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Abstract

The elastic energy of a multiphase solid is a function of its microstructure. De-

termining the infimum of the energy of such a solid and characterizing the associ-

ated optimal microstructures is an important problem that arises in the modeling

of the shape memory effect, microstructure evolution and optimal design. Mathe-

matically, the problem is to determine the relaxation under fixed phase fraction of

a multiwell energy. This paper addresses two such problems in the geometrically

linear setting.

First, in two dimensions, we compute the relaxation under fixed phase frac-

tion for a two-well elastic energy with arbitrary elastic moduli and transformation

strains, and provide a characterization of the optimal microstructures and the as-

sociated strain.

Second, in three dimensions, we compute the relaxation under fixed phase

fraction for a two-well elastic energy when either (1) both elastic moduli are

isotropic, or (2) the elastic moduli are well-ordered and the smaller elastic modulus

is isotropic. In both cases we impose no restrictions on the transformation strains.

We provide a characterization of the optimal microstructures and the associated

strain.
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We also compute a lower bound that is optimal except possibly in one regime

when either (1) both elastic moduli are cubic, or (2) the elastic moduli are well-

ordered and the smaller elastic modulus is cubic; for moduli with arbitrary symme-

try we obtain a lower bound that is sometimes optimal. In all these cases we impose

no restrictions on the transformation strains and whenever the bound is optimal we

provide a characterization of the optimal microstructures and the associated strain.

In both two and three dimensions the quasiconvex envelope of the energy can

be obtained by minimizing over the phase fraction. We also characterize optimal

microstructures under applied stress.

1. Introduction

1.1. Relaxation

The elastic energy of a multiphase solid is a function of its microstructure. De-

termining the infimum of the energy of such a solid and characterizing the associ-

ated optimal microstructures is an important problem that arises in the modeling

of the shape memory effect, microstructure evolution and optimal design. Mathe-

matically, the problem is to determine the relaxation under fixed phase fraction of

a multiwell energy.

We work in the framework of geometrically linear (infinitesimal) kinematics.

Let ǫT

i ∈ Rn×n
sym be the stress-free (transformation) stain of the ith phase relative to

a reference configuration, αi ∈ L∗
>

(

Rn×n
sym

)

be its elastic modulus and wi ∈ R be

its chemical energy. (We use L∗ (·) to denote self-adjoint linear operators, L∗
> (·)

to denote positive-semidefinite self-adjoint linear operators and L∗
> (·) to denote

positive-definite self-adjoint linear operators on ·, respectively.) Then the energy

density Wi : Rn×n
sym → R of this phase subject to a linearized strain ǫ ∈ Rn×n

sym is

given by

Wi(ǫ) =
1

2
〈αi(ǫ− ǫT

i), (ǫ− ǫT

i)〉+ wi. (1.1)

Here, the inner product 〈·, ·〉 is defined as usual by ∀ǫ1, ǫ2 ∈ Rn×n
sym , 〈ǫ1, ǫ2〉 :=

Tr(ǫ1ǫ2). We write the energy density W : Rn×n
sym → R of the material with N

phases as the minimum over N quadratic energy wells,

W (ǫ) := min
i=1,...,N

Wi(ǫ). (1.2)

Classically one postulates that the state of the solid occupying a region Ω ⊂
Rn is described by displacement fields u : Ω → Rn that minimize the potential

energy,
∫

Ω

W (ǫ(u)) dx. (1.3)

Here ǫ(u) = 1
2 (∇u+(∇u)T ). (Henceforth we shall not write the dependence of ǫ

on u—and on x ∈ Ω through u—explicitly.) Since W has a multi-well structure,

the problem of minimizing the total energy might not have any solution; instead

minimizing sequences develop oscillations and do not converge in any classical



The relaxation of two-well energies with possibly unequal moduli 3

sense [Dac89]. In other words, we find ourselves in a situation where we can re-

duce the energy with strain fields that have finer and finer oscillations but can never

attain the minimum. We interpret this as the emergence of microstructure [BJ87,

CK88]. We refer the reader to [Bha03] for a detailed introduction.

Relaxation (with affine boundary conditions). Once a material forms microstruc-

ture, its effective behavior is not described by W but by a relaxed energy density

W : Rn×n
sym → R that describes its overall effective energy after the formation of

microstructure. The theory of relaxation [Dac82,AF84,Dac89,KP91,DM93] pro-

vides a characterization of such an energy:

W (ǭ) := inf
u|∂Ω=ǭ·x

−
∫

Ω

W (ǫ) dx. (1.4)

(We use −
∫

Ω
· dx and 〈·〉 to denote 1

volume(Ω)

∫

Ω
· dx.) This definition is independent

of the choice of domain, Ω (c.f., e.g., [Dac89, §4.1.1.1, pg.101] or [Mil01, §31.2,

pg.674]).

The relaxed energy density can be thought of as the average energy density of

the solid accounting for microstructure and describes the behavior of the solid on

macroscopic length scales. The theory justifies this since minimizing −
∫

Ω
W (·) dx

with specified boundary conditions is equivalent to minimizing the relaxed prob-

lem −
∫

Ω
W (·) dx with the same boundary conditions:

inf
ǫ∈E
−
∫

Ω

W (ǫ) dx = min
ǫ∈E
−
∫

Ω

W (ǫ) dx

where E is the set of all strain fields that satisfy the specified boundary conditions.

Relaxation (with affine boundary conditions) with fixed phase fractions. Now con-

sider the problem of finding the optimal microstructure (arrangement of phases)

and the optimal strain field when the phase fractions of the phases and overall

strain are given.

A microstructure of N phases can be described by a characteristic function

χ : Ω → {0, 1}N chosen such that for i = 1, . . . , N ,

χi(x) =

{

1 if the point x ∈ Ω is occupied by the ith phase,

0 otherwise.

(Consequently
∑N

i=1 χi = 1.) The phase fractions λ = (λ1, . . . , λN ) ∈ [0, 1]N

(satisfying
∑N

i=1 λi = 1) are given by λ = 〈χ〉.
Given some microstructure χ and a displacement field u, the potential energy

of the crystal is
∫

Ω

N
∑

i=1

χi(x)Wi(ǫ) dx. (1.5)

We define the relaxed energy density under fixed phase fraction, Wλ : Rn×n
sym → R,

through the variational problem

Wλ(ǭ) := inf
〈χ〉=λ

inf
u|∂Ω=ǭ·x

−
∫

Ω

N
∑

i=1

χi(x)Wi(ǫ) dx. (1.6)
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Relationship between Wλ and W . From (1.2) and (1.4),

W (ǭ) = inf
u|∂Ω=ǭ·x

∫

Ω

min
i=1,...,N

Wi(ǫ) dx.

Note that the minimization over i is to be carried out pointwise. Using the charac-

teristic function χ introduced earlier,

W (ǭ) = inf
u|∂Ω=ǭ·x

∫

Ω

min
χ

N
∑

i=1

χi(x)Wi(ǫ) dx

= inf
u|∂Ω=ǭ·x

min
χ

∫

Ω

N
∑

i=1

χi(x)Wi(ǫ) dx

= inf
χ

inf
u|∂Ω=ǭ·x

∫

Ω

N
∑

i=1

χi(x)Wi(ǫ) dx

= min
λ

inf
〈χ〉=λ

inf
u|∂Ω=ǭ·x

∫

Ω

N
∑

i=1

χi(x)Wi(ǫ) dx

= min
λ

Wλ(ǭ). (1.7)

Note that the evaluation of W from Wλ is a simple finite dimensional minimiza-

tion problem. Therefore, for the energy density (1.2), the problem of computing

W is essentially that of computing Wλ. Thus the problem we study is the charac-

terization of Wλ and the optimal microstructures.

Relaxation with traction boundary conditions. When the specimen is subjected to

tractions at the boundary the relevant potential energy is not (1.3) but
∫

Ω

W (ǫ) dx−
∫

∂Ω

t(x) · u(x) dS.

If it is further supposed that the applied traction corresponds to a uniform stress,

i.e., ∃σ̄ ∈ Rn×n
sym , ∀x ∈ ∂Ω, t(x) = σ̄ · n̂(x), where n̂ is the unit outward normal

to ∂Ω, this reduces to
∫

Ω

W (ǫ)− 〈σ̄, ǫ〉 dx.

Analogous to (1.4) we define the relaxed conjugate energy density, W
σ
: Rn×n

sym →
R, through the variational problem

W
σ
(σ̄) := inf

ǭ
u|∂Ω=ǭ·x

−
∫

Ω

W (ǫ)− 〈σ̄, ǫ〉 dx; (1.8)

and analogous to (1.6) (c.f., (1.5)) we define the relaxed conjugate energy density

under fixed phase fraction, W
σ

λ : Rn×n
sym → R, through the variational problem

W
σ

λ(σ̄) := inf
〈χ〉=λ

inf
ǭ

u|∂Ω=ǭ·x
−
∫

Ω

N
∑

i=1

χi(x)Wi(ǫ)− 〈σ̄, ǫ〉 dx. (1.9)
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As before

W
σ
(σ̄) = min

λ
W

σ

λ(σ̄).

Relationship between relaxation with affine boundary conditions and relaxation

with traction boundary conditions. W
σ

λ is the negative of the Legendre-Fenchel

transform of Wλ:

W
σ

λ(σ̄) = inf
〈χ〉=λ

inf
ǭ

u|∂Ω=ǭ·x
−
∫

Ω

N
∑

i=1

χi(x)Wi(ǫ)− 〈σ̄, ǫ〉 dx

= min
ǭ

(

inf
〈χ〉=λ

inf
u|∂Ω=ǭ·x

−
∫

Ω

N
∑

i=1

χi(x)Wi(ǫ) dx− 〈σ̄, ǭ〉
)

= min
ǭ

(

Wλ(ǭ)− 〈σ̄, ǭ〉
)

= −max
ǭ

(

〈σ̄, ǭ〉 −Wλ(ǭ)
)

.

W
σ

is similarly related to W .

1.2. Previous results

Two phases in two dimensions. Lurie and Cherkaev [LC88] used the translation

method to consider the relaxation of a two-phase material with equal isotropic

elastic moduli (c.f., also [Ser96]). Allaire and Kohn [AK93a] extended this to

two isotropic phases with unequal elastic moduli albeit with equal transformation

strains, which latter restriction Lu [Lu93] overcame (c.f., also [Ser00]). Grabovsky

[Gra96], also using the translation method, considered two phases with arbitrary

elastic moduli albeit with equal transformation strains. Our work completes this

by studying a general two-phase material with no restrictions on the elastic moduli

or transformation strains.

Two phases in arbitrary dimension. Pipkin [Pip91] and Kohn [Koh91] considered

the relaxation of a two-phase material with equal elastic moduli (α1 = α2). Pip-

kin’s approach was to determine the rank-one lamination envelope of the energy

and then show that it coincided with the quasiconvex hull. This approach fails

when the elastic moduli are unequal since then rank-one laminates are no longer

necessarily optimal (c.f., in two dimensions, [Lu93,Gra96] and §3; and, in three

dimensions, §4).

Kohn’s approach was to compute a lower bound using Fourier analysis and

then show its optimality by constructing microstructures whose energies attain

this bound. Fourier analysis is not an useful approach when the elastic moduli of

the two phases are unequal. Kohn also used the translation method, and it remains

viable even for unequal elastic moduli. Our work here too uses the translation

method though the translation we use is different from that used by Kohn.

Allaire and Kohn in a series of papers considered this and related problems

for the case of well-ordered materials (i.e., materials for which either α1 6 α2

or α2 6 α1) [AK93b] and non-well-ordered isotropic materials [AK94]. In these

papers the transformation strain of both phases was taken to be equal.
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More than two phases. Very little is known when one has more than two phases.

In the simple situation where the elastic moduli are equal and the transformation

strains are pair-wise strain compatible, W is the convexification of the W [Bha03,

Result 12.1, pg.215]. The problem remains open, even for equal moduli, when the

transformation strains are not strain compatible. For a discussion of difficulties

see [Koh91]; for recent progress see [FK93,SW99,FS00,GMH02,CS].

2. Overview

Two dimensions. In §3 we compute the relaxation under fixed phase fraction for a

two-well elastic energy in two dimensions for arbitrary elastic moduli and arbitrary

transformation strains, and provide a characterization of the optimal microstruc-

tures and the associated strain (Theorem 2.1 below).

Three dimensions. In §4 we attempt to compute the relaxation under fixed phase

fraction for a two-well elastic energy in three dimensions when either (1) both

elastic moduli are cubic1, or (2) the elastic moduli are well-ordered and the smaller

elastic modulus is cubic. In both cases we impose no restrictions on the transfor-

mation strains.

We succeed in doing so if either (1) both elastic moduli are isotropic, or (2) the

elastic moduli are well-ordered and the smaller elastic modulus is isotropic; other-

wise we are partially successful: we obtain a lower bound which is optimal except

possibly in one regime. When the lower bound is optimal we provide a charac-

terization of the optimal microstructures and the associated strain. (Theorem 2.2

below.)

For moduli with arbitrary symmetry (still with no restrictions on the trans-

formation strains) we obtain a lower bound for the relaxation under fixed phase

fraction. This lower bound is sometimes optimal. For the regimes where the lower

bound is known to be optimal we provide a characterization of the optimal mi-

crostructures and the associated strain. (Theorem 2.3 below.)

Ancillary results. In both two and three dimensions we can obtain the quasiconvex

envelope by minimizing over the phase fraction. We discuss the problem of relax-

ation under applied stress in §5.1. In [CB] we relate these results to experimental

observations on the equilibrium morphology and behavior under external loads of

precipitates in Nickel superalloys.

Theorem 2.1 (Two dimensions). Let W : R2×2
sym → R be given by (1.1) and (1.2)

for N = 2. Then, Wλ : R2×2
sym → R, defined in (1.6), is given by

Wλ(ǭ) = max
β∈[0,γ(α1,α2)]

min
ǫ1,ǫ2∈R

2×2
sym

λ1ǫ1+λ2ǫ2=ǭ

2
∑

i=1

λiWi(ǫi) + βλ1λ2 det(ǫ2 − ǫ1).

1C.f., Definition 4 in §4 for the definition of “cubic moduli”. We use the term “cubic”
to include isotropy as a special case.
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The interval [0, γ(α1,α2)] over which β ranges is defined as follows: Let T ∈
L∗ (R2×2

sym

)

be defined by,

Tǫ := ǫ− Tr(ǫ)I,

I := ( 1 0
0 1 ) ;

and let

γα :=

(

max
‖ǫ‖=1

〈(

α− 1
2 Tα− 1

2

)

ǫ, ǫ
〉

)−1

, (2.1a)

γ(α1,α2) := min(γα1 , γα2). (2.1b)

Explicitly,

Wλ(ǭ) =
2
∑

i=1

λiWi(ǫ
⋆
i (β

⋆(ǭ), ǭ)) + β⋆(ǭ)λ1λ2 det(ǫ⋆
2(β

⋆(ǭ), ǭ)− ǫ⋆
1(β

⋆(ǭ), ǭ)),

where,

ǫ⋆
1(β

⋆(ǭ), ǭ) := (λ2α1 + λ1α2 − β⋆(ǭ)T )−1

((α2 − β⋆(ǭ)T )ǭ− λ2(α2ǫ
T

2 − α1ǫ
T

1)) ,

ǫ⋆
2(β

⋆(ǭ), ǭ) := (λ2α1 + λ1α2 − β⋆(ǭ)T )−1

((α1 − β⋆(ǭ)T )ǭ + λ1(α2ǫ
T

2 − α1ǫ
T

1)) ;

β⋆(ǭ) :=



















0 if φ(·, ǭ) ≡ 0 (Regime 0),

0 if φ(0, ǭ) > 0 (Regime I),

βII if φ(0, ǭ) 6 0 and φ(γ(α1,α2), ǭ) > 0 (Regime II),

γ(α1,α2) if φ(γ(α1,α2), ǭ) < 0. (Regime III);

φ(·, ǭ) is the mapping

[0, γ(α1,α2)] ∋ β 7→ −det
(

(λ2α1 + λ1α2 − βT )−1 (α2(ǫ
T

2 − ǭ)− α1(ǫ
T

1 − ǭ))
)

and, in Regime II, βII ∈ [0, γ(α1,α2)] is the unique root of φ(·, ǭ) when φ(0, ǭ) 6 0
and φ(γ(α1,α2), ǭ) > 0.

Further,

1. In Regime 0 every microstructure is optimal. The optimal strain and stress are

constant.

2. In Regime I the optimal microstructure is either a rank-one laminate, with

either of two possible layering directions, or a microstructure made of these

laminates. The optimal strain takes the value ǫ⋆
1 in phase 1 and ǫ⋆

2 in phase 2

while the optimal stress is constant.

3. In Regime II the optimal microstructure is unique and is a rank-one laminate.

The optimal strain takes the value ǫ⋆
1 in phase 1 and ǫ⋆

2 in phase 2.
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4. In Regime III, no rank-one laminate is optimal. The class of optimal microstruc-

tures is possibly large2 and includes at least two rank-two laminates.

In any optimal microstructure, in phase i, i = 1, 2, the strain is confined to

an affine subspace of dimension dim ker(αi − γ(α1,α2)T ) 6 2; the sum of the

dimension of the two affine subspaces is also at most 2. In particular, if phase

i is harder than the other phase (i.e., if γαi
> γ(α1,α2)) then the strain is ǫ⋆

i in

that phase.

Theorem 2.2 (Cubic moduli in three dimensions). Let W : R3×3
sym → R be given

by (1.1) and (1.2) for N = 2. Moreover, let one of the following conditions hold:

1. Both elastic moduli are cubic (c.f., Definition 4 in §4).

2. The elastic moduli are well ordered3 and the smaller elastic modulus is cubic.

Then a lower bound for Wλ : R3×3
sym → R, defined in (1.6), is given by

Wλ(ǭ) > max
β∈S(α1,α2)

max
R∈SO(3)

min
ǫ1,ǫ2∈R

3×3
sym

λ1ǫ1+λ2ǫ2=ǭ

2
∑

i=1

λiWi(ǫi)− λ1λ2β · φR(ǫ2 − ǫ1).

Here,

S(α1,α2) :=











Sα1
∩ Sα2

if α1 and α2 are cubic,

Sα1 if α1 6 α2,

Sα2 if α2 6 α1;

for a cubic elastic modulus α with lamé modulus ℓ, diagonal shear modulus µ and

off-diagonal shear modulus η,

Sα =



















β ∈ R3
+

∣

∣

∣

∣

∣

∣

∣

∣

∣

2β1β2β3 − (ℓ + 2 min(µ, η))(β2
1 + β2

2 + β2
3)

+ 2ℓ(β1β2 + β2β3 + β3β1)

− 4ℓmin(µ, η)(β1 + β2 + β3)

+ 12ℓ(min(µ, η))2 + 8(min(µ, η))3 > 0



















;

and φR : R3×3
sym → R3 is defined by

φR(ǫ) := φ(RT ǫR), R ∈ SO(3), (2.2a)

φ(ǫ) :=





ǫ223 − ǫ22ǫ33
ǫ231 − ǫ33ǫ11
ǫ212 − ǫ11ǫ22



 . (2.2b)

To present a more explicit expression let T ∈ L∗ (R3×3
sym

)

be defined by,

Tǫ := ǫ− Tr(ǫ)I,

I :=
(

1 0 0
0 1 0
0 0 1

)

;

2In a sense explained in the proof of Theorem 3.16.
3I.e., α1 6 α2 or α2 6 α1.
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let γα1
, γα2

, γ(α1,α2) be as in (2.1); let Wλ(β, ǭ) : R3
+ ×R3×3

sym → R be defined by

Wλ(β, ǭ) := max
R∈SO(3)

min
ǫ1,ǫ2∈R

3×3
sym

λ1ǫ1+λ2ǫ2=ǭ

λ1W1(ǫ1) + λ2W2(ǫ2)

− λ1λ2β · φR(ǫ2 − ǫ1);

let R⋆(β, ǭ), ǫ⋆
1(R⋆(β, ǭ), β, ǭ), ǫ⋆

2(R⋆(β, ǭ), β, ǭ) attain the extrema above and let

∆ǫ⋆(R, β, ǭ) := ǫ⋆
2(R, β, ǭ)− ǫ⋆

1(R, β, ǭ). We use “9” to mean “parallel and not

anti-parallel”. For x ∈ Rn and S ⊂ Rn we say x 9 S if ∃y ∈ S, x 9 y. Then,

Wλ(ǭ) >






























































































































Wλ(0, ǭ) if ∆ǫ⋆(·, ·, ǭ) ≡ 0 (Regime 0),

Wλ(βI, ǭ) if ∃βI ∈ S(α1,α2) ∩
(

{0} × R2 ∪ R× {0} × R ∪ R2 × {0}
)

,

0 6= −φR⋆(βI,ǭ)(∆ǫ⋆(R⋆(βI, ǭ), βI, ǭ)) 9 {−e1,−e2,−e3}
(Regime I),

Wλ(βII, ǭ) otherwise. Here βII is the unique solution in S(α1,α2) of

φR⋆(·,ǭ)(∆ǫ⋆(R⋆(·, ǭ), ·, ǭ)) = 0 (Regime II),

Wλ(βIII, ǭ) if ∃βIII ∈
{

β ∈ R3
+ | β1 = γ(α1,α2), β2 = β3 ∈ [0, γ(α1,α2)]

}

∪
{

β ∈ R3
+ | β2 = γ(α1,α2), β3 = β1 ∈ [0, γ(α1,α2)]

}

∪
{

β ∈ R3
+ | β3 = γ(α1,α2), β1 = β2 ∈ [0, γ(α1,α2)]

}

,

0 6= −φR⋆(βIII,ǭ)(∆ǫ⋆(R⋆(βIII, ǭ), βIII, ǭ)) 9 {e1, e2, e3}
(Regime III),

Wλ(βIV, ǭ) if 0 6= −φR⋆(βIV,ǭ)(∆ǫ⋆(R⋆(βIV, ǭ), βIV, ǭ)) 9 Int(R3
+)

where βIV = γ(α1,α2)(1, 1, 1)T (Regime IV).

In regime II, βII is the unique solution of φR⋆(·,ǭ)(∆ǫ⋆(R⋆(·, ǭ), ·, ǭ)) = 0 in

S(α1,α2).

Assume, renumbering if necessary, that γα1 6 γα2 . Also let

DIV :=











2 if µ1 < η1,

5 if µ1 = η1,

3 if µ1 > η1.

