following from the asymptotic
solutions as boundary conditions, namely

A(zl) =
√
−zl −

1
8
(−zl)−5/2 − 73

128
(−zl)−11/2

A(zr) =
1

2
√
πz

1/4
r

exp
(
−2

3
z3/2

r

)
.(1.4)
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FIGURE 11. The blue line is the solution of the KdV equation for the
initial data u0(x) = −1/ cosh2 x and ε = 10−3, and the green line is
the corresponding multiscale solution. The plots are given for different
times near the point of gradient catastrophe (xc, tc) of the Hopf solution.

To solve equation (1.1) for z ∈ [z l, zr] we use spectral methods since they allow for
an efficient numerical approximation of high accuracy. We map the interval [z l, zr] with a
linear transformation z → x to the interval I = [−1, 1] and expand A there in Chebychev
polynomials.

Let us briefly summarize the Chebychev approach, for details see e.g. [3, 12, 13]. The
Chebyshev polynomials Tn(x) are defined on the interval I by the relation

Tn(cos(t)) = cos(nt) ,where x = cos(t) , t ∈ [0, π] .

A function f on I is approximated via Chebychev polynomials, f ≈
∑N

n=0 anTn(x)
where the spectral coefficients an are obtained by the conditions f(xl) =

∑N
n=0 anTn(xl),

l = 0, . . . , N . This approach is called a collocation method. If the collocation points are
chosen to be xl = cos(πl/N), the spectral coefficients follow from f via a Discrete Cosine
Transform (DCT) for which fast algorithms exist. We use here a DCT within Matlab. A
recursive relation for the derivative of Chebychev polynomials implies that the action of
the differential operator ∂x on f(x) leads to an action of a matrix D on the vector of
the spectral coefficients an. Thus we express A(x) in terms of Chebychev polynomials,
A(x) =

∑N
n=0 ÃnTn(x) (we typically work with N = 128), and the coefficients of ∂xA

in terms of Chebychev polynomials are determined then viaDÃ.
To solve equation (1.1) on the interval [z l, zr], we use an iterative approach,

(1.5) An+1,zz = zAn +A3
n, n ∈ N.
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We start with A1(z) = (1 + z2)1/4/(1 + exp(z)). In each step of the iteration we solve
equation (1.5) for An+1 with the boundary conditions (1.4). The boundary conditions are
imposed with a τ -method: the last two rows of the matrixD 2 for the second derivative are
replaced with the boundary conditions at x = ±1. Since Tn(±1) = (±1)n, the resulting
matrix L which will be inverted in each step of the iteration, has only 1 and −1 in the last
two rows and is thus better conditioned than the matrixD 2. It turns out that the iteration is
unstable if no relaxation is used. We thus define An+1 = µL−1(zAn +A3

n) + (1 − µ)An

with µ = 0.009. With this choice of the parameters, the iteration converges. It is stopped
when the difference between An+1 and An is of the order of machine precision (Matlab
works internally with a precision of the order of 10−16; due to rounding errors machine
precision is typically limited to the order of 10−14). The solution is shown in Fig. 12.
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A

FIGURE 12. Hastings-McLeod solution of the Painlevé II equation.

To test the accuracy of the solution we plot in Fig. 13 the quantity P IIA as computed
with spectral methods on the collocation points. It can be seen that the error is biggest
on the boundary which is even more obvious from Fig. 14. The found solution is also
compared to a numerical solution with a standard ode solver as bvp4c in Matlab. The
solutions agree up within the limits of numerical precision.

For general values of z the solution is obtained as follows: for values of z ∈ [z l, zr] they
follow from the spectral data via A(z) =

∑N
n=0 ÃnTn(z). Notice that the accuracy of the

solution is best on the collocation points, but we can expect it to be of the order of at least
10−6 even at points z in between. For values of z < z l, we use the approximationA(z) =√
−z − (−z)−5/2/8 − 73

128 (−zl)−11/2, for values of z > zr, we use the approximation
A(z) = exp

(
− 2

3z
3/2
)
/(2

√
πz1/4). This provides a global approximation to the solution

with an accuracy of the order of 10−6 and better, which is sufficient for our purposes.
Higher precision can be reached within the used approach without problems: one can
either increase the values of −zl and zr and use a higher number of polynomials, or use
higher order terms in the asymptotic solution of A for z → ±∞.
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