The lower bound is sharp except possibly in Regime IV when µ1 6= η1. Further,

1. In Regime 0 every microstructure is optimal. The optimal strain and stress are

constant.

2. In Regime I the optimal microstructure is either a rank-one laminate, with

either of two possible layering directions, or a microstructure made of these

laminates. The optimal strain is constant in each phase while the optimal stress

is (globally) constant.

3. In Regime II the optimal microstructure is unique and is a rank-one laminate.

The optimal strain is constant in each phase.
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4. In Regime III, no rank-one laminate is optimal. The class of optimal microstruc-

tures is possibly large2 and includes at least two rank-two laminates.

In any optimal microstructure the strain in each phase is confined to an affine

subspace of dimension at most DIV; the sum of the dimension of the two affine

subspaces is also at most DIV.4 Moreover, if one phase is harder than the other

(i.e., if γα2
> γα1

) then the strain in the harder phase is constant.

5. In Regime IV the lower bound is possibly non-optimal when µ1 6= η1. If the

bound is optimal then:

(a) No rank-one laminate is optimal.

(b) If one phase is harder than the other then no rank-two laminate is optimal.

(c) If µ1 = η1 then there exists an optimal rank-three laminate.

(d) In any optimal microstructure the strain in each phase is confined to an

affine subspace of dimension at most DIV; the sum of the dimension of the

two affine subspaces is also at most DIV. Moreover, if one phase is harder

than the other then the strain in the harder phase is constant.

Theorem 2.3 (Arbitrary moduli in three dimensions). Let W : R3×3
sym → R be

given by (1.1) and (1.2) for N = 2. Then a lower bound for Wλ : R3×3
sym → R,

defined in (1.6), is given by

Wλ(ǭ) >

max
β∈∩R∈SO(3)B(α1,α2)(R)

max
R∈SO(3)

min
ǫ1,ǫ2∈R

3×3
sym

λ1ǫ1+λ2ǫ2=ǭ

2
∑

i=1

λiWi(ǫi)−λ1λ2β·φR(ǫ2−ǫ1).

Here, for R ∈ SO(3)

B(α1,α2)(R) := Bα1(R) ∩Bα2(R),

Bα(R) :=

{

β ∈ R3
+ | ∀ǫ ∈ R3×3

sym ,
1

2
〈αǫ, ǫ〉 − β · φR(ǫ) > 0

}

;

and φR : R3×3
sym → R3 is defined in (2.2).

Let β⋆, R⋆ attain the maximum above. This lower bound is sharp when

1. (Regime 0) α2ǫ
T

2 − α1ǫ
T

1 = (α2 − α1)ǭ.

2. (Regime I) β⋆ ∈
(

{0} × R2 ∪ R× {0} × R ∪ R2 × {0}
)

and

0 6= −φR⋆(β⋆,ǭ)(∆ǫ⋆(R⋆(β
⋆, ǭ), β⋆, ǭ)) 9 {−e1,−e2,−e3}.

3. (Regime II) β⋆ solves φR⋆(·,ǭ)(∆ǫ⋆(R⋆(·, ǭ), ·, ǭ)) = 0.

(The notation 9 is explained in Theorem 2.2.) Further the statements (1), (2)

and (3) in Theorem 2.2 hold.

4Sharper results are presented in Theorem 4.37.
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Strategy. We prove Theorems 2.1, 2.2 and 2.3 by first using the translation method

to obtain a lower bound for Wλ in §3.2.1 and §4.10, and then constructing mi-

crostructures whose effective energy equals this bound in §3.2.1 and §4.10.

(Note that the construction of a microstructure immediately leads to an upper

bound for Wλ. Various such microstructures, and thus upper bounds—including

some bounds now known to be optimal—are explicit or implicit in the metal-

lurgy literature. [Roy93] surveys work in this direction. The challenge is to prove

a matching lower bound for Wλ.)

Good introductions and overviews of the translation method can be found

in [Che00, Chs. 8, 15, 16] and [Mil01, Chs. 4, 24, 25]. For development of the

method and applications to a wide range of problems c.f., e.g., Tartar [Tar79a,

Tar85,Tar79b]; Lurie and Cherkaev [LC81,LC82a,LC82b,LC86a]; Kohn and Strang

[KS82,KS83,KS86a,KS86b,KS86c,SK88]; Cherkaev and Gibiansky [GC84,GC87,

CG92]; Murat and Tartar [MT85]; Murat [Mur87]; Avellaneda, Cherkaev, Lurie

and Milton [ACLM88]; Milton [Mil90a,Mil90b]; and Firoozye [Fir91].

Laminates. The microstructures we construct are laminates; these have been used

in a variety of problems; c.f., e.g., [Tar79b,Tar85,FM86,Tar00], [Che00, Ch. 7],

[Mil01, Ch. 9] and references therein. Good introductions and overviews can be

found in [Che00, Ch. 7] and [Mil01, Ch. 9]. Rank-one laminates are alternating

layers of two phases at fixed phase fraction; rank-two laminates are rank-one lami-

nates where at least one of the layers is itself a rank-one laminate at a smaller scale;

and so on. In order to use laminates in our context, one has to think of them as a

sequence of microstructures with fixed geometry but smaller and smaller scales.

3. Two-phase solids in two dimensions

In this section, we consider the two-well problem in two dimensions.

3.1. A lower bound on the relaxed energy

3.1.1. A lower bound using the translation method. We use the translation

method to derive a lower bound. We state the basic principle in Rn since we use it

for both two and three dimensions. Recall that f : Rn×n
sym → R is quasiconvex if

f(ǭ) 6 inf
u|∂Ω=ǭ·x

−
∫

Ω

f(ǫ) dx. (3.1)

for each ǭ ∈ Rn×n
sym . Any quasiconvex function can be used to derive a lower bound

on the relaxed energy at fixed phase fraction using the translation method:

Proposition 3.1 (Translation lower bound). Let W : Rn×n
sym → R be as in (1.1)

and (1.2) for N = 1, 2. Let f : Rn×n
sym → R be quasiconvex and β ∈ R+. Then

Wλ : Rn×n
sym → R defined in (1.6) satisfies the lower bound

Wλ(ǭ) > max
β>0

Wi−βf : convex

min
ǫ1,ǫ2∈R

n×n
sym

λ1ǫ1+λ2ǫ2=ǭ

2
∑

i=1

λi(Wi − βf)(ǫi) + βf(ǭ). (3.2)
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Proof. From (1.6),

Wλ(ǭ) := inf
<χi>=λi

inf
u|∂Ω=ǭ·x

−
∫

Ω

2
∑

i=1

χiWi(ǫ) dx.

Since f is quasiconvex we have the lower bound,

Wλ(ǭ) > inf
<χi>=λi

inf
u|∂Ω=ǭ·x

−
∫

Ω

2
∑

i=1

χi(Wi(ǫ)− βf(ǫ)) dx + βf(ǭ)

for each β > 0. Choosing β optimally subject to the restriction that the functions

Wi − βf are convex (the reason for this will become clear in the next step), we

have

Wλ(ǭ) > max
β>0

Wi−βf : convex

min
<χi>=λi

inf
u|∂Ω=ǭ·x

−
∫

Ω

2
∑

i=1

χi(Wi(ǫ)− βf(ǫ)) dx

+βf(ǭ).

Since Wi − βf is convex, using Jensen’s inequality,

Wλ(ǭ) > max
β>0

Wi−βf : convex

min
<χi>=λi

inf
u|∂Ω=ǭ·x

2
∑

i=1

λi(Wi − βf)

(

−
∫

Ω
χiǫ dx

−
∫

Ω
χi dx

)

+βf(ǭ).

Setting ǫi = 〈χiǫ〉
〈χi〉 and noting that λ1ǫ1 + λ2ǫ2 = ǭ, we obtain the desired result.

⊓⊔

3.1.2. The determinant as translation. The lower bound presented in Proposi-

tion 3.1 is valid for any translation f : Rn×n
sym → R which is quasiconvex. The art

of the translation method lies in choosing the right translation. In two dimensions,

we pick the translation to be the negative of the determinant: f ≡ φ := −det, i.e.,

φ(ǫ) = ǫ212 − ǫ11ǫ22.

This choice of translation might appear to be arbitrary, but in fact is a posteriori

natural.

Quadraticity of φ. It is easy to verify that

φ(ǫ) =
1

2
〈Tǫ, ǫ〉

where T ∈ L∗ (R2×2
sym

)

is defined by

Tǫ := ǫ− Tr(ǫ)I,

I := ( 1 0
0 1 )
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(i.e., −Tǫ is the adjoint of ǫ). Alternatively,

T ≡ −Λh + Λd + Λo, (3.3)

where Λh,Λd,Λo ∈ L∗
>

(

R2×2
sym

)

are orthogonal projection operators defined by

Range(Λh) = Span {I} , (3.4a)

Range(Λd) = Span
{(

1 0
0 −1

)}

, (3.4b)

Range(Λo) = Span {( 0 1
1 0 )} . (3.4c)

In particular T has eigenvalues −1 and 1, repeated once and twice respectively. It

follows that T is invertible and is neither positive nor negative definite. Note also

that T 2 = I .

Quasiconvexity of φ. φ is quasiconvex since it is quadratic and rank-one con-

vex [Dac89, pg.126]: ∀m, n ∈ R2, φ(m ⊗s n) > 0. Here m̂ ⊗s n̂ := 1
2 (n̂ ⊗

m̂ + m̂⊗ n̂); m̂⊗ n̂ is defined by (m̂⊗ n̂)ij = minj , i, j = 1, 2.

A lower bound on the relaxed energy. With this choice for the translation, and

exploiting the fact that Wi and φ are quadratic, we may rewrite (3.2) as

Wλ(ǭ) > max
β>0

Wi−βφ : convex

Wλ(β, ǭ) (3.5a)

where Wλ : R× R2×2
sym → R is defined by

Wλ(β, ǭ) := min
ǫ1,ǫ2∈R

2×2
sym

λ1ǫ1+λ2ǫ2=ǭ

λ1W1(ǫ1) + λ2W2(ǫ2)− βλ1λ2φ(ǫ2 − ǫ1). (3.5b)

3.1.3. Determining the amount of permissible translation. Our next step is to

characterize the set {β > 0 |Wi − βφ : convex, i = 1, 2}.

Lemma 3.2 (Convexity of translated energies). Let α, α1, α2 ∈ L∗
>

(

R2×2
sym

)

. Let

γα, γ(α1,α2) > 0 be defined by

γα :=

(

max
‖ǫ‖=1

〈(

α− 1
2 Tα− 1

2

)

ǫ, ǫ
〉

)−1

,

γ(α1,α2) := min(γα1
, γα2

).

Then,

[0, γ(α1,α2)] = {β > 0 |Wi − βφ : convex, i = 1, 2},
[0, γ(α1,α2)) = {β > 0 |Wi − βφ : strictly convex, i = 1, 2}.
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Proof. Let i = 1, 2. The convexity of Wi − βφ is equivalent to the positive-

semidefiniteness of αi − βT , i.e., to the nonnegativity of ǫ 7→ 〈(αi − βT )ǫ, ǫ〉.
Now,

〈(αi − βT )ǫ, ǫ〉 =
〈

α
1
2
i

(

I − βα
− 1

2
i Tα

− 1
2

i

)

α
1
2
i ǫ, ǫ

〉

= ‖ǫ̃‖2 − β
〈

α
− 1

2
i Tα

− 1
2

i ǫ̃, ǫ̃
〉

where ǫ̃ = α
1
2
i ǫ and α

1
2
i is the unique positive-definite self-adjoint square root of

αi. Thus

∀ǫ, 〈(αi − βT )ǫ, ǫ〉 > 0 ⇐⇒ ∀ǫ, ‖ǫ‖2 − β
〈(

α
− 1

2
i Tα

− 1
2

i

)

ǫ, ǫ
〉

> 0

⇐⇒ ∀ǫ 6= 0,
1

β
>

〈(

α
− 1

2
i Tα

− 1
2

i

)

ǫ, ǫ
〉

‖ǫ‖2

where we have used the invertibility of α
1
2
i . (γαi

is non-negative since T has a

positive eigenvalue and all eigenvalues of αi are positive.) The result follows. ⊓⊔

Note 3.3. From (3.3),

〈(α− γαT )I, I〉 = 〈αI, I〉+ γα‖I‖2 > 0.

This, with Lemma 3.2 gives,

1 6 dim ker(α− γαT ) 6 dim R2×2
sym − 1 = 2. (3.6)

Note 3.4. For cubic α, aligning our axis with the principal axis of α, we have,

α = 2κΛh + 2µΛd + 2ηΛo,

where κ(α), µ(α), η(α) > 0 are, respectively, the bulk, diagonal shear and off-

diagonal shear moduli. (Henceforth we shall leave the dependence on α implicit.)

Since T ≡ −Λh + Λd + Λo,

α− 1
2 Tα− 1

2 =
−1

2κ
Λh +

1

2µ
Λd +

1

2η
Λo.

Thus

γα =

{

2 min(µ, η) when α is cubic,

2µ when α is isotropic.

(An isotropic modulus is a cubic modulus for which µ = η.) Moreover, as is easy

to verify,

ker(α− γαT ) =











Span
{(

1 0
0 −1

)}

if α is cubic with µ < η,

Span {( 0 1
1 0 )} if α is cubic with η < µ,

Span
{(

1 0
0 −1

)

, ( 0 1
1 0 )

}

if α is isotropic.
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3.1.4. Explicit expressions for the optimal strains and stresses. Let us return

to the minimization problem (3.5b) and find the minimizers ǫ⋆
1(β, ǭ) and ǫ⋆

2(β, ǭ).
By differentiating the argument on the right-hand side of (3.5b),

α1(ǫ
⋆
1 − ǫT

1)− α2(ǫ
⋆
2 − ǫT

2) + βT (ǫ⋆
2 − ǫ⋆

1) = 0. (3.7)

In other words,

∆σ⋆ = βT∆ǫ⋆ (3.8)

where

∆ǫ⋆ := ǫ⋆
2 − ǫ⋆

1,

∆σ⋆ := σ⋆
2 − σ⋆

1 ,

σ⋆
i := αi(ǫ

⋆
i − ǫT

i), i = 1, 2.

Since λ1ǫ
⋆
1 + λ2ǫ2⋆ = ǭ, (3.7) gives

(λ2α1 + λ1α2 − βT )ǫ⋆
1 = (α2 − βT )ǭ− λ2∆(αǫT)

(λ2α1 + λ1α2 − βT )ǫ⋆
2 = (α1 − βT )ǭ + λ1∆(αǫT)

(λ2α1 + λ1α2 − βT )∆ǫ⋆ = ∆(αǫT)− (∆α)ǭ.

where

∆(αǫT) := α2ǫ
T

2 − α1ǫ
T

1,

∆α := α2 − α1.

If β ∈ [0, γ(α1,α2)), then from Lemma 3.2 it follows that λ2α1 + λ1α2 − βT is

positive definite since it is the sum of the two positive definite linear operators

λ2(α1 − βT ) and λ1(α2 − βT ). Consequently, we may invert the relations above

to conclude that

ǫ⋆
1(β, ǭ) = (λ2α1 + λ1α2 − βT )

−1
((α2 − βT )ǭ− λ2∆(αǫT)) , (3.9a)

ǫ⋆
2(β, ǭ) = (λ2α1 + λ1α2 − βT )

−1
((α1 − βT )ǭ + λ1∆(αǫT)) , (3.9b)

∆ǫ⋆(β, ǭ) = (λ2α1 + λ1α2 − βT )
−1

(∆(αǫT)− (∆α)ǭ) , (3.9c)

If β = γ(α1,α2), then λ2α1 + λ1α2− βT might only be positive semi-definite.

However, the minimization problem (3.5b) is quadratic. So we can have one of two

situations: either (1) the minimum is finite and the solutions in (3.9) are defined up

to a constant in ker(λ2α1 + λ1α2 − βT ), or (2) Wλ(γ(α1,α2), ǭ) = −∞, in which

case,

lim
β→γ(α1,α2)

φ(∆ǫ⋆) =∞. (3.10)

For future use we observe that for β ∈ [0, γ(α1,α2)),

∂∆ǫ⋆

∂β
= (λ2α1 + λ1α2 − βT )−1T∆ǫ⋆. (3.11)
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From (3.9) we also calculate, for β ∈ [0, γ(α1,α2)),

σ⋆
1 =

(

α−1 − βα−1
2 Tα−1

1

)−1

α−1
2 ((α2 − βT )ǭ− λ2∆(αǫT))− α1ǫ

T

1

σ⋆
2 =

(

α−1 − βα−1
1 Tα−1

2

)−1

α−1
1 ((α1 − βT )ǭ + λ1∆(αǫT))− α2ǫ

T

2

where α−1 := λ1α
−1
1 + λ2α

−1
2 .

3.1.5. A lower bound on the relaxed energy. We are now in a position to derive

an explicit lower bound. Applying Lemma 3.2 to the lower bound (3.5a), we have

Wλ(ǭ) > max
β∈[0,γ(α1,α2)]

Wλ(β, ǭ). (3.12)

Determining this maximum is easy since we have the following lemma:

Lemma 3.5. (0, γ(α1,α2)) ∋ β 7→Wλ(β, ǭ) is either constant or strictly concave.

Proof. From (3.5b) and (3.11),

∂

∂β
Wλ(β, ǭ) = −λ1λ2φ(∆ǫ⋆(β, ǭ)). (3.13)

∂2

∂β2
Wλ(β, ǭ) = −λ1λ2

〈

T∆ǫ⋆(β, ǭ),
∂

∂β
∆ǫ⋆(β, ǭ)

〉

= −λ1λ2

〈

T∆ǫ⋆(β, ǭ), (λ2α1 + λ1α2 − βT )−1T∆ǫ⋆(β, ǭ)
〉

< 0

except when ∆ǫ⋆(β, ǭ) = 0. Note, from (3.9), that ∆ǫ⋆(β, ǭ) = 0 for some β ∈
(0, γ(α1,α2)) implies that ∆ǫ⋆(β, ǭ) = 0 for all β ∈ (0, γ(α1,α2)). However when

∆ǫ⋆(β, ǭ) ≡ 0, from (3.13), Wλ(β, ǭ) is independent of β. ⊓⊔

Incidentally, we also observe that:

Lemma 3.6. ǭ 7→Wλ(β, ǭ) is strictly convex.

Proof. From (3.5b),

∂2

∂ǭ2
Wλ(β, ǭ)

=λ1
∂2

∂ǭ2
(W1 − βφ)(ǫ⋆

1(β, ǭ)) + λ2
∂2

∂ǭ2
(W2 − βφ)(ǫ⋆

2(β, ǭ)) + β
∂2

∂ǭ2
φ(ǭ)

=λ1(α1 − βT ) + λ2(α2 − βT ) + βT

=λ1α1 + λ2α2

>0

⊓⊔

We now obtain the desired lower bound.
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Theorem 3.7 (Lower bound). Wλ > W
l

λ where W
l

λ : R2×2
sym → R is defined by

W
l

λ(ǭ) :=



















Wλ(0, ǭ) if ∆ǫ⋆(·, ǭ) ≡ 0 (Regime 0),

Wλ(0, ǭ) if φ(∆ǫ⋆(0, ǭ)) > 0 (Regime I),

Wλ(βII, ǭ) otherwise (Regime II),

Wλ(γ(α1,α2), ǭ) if φ(∆ǫ⋆(γ(α1,α2), ǭ)) < 0. (Regime III);
(3.14)

and, in Regime II, βII ∈ [0, γ(α1,α2)] is the unique solution of φ(∆ǫ⋆(β, ǭ)) = 0.

Proof. When ∆ǫ⋆(β, ǭ) ≡ 0, from Lemma 3.5, β 7→Wλ(β, ǭ) is constant and we

may set β = 0 in (3.12).

Otherwise, from Lemma 3.5, β 7→ Wλ(β, ǭ) is strictly concave. Using (3.13),

the maximum occurs at

β =

{

0 when φ(∆ǫ⋆(0, ǭ)) > 0,

β = γ(α1,α2) when φ(∆ǫ⋆(γ(α1,α2), ǭ)) 6 0.

Since β 7→ Wλ(β, ǭ) is strictly concave, from (3.13) that β 7→ φ(∆ǫ⋆(β, ǭ)) is

strictly increasing. Thus when φ(∆ǫ⋆(0, ǭ)) 6 0 and (if necessary, interpreting as

a limit) φ(∆ǫ⋆(γ(α1,α2), ǭ)) > 0 there exists a unique root βII ∈ [0, γ(α1,α2)] such

that φ(∆ǫ⋆(βII, ǭ)) = 0 and the maximum of Wλ occurs at β = βII. ⊓⊔

Note 3.8. From (3.10), Regime III does not occur whenever φ(∆ǫ⋆(γ(α1,α2), ǭ))
does not exist. From §3.1.4 this happens when ker(α1 − γ(α1,α2)T ) ∩ ker(α2 −
γ(α1,α2)T ) 6= {0}. This includes, in particular, the cases (i) α1 = α2 (c.f., Note 3.9

below) and (ii) both phases being isotopic with equal shear moduli.

Note 3.9 (Equal moduli). We remark on the special case α1 = α2 =: α studied

by Pipkin [Pip91] and Kohn [Koh91]. In this case, γα1
= γα2

= γ(α1,α2) so that

λ2α1 + λ1α2 − γ(α1,α2)T = α− γ(α1,α2)T is not invertible. Thus, as mentioned

in Note 3.8 above, Regime III does not occur.

From (3.9), ∆ǫ⋆(·, ·, ǭ) ≡ 0 implies that ǫT

1 = ǫT

2. Thus Regime 0 does not

occur for distinct materials.5

Let ∆ǫT := ǫT

2 − ǫT

1. From (3.5b) and (3.14) we obtain

W
l

λ(ǭ) =

{

λ1W1(ǫ
⋆
1(0, ǭ)) + λ2W2(ǫ

⋆
2(0, ǭ)) if φ(∆ǫT) > 0 (Regime I),

λ1W1(ǫ
⋆
1(βII, ǭ)) + λ2W2(ǫ

⋆
2(βII, ǭ)) if φ(∆ǫT) 6 0 (Regime II).

(3.15)

Here, from (3.9),

ǫ⋆
1(β, ǭ) = ǭ− λ2(α− βT )−1α ∆ǫT, (3.16a)

ǫ⋆
2(β, ǭ) = ǭ + λ1(α− βT )−1α ∆ǫT; (3.16b)

and, in Regime II, βII is the unique solution in [0, γ(α1,α2)) of

φ
(

(α− βT )−1α ∆ǫT
)

= 0. (3.17)

5I.e., when either α1 6= α2 or ǫT
1 6= ǫT

2.
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Note that βII is independent of ǭ.

From (3.16)

ǫ⋆
1(β, ǭ)− ǫT

1 = (ǭ− ǫT)− λ2β(α− βT )−1T∆ǫT,

ǫ⋆
2(β, ǭ)− ǫT

2 = (ǭ− ǫT) + λ1β(α− βT )−1T∆ǫT,

where ǫT := λ1ǫ
T

1 + λ2ǫ
T

2. Substituting this in (3.15) gives

W
l

λ(ǭ) =
1

2

〈

α(ǭ− ǫT), (ǭ− ǫT)
〉

+ (λ1w1 + λ2w2)

+

{

0 if φ(∆ǫT) > 0 (Regime I),
1
2λ1λ2β

2
II
‖α 1

2 (α− βIIT )−1T∆ǫT‖2 if φ(∆ǫT) 6 0 (Regime II);

where βII is the unique solution in [0, γ(α1,α2)) of (3.17).

3.2. Optimality of the lower bound and optimal microstructures

In this section we prove that the lower bound presented in Theorem 3.7 is

optimal, and characterize the optimal microstructures. This will complete the proof

of Theorem 2.1. Our strategy is to construct upper bounds on the relaxed energy

Wλ by constructing microstructures and using test strain fields whose energy is

exactly equal to the lower bound W
l

λ. In the process we will also build insight

that will allow us to identify properties of optimal microstructures that attain the

relaxed energy.

3.2.1. Optimality of the lower bound.

Theorem 3.10 (Optimality of the lower bound). Wλ = W
l

λ.

Before we present the proof of Theorem 3.10, we present the (geometric) pic-

ture that underlies it. In the three-dimensional linear space of two-dimensional

strains, the set of {ǫ : φ(ǫ − ǫ⋆
2) = 0} is the surface of the large dark cone shown

in the Figure 3.1(a), the set {ǫ : φ(ǫ − ǫ⋆
2) < 0} is inside the large dark cone and

the set {ǫ : φ(ǫ − ǫ⋆
2) > 0} is outside the large dark cone. From Lemma 3.11 it

follows that one can form rank-one laminates between ǫ⋆
2 and any point that does

not lie inside the large dark cone. In Regimes I and II ǫ⋆
1 does not lie inside the

large dark cone, and we may form optimal rank-one laminates between them. In

Regime III, ǫ⋆
1 lies inside the large dark cone and we can not form a rank-one lam-

inate. So we proceed from ǫ⋆
1 along the ‘degenerate’ direction (which, from §3.1.2,

is not hydrostatic, i.e., vertical) till we hit the large dark cone at ǫI. Pick ǫII along

this line so that the ǫ⋆
1 is the average of ǫI and ǫII. Now construct a cone centered at

ǫII, the small grey cone in the figure. ǫIII is the intersection between the line joining

ǫI and ǫ⋆
2 and the ellipse defined by the intersection of the two cones. All relations

in (3.20) follow.
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(a) Three-dimensional geometric dia-
gram.

(b) Two-dimensional section of three-
dimensional geometric diagram.

Fig. 3.1. An optimal rank-two laminate in Regime II. In the two-dimensional diagram solid
lines represent strain compatible directions; dashed lines represent directions that need not
be strain compatible.

Proof. From (1.6) we readily obtain the following upper bound on Wλ: for any

microstructure χ and displacement field u : Ω → Rn such that u|∂Ω = ǭ · x,

W 〈χ〉(ǭ) 6 Wχ(u) := −
∫

Ω

(

χ1W1(ǫ) + χ2W2(ǫ)
)

dx. (3.18)

In view of the lower bound in Theorem 3.7 and the upper bound in (3.18), it suf-

fices to construct (a sequence of) microstructures χ and displacement fields u (sat-

isfying u|∂Ω = ǭ · x) such that Wχ(u) = W
l

〈χ〉(ǭ). In order to do so, we seek to

construct microstructures which use as closely as possible the optimal strains we

computed in §3.1.4. We are able to do so directly in Regimes 0, I and II, need a

more elaborate construction in Regime III.

Regime 0: When ∆ǫ⋆ ≡ 0, from (3.9), ǫ⋆
1 ≡ ǫ⋆

2 ≡ ǭ. Thus for any microstruc-

ture χ and any displacement field u (satisfying u|∂Ω = ǭ · x), Wχ(u) = W
l

〈χ〉(ǭ).
The result follows by combining this with Theorem 3.7 and (3.18).

Regimes I and II: Recall from (3.14) that φ(∆ǫ⋆(β⋆, ǭ)) > 0 where β⋆ = 0 in

Regime I and β⋆ = βII in Regime II. Therefore, from Lemma 3.11 below we can

find m̂, n̂ ∈ R2 such that

ǫ⋆
2 − ǫ⋆

1 = ∆ǫ⋆ ‖ m̂⊗s n̂ (3.19)

where ǫ⋆
1 and ǫ⋆

2 are given by (3.9) for β = β⋆. Now construct a rank-one laminate

χ in which phases 1 and 2 have phase fractions λ1 and λ2 respectively and the

layers have normal n̂ or m̂. The condition (3.19) assures us that we can construct

a continuous displacement field u (satisfying u|∂Ω = ǭ · x) with strain ǫ⋆
1 in phase
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1 and ǫ⋆
2 in phase 2. For this microstructure and displacement field,

Wχ(u) = λ1W1(ǫ
⋆
1) + λ2W1(ǫ

⋆
2)

= λ1W1(ǫ
⋆
1) + λ2W1(ǫ

⋆
2)− βλ1λ2φ(ǫ⋆

2 − ǫ⋆
1)

= W
l

λ(ǭ).

The second equality holds above because β = 0 in Regime 1 and φ = 0 in Regime

II. The result follows by combining this with Theorem 3.7 and (3.18).

Regime III: φ(∆ǫ⋆(γ(α1,α2), ǭ)) < 0, and so, from Lemma 3.11, we can not

construct a continuous displacement field directly with the optimal strains. How-

ever, one of the translated energies loses strict convexity at β = γ(α1,α2) (Lemma 3.2);

we can use this to construct optimal rank-two laminates:

Assume, renumbering if necessary, that γ(α1,α2) = γα1 . It follows that there

exists 0 6= ǫn ∈ ker(α1 − γ(α1,α2)T ) and that

R ∋ z 7→ (W1 − γ(α1,α2)φ)(ǫ⋆
1 + zǫn)

is affine. In Lemma 3.12 below, we show that there exist ǫI, ǫII, ǫA ∈ R2×2
sym , ρ ∈

(0, λ1), m̂ ∦ n̂ ∈ R2 such that

(ǫII − ǫI) ‖ ǫn, (3.20a)

λ1 − ρ

λ1(1− ρ)
ǫII +

ρλ2

λ1(1− ρ)
ǫI = ǫ⋆

1, (3.20b)

φ(ǫ⋆
2 − ǫI) = 0 (3.20c)

(or equivalently, from Lemma 3.11, ∃n̂ ∈ R2, ǫ⋆
2 − ǫI ‖ n̂⊗ n̂),

ρǫI + (1− ρ)ǫ⋆
2 = ǫA, (3.20d)

φ(ǫA − ǫII) = 0 (3.20e)

(or equivalently, from Lemma 3.11, ∃m̂ ∈ R2, ǫA − ǫII ‖ m̂⊗ m̂),

λ1 − ρ

1− ρ
ǫII +

λ2

1− ρ
ǫA = ǭ. (3.20f)

Note that ρ ∈ (0, λ1) implies that (λ1−ρ)/(1−ρ) ∈ (0, λ1) so that the left-hand-

sides of (3.20b), (3.20d) and (3.20f) are convex combinations. These equations are

schematically represented in Figure 3.1(b).

We can now construct our rank-two laminate as follows. First construct a rank-

one laminate in which phases 1 and 2 have phase fractions ρ and 1−ρ respectively

and the layers have normal n̂. Next construct a rank-two laminate in which this

rank-one laminate and phase1 have phase fractions (λ2)(1−ρ) and (λ1−ρ)(1−ρ)
respectively and the layers have normal m̂. The compatibility equations (3.20c)

and (3.20e) allows the construction of a continuous displacement field u (up to

boundary layers) such that the strains take the value ǫI in the interior phase 1,

ǫ⋆
2 in the interior phase 2 and ǫII in the exterior phase 1. Moreover from (3.20b)

and (3.20f) u can be chosen to satisfy u|∂Ω = ǭ · x. For this microstructure and
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displacement field,

Wχ(u)

=
λ1 − ρ

1− ρ
W1(ǫ

II) +
λ2

1− ρ
(ρW1(ǫ

I) + (1− ρ)W2(ǫ
⋆
2))

=λ2W2(ǫ
⋆
2) +

λ1 − ρ

1− ρ
W1(ǫ

II) +
ρλ2

1− ρ
W1(ǫ

I)

=λ2W2(ǫ
⋆
2) +

λ1 − ρ

1− ρ
(W1 − γ(α1,α2)φ)(ǫII) +

ρλ2

1− ρ
(W1 − γ(α1,α2)φ)(ǫI)

+
λ1 − ρ

1− ρ
γ(α1,α2)φ(ǫII) +

ρ(1− λ1)

1− ρ
γ(α1,α2)φ(ǫI)

Since W1 − γ(α1,α2)φ is affine in the direction ǫn, from it follows that

λ1 − ρ

1− ρ
(W1 − γ(α1,α2)φ)(ǫII) +

ρλ2

1− ρ
(W1 − γ(α1,α2)φ)(ǫI)

=λ1(W1 − γ(α1,α2)φ)

(

λ1 − ρ

λ1(1− ρ)
ǫII +

ρλ2

λ1(1− ρ)
ǫI

)

=λ1(W1 − γ(α1,α2)φ)(ǫ⋆
1)

where the second equality uses (3.20b). So,

Wχ(u) = λ1(W1 − γ(α1,α2)φ)(ǫ⋆
1) + λ2W2(ǫ

⋆
2)

+ γ(α1,α2)

(

λ1 − ρ

1− ρ
φ(ǫII) +

ρλ2

1− ρ
φ(ǫI)

)

Since φ is quadratic, it follows from (3.20) that

λ1 − ρ

1− ρ
φ(ǫII) +

λ2

1− ρ
φ(ǫA) = φ(ǭ),

ρφ(ǫI) + (1− ρ)φ(ǫ⋆
2) = φ(ǫA).

Putting these together, and once again using the quadraticity of φ,

Wχ(u) = λ1(W1 − γ(α1,α2)φ)(ǫ⋆
1) + λ2(W2 − γ(α1,α2)φ)(ǫ⋆

2) + γ(α1,α2)φ(ǭ)

= λ1W1(ǫ
⋆
1) + λ2W2(ǫ

⋆
2)− γ(α1,α2)λ1λ2φ(ǫ⋆

2 − ǫ⋆
1)

= W
l

λ(ǭ).

The result follows by combining this with Theorem 3.7 and (3.18). ⊓⊔

The proof above used the following Lemmas. The first is well-known (c.f., e.g.,

[Koh91]) and the proof is omitted.
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Lemma 3.11 (Strain and rank-one compatibility). Let ǫ ∈ Rn×n
sym with eigenval-

ues λ1 6 λ2 6 · · · 6 λn. Then, there exist m̂ ∦ n̂ ∈ Rn such that

ǫ ‖ m̂⊗s n̂ ⇐⇒ λ1 < 0 < λ2 ⇐⇒ φ(ǫ) > 0,

ǫ ‖ n̂⊗ n̂ ⇐⇒ λ1λ2 = 0 ⇐⇒ φ(ǫ) = 0

when n = 2; and when n > 2,

ǫ ‖ m̂⊗s n̂ ⇐⇒ λ1 < 0 = λ2, . . . , λn−1 = 0 < λn

ǫ ‖ n̂⊗ n̂ ⇐⇒ λ2 = λ3 = · · · = λn−1 = 0 and λ1λn = 0.

Lemma 3.12. Let α ∈ L∗
>

(

R3×3
sym

)

and 0 6= ǫn ∈ ker(α− γαT ). Let φ(∆ǫ⋆) < 0.

Then there exist ǫI, ǫII, ǫA ∈ R2×2
sym , ρ ∈ (0, λ1), m̂ ∦ n̂ ∈ R2 such that (3.20) holds.

Proof. Since ǫn ∈ ker(α− γαT ) and α is positive-definite, it follows that

φ(ǫn) =
1

2
〈Tǫn, ǫn〉 =

1

2γα

〈αǫn, ǫn〉 > 0. (3.21)

Combining this with the fact that φ(∆ǫ⋆) < 0 we conclude that the quadratic

polynomial R ∋ z 7→ φ(∆ǫ⋆ + zǫn) has two real roots z1 < 0 < z2 since

φ(∆ǫ⋆ + zǫn) = 0 ⇐⇒ φ(∆ǫ⋆) + z 〈T∆ǫ⋆, ǫn〉+ z2φ(ǫn) = 0. (3.22)

Set

ρ :=
−z1z2

z2 − z1
λ1,

ǫI := ǫ⋆
1 − z2ǫn, (3.23a)

ǫII := ǫ⋆
1 − (ρz2 + (1− ρ)z1)ǫn, (3.23b)

ǫA := ρǫI + (1− ρ)ǫ⋆
2 (3.23c)

With these definitions, ρ ∈ (0, λ1) as required, and (3.20a), (3.20b), (3.20d) and

(3.20f) are obvious. Now observe that

ǫ⋆
2 − ǫI = ǫ⋆

2 − ǫ⋆
1 + z2ǫn

= ∆ǫ⋆ + z2ǫn. (3.24a)

ǫA − ǫII = ρǫI + (1− ρ)ǫ⋆
2 − ǫ⋆

1 + (ρz2 + (1− ρ)z1)ǫn

= ρ(ǫ⋆
1 − z2ǫn) + (1− ρ)ǫ⋆

2 − ǫ⋆
1 + (ρz2 + (1− ρ)z1)ǫn

= (1− ρ)(∆ǫ⋆ + z1ǫn). (3.24b)

Since z1 and z2 are roots of φ(∆ǫ⋆ + zǫn) = 0, (3.20c) and (3.20e) follow. It

remains to show that m̂ ∦ n̂. If the contrary were true, then,

(ǫA − ǫII) ‖ (ǫ⋆
2 − ǫI),

and thus, from (3.24),

(∆ǫ⋆ + z2ǫn) ‖ (∆ǫ⋆ + z1ǫn)

i.e., since since z1 6= z2, either ∆ǫ⋆ ‖ ǫn or ∆ǫ⋆ = 0 . It follows from (3.21) that

φ(∆ǫ⋆) > 0 which, however, contradicts the assumption that φ(∆ǫ⋆) < 0. ⊓⊔
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Note 3.13. The construction of the rank-two laminate in the proof of Theorem 3.10

uses only rank-one connections, as opposed to symmetrized-rank-one connections

(i.e., (3.20c) and (3.20e) enforce equalities instead of the inequality permitted by

Lemma 3.11). This notes explains why.

Optimal microstructures satisfy the the Euler-Lagrange equation associated

with the variational principle i.e., the equilibrium equation. In particular, at an

interface with normal n̂ ∈ R2 the stress difference JσK is required to satisfy the

relation

JσKn̂ = 0 (3.25a)

From (3.8) and (3.24), using α1ǫn = γα1
Tǫn, in regime III, at any interface the

stress difference is related to the strain difference through

JσK ‖ T JǫK (3.25b)

and the constant of proportionality is non-zero. The strain compatibility condition

is

JǫK ‖ m̂⊗s n̂ (3.25c)

for some m̂ ∈ R2. Lemma 3.14 below shows that (3.25) is equivalent to requiring

JǫK ‖ n̂⊗ n̂ which in turn necessitates φ(JǫK) = 0.

Lemma 3.14. Let m̂, n̂ ∈ R2. Then the following are equivalent.

1. (T (m̂⊗s n̂)) m̂ = 0.

2. (T (m̂⊗s n̂)) n̂ = 0.

3. m̂ ‖ n̂.

Proof. The equivalence of the first two statements is trivial. The rest of the lemma

follows from the observation that

T (m̂⊗s n̂) = m̂⊥ ⊗s n̂⊥.

where, for every v ∈ R2, v⊥ :=
(

0 1
−1 0

)

v. ⊓⊔

3.2.2. Optimal microstructures. A microstructure χ for which the energy is op-

timal, i.e., for which

W 〈χ〉(ǭ) = inf
u|∂Ω=ǭ·x

Wχ(u)

is an optimal microstructure. Given a microstructure, any displacement field u : Ω →
Rn (with u|∂Ω = ǭ · x) whose energy is optimal, i.e., for which

Wχ(u) = inf
u|∂Ω=ǭ·x

Wχ(u)

is an optimal displacement field for that microstructure; the associated strain field

is an optimal strain field.

We have proved (cf. Theorems 3.7 and 3.10) the translated variational principle

Wλ(ǭ) = inf
χ,u
−
∫

Ω

2
∑

i=1

χi(Wi − β⋆φ)(ǫ) dx + β⋆φ(ǭ) (3.26a)
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where 〈χ〉 = λ, u|∂Ω = ǭ · x and

β⋆ :=











0 in Regimes O and I,

βII in Regime II,

γ(α1,α2) in Regime III.

(3.26b)

Theorem 3.15 (Equivalence of optimal microstructures for original and trans-

lated variational principles). A microstructure and strain field is optimal for the

original variational principle (1.6) if and only if it is optimal for the translated

variational principle (3.26).

Proof. The variational principles are identical when β⋆ = 0, which occurs in

Regimes 0 and I, and possibly in Regime II. We consider the case when β⋆ 6= 0.

Consider a minimizing sequence (χη, uη) for the original variational statement

of Wλ(ǭ) in (1.6). We have

Wλ(ǭ) = lim
η→0
−
∫

Ω

2
∑

i=1

χη
i (Wi − β⋆φ)(ǫη) dx + β⋆φ(ǭ)

= Wλ(ǭ) − β⋆

(

lim
η→0
−
∫

Ω

φ(ǫη) dx − φ(ǭ)

)

.

Thus

φ(ǭ) = lim
η→0
−
∫

Ω

φ(ǫη) dx,

from which the result follows. ⊓⊔

Theorem 3.16 (Optimal microstructures).

1. In Regime 0 any microstructure is optimal. The optimal strain and stress are

constant.

2. In Regime I the optimal microstructure is either a rank-one laminate, with

either of two possible layering directions, or a microstructure made up of these

laminates. The optimal strain takes the value ǫ⋆
1 in phase 1 and ǫ⋆

2 in phase 2

while the optimal stress is constant.

3. In Regime II the optimal microstructure is unique and is a rank-one laminate.

The optimal strain takes the value ǫ⋆
1 in phase 1 and ǫ⋆

2 in phase 2.

4. In Regime III, no rank-one laminate is optimal. The class of optimal microstruc-

tures is possibly large (in a sense explained in the proof) and includes at least

two rank-two laminates.

In any optimal microstructure, in phase i, i = 1, 2, the strain is confined to

an affine subspace of dimension dim ker(αi − γ(α1,α2)T ) 6 2; the sum of the

dimensions of the affine subspaces is also at most 2. In particular, if phase i is

harder than the other phase (i.e., if γαi
> γ(α1,α2)) then the strain is ǫ⋆

i in that

phase.
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Proof. In the proof of Theorem 3.10, we showed that in Regimes 0, I and II,

Wλ(ǭ) = λW1(ǫ
⋆
1) + (1− λ)W2(ǫ

⋆
2).

Further, recall that α1 and α2 are positive-definite by assumption so that W1 and

W2 are strictly convex. It follows that in any optimal microstructure the optimal

strain field is as in the statement of the theorem.

The other statements pertaining to Regime 0 follow immediately from the

proof of Theorem 3.10 and (3.8).

In Regime I, φ(∆ǫ⋆) < 0 so that from Lemma 3.11, we find m̂ ∦ n̂ ∈ R2 such

that ∆ǫ⋆ ‖ m̂ ⊗s n̂. It follows that the strain and thus the microstructure is either

a rank-one laminates (with layering direction either m̂ or n̂) or a microstructure

of these laminates. Finally since β = 0 in this regime, it follows from (3.8) that

∆σ⋆ = 0; thus the stress is constant.

In Regime II, φ(∆ǫ⋆) = 0 so that from Lemma 3.11, we find unique (upto

scaling) n̂ ∈ R2 such that ∆ǫ⋆ ‖ n̂ ⊗ n̂. It follows that the strain and thus the

microstructure is a unique rank-one laminate with layering direction n̂.

We now turn to Regime III. The non-existence of optimal rank-one laminates

and the existence of an optimal rank-two laminate follows from Theorem 3.10 (and

Lemma 3.12). There exists at least one other optimal rank-two laminate which

can be obtained by interchanging the roles of z1 and z2 in (3.23) (and (3.24)). If

dim(ker(αi − γ(α1,α2)T )) > 1 (which is the case, e.g., when αi is isotropic),

i = 1, 2, then one can find an uncountably infinite number of directions ǫn which

one can use in the proof of Theorem 3.10 (and Lemma 3.12) to construct the rank-

two laminates; moreover, one can also construct optimal microstructures that are

not laminates but ‘Hashin-Strikhman confocal ellipses’ or ‘Vigdergauz microstruc-

tures’. The reader is referred to [Lu93,Vig94,GK95a,GK95b,GK95c,Gra96] for

a discussion of these microstructures.

That dim ker(αi − γ(α1,α2)T ) 6 2 restates (3.6) and
∑2

i=1 dim ker(αi −
γ(α1,α2)T ) 6 2 follows from Notes 3.3 and 3.8. Finally we turn to characteriz-

ing the optimal strains: Since

inf
χ,u
−
∫

Ω

2
∑

i=1

χi(Wi − γ(α1,α2)φ)(ǫ) dx + γ(α1,α2)φ(ǭ)

=

2
∑

i=1

λi(Wi − γ(α1,α2)φ)(ǫ⋆
i ) + γ(α1,α2)φ(ǭ),

the result about the optimal strains follows from the strict convexity of W2 −
γ(α1,α2)φ and the non-strict convexity of W1 − γ(α1,α2)φ. ⊓⊔

4. Two-phase cubic solids in three dimensions

We generalize the preceding approach to the problem in three dimensions when

the elastic moduli α1 and α2 are either (1) both cubic (c.f., Definition 4 below), or



26 ISAAC V. CHENCHIAH, KAUSHIK BHATTACHARYA

(2) well ordered (i.e., either α1 6 α2 or α2 6 α1) and the smaller elastic modulus

is cubic.

Our approach succeeds when the elastic moduli are (1) both isotropic, or (2)

well ordered and the smaller elastic modulus is isotropic. Otherwise we obtain a

lower bound which is optimal except possibly in one regime.

For ease of exposition we will only present results for the case of both elastic

moduli being either isotropic or cubic. The extension of the results to the other

case is immediate (c.f., (4.11) below) and is thus left as an exercise to the reader.

Overview of §4. After introducing some preliminary definitions in §4.1, we in-

troduce the translation that we shall be using in §4.2 and use it to obtain a (non-

explicit) lower bound on the relaxed energy in §4.3. §4.4, 4.5 and 4.6 are concerned

with determining the amount of permissible translation. An important interme-

diate result is presented in §4.7 and explicit expressions for the optimal strains

in §4.8. In §4.9 we are finally ready to explicitly compute the lower bound pre-

sented in §4.3. In §4.10 we comment on optimality and the optimal microstruc-

tures.

4.1. Preliminary definitions.

Definition 1. Let R ∈ SO(3). The linear operator L∗ (R3×3
sym

)

∋ L
·R7→ LR ∈

L∗ (R3×3
sym

)

is defined by

LRǫ := R
(

L
(

RT ǫR
))

RT , ∀ǫ ∈ R3×3
sym .

It is easy to check that ·R preserves the algebraic structure of L∗ (R3×3
sym

)

:

∀L1, L2 ∈ L∗ (R3×3
sym

)

,

(L1L2)
R = LR

1 LR
2 .

In particular, when L ∈ L∗ (R3×3
sym

)

is invertible,

(L−1)R = (LR)−1.

Clearly,

ker(LR) = R ker(L)RT . (4.1)

Finally, we note that ∀R1, R2 ∈ SO(3),

·(R1R2) =
(

·R1
)R2

.

Definition 2 (Orthogonal subspaces of R3×3
sym ). Let

H := Span {I} ,

I :=
(

1 0 0
0 1 0
0 0 1

)

,

D := Span
{(

1 0 0
0 −1 0
0 0 0

)

,
(

0 0 0
0 1 0
0 0 −1

)}

,

O := Span
{(

0 1 0
1 0 0
0 0 0

)

,
(

0 0 1
0 0 0
1 0 0

)

,
(

0 0 0
0 0 1
0 1 0

)}

.

(These symbols stand for “Hydrostatic”, “Diagonal” and “Off-diagonal” respec-

tively.) Note that R3×3
sym = H⊕D ⊕O.
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We write Diag
(

x1
x2
x3

)

to mean
(

x1 0 0
0 x2 0
0 0 x3

)

.

Definition 3 (Orthogonal projection operators). Analogous to (3.4), the orthog-

onal projection operators Λh,Λs,Λd,Λo ∈ L∗
>

(

R3×3
sym

)

are defined by

Range(Λh) = H,

Λs := Λd + Λo,

Range(Λd) = D,

Range(Λo) = O.

Note that

Λhǫ =
1

3
Tr(ǫ)I,

and

Λh + Λs = I ∈ L∗
>

(

R3×3
sym

)

,

the identity operator. Moreover, ∀R ∈ SO(3), Λh
R = Λh and Λs

R = Λs.

Definition 4 (Cubic elastic moduli). α ∈ L∗
>

(

R3×3
sym

)

is cubic if ∃Rα(α) ∈
SO(3) and κ(α), µ(α), η(α) > 0 such that

αRα = 3κΛh + 2µΛd + 2ηΛo. (4.2)

(Henceforth we shall leave the dependence on α implicit.) Here κ is the bulk mod-

ulus, µ the diagonal shear modulus and η the off-diagonal shear modulus.

Definition 5 (Isotropic elastic moduli). α ∈ L∗
>

(

R3×3
sym

)

is isotropic if

∀R ∈ SO(3), αR = α. (4.3a)

Such an elastic modulus is of the form

α = 3κΛh + 2µΛs (4.3b)

where κ(α) > 0 is the bulk modulus and µ(α) > 0 the shear modulus. (Henceforth

we shall leave the dependence on α implicit.) Note that isotropic moduli are cubic

moduli for which µ = η. Note also that

α = ℓTr(·)I + 2µI (4.3c)

where ℓ = κ− 2
3µ > 0 is the Lamé modulus.

Definition 6. For ǫ ∈ R3×3
sym we define υ1(ǫ) 6 υ2(ǫ) 6 υ3(ǫ) to be the eigenvalues

of ǫ. Moreover for a permutation σ on {1, 2, 3} let,

diagσ(ǫ) :=

(

υσ(1)(ǫ) 0 0

0 υσ(2)(ǫ) 0

0 0 υσ(3)(ǫ)

)

,

Υσ(ǫ) :=

(

υσ(2)(ǫ) υσ(3)(ǫ)

υσ(3)(ǫ) υσ(1)(ǫ)

υσ(1)(ǫ) υσ(2)(ǫ)

)

(4.4)

and Rσ(ǫ) ∈ SO(3) to be a rotation that σ-diagonalizes ǫ, i.e.,

ǫ = RT
σ (ǫ)diagσ(ǫ)Rσ(ǫ).

The subscript σ is dropped when σ is the identity map.
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4.2. Rotated diagonal subdeterminants as translations.

The determinant is a useful translation in two dimensions because it captures

information on strain compatibility: ǫ1, ǫ2 ∈ R2×2
sym are strain compatible (i.e.,

∃m̂, n̂ ∈ R2, ǫ2 − ǫ1 ‖ m̂ ⊗s n̂) if and only if det(ǫ2 − ǫ1) 6 0; the three-

dimensional analogue is that ǫ1, ǫ2 ∈ R3×3
sym are strain compatible if and only if of

the three eigenvalues of ǫ2 − ǫ1, one is non-negative, another is zero and the third

is non-positive (c.f. Lemma 3.11).

Motivated by this we choose a translation of the form β · φR, where β ∈ R3
+,

R ∈ SO(3) and φR : R3×3
sym → R3 is given by

φR(ǫ) := φ(RT ǫR), (4.5a)

φ(ǫ) :=





ǫ223 − ǫ22ǫ33
ǫ231 − ǫ33ǫ11
ǫ212 − ǫ11ǫ22



 . (4.5b)

For convenience we also define φj : R3×3
sym → R, j = 1, 2, 3 by

φj(ǫ) := (φ(ǫ))j ; (4.5c)

note that these are the diagonal subdeterminants.

Quadraticity of β · φR. It is easy to verify that

φj(ǫ) =
1

2
〈Tjǫ, ǫ〉, j = 1, 2, 3, (4.6a)

where Tj ∈ L∗ (R3×3
sym

)

, j = 1, 2, 3 are defined by

T1ǫ :=
(

0 0 0
0 −ǫ33 ǫ23
0 ǫ23 −ǫ22

)

, (4.6b)

T2ǫ :=
(−ǫ33 0 ǫ31

0 0 0
ǫ31 0 −ǫ11

)

, (4.6c)

T3ǫ :=
(−ǫ22 ǫ12 0

ǫ12 −ǫ11 0
0 0 0

)

. (4.6d)

It is clear that Tj , j = 1, 2, 3, has eigenvalues −1, 0 and 1 repeated once, thrice

and twice respectively. It is easy to verify that

ker(Λs − T1) = Span
{

I,
(

0 0 0
0 1 0
0 0 −1

)

,
(

0 0 0
0 0 1
0 1 0

)}

, (4.7a)

ker(Λs − T2) = Span
{

I,
(−1 0 0

0 0 0
0 0 1

)

,
(

0 0 1
0 0 0
1 0 0

)}

, (4.7b)

ker(Λs − T3) = Span
{

I,
(

1 0 0
0 −1 0
0 0 0

)

,
(

0 1 0
1 0 0
0 0 0

)}

. (4.7c)

For β ∈ R3
+ and R ∈ SO(3), let β · TR ∈ L∗ (R3×3

sym

)

be defined by

β · TRǫ :=

3
∑

j=1

βjT
R
j ǫ. (4.8a)
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Then, as is easy to verify,

β · φR(ǫ) :=
1

2
〈(β · TR)ǫ, ǫ〉. (4.8b)

Let e := (1, 1, 1)T . We digress for a useful remark on e · TR and e · φR which

can be easily verified from (4.6).

Note 4.1. e · TR and e · φR are independent of R. In particular,

e · T = I − Tr(·)I
= −2Λh + Λs, (4.9a)

e · φ(ǫ) =
(

ǫ212 + ǫ223 + ǫ231
)

− (ǫ11ǫ22 + ǫ22ǫ33 + ǫ33ǫ11)

=
1

2

(

Tr(ǫ2)− (Tr(ǫ))2
)

= − (ν1(ǫ)ν2(ǫ) + ν2(ǫ)ν3(ǫ) + ν3(ǫ)ν1(ǫ)) . (4.9b)

Here υ1(ǫ) 6 υ2(ǫ) 6 υ3(ǫ) are the eigenvalues of ǫ.

Quasiconvexity of β · φR. φR
j , j = 1, 2, 3, is quasiconvex since it is quadratic and

rank-one convex: ∀m′, n′ ∈ R3,

φR
j (m′ ⊗s n′) = φj(R

T (m′ ⊗s n′)R)

= φj((R
T m′)⊗s (RT n′))

= φj(m⊗s n)

where m = RT m′, n = RT n′; and, e.g.,

φ1(m⊗s n) =
1

4
(m2n3 + m3n2)

2 −m2n2m3n3

=
1

4
(m2n3 −m3n2)

2

> 0.

It follows that ∀β ∈ R3
+, β ·φR is quasiconvex. From [Zha03, Thm. 1.2] it follows

that ∀β ∈ R3
+, ∀R ∈ SO(3), β · TR has atleast two positive eigenvalues.

β · φR is not quasiconvex when β ∈ R3 \ R3
+ since for i 6= j = 1, 2, 3,

β · T ei ⊗s ej = β{1,2,3}\{i,j}ei ⊗s ej ,

where {e1, e2, e3} is the standard basis for R3.
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4.3. A lower bound on the relaxed energy. I.

For α ∈ L∗
>

(

R3×3
sym

)

let

Bα(R) :=
{

β ∈ R3
+ | α− β · TR

> 0
}

(4.10a)

=

{

β ∈ R3
+ | ∀ǫ ∈ R3×3

sym ,
1

2
〈αǫ, ǫ〉 − β · φ(RT ǫR) > 0

}

=

{

β ∈ R3
+ | ∀ǫ ∈ R3×3

sym ,
1

2
〈αRǫRT , RǫRT 〉 − β · φ(ǫ) > 0

}

(4.10b)

=
{

β ∈ R3
+ | αRT − β · T > 0

}

.

Note that

Bαi
(R) = {β ∈ R3

+ |Wi − β · φR : convex}. (4.10c)

It is easy to show, e.g., using (4.10), that Bα(R) is compact and convex. Since

∀β ∈ R3
+, ∀R ∈ SO(3), β · TR has atleast one (in fact, at least two) positive

eigenvalues,

α1 6 α2 =⇒ ∀R ∈ SO(3), Bα1(R) ⊆ Bα2(R). (4.11)

For α1, α2 ∈ L∗
>

(

R3×3
sym

)

let

B(α1,α2)(R) := ∩2
i=1Bαi

(R).

Since β ·φR is quadratic and quasiconvex we immediately obtain the following

analogue of (3.5) (c.f., Proposition 3.1 and §3.1.2):

Wλ(ǭ) > max
R∈SO(3)

max
β∈B(α1,α2)(R)

Wλ(R, β, ǭ), (4.12a)

where

Wλ(R, β, ǭ) := min
ǫ1,ǫ2∈R

3×3
sym

λ1ǫ1+λ2ǫ2=ǭ

λ1W1(ǫ1) + λ2W2(ǫ2)

− λ1λ2 β · φR(ǫ2 − ǫ1).

(4.12b)

This immediately implies that

Wλ(ǭ) > max
β∈∩R∈SO(3)B(α1,α2)(R)

Wλ(β, ǭ) (4.13a)

where

Wλ(β, ǭ) := max
R∈SO(3)

min
ǫ1,ǫ2∈R

3×3
sym

λ1ǫ1+λ2ǫ2=ǭ

λ1W1(ǫ1) + λ2W2(ǫ2)

− λ1λ2β · φR(ǫ2 − ǫ1).

(4.13b)

We have potentially lost some information in going from (4.12) to (4.13). We

show in Corollary 4.9 this is not the case when the elastic moduli are isotropic,

and in Theorem 4.32 that this is sometimes not the case when the elastic moduli

are cubic. We do not know whether this is true in general.

To evaluate the lower bound (4.13) we need more information about the set

∩R∈SO(3)B(α1,α2)(R). Thus in the next three sections we investigate, first the set

Bα(R) and then the set ∩R∈SO(3)B(α1,α2)(R) when elastic moduli are isotropic

(§4.5) and cubic (§4.6).
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4.4. Characterizing the set of allowable translations. I. Preliminaries.

For α ∈ L∗
>

(

R3×3
sym

)

let

Bα,I(R) := ∂Bα(R) ∩ ∂R3
+,

Bα,II+(R) := ∂Bα(R) ∩ Int(R3
+).

In other words Bα,I(R) is that part of the boundary of Bα(R) that intersects the

coordinate planes and Bα,II+(R) is that part of the boundary of Bα(R) that does

not intersect the coordinate planes; ∂Bα(R) is the disjoint union of Bα,I(R) and

Bα,II+(R).
From (4.10a) and (4.10c) it is easy to see that

Bαi,II+(R) =
{

β ∈ R3
+ |Wi − β · φR : convex but not strictly convex

}

=
{

β ∈ R3
+ | αi − β · TR

> 0, αi − β · TR ≯ 0
}

,

Bαi
(R) \Bαi,II+(R) =

{

β ∈ R3
+ |Wi − β · φR : strictly convex

}

=
{

β ∈ R3
+ | αi − β · TR > 0

}

,

Thus αi − β · TR is invertible on Bαi
(R) \Bαi,II+(R) but not on Bαi,II+(R).

For α1, α2 ∈ L∗
>

(

R3×3
sym

)

let

B(α1,α2),II+(R) := ∂B(α1,α2)(R) ∩ Int(R3
+).

From (4.10a) and (4.10c) it is easy to see that

B(α1,α2),II+(R) = ∩2
i=1Bαi,II+(R),

B(α1,α2)(R) \B(α1,α2),II+(R) = ∩2
i=1 (Bαi

(R) \Bαi,II+(R)) .

Thus, both α1−β·TR and α2−β·TR are invertible on B(α1,α2)(R)\B(α1,α2),II+(R)

and at least one of them is not invertible on B(α1,α2),II+(R).

Lemma 4.2. For α, α1, α2 ∈ L∗
>

(

R3×3
sym

)

let γα, γ(α1,α2) > 0 be defined by

γα :=

(

max
‖ǫ‖=1

〈(

α− 1
2 (e · T )α− 1

2

)

ǫ, ǫ
〉

)−1

, (4.14a)

γ(α1,α2) := min(γα1 , γα2). (4.14b)

Then,

γαe ∈ ∂
(

∩R∈SO(3)Bα(R)
)

, ∂
(

∩R∈SO(3)Bα,II+(R)
)

,

γ(α1,α2)e ∈ ∂
(

∩R∈SO(3)B(α1,α2)(R)
)

, ∂
(

∩R∈SO(3)B⋆,II+(R)
)

.

In particular, ∀R ∈ SO(3),

γαe ∈ Bα(R), Bα,II+(R),

γ(α1,α2)e ∈ B(α1,α2)(R), B⋆,II+(R).
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Proof. Since, from Note 4.1, e · TR is independent of R, it follows that for suffi-

ciently small γ′ > 0,

∀R ∈ SO(3), γ′e · T ∈ Bα(R).

Since ∀R ∈ SO(3), Bα(R) is closed it follows that ∃γα > 0 such that

∀R ∈ SO(3), γαe · T ∈ Bα,II+(R).

That γα and γ(α1,α2) are given by (4.14) follows from a proof similar to the proof

of Lemma 3.2. The results follow. ⊓⊔

Note 4.3. From (4.9a),

〈(α− γα(e · T ))I, I〉 = 〈αI, I〉+ 2γα‖I‖2 > 0.

This, with Lemma 4.2 gives,

1 6 dim ker(α− γαT ) 6 dim R3×3
sym − 1 = 5. (4.15)

We end this section by observing that as a consequence of (4.1),

ker(α− β · TR) = R ker(αRT − β · T )RT . (4.16)

4.5. Characterizing the set of allowable translations. II. Isotropic elastic moduli.

4.5.1. The set Bα(R). In this section we first show that for an isotropic elastic

modulus α, Bα(R) is independent of R (Lemma 4.4). Then we explicitly charac-

terize Bα (Lemma 4.5), the normal cone to Bα,II+ (Lemma 4.7) and ker(α−β ·TR)
on a subset of Bα,II+ (Lemma 4.8).

Lemma 4.4. When α is isotropic, Bα(R) is independent of R.

Proof. By the definition of isotropy,

∀R ∈ SO(3), 〈αRǫRT , RǫRT 〉 = 〈αǫ, ǫ〉.

This, with (4.10b), immediately implies that for isotropic α, Bα(R) is independent

of R and has the characterization

Bα =
{

β ∈ R3
+ | α− β · T > 0

}

=

{

β ∈ R3
+ | ∀ǫ ∈ R3×3

sym ,
1

2
〈αǫ, ǫ〉 − β · φ(ǫ) > 0

}

(4.17)

⊓⊔
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Lemma 4.5 (Characterization of the set of allowable translations. I). Let α be

isotropic. Then,

Bα = S(κ, µ)

:=
{

β ∈ [0, 2µ]3 | 2β′
1β

′
2β

′
3 −

(

(β′
1)

2 + (β′
2)

2 + (β′
3)

2
)

+ 1 > 0
}

,
(4.18a)

Bα,I = SI+(κ, µ)

:=
{

β ∈ [0, 2µ]3 ∩ ∂R3
+ | 2β′

1β
′
2β

′
3 −

(

(β′
1)

2 + (β′
2)

2 + (β′
3)

2
)

+ 1 > 0
}

,

Bα,II+ = SII+(κ, µ)

:=
{

β ∈ (0, 2µ]3 | 2β′
1β

′
2β

′
3 −

(

(β′
1)

2 + (β′
2)

2 + (β′
3)

2
)

+ 1 = 0
}

.
(4.18b)

Here, for i = 1, 2, 3,

β′
i :=

ℓ + βi

ℓ + 2µ
. (4.19)

Proof. From (4.17),

Bα =
{

β ∈ R3
+ | ∀ǫ ∈ R3×3

sym , 〈αǫ, ǫ〉 − 2β · φ(ǫ) > 0
}

.

A calculation reveals that

〈αǫ, ǫ〉 − 2β · φ(ǫ) = (ℓ + 2µ)(ǫ211 + ǫ222 + ǫ233)

+ 2(ℓ + β3)ǫ11ǫ22 + 2(ℓ + β1)ǫ22ǫ33 + 2(ℓ + β2)ǫ33ǫ11

+ 2(2µ− β3)ǫ
2
12 + 2(2µ− β1)ǫ

2
23 + 2(2µ− β2)ǫ

2
31.

This function is non-negative precisely when β1, β2, β3 6 2µ (i.e., β′ ∈ [ ℓ
ℓ+2µ

, 1]3)

and the Hessian

H := 2

(

ℓ+2µ ℓ+β3 ℓ+β2

ℓ+β3 ℓ+2µ ℓ+β1

ℓ+β2 ℓ+β1 ℓ+2µ

)

of (ℓ+2µ)(ǫ211 +ǫ222 +ǫ233)+2(ℓ+β3)ǫ11ǫ22 +2(ℓ+β1)ǫ22ǫ33 +2(ℓ+β2)ǫ33ǫ11
is positive-semidefinite. Set

H ′ :=
1

2(ℓ + 2µ)
H =

(

1 β′

3 β′

2

β′

3 1 β′

1

β′

2 β′

1 1

)

,

and verify through calculations that its invariants are

TrH ′ = 3,

1

2

(

(Tr(H ′))2 − Tr((H ′)2)
)

= 3−
(

(β′
1)

2 + (β′
2)

2 + (β′
3)

2
)

,

det H ′ = 2β′
1β

′
2β

′
3 −

(

(β′
1)

2 + (β′
2)

2 + (β′
3)

2
)

+ 1.

The result follows. ⊓⊔
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Fig. 4.1. The set SII+(
4

3
, 1

2
).

Note 4.6. The surface SII+(
4
3 , 1

2 ) is illustrated in Figure 4.1. We highlight certain

features of S so that its geometry could be better understood.

1. S(κ, µ), SI+(κ, µ) and S̄II+(κ, µ) intersect the coordinate axes at 2µ.

2. SI+(κ, µ) consists of three segments of ellipses: When β3 = 0, (4.18b) reduces

to−(ℓ+2µ)(β2
1+β2

2)+2ℓβ1β2−4ℓµ(β1+β2)+12ℓµ2+8µ3 = 0, which is the

equation of an ellipse. The same is true when β3 = β1 = 0 and β1 = β2 = 0.

3. The intersection of S(κ, µ) and S̄II+(κ, µ) with the plane β3 = 2µ is the straight

line segment β1 = β2 ∈ [0, 2µ]; similar statements are true when β2 = 2µ and

β3 = 2µ. Thus the intersection of S(κ, µ) with Span {e} is {2µe}. Thus, when

α is isotropic, (c.f., (4.14)),

γα = 2µ.

Subregions of SI+ and SII+. It is useful to divide SI and SII+(κ, µ) into subregions.

The definitions below are motivated partially by Note 4.6 and partially by results

to follow. Note that some of these subregions are independent of κ.

SI(κ, µ) := SI+(κ, µ) \ SI&III(µ),

SI&III(µ) := ∪3
i=1S

(i)
I&III(µ); (4.20a)

S
(1)
I&III(µ) := {(2µ, 0, 0)T }, (4.20b)

S
(2)
I&III(µ) := {(0, 2µ, 0)T }, (4.20c)

S
(3)
I&III(µ) := {(0, 0, 2µ)T }; (4.20d)
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S
(1)
II+ (κ, µ) := SII+(κ, µ) ∩

{

β ∈ R3
+ | β2, β3 > β1

}

, (4.21a)

S
(2)
II+ (κ, µ) := SII+(κ, µ) ∩

{

β ∈ R3
+ | β3, β1 > β2

}

, (4.21b)

S
(3)
II+ (κ, µ) := SII+(κ, µ) ∩

{

β ∈ R3
+ | β1, β2 > β3

}

; (4.21c)

SIII(µ) := ∪3
i=1S

(i)
III (µ); (4.22a)

S
(1)
III (µ) :=

{

β ∈ R3
+ | β2 = β3 ∈ (0, 2µ), β1 = 2µ

}

, (4.22b)

S
(2)
III (µ) :=

{

β ∈ R3
+ | β3 = β1 ∈ (0, 2µ), β2 = 2µ

}

, (4.22c)

S
(3)
III (µ) :=

{

β ∈ R3
+ | β1 = β2 ∈ (0, 2µ), β3 = 2µ

}

; (4.22d)

SIII&IV(µ) := {2µe}. (4.23)

Note that SII+(κ, µ) is the union of the disjoint sets S
(1)
II+ (κ, µ), S

(2)
II+ (κ, µ), S

(3)
II+ (κ, µ),

SIII(µ) and SIII&IV(µ). For conciseness we shall write, e.g., (S
(1)
I&III∪S

(1)
III )(µ) to mean

S
(1)
I&III(µ) ∪ S

(1)
III (µ).

The surface SII+(κ, µ) \ SIII&IV(µ) is smooth. From (4.18b), N(β), the outward

normal to S(κ, µ) at β ∈ SII+(κ, µ) \ SIII&IV(µ) is given by

N(β) 9− ∂

∂β

(

2β′
1β

′
2β

′
3 −

(

(β′
1)

2 + (β′
2)

2 + (β′
3)

2
)

+ 1
)

9
∂

∂β′
(

2β′
1β

′
2β

′
3 −

(

(β′
1)

2 + (β′
2)

2 + (β′
3)

2
)

+ 1
)

9





β′

1−β′

2β′

3

β′

2−β′

3β′

1

β′

3−β′

1β′

2



 . (4.24)

(We use “9” to mean “parallel and not anti-parallel”.) The next Lemma fills in

some important details.

Lemma 4.7 (Outward normal cone to SII+). Let α be isotropic. Let N(β) belong

to the outward normal cone to S(κ, µ) at β ∈ SII+(κ, µ). Then

sign(N) ∈



































R3
+ on SIII&IV(µ),

{(

+
0
0

)

,
(

0
+
0

)

,
(

0
0
+

)}

on SIII(µ),

{(−
+
+

)

,
(

+
−
+

)

,
(

+
+
−

)}

elsewhere on SII+(κ, µ).

More precisely (4.25) and (4.26) below hold.
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Proof. We prove the last case by showing that,

sign(N) =











(−,+,+)T on S
(1)
II+ (κ, µ),

(+,−,+)T on S
(2)
II+ (κ, µ),

(+,+,−)T on S
(3)
II+ (κ, µ).

(4.25)

Let β ∈ S
(1)
II+ (κ, µ). From (4.19),

β2, β3 > β1 ⇐⇒ β′
2, β

′
3 > β′

1.

Clearly,

β′
2 − β′

3β
′
1 > β′

2 − β′
1 > 0,

β′
3 − β′

1β
′
2 > β′

3 − β′
1 > 0;

so, from (4.24), it remains to show that β′
1− β′

2β
′
3 < 0. It is a calculation to verify

that (4.18b), which defines SII+(κ, µ), may be rewritten as

(β′
2 + β′

3)
2

2(1 + β′
1)

+
(β′

2 − β′
3)

2

2(1− β′
1)

= 1.

Thus, the intersection of SII+(κ, µ) with a plane of constant β′
1 is an ellipse with

minor and major axes equal to
√

2(1 + β′
1) and

√

2(1− β′
1) and oriented in the

(1, 1) and (1,−1) directions respectively. This is shown in Figure 4.2. This ellipse

intersects the hyperbola β′
2β

′
3 = β′

1 at (β′
2, β

′
3) = (1, β′

1) and (β′
2, β

′
3) = (β′

1, 1),
and the portion of the ellipse consistent with our assumption β′

1 6 β′
2, β

′
3 satisfies

β′
1 − β′

2β
′
3 < 0. The cases β ∈ S

(2)
II+ (κ, µ) and β ∈ S

(3)
II+ (κ, µ) are analogous.

The second case follows immediately from (4.19), (4.22) and (4.24). Indeed,

sign(N) =











(+, 0, 0)T on S
(1)
III (µ),

(0,+, 0)T on S
(2)
III (µ),

(0, 0,+)T on S
(3)
III (µ).

(4.26)

Thus,

lim
S

(i)
III

(µ)∋β′→e

N(β) = ei, i = 1, 2, 3.

The first case follows from this and the fact that the normal cone to any surface is

convex. ⊓⊔

We end this section by characterizing ker(α− β · TR).
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Fig. 4.2. A section of the set Bi,II+ through the plane β′

1 = constant.

Lemma 4.8 (Kernel of the translated elastic modulus). Let α be isotropic. Then,

ker(α− β · TR) = R ker(α− β · T )RT ,

ker(α− β · T ) =























































Span
{(

0 0 0
0 1 0
0 0 −1

)

,
(

0 0 0
0 0 1
0 1 0

)}

on (S
(1)
I&III ∪ S

(1)
III )(µ),

Span
{(

1 0 0
0 0 0
0 0 −1

)

,
(

0 0 1
0 0 0
1 0 0

)}

on (S
(2)
I&III ∪ S

(2)
III )(µ),

Span
{(

1 0 0
0 −1 0
0 0 0

)

,
(

0 1 0
1 0 0
0 0 0

)}

on (S
(3)
I&III ∪ S

(3)
III )(µ),

D ⊕O on SIII&IV(µ).

Proof. The first statement follows from (4.16) and the isotropy of α.
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When β ∈ (S
(1)
I&III ∪ S

(1)
III )(µ), from (4.22) and (4.20), β1 = 2µ and β2 = β3 ∈

[0, 2µ). Thus from (4.3) and (4.6),

(α− β · T )ǫ

=αǫ− (2µT1 + β2T2 + β2T3)ǫ

=κ(ǫ11 + ǫ22 + ǫ33)

+ 2µ

(

ǫ11− ǫ11+ǫ22+ǫ33
3 ǫ12 ǫ31

ǫ12 ǫ22− ǫ11+ǫ22+ǫ33
3 ǫ23

ǫ31 ǫ23 ǫ33− ǫ11+ǫ22+ǫ33
3

)

− 2µ
(

0 0 0
0 −ǫ33 ǫ23
0 ǫ23 −ǫ22

)

− β2

(−ǫ33 0 ǫ31
0 0 0

ǫ31 0 −ǫ11

)

− β2

(−ǫ22 ǫ12 0
ǫ12 −ǫ11 0
0 0 0

)

=









(κ− 2
3 µ)(ǫ11+ǫ22+ǫ33)

+2µǫ11+β2ǫ22+β2ǫ33
(2µ−β2)ǫ12 (2µ−β2)ǫ31

(2µ−β2)ǫ12
(κ− 2

3 µ)(ǫ11+ǫ22+ǫ33)

+β2ǫ11+2µǫ22+2µǫ33
0

(2µ−β2)ǫ31 0
(κ− 2

3 µ)(ǫ11+ǫ22+ǫ33)

+β2ǫ11+2µǫ22+2µǫ33









(4.27)

Thus (α− β · T )ǫ = 0 if and only if ǫ31 = ǫ12 = 0 and

(κ− 2

3
µ)(ǫ11 + ǫ22 + ǫ33) + 2µǫ11 + β2ǫ22 + β2ǫ33 = 0,

(κ− 2

3
µ)(ǫ11 + ǫ22 + ǫ33) + β2ǫ11 + 2µǫ22 + 2µǫ33 = 0.

When β2 6= 2µ these four equations are independent: dim(ker(α− β · T )) = 2. It

is easy to verify that

(

0 0 0
0 1 0
0 0 −1

)

,
(

0 0 0
0 0 1
0 1 0

)

∈ ker(α− β · T ).

This proves the first statement; the proofs of the second and third statements are

almost identical.

The fourth statement immediately follows by setting β2 = β3 = 2µ in (4.27).

Alternatively, from (4.3) and Note 4.1,

(α− 2µe · T ) ǫ = (ℓTr(ǫ)I + 2µǫ)− 2µ(ǫ− Tr(ǫ)I)

= (ℓ + 2µ) Tr(ǫ)I.

It follows that,

ǫ ∈ ker(α− 2µe · T ) ⇐⇒ Tr(ǫ) = 0.

This completes the proof. ⊓⊔
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4.5.2. The set B(α1,α2)(R). Finally we explicitly characterize B(α1,α2)(R) (Corol-

lary 4.9) and the normal cone to B(α1,α2),II+ (Corollary 4.10).

Using (4.11) if necessary, we immediately have the following corollary to

Lemmas 4.4 and 4.5:

Corollary 4.9 (Characterization of the set of allowable translations. II). Let α1

and α2 be isotropic. Then B(α1,α2)(R) is independent of R. Moreover

B(α1,α2) = S(κ1, µ1) ∩ S(κ2, µ2)

and (c.f., (4.14)),

γ(α1,α2) = 2min(µ1, µ2).

Lemma 4.7 can also be extended:

Corollary 4.10. Let α1 and α2 be isotropic. Let N ∈ R3
+ belong to the outward

normal cone to B(α1,α2),II+. Then

sign(N) ∈



































R3
+ on SIII&IV(min(µ1, µ2)),

{(

+
0
0

)

,
(

0
+
0

)

,
(

0
0
+

)}

on (SI&III ∪ SIII)(min(µ1, µ2)),

{(−
+
+

)

,
(

+
−
+

)

,
(

+
+
−

)}

elsewhere.

Proof. The first two cases are easy, once it is observed that, from the geometry of

S(κ, µ),

(SIII ∪ SIII&IV)(min(µ1, µ2)) ( SII+(κ1, µ1) ∩ SII+(κ2, µ2).

We turn to the third case. In addition to the corners of SII+(κ1, µ1) and SII+(κ2, µ2),
SII+(κ1, µ1) ∩ SII+(κ2, µ2) can have corners where SII+(κ1, µ1) and SII+(κ2, µ2) in-

tersect.

Consider the case β ∈ S
(1)
II+ (κ1, µ1) ∩ S

(1)
II+ (κ2, µ2). From (4.25) the sign of

the normals at β to both S
(1)
II+ (κ1, µ1) and S

(1)
II+ (κ2, µ2) is (−,+,+)T . It follows

that sign(N) = (−,+,+)T . The cases β ∈ S
(2)
II+ (κ1, µ1) ∩ S

(2)
II+ (κ2, µ2) and β ∈

S
(3)
II+ (κ1, µ1) ∩ S

(3)
II+ (κ2, µ2) are analogous. (From (4.21) it is clear that there are

no other cases.) ⊓⊔

4.6. Characterizing the set of allowable translations. III. Cubic elastic moduli.

In this section we extend the results of the previous section (§4.5) to cubic

moduli. Since the case µ = η has already been considered there we shall prove the

results in this section only for µ 6= η.
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4.6.1. The set ∩R∈SO(3)Bα(R). After some preliminary results, in Lemma 4.13

we at least partially characterize ∩R∈SO(3)Bα(R). This result derives its impor-

tance from Lemma 4.14 which shows that ∀R ∈ SO(3), αR−β ·T is not invertible

on a certain subset of ∩R∈SO(3)Bα(R). We end by characterizing ker(αRα−β ·T )
on this subset (Lemma 4.16) and characterizing ker(α− γαe · T ) (Lemma 4.17).

Lemma 4.11. Let α be cubic. Then

S(κ, min(µ, η)) ⊆ ∩R∈SO(3)Bα(R) ⊆ S(κ, max(µ, η))

Proof. From (4.2),

3κΛh + 2 min(µ, η)Λs 6 αRα 6 3κΛh + 2 max(µ, η)Λs

and thus, by using (4.3), ∀R ∈ SO(3),

3κΛh + 2 min(µ, η)Λs 6 αR
6 3κΛh + 2 max(µ, η)Λs.

From (4.11) and Lemmas 4.4 and4.5,

S(κ, min(µ, η)) ⊆ Bα(R) ⊆ S(κ, max(µ, η)),

from which the result follows. ⊓⊔

When α is cubic, BαRα and BαRα ,II+ have simple explicit characterizations:

Lemma 4.12. When α is cubic,

BαRα =

{

S(κ, µ) if η > µ,

S(κ, µ) ∩ [0, 2η]3 if µ > η;

BαRα ,II+ =

{

SII+(κ, µ) if η > µ,

S II+(κ, µ) ∩ (0, 2η]3 if µ > η.

The proof of Lemma 4.12 is almost identical to that of Lemma 4.5. Lem-

mas 4.11 and 4.12 immediately lead to the following at least partial characteri-

zation of ∩R∈SO(3)Bα(R) when α is cubic:

Lemma 4.13. Let α be cubic. Then, when η > µ,

∩R∈SO(3) Bα(R) = S(κ, µ); (4.28a)

and, when µ > η,

S(κ, η) ⊆ ∩R∈SO(3)Bα(R) ⊆ S(κ, µ) ∩ [0, 2η]3. (4.28b)

In particular,

S(κ, min(µ, η)) ⊆ ∩R∈SO(3)Bα(R), (4.28c)

(SI&III ∪ SIII ∪ SIII&IV)(min(µ, η)) ( ∂
(

∩R∈SO(3)Bα(R)
)

. (4.28d)
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Proof. When η > µ, (4.28a) follows immediately from the observation that

S(κ, µ) ⊆ ∩R∈SO(3)Bα(R) ⊆ Bα(RT
α ) = S(κ, µ).

(The first inclusion follows from Lemmas 4.11 and the last equality from Lemma 4.12.)

When µ > η, again from Lemmas 4.11 and 4.12,

S(κ, η) ⊆ ∩R∈SO(3)Bα(R) ⊆ Bα(RT
α ) = S(κ, µ) ∩ [0, 2η]3.

In both cases (4.28c) and 4.28d follow immediately from (4.28a) and 4.28b. ⊓⊔

Thus, for cubic α, (c.f., (4.14)),

γα = 2min(µ, η). (4.29)

Lemma 4.14. Let α be cubic. For any R ∈ SO(3), α − β · TR is not invertible

when β ∈ (SI&III ∪ SIII)(min(µ, η)).

Lemma 4.17 shows that the result is true also for β ∈ SIII&IV(min(µ, η)).

Proof. We begin by observing that αRα can be written as the sum of non-negative

operators as

αRα =

{

3κΛh + 2µΛs + 2(η − µ)Λo if η > µ,

3κΛh + 2ηΛs + 2(µ− η)Λd if µ > η.

Let R′ ∈ SO(3) and R := R−1
α R′. Then

αR′

= αRαR

=

{

3κΛh + 2µΛs + 2(η − µ)Λo
R if η > µ,

3κΛh + 2ηΛs + 2(µ− η)Λd
R if µ > η.

From (4.1) it suffices to show that ∀R′ ∈ SO(3), αR′−β ·T is not invertible when

β ∈ (SI&III ∪ SIII)(min(µ, η)). Consider first the case

β ∈ (S
(1)
I&III ∪ S

(1)
III ∪ SIII&IV)(min(µ, η)).

Then from (4.22), (4.23) and (4.20), β = (2min(µ, η), β2, β2)
T and β2 ∈ [0, 2 min(µ, η)).

We consider the cases µ > η and η > µ separately.

µ > η: Using Note 4.1,

αR′ − β · T = αR′ − β2e · T − (2η − β2)T1

= (3κ + 2β2)Λh + (2η − β2)(Λs − T1) + 2(µ− η)Λd
R. (4.30)

Since, from (4.7),

ker ((3κ + 2β2)Λh + (2η − β2)(Λs − T1)) = Span
{(

0 0 0
0 1 0
0 0 −1

)

,
(

0 0 0
0 0 1
0 1 0

)}

,

(4.31)
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αR′ − β · T is invertible only if

ker
(

Λd
R
)

⊆
(

Span
{(

0 0 0
0 1 0
0 0 −1

)

,
(

0 0 0
0 0 1
0 1 0

)})⊥

= Span
{

I,
(

2 0 0
0 −1 0
0 0 −1

)

,
(

0 1 0
1 0 0
0 0 0

)

,
(

0 0 1
0 0 0
1 0 0

)}

Since dim ker
(

Λd
R
)

= dimker(Λd) = 4 the inclusion above is in fact an equal-

ity. I.e., αR′ − β · T is invertible only if ∀x ∈ R3,

Λd

(

RT
( 2x1 x2 x3

x2 −x1 0
x3 0 −x1

)

R
)

= 0.

I.e., ∀x ∈ R3,

(3R2
11 − 1)x1 + 2R11R21x2 + 2R11R31x3 = 0,

(3R2
12 − 1)x1 + 2R12R32x2 + 2R12R32x3 = 0,

(3R2
13 − 1)x1 + 2R13R23x2 + 2R13R33x3 = 0.

This implies that R = 0 (e.g., pick x = e1, e2, e3), which is a contradiction.

η > µ: Similar to the case µ > η,

αR′ − β · T = (3κ + 2β2)Λh + (2µ− β2)(Λs − T1) + 2(η − µ)Λo
R (4.32)

and αR′ − β · T is invertible only if

ker
(

Λo
R
)

⊆
(

Span
{(

0 0 0
0 1 0
0 0 −1

)

,
(

0 0 0
0 0 1
0 1 0

)})⊥
.

Now,

ker
(

Λo
R
)

= R ker(Λo)RT =
{

R
(

x1 0 0
0 x2 0
0 0 x3

)

RT | x ∈ R3
}

Thus αR′ − β · T is invertible only if ∀x ∈ R3,

〈

R
(

x1 0 0
0 x2 0
0 0 x3

)

RT ,
(

0 0 0
0 1 0
0 0 −1

)〉

= 0,
〈

R
(

x1 0 0
0 x2 0
0 0 x3

)

RT ,
(

0 0 0
0 0 1
0 1 0

)〉

= 0.

I.e., ∀x ∈ R3,

R21R31x1 + R22R32x2 + R23R33x3 = 0,

(R2
21 −R2

31)x1 + (R2
22 −R2

32)x2 + (R2
23 −R2

33)x3 = 0.

This implies that R = 0 (e.g., pick x = e1, e2, e3), which is a contradiction.

Similar results hold for β ∈ (S
(2)
I&III ∪ S

(2)
III )(min(µ, η)) and β ∈ (S

(3)
I&III ∪

S
(3)
III )(min(µ, η)). ⊓⊔
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Corollary 4.15. Let α be cubic and β ∈ (SI&III ∪ SIII)(min(µ, η)). Then, for any

R ∈ SO(3),

dim ker(α− β · TR) =

{

2 if α is isotropic,

1 otherwise

Proof. When α is isotropic the result is immediate from Lemma 4.8; we turn to

the case when α is not isotropic.

From the proof of Lemma 4.14 (c.f., (4.30), (4.31) and 4.32),

1 6 dim ker(α− β · TR) 6 2. (4.33)

Let β ∈ (S
(1)
I&III ∪ S

(1)
III )(min(µ, η)). We consider the cases µ > η and η > µ

seperately.

µ > η: From the proof of Lemma 4.14 (c.f., (4.30) and (4.31)),

dim ker(α− β · TR) = 2

⇐⇒ ker(Λd
R) = Span

{(

0 0 0
0 1 0
0 0 −1

)

,
(

0 0 0
0 0 1
0 1 0

)}

=⇒ ∀x, y ∈ R, Λd

(

RT
( 0 0 0

0 x y
0 y −x

)

R
)

= 0

⇐⇒ ∀x, y ∈ R,











(R2
21 −R2

31)x + 2R21R31y

=(R2
22 −R2

32)x + 2R22R32y

=(R2
23 −R2

33)x + 2R23R33y.

This implies

R2
21 −R2

31 = R2
22 −R2

32 = R2
23 −R2

33 =: k1 (say), (4.34a)

R21R31 = R22R32 = R23R33. (4.34b)

(4.34a) implies

1 = R2
21 + R2

22 + R2
23 = R2

31 + R2
32 + R2

33 + 3k1 = 1 + 3k1,

and thus k1 = 0, giving, R2
21 = R2

31, R2
22 = R2

32 and R2
23 = R2

33. This,

with (4.34b) implies

R2
21 = R2

31 = R2
22 = R2

32 = R2
23 = R2

33 = k2
2 (say).

Thus R ∈ SO(3) is of the form

( · · ·
±k2 ±k2 ±k2

±k2 ±k2 ±k2

)

which is a contradiction since the second row of the matrix above cannot be or-

thogonal to the third row (for any choice of signs). Thus dim ker(α−β ·TR) 6= 2.

The result follows from (4.33).
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η > µ: From the proof of Lemma 4.14 (c.f., (4.31) and (4.32)),

dim ker(α− β · TR) = 2

⇐⇒ ker(Λo
R) = Span

{(

0 0 0
0 1 0
0 0 −1

)

,
(

0 0 0
0 0 1
0 1 0

)}

=⇒ ∀x, y ∈ R, Λo

(

RT
( 0 0 0

0 x y
0 y −x

)

R
)

= 0

⇐⇒ ∀x, y ∈ R,











(R21R22 −R31R32)x + (R22R31 + R21R32)y = 0,

(R21R23 −R31R33)x + (R23R31 + R21R33)y = 0,

(R22R23 −R32R33)x + (R23R32 + R22R33)y = 0.

=⇒











R21R22 −R31R32 = 0, R22R31 + R21R32 = 0,

R21R23 −R31R33 = 0, R23R31 + R21R33 = 0,

R22R23 −R32R33 = 0, R23R32 + R22R33 = 0.

Squaring and adding these three pairs of equations gives,

(R2
21 + R2

31)(R
2
22 + R2

32) = 0,

(R2
21 + R2

31)(R
2
23 + R2

33) = 0,

(R2
22 + R2

32)(R
2
23 + R2

33) = 0.

I.e., at least two of R2
21 + R2

31, R2
22 + R2

32 and R2
23 + R2

33 must vanish. It is easy

to see that no such R ∈ SO(3) exists. Thus dim ker(α− β · TR) 6= 2. The result

follows from (4.33).

Similar results hold for β ∈ (S
(2)
I&III ∪ S

(2)
III )(min(µ, η)) and β ∈ (S

(3)
I&III ∪

S
(3)
III )(min(µ, η)). ⊓⊔

We end this section by characterizing, in Lemma 4.16, ker(αRα − β · T ) for

β ∈ (SI&III ∪ SIII)(min(µ, η)) and characterizing, in Lemma 4.17, ker(α− β · TR)
for β ∈ SIII&IV(min(µ, η)):

Lemma 4.16. Let α be cubic. When η > µ,

ker(αRα − β · T ) =























































Span
{(

0 0 0
0 1 0
0 0 −1

)}

on (S
(1)
I&III ∪ S

(1)
III )(µ),

Span
{(

1 0 0
0 0 0
0 0 −1

)}

on (S
(2)
I&III ∪ S

(2)
III )(µ),

Span
{(

1 0 0
0 −1 0
0 0 0

)}

on (S
(3)
I&III ∪ S

(3)
III )(µ),

D on SIII&IV(µ);
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and when µ > η,

ker(αRα − β · T ) =























































Span
{(

0 0 0
0 0 1
0 1 0

)}

on (S
(1)
I&III ∪ S

(1)
III )(η),

Span
{(

0 0 1
0 0 0
1 0 0

)}

on (S
(2)
I&III ∪ S

(2)
III )(η),

Span
{(

0 1 0
1 0 0
0 0 0

)}

on (S
(3)
I&III ∪ S

(3)
III )(η),

O on SIII&IV(η).

The case µ = η was considered in Lemma 4.8.

Proof. We consider the cases η > µ and µ > η separately.

η > µ: When β ∈ (S
(1)
I&III ∪ S

(1)
III )(µ), from (4.22) and (4.20), β1 = 2µ and

β2 = β3 ∈ [0, 2µ). From (4.2) and (4.6),

(αRα − β · T )ǫ

=αRαǫ− (2µT1 + β2T2 + β2T3)ǫ

= κ(ǫ11 + ǫ22 + ǫ33)I

+ 2µ

(

ǫ11− ǫ11+ǫ22+ǫ33
3 0 0

0 ǫ22− ǫ11+ǫ22+ǫ33
3 0

0 0 ǫ33− ǫ11+ǫ22+ǫ33
3

)

+ 2η
( 0 ǫ12 ǫ31

ǫ12 0 ǫ23
ǫ31 ǫ23 0

)

− 2µ
(

0 0 0
0 −ǫ33 ǫ23
0 ǫ23 −ǫ22

)

− β2

(−ǫ33 0 ǫ31
0 0 0

ǫ31 0 −ǫ11

)

− β2

(−ǫ22 ǫ12 0
ǫ12 −ǫ11 0
0 0 0

)

=









(κ− 2
3 µ)(ǫ11+ǫ22+ǫ33)

+2µǫ11+β2ǫ22+β2ǫ33
(2η−β2)ǫ12 (2η−β2)ǫ31

(2η−β2)ǫ12
(κ− 2

3 µ)(ǫ11+ǫ22+ǫ33)

+β2ǫ11+2µǫ22+2µǫ33
2(η−µ)ǫ23

(2η−β2)ǫ31 2(η−µ)ǫ23
(κ− 2

3 µ)(ǫ11+ǫ22+ǫ33)

+β2ǫ11+2µǫ22+2µǫ33









(4.35)

Thus (α− β · T )ǫ = 0 if and only if ǫ23 = ǫ31 = ǫ12 = 0 and

(κ− 2

3
µ)(ǫ11 + ǫ22 + ǫ33) + 2µǫ11 + β2ǫ22 + β2ǫ33 = 0,

(κ− 2

3
µ)(ǫ11 + ǫ22 + ǫ33) + β2ǫ11 + 2µǫ22 + 2µǫ33 = 0.

When β2 6= 2µ the last two equations are independent: dim(ker(α− β · T )) = 1.

It is easy to verify that

(

0 0 0
0 1 0
0 0 −1

)

∈ ker(α− β · T ).

This proves the first case; the proofs of the second and third cases are almost

identical.
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The fourth case immediately follows by setting β2 = β3 = 2µ in (4.35).

Alternatively, from (4.2) and Note 4.1,

αRα − 2µe · T = (3κ + 4µ)Λh + 2(η − µ)Λo

It follows that,

ǫ ∈ ker(αRα − 2µe · T ) ⇐⇒ Λhǫ = Λoǫ = 0.

µ > η: When β ∈ (S
(1)
I&III ∪ S

(1)
III )(η), from (4.22) and (4.20), β1 = 2η and

β2 = β3 ∈ [0, 2η). From (4.2) and (4.6),

(αRα − β · T )ǫ

=αRαǫ− (2ηT1 + β2T2 + β2T3)ǫ

= κ(ǫ11 + ǫ22 + ǫ33)I

+ 2µ

(

ǫ11− ǫ11+ǫ22+ǫ33
3 0 0

0 ǫ22− ǫ11+ǫ22+ǫ33
3 0

0 0 ǫ33− ǫ11+ǫ22+ǫ33
3

)

+ 2η
( 0 ǫ12 ǫ31

ǫ12 0 ǫ23
ǫ31 ǫ23 0

)

− 2η
(

0 0 0
0 −ǫ33 ǫ23
0 ǫ23 −ǫ22

)

− β2

(−ǫ33 0 ǫ31
0 0 0

ǫ31 0 −ǫ11

)

− β2

(−ǫ22 ǫ12 0
ǫ12 −ǫ11 0
0 0 0

)

=









(κ− 2
3 µ)(ǫ11+ǫ22+ǫ33)

+2µǫ11+β2ǫ22+β2ǫ33
(2η−β2)ǫ12 (2η−β2)ǫ31

(2η−β2)ǫ12
(κ− 2

3 µ)(ǫ11+ǫ22+ǫ33)

+β2ǫ11+2µǫ22+2ηǫ33
0

(2η−β2)ǫ31 0
(κ− 2

3 µ)(ǫ11+ǫ22+ǫ33)

+β2ǫ11+2ηǫ22+2µǫ33









(4.36)

Thus (α− β · T )ǫ = 0 if and only if ǫ31 = ǫ12 = 0 and

(κ− 2

3
µ)(ǫ11 + ǫ22 + ǫ33) + 2µǫ11 + β2ǫ22 + β2ǫ33 = 0,

(κ− 2

3
µ)(ǫ11 + ǫ22 + ǫ33) + β2ǫ11 + 2µǫ22 + 2ηǫ33 = 0,

(κ− 2

3
µ)(ǫ11 + ǫ22 + ǫ33) + β2ǫ11 + 2ηǫ22 + 2µǫ33 = 0.

When β2, µ and η are distinct, the last three equations are independent: dim(ker(α−
β · T )) = 1. From (4.36) it is clear that

(

0 0 0
0 0 1
0 1 0

)

∈ ker(α− β · T ).

This proves the first case; the proofs of the second and third cases are almost

identical.

The fourth case immediately follows by setting β2 = β3 = 2η in (4.35).

Alternatively, from (4.2) and Note 4.1,

αRα − 2ηe · T = (3κ + 4µ)Λh + 2(µ− η)Λo
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It follows that,

ǫ ∈ ker(αRα − 2µe · T ) ⇐⇒ Λhǫ = Λdǫ = 0.

⊓⊔

Lemma 4.17. Let α be cubic. For any R ∈ SO(3), α − β · TR is not invertible

when β ∈ SIII&IV(min(µ, η)), i.e., when β = 2min(µ, η)e. Moreover,

ker(α− 2 min(µ, η)e · T ) =











RT
αDRα if η > µ,

D ⊕O if µ = η,

RT
αORα if µ > η.

Proof. We observe first that

ker
(

α− β · TR
)

= ker
(

αRαRT
α − β · TRRαRT

α

)

= RT
α ker

(

αRα − β · TRRα
)

Rα

where we have used (4.1). In particular, when β = 2min(µ, η)e, from Note 4.1,

ker
(

α− 2 min(µ, η)e · TR
)

= RT
α ker

(

αRα − 2 min(µ, η)e · T
)

Rα.

The result follows by combining this with Lemmas 4.8 and 4.16. ⊓⊔

4.6.2. The set ∩R∈SO(3)B(α1,α2)(R). Finally, in Corollary 4.18, we partially

characterize ∩R∈SO(3)B(α1,α2)(R) and, in Corollary 4.19, the normal cone to

∩R∈SO(3)B(α1,α2),II+.

Using (4.11) if necessary, we immediately have the following corollary to

Lemma 4.13:

Corollary 4.18. Let α1 and α2 be cubic. Then

∩R∈SO(3)B(α1,α2)(R) ⊇ S(κ1,min(µ1, η1)) ∩ S(κ2,min(µ2, η2)), (4.37)

∂
(

∩R∈SO(3)B(α1,α2)(R)
)

) (SI&III ∪ SIII ∪ SIII&IV)(min(µ1, η1, µ2, η2))

and

γ(α1,α2) = 2min(µ1, η1, µ2, η2)

Lemma 4.7 can also be extended:

Corollary 4.19. Let α1 and α2 be cubic. Let N ∈ R3
+ belong to the outward

normal cone to B(α1,α2),II+. Then

sign(N) ∈



































R3
+ on SIII&IV(min(µ1, η1, µ2, η2)),

{(

+
0
0

)

,
(

0
+
0

)

,
(

0
0
+

)}

on (SI&III ∪ SIII)(min(µ1, η1, µ2, η2)),

{(−
+
+

)

,
(

+
−
+

)

,
(

+
+
−

)}

elsewhere.
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4.7. An optimal rotation diagonalizes the optimal strain jump.

Now that we have attained our goal of characterizing—to a degree sufficient

for our purposes—the set ∩R∈SO(3)B(α1,α2)(R) (c.f., (4.13a)) we turn to the max-

imizatio over SO(3) in (4.13b). The main result of this section is:

Theorem 4.20 (An optimal rotation diagonalizes the optimal strain jump).

There exist R⋆(β, ǭ) ∈ SO(3) and ǫ⋆
1(R⋆, β, ǭ), ǫ⋆

2(R⋆, β, ǭ) ∈ R3×3
sym that ex-

tremize (4.13b) such that RT
⋆ ∆ǫ⋆R⋆ is diagonal.

(From Note 4.1 this is trivially true when β ‖ e.) Our proof of theorem 4.20

uses doubly stochastic matrices and is presented at the end of this section.

Doubly stochastic matrices. Doubly stochastic matrices are square matrices, all of

whose entries are non-negative and each of whose rows and columns add up to one.

Ωn, the set of all doubly stochastic matrices in Rn×n, is a (n − 1)2-dimensional

convex set. The set of extreme points of Ωn is Pn, the set of permutation matrices

in Rn×n ([Bir46] or, e.g., [MI79, pg.19,34]). In particular, the set of extreme points

of Ω3 is

P3 :=
{(

1 0 0
0 1 0
0 0 1

)

,
(

0 1 0
0 0 1
1 0 0

)

,
(

0 0 1
1 0 0
0 1 0

)

,
(

1 0 0
0 0 1
0 1 0

)

,
(

0 1 0
1 0 0
0 0 1

)

,
(

0 0 1
0 1 0
1 0 0

)}

.

Note that the first three of these belong to SO(3) and the next three to O(3) \
SO(3).

The following lemma is elementary:

Lemma 4.21. Let v, w ∈ Rn. Then

1. ∃D⋆ ∈ Pn that maximizes Ωn ∋ D 7→ Dv · w ∈ R.

2. The ordering of the components of D⋆v is the same as the ordering of the

components of w. I.e., if σ is a permutation of {1, 2, . . . , n} such that wσ(i) 6

wσ(i+1), i = 1, 2, . . . , n−1, then (D⋆v)σ(i) 6 (D⋆v)σ(i+1), i = 1, 2, . . . , n−
1.

3. The maximizer is unique precisely when all the components of v are distinct

and all the components of w are distinct.

We define S : SO(3)→ Ω3 by

SO(3) ∋





R11 R12 R13

R21 R22 R23

R31 R32 R33





S7→







R2
11 R2

12 R2
13

R2
21 R2

22 R2
23

R2
31 R2

32 R2
33






∈ Ω3. (4.38)

Some of the following properties of S will be used in the sequel.

Lemma 4.22.

1. ∀P ∈ P3, φ(PT ǫP ) = PT φ(ǫ).
2. ∀P ∈ P3 \ SO(3) there exists R(P ) ∈ SO(3) such that

φ(PT ǫP ) = φ(R(P )T ǫR(P ).
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3. For R(P ) defined as in (2), S(R(P )) = P . Thus P3 ⊂ Range(S).
4. The fixed points of S are precisely P3 ∩ SO(3) (and thus P3 ∩ SO(3) ⊂

Range(S)); S can be extended to a map from O(3) to Ω3, in which case its

fixed points are precisely P3.

5. S is not onto.

Proof. The first statement is easily verified.

(2): Each P ∈ P3 is a matrix precisely three of whose components is 1. For

each P ∈ P \ SO(3) replacing one or three 1s by −1 generates a matrix R(P ) ∈
SO(3). It is easily verified that for every such choice of R(P ), Φ(PT ǫP ) =
Φ(R(P )T ǫR(P )).

(4): This follows from the fact that the only fixed points of R ∋ x 7→ x2 ∈ R
are 0 and 1.

(5): Assume on the contrary that ∃R ∈ SO(3) such that

S(R) =
1

3

(

1 1 1
1 1 1
1 1 1

)

∈ Ω3.

Then, from (4.38), for some choice of signs

R =
1√
3

(±1 ±1 ±1
±1 ±1 ±1
±1 ±1 ±1

)

.

However the rows and columns of this R cannot be orthogonal: R /∈ SO(3), which

is a contradiction. ⊓⊔
Lemma 4.23. Let ǫ ∈ R3×3

sym and R ∈ SO(3). There exists D ∈ Ω3 such that

β · φR(ǫ) = −Dβ · Υ (ǫ).

Proof. Let R′ := R(ǫ)R. Then

RT ǫR = (R(ǫ)R)T diag(ǫ) R(ǫ)R = (R′)T diag(ǫ) R′.

An easy exercise reveals that

φR(ǫ)

= −







(R′
22R

′
33 −R′

32R
′
23)

2 (R′
23R

′
31 −R′

33R
′
21)

2 (R′
21R

′
32 −R′

31R
′
22)

2

(R′
32R

′
13 −R′

12R
′
33)

2 (R′
33R

′
11 −R′

13R
′
31)

2 (R′
31R

′
12 −R′

11R
′
32)

2

(R′
12R

′
23 −R′

22R
′
13)

2 (R′
13R

′
21 −R′

23R
′
11)

2 (R′
11R

′
22 −R′

21R
′
12)

2







Υ (ǫ) (4.39)

Using the fact that the rows and coulmns of R′ are orthonormal,

β · φR(ǫ) = −β ·







(R′
11)

2 (R′
12)

2 (R′
13)

2

(R′
21)

2 (R′
22)

2 (R′
23)

2

(R′
31)

2 (R′
13)

2 (R′
11)

2






Υ (ǫ)

= −β · S(R′)Υ (ǫ)

= −(S(R′)T β · Υ (ǫ) (4.40)

= −Dβ · Υ (ǫ).

where D := (S(R(ǫ)R))T . ⊓⊔
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We are now ready to prove Theorem 4.20:

Proof (of Theorem 4.20).

The existence of R⋆(β, ǭ) ∈ SO(3) and ǫ⋆
1(R⋆, β, ǭ), ǫ⋆

2(R⋆, β, ǭ) ∈ R3×3
sym

that extremize (4.13b) follows from the continuity of SO(3) × R3×3
sym ∋ (R, ǭ) 7→

Wλ(R, β, ǭ), the convexity for each R ∈ SO(3) of Wi − β · φR, and the com-

pactness of SO(3). It remains to show that RT
⋆ ∆ǫ⋆R⋆ is diagonal. From (4.13b)

and (4.40),

Wλ(β, ǭ) = max
R∈SO(3)

min
ǫ1,ǫ2∈R

3×3
sym

λ1ǫ1+λ2ǫ2=ǭ

λ1W1(ǫ1) + λ2W2(ǫ2)

+ λ1λ2S
T (R(ǫ2 − ǫ1)R)β · Υ (ǫ2 − ǫ1).

Thus

Wλ(β, ǭ) 6 max
D∈Range(S)

min
ǫ1,ǫ2∈R

3×3
sym

λ1ǫ1+λ2ǫ2=ǭ

λ1W1(ǫ1) + λ2W2(ǫ2)

+ λ1λ2Dβ · Υ (ǫ2 − ǫ1),

(4.41)

where the inequality arises since we are replacing ST (R(ǫ2 − ǫ1)R) with an ar-

bitrary D ∈ Ω3. From Lemma 4.21(1), there exists D⋆ ∈ P3 that maximizes the

function

Ω3 ∋ D 7→ min
ǫ1,ǫ2∈R

3×3
sym

λ1ǫ1+λ2ǫ2=ǭ

λ1W1(ǫ1) + λ2W2(ǫ2) + λ1λ2Dβ · Υ (ǫ2 − ǫ1).

Since, from lemma 4.22(4), P3 ⊂ Range(S), this implies the existence of R⋆ ∈
SO(3) such that S(R(∆ǫ⋆)R⋆) = D⋆. Thus the inequality in (4.41) is actually an

equality. Further

S(R(∆ǫ⋆)R⋆) ∈ P3 =⇒ R(∆ǫ⋆)R⋆ is a signed permutation matrix

=⇒ (R(∆ǫ⋆)R⋆)
T diag(∆ǫ⋆)(R(∆ǫ⋆)R⋆) is diagonal

=⇒ RT
⋆ ∆ǫ⋆R⋆ is diagonal

which completes the proof. ⊓⊔

Note that, since RT
⋆ ∆ǫ⋆R⋆ is diagonal, for some permutation σ (c.f., (4.5)

and (4.4)),

φR⋆(∆ǫ⋆) = φ(RT
⋆ ∆ǫ⋆R⋆) = −Υσ(∆ǫ⋆). (4.42)

4.8. Explicit expressions for the optimal strains and stresses.

We return to the minimization problem (4.12b) and find the minimizers ǫ⋆
1(R, β, ǭ)

and ǫ⋆
2(R, β, ǭ).

The expressions in this section can be obtained from those in §3.1.4 by the

formal substitution of β · TR for βT , β ∈ B(α1,α2)(R) \ B(α1,α2),II+(R) for β ∈
[0, γ(α1,α2)) and β ∈ B(α1,α2),II+(R) for β = γ(α1,α2).

By differentiating the argument on the right-hand side of (4.12b),

α1(ǫ
⋆
1 − ǫT

1)− α2(ǫ
⋆
2 − ǫT

2) + (β · TR)(ǫ⋆
2 − ǫ⋆

1) = 0 (4.43)
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In other words,

∆σ⋆ = (β · TR)∆ǫ⋆ (4.44)

where

∆ǫ⋆ := ǫ⋆
2 − ǫ⋆

1,

∆σ⋆ := σ⋆
2 − σ⋆

1 ,

σ⋆
i := αi(ǫ

⋆
i − ǫT

i), i = 1, 2.

Since λ1ǫ
⋆
1 + λ2ǫ

⋆
2 = ǭ, (4.43) gives

(λ2α1 + λ1α2 − β · TR)ǫ⋆
1 = (α2 − β · TR)ǭ− λ2∆(αǫT),

(λ2α1 + λ1α2 − β · TR)ǫ⋆
2 = (α1 − β · TR)ǭ + λ1∆(αǫT),

(λ2α1 + λ1α2 − β · TR)∆ǫ⋆ = ∆(αǫT)− (∆α)ǭ.

where

∆(αǫT) := α2ǫ
T

2 − α1ǫ
T

1,

∆α := α2 − α1.

If β ∈ B(α1,α2)(R)\B(α1,α2),II+(R), then from §4.4 it follows that λ2α1 +λ1α2−
β ·TR = λ2(α1−β ·TR)+λ1(α2−β ·TR) is positive definite since it is the sum

of two positive definite linear operators. Consequently, we may invert the relations

above to conclude that

ǫ⋆
1(R, β, ǭ) =

(

λ2α1 + λ1α2 − β · TR
)−1

(

(α2 − β · TR)ǭ− λ2∆(αǫT)
)

,

(4.45a)

ǫ⋆
2(R, β, ǭ) =

(

λ2α1 + λ1α2 − β · TR
)−1

(

(α1 − β · TR)ǭ + λ1∆(αǫT)
)

,

(4.45b)

∆ǫ⋆(R, β, ǭ) =
(

λ2α1 + λ1α2 − β · TR
)−1

(∆(αǫT)− (∆α)ǭ) .

(4.45c)

If β ∈ B(α1,α2),II+(R), then λ2α1 +λ1α2−β ·TR might only be positive semi-

definite. However, the minimization problem (4.12b) is quadratic. So we can have

one of two situations: either (1) the minimum is finite and the solutions in (4.45)

make sense up to a constant in ker(λ2α1 + λ1α2 − β · TR), or (2) Wλ(R, β, ǭ) =
−∞, in which case,

lim
β′→β

β′ · φR(∆ǫ⋆) =∞. (4.46)

For future use we observe that for β ∈ B(α1,α2)(R) \B(α1,α2),II+(R),

∂∆ǫ⋆

∂βi

= (λ2α1 + λ1α2 − β · TR)−1TR
i ∆ǫ⋆. (4.47)



52 ISAAC V. CHENCHIAH, KAUSHIK BHATTACHARYA

From (4.45) we also calculate, for β ∈ B(α1,α2)(R) \B(α1,α2),II+(R),

σ⋆
1 =

(

α−1 − α−1
2 β · TRα−1

1

)−1

α−1
2

((

α2 − β · TR
)

ǭ− λ2∆(αǫT)
)

− α1ǫ
T

1

σ⋆
2 =

(

α−1 − α−1
1 β · TRα−1

2

)−1

α−1
1

((

α1 − β · TR
)

ǭ + λ1∆(αǫT)
)

− α2ǫ
T

2

where α−1 := λ1α
−1
1 + λ2α

−1
2 .

4.9. A lower bound on the relaxed energy. II.

We are now in a position to derive an explicit lower bound. Recall (4.13a):

Wλ(ǭ) > max
β∈∩R∈SO(3)B(α1,α2)(R)

Wλ(β, ǭ)

where Wλ(β, ǭ) is given by (4.13b). Determining maxβ∈∩R∈SO(3)B(α1,α2)(R) Wλ(β, ǭ)
is easy since we have the following lemma.

Lemma 4.24. For β ∈ Int
(

∩R∈SO(3)B(α1,α2)(R)
)

, β 7→Wλ(β, ǭ) is either con-

stant or strictly concave.

Proof. From (4.13b),

∇βWλ(β, ǭ)

= −λ1λ2φ
R⋆(∆ǫ⋆(R⋆, β, ǭ)). (4.48)

∂2

∂βj∂βk

Wλ(β, ǭ)

= −λ1λ2

〈

TR⋆

j ∆ǫ⋆(R⋆, β, ǭ),
∂

∂βk

∆ǫ⋆(R⋆, β, ǭ)

〉

= −λ1λ2

〈

TR⋆

j ∆ǫ⋆(R⋆, β, ǭ), (λ2α1 + λ1α2 − β · TR⋆)−1TR⋆

k ∆ǫ⋆(R⋆, β, ǭ)
〉

< 0

except when ∆ǫ⋆(R⋆, β, ǭ) = 0. Note, from (4.45), that ∆ǫ⋆(R, β, ǭ) = 0 for

some (R, β) ∈ SO(3)×B implies that ∆ǫ⋆(R, β, ǭ) = 0 for all (R, β) ∈ SO(3)×
B. However when ∆ǫ⋆(·, ·, ǭ) ≡ 0, from (4.48), Wλ(β, ǭ) is independent of β. ⊓⊔

Incidentally, we also observe that:

Lemma 4.25. ǭ 7→Wλ(β, ǭ) is strictly convex.
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Proof. From (4.13b),

∂2

∂ǭ2
Wλ(β, ǭ)

=λ1
∂2

∂ǭ2
(W1 − β · φR⋆(β,ǭ))(ǫ⋆

1(R⋆, β, ǭ))

+ λ2
∂2

∂ǭ2
(W2 − β · φR⋆(β,ǭ))(ǫ⋆

2(R⋆, β, ǭ)) +
∂2

∂ǭ2
β · φR⋆(β,ǭ)(ǭ)

=λ1(α1 − β · TR⋆(β,ǭ)) + λ2(α2 − β · TR⋆(β,ǭ)) + β · TR⋆(β,ǭ)

=λ1α1 + λ2α2

>0

⊓⊔

We now obtain the desired lower bound when the elastic moduli are cubic.

Recall that we use “9” to mean “parallel and not anti-parallel”. For x ∈ Rn and

S ⊂ Rn we say x 9 S if ∃y ∈ S, x 9 y.

Theorem 4.26 (Lower bound). Let α1 and α2 be cubic. Then

Wλ(ǭ) > W
l

λ(ǭ)

where

W
l

λ(ǭ) =


















































































































Wλ(0, ǭ) if ∆ǫ⋆(·, ·, ǭ) ≡ 0 (Regime 0),

Wλ(βI, ǭ) if ∃βI ∈ (SI ∪ SI&III)(κ1,min(µ1, η1))

∩(SI ∪ SI&III)(κ2,min(µ2, η2)),

0 6= −φR⋆(βI,ǭ)(∆ǫ⋆(R⋆(βI, ǭ), βI, ǭ)) 9 {−e1,−e2,−e3}
(Regime I),

Wλ(βII, ǭ) otherwise (Regime II),

Wλ(βIII, ǭ) if ∃βIII ∈ (SI&III ∪ SIII ∪ SIII&IV)(min(µ1, η1, µ2, η2)),

0 6= −φR⋆(βIII,ǭ)(∆ǫ⋆(R⋆(βIII, ǭ), βIII, ǭ)) 9 {e1, e2, e3}
(Regime III),

Wλ(βIV, ǭ) if ∃βIV ∈ SIII&IV(min(µ1, η1, µ2, η2)),

0 6= −φR⋆(βIV,ǭ)(∆ǫ⋆(R⋆(βIV, ǭ), βIV, ǭ)) 9 Int(R3
+)

(Regime IV).

(4.49)

Here, in regime II, βII is the unique solution of φR⋆(·,ǭ)(∆ǫ⋆(R⋆(·, ǭ), ·, ǭ)) = 0
in S(κ1,min(µ1, η1)) ∩ S(κ2,min(µ2, η2)). Note that it is possible that βII ∈
(SI&III ∪ SIII ∪ SIII&IV)(min(µ1, η1, µ2, η2)).



54 ISAAC V. CHENCHIAH, KAUSHIK BHATTACHARYA

Proof. Since α1 and α2 are cubic, from (4.37) we obtain a lower bound for Wλ(ǭ)
by replacing ∩R∈SO(3)B(α1,α2)(R) by S(κ1,min(µ1, η1)) ∩ S(κ2,min(µ2, η2))
in (4.13a).

When ∆ǫ⋆(β, ǭ) ≡ 0, from Lemma 4.24, β 7→ Wλ(β, ǭ) is constant and we

may set β = 0 in (4.13a); this is Regime 0. Otherwise, from Lemma 4.24 β 7→
Wλ(β, ǭ) is strictly concave.

Suppose there exists βII ∈ S(κ1,min(µ1, η1)) ∩ S(κ2,min(µ2, η2)) such that

∇βWλ(β, ǭ)|β=βII
= 0. Then, by the strict concavity of β 7→ Wλ(β, ǭ), βII max-

imizes Wλ(β, ǭ) in S(κ1,min(µ1, η1)) ∩ S(κ2,min(µ2, η2)) and is the unique

solution of φR⋆(·,ǭ)(∆ǫ⋆(R⋆(·, ǭ), ·, ǭ)) = 0. This is Regime II.

Otherwise the maximum is attained on ∂ (S(κ1,min(µ1, η1)) ∩ S(κ2,min(µ2, η2)))
at β⋆ (say). Using (4.48), (4.42) and (4.4), we have

N(β⋆) = ∇βWλ(β, ǭ)|β=β⋆

= −λ1λ2φ
R⋆(∆ǫ⋆(R⋆, β

⋆, ǭ))

= λ1λ2Υσ(∆ǫ⋆(R⋆, β
⋆, ǭ))

= λ1λ2

(

υσ(2)(∆ǫ⋆) υσ(3)(∆ǫ⋆)

υσ(3)(∆ǫ⋆) υσ(1)(∆ǫ⋆)

υσ(1)(∆ǫ⋆) υσ(2)(∆ǫ⋆)

)

. (4.50)

In particular we observe that the components of N are the pairwise product of

three numbers. Three cases arise:

1. β⋆ ∈ SI(κ1,min(µ1, η1)) ∩ SI(κ2,min(µ2, η2)). In this case it is immediate

that

N(β⋆) 9 {−e1,−e2,−e3}.
Note that this is true even at the edges and the corner of ∂R3

+ since if one

component of N is zero then two components on N must be zero. This is

Regime I.

2. β⋆ ∈ SI&III(min(µ1, η1)) ∪ SI&III(min(µ2, η2)). Since the components of N
are pairwise product of three numbers, it not possible that precisely one be

(strictly) negative and precisely two be (strictly) positive. Thus, from Corol-

lary 4.19, we conclude that either

N(β⋆) 9 {−e1,−e2,−e3},
which is Regime I; or, in fact β⋆ ∈ SI&III(min(µ1, η1, µ2, η2)) and

N(β⋆) 9 {e1, e2, e3},
which is Regime III.

3. β⋆ /∈ (SI ∪ SI&III)(κ1,min(µ1, η1)) ∩ (SI ∪ SI&III)(κ2,min(µ2, η2)). Again,

since the components of N are pairwise product of three numbers, it not pos-

sible that precisely one be (strictly) negative and precisely two be (strictly)

positive. Thus, from Corollary 4.19, we conclude that in fact β⋆ ∈ (SIII ∪
SIII&IV)(min(µ1, η1, µ2, η2)) and

N(β⋆) 9

{

{e1, e2, e3} if β⋆ ∈ SIII(min(µ1, η1, µ2, η2))

R3
+ if β⋆ ∈ SIII&IV(min(µ1, η1, µ2, η2)).
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Two sub-cases arise:

(a) β⋆ ∈ (SIII ∪ SIII&IV)(min(µ1, η1, µ2, η2)) and N(β⋆) 9 {e1, e2, e3}. This is

Regime III.

(b) β⋆ ∈ SIII&IV(min(µ1, η1, µ2, η2)) and N(β⋆)9Int(R3
+). This is Regime IV.

⊓⊔

Note 4.27. In particular the proof above shows that,

(

υσ(2)(∆ǫ⋆) υσ(3)(∆ǫ⋆)

υσ(3)(∆ǫ⋆) υσ(1)(∆ǫ⋆)

υσ(1)(∆ǫ⋆) υσ(2)(∆ǫ⋆)

)

9



































































{−e1,−e2,−e3} in Regime I

(β⋆ ∈ (SI ∪ SI&III)(κ1,min(µ1, η1))

∩(SI ∪ SI&III)(κ2,min(µ2, η2))),

0 in Regime II

(β⋆ ∈ S(κ1,min(µ1, η1)) ∩ S(κ2,min(µ2, η2))),

{e1, e2, e3} in Regime III

(β⋆ ∈ (SI&III ∪ SIII ∪ SIII&IV)(min(µ1, η1, µ2, η2)),

Int(R3
+) in Regime IV

(β⋆ ∈ SIII&IV(min(µ1, η1, µ2, η2))).

(4.51)

The following corollary follows immediately from (4.51).

Corollary 4.28 (Eigenvalues of the optimal strain jump).

1. In Regime I: υ2(∆ǫ⋆) = 0, υ1(∆ǫ⋆)υ3(∆ǫ⋆) < 0.

2. In Regime II: υ2(∆ǫ⋆) = 0, υ1(∆ǫ⋆)υ3(∆ǫ⋆) = 0.

3. In Regime III: υ2(∆ǫ⋆) = 0, υ1(∆ǫ⋆)υ3(∆ǫ⋆) > 0.

4. In Regime IV: υ1(∆ǫ⋆)υ3(∆ǫ⋆) > 0. Thus all eigenvalues of ∆ǫ⋆ have the

same sign, i.e., ∆ǫ⋆ is either negative- or positive-definite.

The following corollary also follows from the proof of Theorem 4.26.

Corollary 4.29.

1. In Regime 0,

W
l

λ(ǭ) = min
ǫ1,ǫ2∈R

3×3
sym

λ1ǫ1+λ2ǫ2=ǭ

λ1W1(ǫ1) + λ2W2(ǫ2).

2. In Regime I,

βI · φR⋆(∆ǫ⋆) = 0. (4.52)

3. In Regime II,

φR⋆(∆ǫ⋆) = 0.
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4. In Regime III,

RT
⋆ ∆ǫ⋆R⋆ =














































































(

0 0 0
0 υσ(2)(∆ǫ⋆) 0

0 0 υσ(3)(∆ǫ⋆)

)

when βIII ∈ (S
(1)
I&III ∪ S

(1)
III ∪ SIII&IV)(min(µ1, η1, µ2, η2)),

(

υσ(1)(∆ǫ⋆) 0 0
0 0 0
0 0 υσ(3)(∆ǫ⋆)

)

when βIII ∈ (S
(2)
I&III ∪ S

(2)
III ∪ SIII&IV)(min(µ1, η1, µ2, η2)),

(

υσ(1)(∆ǫ⋆) 0 0

0 υσ(2)(∆ǫ⋆) 0
0 0 0

)

when βIII ∈ (S
(3)
I&III ∪ S

(3)
III ∪ SIII&IV)(min(µ1, η1, µ2, η2)).

(4.53)

5. In Regime III when βIII ∈ SIII&IV and in Regime IV, from Note 4.1,

W
l

λ(ǭ) =

min
ǫ1,ǫ2∈R

3×3
sym

λ1ǫ1+λ2ǫ2=ǭ

λ1W1(ǫ1)+λ2W2(ǫ2)−2λ1λ2 min(µ1, η1, µ2, η2)e·φ(ǫ2−ǫ1).

Note 4.30. From (4.46), Regimes III and IV do not occur whenever

φ
R⋆(βII+,ǭ)
j (∆ǫ⋆(R⋆(βII+, ǭ), βII+, ǭ))

does not exist. From §4.8 this happens when

ker(α1 − βII+ · TR⋆(βII+,ǭ)) ∩ ker(α2 − βII+ · TR⋆(βII+,ǭ)) 6= {0}.

This includes, in particular, the cases (i) α1 = α2 (c.f., Note 4.31 below) and (ii)

both phases being cubic with the smaller shear moduli being equal.

Note 4.31 (Equal moduli). We remark on the special case α1 = α2 ≡ α studied by

Pipkin [Pip91] and Kohn [Koh91]. In this case, λ2α1+λ1α2−β·TR⋆ = α−β·TR⋆

is not invertible when β ∈ SII+(κ, µ). Thus, as mentioned in Note 4.30 above,

Regime III does not occur.

From (4.45), ∆ǫ⋆(·, ·, ǭ) ≡ 0 implies that ǫT

1 = ǫT

2. Thus Regime 0 does not

occur for distinct materials.5

From (4.13b), (4.49) and (4.52) we obtain

Wλ(ǭ) =



















λ1W1(ǫ
⋆
1(R⋆(βI, ǭ), βI, ǭ)) + λ2W2(ǫ

⋆
2(R⋆(βI, ǭ), βI, ǭ))

in Regime I,

λ1W1(ǫ
⋆
1(R⋆(βII, ǭ), βII, ǭ)) + λ2W2(ǫ

⋆
2(R⋆(βII, ǭ), βII, ǭ))

in Regime II.

5I.e., when either α1 6= α2 or ǫT
1 6= ǫT

2.
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Here, from (4.45),

ǫ⋆
1(R, β, ǭ) = ǭ− λ2(α− β · TR)−1α ∆ǫT, (4.54a)

ǫ⋆
2(R, β, ǭ) = ǭ + λ1(α− β · TR)−1α ∆ǫT, (4.54b)

∆ǫ⋆(R, β, ǭ) = (α− β · TR)−1α ∆ǫT. (4.54c)

From (4.54c) ∆ǫ⋆ is independent of ǭ. From the proof of Theorem 4.20 it follows

that R⋆ is also independent of ǭ.

From (4.49) and (4.54) Regime I occurs when

∃βI ∈ S(κ1,min(µ1, η1)) ∩ S(κ2,min(µ2, η2)) ∩ ∂R3
+,

0 6= φR⋆(βI)
(

(α− βI · TR⋆(βI))−1α ∆ǫT

)

9 {e1, e2, e3}; (4.55)

and Regime II when

∃! βII ∈ S(κ, min(µ, η)), φ
(

(α− β · TR⋆(βII))−1α(∆ǫT)
)

= 0 (4.56)

(κ := κ1 = κ2, µ := µ1 = µ2 and η := η1 = η2). Note that βII is independent of

ǭ.

From (4.54),

ǫ⋆
1(R, β, ǭ)− ǫT

1 = (ǭ− ǫT)− λ2(α− β · TR)−1β · TR∆ǫT,

ǫ⋆
2(R, β, ǭ)− ǫT

2 = (ǭ− ǫT) + λ1(α− β · TR)−1β · TR∆ǫT,

where ǫT := λ1ǫ
T

1 + λ2ǫ
T

2. Thus

W
l

λ(ǭ) =
1

2

〈

α(ǭ− ǫT), (ǭ− ǫT)
〉

+ (λ1w1 + λ2w2)

+



















1
2λ1λ2‖α

1
2 (α− βI · TR⋆(βI))−1βI · T∆ǫT‖2 if (4.55) holds

(Regime I),
1
2λ1λ2‖α

1
2 (α− βII · TR⋆(βII))−1βII · T∆ǫT‖2 otherwise, i.e., if (4.56) holds

(Regime II).

4.10. Optimality of the lower bound and optimal microstructures

In this section we prove that the lower bound presented in Theorem 4.26 is

optimal in Regimes 0 to III when the elastic moduli are cubic, and in Regime

IV when the elastic moduli are isotropic. Further we characterize the optimal mi-

crostructures. This will complete the proof of Theorem 2.2. Our strategy is the

same as in §3.2.

The proof of Theorem 2.3 is almost identical to that of Theorem 2.2 and is thus

omitted.
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4.10.1. Optimality of the lower bound. We have the following results:

Theorem 4.32 (Optimality of the lower bound). Let α1 and α2 be cubic. As-

sume, renumbering if necessary, that γα1 6 γα2 . Then Wλ(ǭ) = W
l

λ(ǭ) in

Regimes 0 to III, and in Regime IV when µ1 = η1.

Proof. For regimes 0, I and II, the proof is almost identical to the proof of Theo-

rem 3.10 with the following changes: In Regime 0 we use (4.45) instead of (3.9);

in Regimes I and II we use Corollary 4.28 in addition to Lemma 3.11.

In Regimes III and IV, from Corollary 4.28 and Lemma 3.11 we cannot con-

struct a continuous displacement field with the optimal strains. However one of the

translated energies loses strict convexity in these Regimes (c.f., §4.4 and Lemma 4.14);

we can use this to construct optimal rank-two and rank-three laminates. Assume,

renumbering if necessary, that γα1 6 γα2 . Then α1 − β⋆ · TR⋆ is degenerate in

Regimes III and IV.

Regime III: Let P j : R3×3
sym → R2×2

sym , j = 1, 2, 3, be the projections and

Ij : R2×2
sym → R3×3

sym , j = 1, 2, 3, be the imbeddings defined by

(

ǫ11 ǫ12 ǫ13
ǫ12 ǫ22 ǫ23
ǫ13 ǫ23 ǫ33

)

P 17→ ( ǫ22 ǫ23
ǫ23 ǫ33 )

I17→
(

0 0 0
0 ǫ22 ǫ23
0 ǫ23 ǫ33

)

, (4.57a)

(

ǫ11 ǫ12 ǫ13
ǫ12 ǫ22 ǫ23
ǫ13 ǫ23 ǫ33

)

P 27→ ( ǫ11 ǫ13
ǫ13 ǫ33 )

I27→
(

ǫ11 0 ǫ13
0 0 0

ǫ13 0 ǫ33

)

, (4.57b)

(

ǫ11 ǫ12 ǫ13
ǫ12 ǫ22 ǫ23
ǫ13 ǫ23 ǫ33

)

P 37→ ( ǫ11 ǫ12
ǫ12 ǫ22 )

I37→
(

ǫ11 ǫ12 0
ǫ12 ǫ22 0
0 0 0

)

. (4.57c)

Note that these mappings preserve rank-one-ness and symmetrized rank-one-ness.

Let J ∈ {1, 2, 3} such that βIII ∈ (S
(J)
I&III ∪S

(J)
III ∪SIII&IV)(min(µ1, η1)). From (4.53),

P J

(

RT
⋆ ∆ǫ⋆R⋆

)

=



































(

υσ(2)(∆ǫ⋆) 0

0 υσ(3)(∆ǫ⋆)

)

if J = 1,

(

υσ(1)(∆ǫ⋆) 0

0 υσ(3)(∆ǫ⋆)

)

if J = 2,

(

υσ(1)(∆ǫ⋆) 0

0 υσ(2)(∆ǫ⋆)

)

if J = 3;

(4.58)

and from Corollary 4.28(3),

det
(

P J

(

RT
⋆ ∆ǫ⋆R⋆

))

> 0. (4.59)

From (4.58), (4.59) and the proof of Theorem 3.10, for every choice

ǫn ∈ P J

(

RT
⋆ ker(α1 − βIII · TR⋆)R⋆

)

,

there exist two rank-two laminates (χ1, χ2) in R2 of the form described in the

proof of Theorem 3.10. Likewise there exists two displacement fields u in R2 with

corresponding strains in R2×2
sym (schematically represented in Figure 3.1(b) with ǫ⋆

1



The relaxation of two-well energies with possibly unequal moduli 59

and ǫ⋆
2 replaced by P J

(

RT
⋆ ǫ⋆

1R⋆

)

and P J

(

RT
⋆ ǫ⋆

2R⋆

)

, respectively). These rank-

two laminates, the displacement fields and the corresponding strain fields can each

be imbedded in R3, R3 and R3×3
sym , respectively, using the imbeddings

(χ1, χ2)(x1, x2, x3)← [











(χ1, χ2)(x2, x3) if J = 1,

(χ1, χ2)(x1, x3) if J = 2,

(χ1, χ2)(x1, x2) if J = 3;

u(x1, x2, x3)← [











((ǫ⋆
1)11, (ǫ

⋆
1)12, (ǫ

⋆
1)13)

T · x + u(x2, x3) if J = 1,

((ǫ⋆
1)21, (ǫ

⋆
1)22, (ǫ

⋆
1)23)

T · x + u(x1, x2) if J = 2,

((ǫ⋆
1)31, (ǫ

⋆
1)32, (ǫ

⋆
1)33)

T · x + u(x1, x2) if J = 3;

ǫ 7→ RT
⋆ ǫ⋆

1R⋆ − IJP J

(

RT
⋆ ǫ⋆

1R⋆

)

+ IJǫ

respectively. The resulting microstructure and displacement field shows that the

lower bound (4.49) is optimal in Regime III. Examples 4.33 and 4.34 below illus-

trate this construction.

Regime IV when µ1 = η1: Since µ1 = η1, α1 is isotropic. Recall that

∆ǫ⋆ = R(∆ǫ⋆)Diag

(

υσ(1)(∆ǫ⋆)

υσ(2)(∆ǫ⋆)

υσ(3)(∆ǫ⋆)

)

RT (∆ǫ⋆).

Let

ǫI := Diag
(

υσ(1)(∆ǫ⋆)+υσ(2)(∆ǫ⋆)+υσ(3)(∆ǫ⋆)
0
0

)

,

ǫII := Diag

(

λ1υσ(1)(∆ǫ⋆)

λ2υσ(1)(∆ǫ⋆)+υσ(2)(∆ǫ⋆)+υσ(3)(∆ǫ⋆)
0

)

,

ǫIII := Diag

(

λ1υσ(1)(∆ǫ⋆)

λ1υσ(2)(∆ǫ⋆)

λ2υσ(1)(∆ǫ⋆)+λ2υσ(2)(∆ǫ⋆)+υσ(3)(∆ǫ⋆)

)

.

Note that

ǫI, ǫII, ǫIII ∈ Diag

(

υσ(1)(∆ǫ⋆)

υσ(2)(∆ǫ⋆)

υσ(3)(∆ǫ⋆)

)

+ Span
{(

1 0 0
0 −1 0
0 0 0

)

,
(

0 0 0
0 1 0
0 0 −1

)

,
(−1 0 0

0 0 0
0 0 1

)}

,

(4.60)

and, from Lemma 4.8,

R(∆ǫ⋆)
{(

1 0 0
0 −1 0
0 0 0

)

,
(

0 0 0
0 1 0
0 0 −1

)

,
(−1 0 0

0 0 0
0 0 1

)}

RT (∆ǫ⋆) ( ker(α1 − 2µ1 · TR⋆).



60 ISAAC V. CHENCHIAH, KAUSHIK BHATTACHARYA

Let

ρI :=
λ1υσ(1)(∆ǫ⋆)

υσ(1)(∆ǫ⋆) + υσ(2)(∆ǫ⋆) + υσ(3)(∆ǫ⋆)
,

ρII :=
λ1υσ(2)(∆ǫ⋆)

λ2υσ(1)(∆ǫ⋆) + υσ(2)(∆ǫ⋆) + υσ(3)(∆ǫ⋆)
,

ρIII :=
λ1υσ(3)(∆ǫ⋆)

λ2υσ(1)(∆ǫ⋆) + λ2υσ(2)(∆ǫ⋆) + υσ(3)(∆ǫ⋆)
.

Clearly ρI, ρII, ρIII ∈ (0, 1). It is easy to verify that

ǫI ‖ e1 ⊗ e1, (4.61a)

ǫII − ρIǫI ‖ e2 ⊗ e2, (4.61b)

ǫIII − ((1− ρII)ρIǫI + ρIIǫII) ‖ e3 ⊗ e3. (4.61c)

Further,

(1− ρIII) ((1− ρII)ρIǫI + ρIIǫII) + ρIIIǫIII = λ1Diag

(

υσ(1)(∆ǫ⋆)

υσ(2)(∆ǫ⋆)

υσ(3)(∆ǫ⋆)

)

. (4.62)

We can now construct our rank-three laminate as follows. First construct a rank-

one laminate in which phases 2 and 1 have phase fractions 1 − ρI and ρI respec-

tively and the layers have normal R(∆ǫ⋆)e1. Next construct a rank-two laminate

in which this rank-one laminate and phase 1 have phase fractions 1 − ρII and ρII

respectively and the layers have normal R(∆ǫ⋆)e2. Finally construct a rank-three

laminate in which this rank-two laminate and phase 1 have phase fractions 1− ρIII

and ρIII respectively and the layers have normal R(∆ǫ⋆)e3.

The compatibility equations (4.61) allow the construction of a continuous dis-

placement field u (up to boundary layers) such that the strains take the value

ǫ⋆
1−R(∆ǫ⋆)ǫIRT (∆ǫ⋆) in the interior phase 1, ǫ⋆

1−R(∆ǫ⋆)ǫIIRT (∆ǫ⋆) in the mid-

dle phase 1, ǫ⋆
1−R(∆ǫ⋆)ǫIIIRT (∆ǫ⋆) in the exterior phase 1 and ǫ⋆

2 in phase 2. For

this microstructure and displacement field, the average strain is ǭ (c.f., (4.62)) and

Wχ(u) = W
l

λ(ǭ) (as the reader can verify). This shows that the lower bound (4.49)

is optimal in Regime IV for isotropic α1.

(It is easy to see that similar rank-three laminates exist for five other choices

of ǫI, ǫII and ǫIII in (4.60).) ⊓⊔

When α1 is isotropic, the next two examples illustrate the construction of rank-

two laminates described in the proof of Theorem 4.32 (Regime III). For simplicity

the figures are drawn for a specific choice of σ.

Example 4.33. When α1 is isotropic, from Lemma 4.8 we can pick ǫn =
(

1 0
0 −1

)

.

The analogues of Figure 3.1(b) are shown in Figure 4.3 for this choice of ǫn. The

rank-one cone at the origin (in the space of diagonal 2×2 matrices) is the union of

the axes (i.e., Span {Diag ( 1
0 )} ∪ Span {Diag ( 0

1 )}). The shaded quadrants form
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the symmetrized-rank-one cone at the origin (in the space of diagonal 2 × 2 ma-

trices). It is easy to verify that (3.20) is satisfied. In particular for the rank-two

laminate shown in Figure 4.3(a), (3.20b) is

λ1 − ρ

λ1(1− ρ)
Diag

(

ρ(υ1+υ2)
(1−ρ)(υ1+υ2)

)

+
ρλ2

λ1(1− ρ)
Diag

(

υ1+υ2
0

)

= Diag ( υ1
υ2

) ,

which implies that ρ = λ1
υ1

υ1+υ2
; for the rank-two laminate shown in Figure 4.3(b),

(3.20b) is

λ1 − ρ

λ1(1− ρ)
Diag

(

(1−ρ)(υ1+υ2)
ρ(υ1+υ2)

)

+
ρλ2

λ1(1− ρ)
Diag

(

0
υ1+υ2

)

= Diag ( υ1
υ2

) ,

which implies that ρ = λ1
υ2

υ1+υ2
.

Example 4.34. When α1 is isotropic, from Lemma 4.8 we can pick ǫn = ( 0 1
1 0 ).

The analogues of Figure 3.1(b) are shown in Figure 4.4 for this choice of ǫn. The

matrices
(

υ1
√

υ1υ2√
υ1υ2 υ2

)

,
(

υ1 −√
υ1υ2

−√
υ1υ2 υ2

)

are rank-one. The rank-one cone at the origin in the plane of the figure, i.e., in

Span
{(

υ1
√

υ1υ2√
υ1υ2 υ2

)

,
(

υ1 −√
υ1υ2

−√
υ1υ2 υ2

)}

,

is the union of the axes, i.e.,

Span
{(

υ1
√

υ1υ2√
υ1υ2 υ2

)}

∪ Span
{(

υ1 −√
υ1υ2

−√
υ1υ2 υ2

)}

.

The shaded quadrants form the symmetrized-rank-one cone at the origin (in the

plane of the figure). It is easy to verify that (3.20) is satisfied. In particular, enforc-

ing (3.20e), we obtain ρ = λ1

2 .

Note 4.35. Since P i, Ii, i = 1, 2, 3 defined in (4.57) preserve rank-one-ness and

symmetrized rank-one-ness the rank-two and rank-three laminates constructed in

the proof of Theorem 4.32 (and in Examples 4.33 and 4.34) also use only rank-one

connections. As in two dimensions (c.f., Note 3.13) this is in fact necessary.

To see this, first we observe that in Regimes III and IV at any interface the

strain difference JǫK is related to the stress difference JσK through

JσK ‖ β⋆ · TR⋆(JǫK) (4.63a)

and the constant of proportionality is non-zero (c.f., (4.44) and recall that α1ǫn =
β⋆ · TR⋆ǫn). As before, at any interface with normal n̂ ∈ R3 we require

(JσK)n̂ = 0, (4.63b)

JǫK ‖ m̂⊗s n̂, (4.63c)

for some m̂ ∈ R3. The following lemma, which is the three-dimensional analogue

of Lemma 3.14 shows that (4.63) is equivalent to requiring that JǫK ‖ n̂⊗ n̂.
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(a)

(b)

Fig. 4.3. Two optimal rank-two laminates in Regime III (c.f. proof of Theorem 4.32 and
Example 4.33).

Lemma 4.36. Let m̂, n̂ ∈ R3, β ∈ R3
+ and β ·T (m̂⊗s n̂) 6= 0. Then the following

are equivalent.

1. (β · T (m̂⊗s n̂)) m̂ = 0.

2. (β · T (m̂⊗s n̂)) n̂ = 0.

3. m̂ ‖ n̂.
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(a)

(b)

Fig. 4.4. Two optimal rank-two laminates in Regime III (c.f. proof of Theorem 4.32 and
Example 4.34).



64 ISAAC V. CHENCHIAH, KAUSHIK BHATTACHARYA

Proof. The equivalence of the first two statements is trivial. Simple calculations

show that

(β · T (m̂⊗s n̂)) m̂ ‖ ((β · T )(m̂⊗ m̂))n̂,

ker((β · T )(m̂⊗ m̂)) = Span {m̂} .

It immediately follows that (β · T (m̂⊗s n̂)) m̂ = 0 ⇐⇒ m̂ ‖ n̂. ⊓⊔

4.10.2. Optimal microstructures. It is clear that Theorem 3.15 holds in three

dimensions as well.

Theorem 4.37 (Optimal microstructures). Assume, renumbering if necessary,

that 2 min(µ1, η1) = γα1
6 γα2

. Also let

DIII :=

{

1 if µ1 6= η1,

2 if µ1 = η1;
DIV :=











2 if µ1 < η1,

5 if µ1 = η1,

3 if µ1 > η1.

1. In Regime 0 any microstructure is optimal. The optimal strain and stress are

constant.

2. In Regime I the optimal microstructure is either a rank-one laminate, with

either of two possible layering directions, or a microstructure made up of these

laminates. The optimal strain takes the value ǫ⋆
1 in phase 1 and ǫ⋆

2 in phase 2

while the optimal stress is constant.

3. In Regime II the optimal microstructure is unique and is a rank-one laminate.

The optimal strain takes the value ǫ⋆
1 in phase 1 and ǫ⋆

2 in phase 2.

4. In Regime III, no rank-one laminate is optimal. The class of optimal microstruc-

tures is possibly large (in a sense explained in the proof) and includes at least

two rank-two laminates.

In any optimal microstructure, in phase i, i = 1, 2, the strain is confined to an

affine subspace of dimension

dim ker(αi − βIII · TR⋆) 6

{

DIII if β⋆ < 2 min(µ1, η1),

DIV if β⋆ = 2min(µ1, η1);

the sum of the dimensions of the affine subspaces is at most
{

2 if β⋆ < 2 min(µ1, η1),

5 if β⋆ < 2 min(µ1, η1).

In particular, if phase i is harder than the other phase (i.e., if γαi
> γ(α1,α2))

then the strain is ǫ⋆
i in that phase.

5. In Regime IV: If µ1 = η1 then there exists an optimal rank-three laminate;

otherwise the lower bound is possibly non-optimal. Whenever the bound is

optimal:

(a) No rank-one laminate is optimal.

(b) If one phase is harder than the other (i.e., if γα2 > γα1) then no rank-two

laminate is optimal.
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(c) In any optimal microstructure the strain in each phase is confined to an

affine subspace of dimension at most dim ker(αi − γ(α1,α2)T ) 6 DIV; the

sum of the dimension of the two affine subspaces is at most 5. Moreover,

if one phase is harder than the other then the strain in the harder phase is

constant.

Proof. The proof for the statement pertaining to Regime 0 remains unchanged

except that (4.44) is used instead of (3.8).

In Regime I, from Corollary 4.28, υ2(∆ǫ⋆) = 0 and υ1(∆ǫ⋆)υ3(∆ǫ⋆) < 0.

Thus from Lemma 3.11, we find m̂ ∦ n̂ ∈ R3 such that ∆ǫ⋆ ‖ m̂ ⊗s n̂. It fol-

lows that the strain and thus the microstructure is either of two rank-one laminates

(with layering direction m̂ or n̂) or a microstructure of these laminates. Finally

from (4.52) and (4.44), ∆σ⋆ = 0: the stress is constant.

In Regime II, from Corollary 4.28, υ2(∆ǫ⋆) = 0 and υ1(∆ǫ⋆)υ3(∆ǫ⋆) = 0
so that from Lemma 3.11, we find unique (upto scaling) n̂ ∈ R3 such that ∆ǫ⋆ ‖
n̂ ⊗ n̂. It follows that the strain and thus the microstructure is a unique rank-one

laminate with layering direction n̂.

The proof for the statement pertaining to Regime III remains unchanged except

that ker(αi − γ(α1,α2)T ) must be replaced as indicated. The inequalities follows

from Corollary 4.15, Lemma 4.17, Note 4.3 and Note 4.30.

We turn to Regime IV. If, when one phase is harder than another, in any optimal

microstructure the strain is constant in the harder phase, then the non-existence

of optimal rank-two laminates follows from Lemma 4.38 below. The rest of the

statement follows by a reasoning almost identical to that for Regime III; that
∑2

i=1 dim ker(αi − γ(α1,α2)T ) 6 5 follows from Notes 4.3 and 4.30. ⊓⊔

Lemma 4.38. Let n > 3. Let ǫ (viewed as a linear operator on Rn) be either

negative- or positive-definite. Then ǫ and 0 cannot form the two rank-two laminates

schematically shown in Figures 4.5 and 4.6. I.e., neither the following

∃µ ∈ (0, 1), ∃ǫI, ǫII ∈ Rn×n
sym , µǫI + (1− µ)ǫII = ǫ, (4.64a)

∃m̂I, n̂I ∈ Rn, ǫI = m̂I ⊗s n̂I, (4.64b)

∃ρ ∈ (0, 1), ∃m̂, n̂ ∈ Rn, ρǫI − ǫII = m̂⊗s n̂ (4.64c)

nor the following

∃µ ∈ (0, 1), ∃ǫI, ǫII ∈ Rn×n
sym , µǫI + (1− µ)ǫII = ǫ, (4.65a)

∃m̂I, n̂I ∈ Rn, ǫI = m̂I ⊗s n̂I, (4.65b)

∃m̂II, n̂II ∈ Rn, ǫII = m̂II ⊗s n̂II (4.65c)

can hold.

Proof. Assume on the contrary that either (4.64) or (4.65) holds. Either of these,

along with Lemma 3.11 implies: ∃ρ−, ρ+, ρ′−, ρ′+ > 0, v−, v+, v′−, v′+ ∈ Rn such

that

ǫ = −ρ−v− ⊗ v− + ρ+v+ ⊗ v+ − ρ′−v′− ⊗ v′− + ρ′+v′+ ⊗ v′+
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(a) Geometric picture (b) Schematic diagram

Fig. 4.5. Geometric and schematic diagrams of a rank-two laminate. In the geometric dia-
gram solid lines represent strain compatible directions; dotted lines represent strain incom-
patible directions; and dashed lines represent directions that need not be strain incompatible.

(a) Geometric picture (b) Schematic diagram

Fig. 4.6. Geometric and schematic diagrams of a rank-two laminate. In the geometric dia-
gram solid lines represent strain compatible directions; dotted lines represent strain incom-
patible directions; and dashed lines represent directions that need not be strain incompatible.

Let w+ ∈ Span
{

v−, v′−
}⊥

and w− ∈ Span
{

v+, v′+
}⊥

. Then

(ǫw−) · w− = −ρ−(v+ · w−)2 − ρ′−(v′+ · w−)2 6 0,

(ǫw+) · w+ = ρ+(v+ · w+)2 + ρ′+(v′+ · w+)2 > 0.

This contradicts ǫ being either negative- or positive-definite.
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5. Ancillary results.

5.1. The uniform traction problem.

We now turn to the uniform traction problem (1.9) for W given by (1.2).

From (1.9), in two dimensions,

W
σ

λ(σ̄) = inf
<χi>=λi

inf
ǭ∈R

2×2
sym

inf
u|∂Ω=ǭ·x

−
∫

Ω

2
∑

i=1

χi(x)Wi(ǫ(x))− 〈σ̄, ǭ〉 dx

= inf
ǭ∈R

2×2
sym

inf
<χi>=λi

inf
u|∂Ω=ǭ·x

−
∫

Ω

2
∑

i=1

χi(x)Wi(ǫ(x)) dx− 〈σ̄, ǭ〉

= inf
ǭ∈R

2×2
sym

max
β∈[0,γ(α1,α2)]

(Wλ(β, ǭ)− 〈σ̄, ǭ〉)

> max
β∈[0,γ(α1,α2)]

min
ǭ∈R

2×2
sym

(Wλ(β, ǭ)− 〈σ̄, ǭ〉) . (5.1)

From Lemma 3.5, Lemma 3.6 and a saddle point theorem [ET76, Prop. II.2.4, pg.

176], (5.1) is in fact an equality. The analogous expression in three dimensions

is obtained by replacing [0, γ(α1,α2)] with ∩R∈S0(3)B(α1,α2)(R) and R2×2
sym with

R3×3
sym ; and using Lemmas 4.24 and 4.25 instead of Lemmas 3.5 and 3.6. Note that

Wi(ǫ)− 〈σ̄, ǫ〉 =
1

2
〈αi(ǫ− ǫT

i), (ǫ− ǫT

i)〉+ wi − 〈σ̄, ǫ〉

=
1

2
〈αiǫ, ǫ〉 −

〈

αi(ǫ
T

i + α−1
i σ̄), ǫ

〉

+
1

2

〈

αi(ǫ
T

i + α−1
i σ̄), (ǫT

i + α−1
i σ̄)

〉

+ wi − 〈αiǫ
T

i, σ̄〉 −
1

2
〈α−1

i σ̄, σ̄〉.

Thus with the substitutions

ǫT

i 7→ ǫT

i + α−1
i σ̄ (5.2a)

wi 7→ wi − 〈αiǫ
T

i, σ̄〉 −
1

2
〈α−1

i σ̄, σ̄〉 (5.2b)

Wλ(β, ǭ)− 〈σ̄, ǭ〉 can be put in the same form as Wλ(β, ǭ). The lower bounds in

§3.1.5 and §4.9, the proofs of optimality of the lower bound in §3.2.1 and §4.10.1,

and remarks on the optimal microstructures in §3.2.2 and §4.10.2 remain valid with

the appropriate substitutions from (5.2). In particular, this independently shows

that (5.1) is in fact an equality.

Performing the minimization in (3.5b) without the constraint λ1ǫ1 +λ2ǫ2 = ǭ,

we obtain, in two dimensions,

α1(ǫ
⋆
1 − ǫT

1) + βλ2T (ǫ⋆
2 − ǫ⋆

1) = σ̄, (5.3a)

α2(ǫ
⋆
2 − ǫT

2)− βλ1T (ǫ⋆
2 − ǫ⋆

1) = σ̄. (5.3b)
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Similarly, in three dimensions, beginning with (4.12b), we obtain,

α1(ǫ
⋆
1 − ǫT

1) + λ2β · TR⋆(ǫ⋆
2 − ǫ⋆

1) = σ̄, (5.4a)

α2(ǫ
⋆
2 − ǫT

2)− λ1β · TR⋆(ǫ⋆
2 − ǫ⋆

1) = σ̄. (5.4b)

Thus, as in (3.8) and (4.44),

∆σ⋆ =

{

βT∆ǫ⋆ in two dimensions,

β · TR⋆∆ǫ⋆ in three dimensions.

Explicit expressions for the optimal strains and stresses in three dimensions can be

obtained by solving (5.4):

ǫ⋆
1 = α−1

1

(

I − β · TR⋆
(

λ1α
−1
2 + λ2α

−1
1

))−1

((

I − β · TR⋆α−1
2

)

σ̄ − λ2β · TR⋆(∆ǫT)
)

+ ǫT

1, (5.5a)

ǫ⋆
2 = α−1

2

(

I − β · TR⋆
(

λ1α
−1
2 + λ2α

−1
1

))−1

((

I − β · TR⋆α−1
1

)

σ̄ + λ1β · TR⋆(∆ǫT)
)

+ ǫT

2; (5.5b)

and

σ⋆
1 =

(

I − β · TR⋆
(

λ1α
−1
2 + λ2α

−1
1

))−1

((

I − β · TR⋆α−1
2

)

σ̄ − λ2β · TR⋆(∆ǫT)
)

, (5.6a)

σ⋆
2 =

(

I − β · TR⋆
(

λ1α
−1
2 + λ2α

−1
1

))−1

((

I − β · TR⋆α−1
1

)

σ̄ + λ1β · TR⋆(∆ǫT)
)

, (5.6b)

∆σ⋆ =
(

I − β · TR⋆
(

λ1α
−1
2 + λ2α

−1
1

))−1
β · TR⋆

(

∆(α−1)σ̄ + ∆ǫT
)

(5.6c)

Likewise explicit expressions for the optimal strains and stresses in two dimen-

sions can be obtained by solving (5.3). These can also be obtained by formally

substituting βT for β · TR⋆ in (5.5) and (5.6).

5.2. Applications

We discuss the applications of these results to the study of Nickel super-alloys

used in turbine blades and other high temperature applications in [CB]. These ma-

terials are made by quenching an off-stoichiometric alloy and spinodal decomposi-

tion results in a two-phase solids (e.g., NiAl and Ni3Al, which are both cubic with

different elastic moduli and whose stress-free strains differ by a dilatation) with

fixed phase fractions. The microstructure subsequently evolves (by diffusional

mass transport) to minimize a combination of interfacial and elastic energies. The

late stages of this process are controlled by elastic energy. The microstructure can

further evolve during applications due to the presence of stress. There has been

considerable numerical and experimental effort to study this problem. Unfortu-

nately the experiments are difficult and the computations expensive. In particular,

the computational expense limits the number of particles leading to uncertainity as
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to whether the system is in a metastable state. The results we prove here and the

consequent insights into optimal elastic microstructures provide a benchmark to

evaluate the computations. Our results on applied stress also provide insight into

the possible change of microstructure with stress.

Conclusion

In this paper we have studied the relaxation of a two-well energy under fixed

phase fractions. From a mathematical standpoint, the methods we use follow closely

those that have been used before. However, we find a surprising extension to

three dimensions. The method also provides a lower bound when the moduli are

anisotropic; however it is not clear at this point whether this bound is optimal.

Similarly, the extension of such methods to more than two wells remain open.
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translation in [MT97]. (Cited on pages 11 and 72.)

MT97. , Calculus of variations and homogenization, Topics in the mathemati-
cal modelling of composite materials (Andrej V. Cherkaev and Robert V. Kohn,
eds.), Progr. Nonlinear Differential Equations Appl.31, Birkhäuser, 1997, En-
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(Cited on page 11.)

SW99. V. P. Smyshlyaev and J. R. Willis, On the relaxation of a three-well energy, R.
Soc. Lond. Proc. Ser. A 455 (1999), no. 1983, 779–814. (Cited on page 6.)



The relaxation of two-well energies with possibly unequal moduli 73

Tar79a. L. Tartar, Compensated compactness and applications to partial differential
equations, Nonlinear Analysis and Mechanics (R.J. Knops, ed.), Heriot-Watt
Symposium, IV, Pitman Publishing, 1979, pp. 136–212. (Cited on page 11.)

Tar79b. , Estimation de coefficients homogénéisés [Estimation of homogenized
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