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Abstract

We consider &J(1)-invariant nonlinear Klein-Gordon equation in dimensio» 1, self-interacting via the mean
field mechanism. We analyze the long-time asymptotics dfefianergy solutions and prove that, under certain generic
assumptions, each solution converges-as+coo to the two-dimensional set of all “nonlinear eigenfunctidof the form
(p(x)e‘i““. This global attraction is caused by the nonlinear energgstier from lower harmonics to the continuous
spectrum and subsequent dispersive radiation.

1 Introduction and main results
In this paper, we establish the global attraction to theetgrof all solitary waves for the complex Klein-Gordon field
Y(x,t) with the mean field self-interaction:

{w<x,t>=Aw<x,t>—mzwx,t>+p<x>F<<p,w<-,t>>>, XER", n>1 teR, @

Ul =W, Wl _,=mXx).

Above,p is a smooth coupling function from the Schwartz clgss . (R"), p #Z 0.

The long time asymptotics for nonlinear wave equations tneen the subject of intensive research, starting with the
pioneering papers by Segal [Seg63b, Seg63a], Straus8[Sartd Morawetz and Strauss [MS72], where the nonlinear
scattering and the local attraction to zero solution weox@d. Local attraction to solitary waves,asymptotic stability
in U(1)-invariant dispersive systems was addressed in [SW90, BR&32, BP95] and then developed in [PW97, SW99,
Cuc0la, Cuc01b, BS03, Cuc03]. Global attractiorstatic stationary solutions in dispersive systemigshout U(1)
symmetrywas first established in [Kom91, Kom95, KV96, KSK97, Kom9%aQ].

The present paper is our third result on the global attrad¢ticolitary waves itJ(1)-invariant dispersive systems. In
[KKO7a], we proved such an attraction for the Klein-Gordaidicoupled to one nonlinear oscillator. In [KKO7b], we
generalized this result for the Klein-Gordon field coupledéveral oscillators. We are aware of only one other recent
advance [Tao07] in the field of nonzero global attractordfamiltonian PDEs. In that paper, the global attraction ffier t
nonlinear Schrodinger equation in dimensions 5 was considered. The dispersive wave was explicitly sgektifsing
the rapid decay of local energy in higher dimensions. Thégjlattractor was proved to be compact, but it was neither
identified with the set of solitary waves nor was proved to biinite dimension [Tao07, Remark 1.18].
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In the present paper we are going to extend our theory to a&h@jmensional setting, for the Klein-Gordon equation
with the mean field interaction. This model could be viewedageneralization of thé-function coupling [KK07a,
KKO7b] in higher dimensions. We follow the cairns of the apgch we developed in [KKO7a, KKO7b]. The substantial
modification is due to apparent impossibility to extractspéirsive component and get the convergence to the attiactor
the local energy norm, as in [KKO7a, KKO7b]; the convergemeerove iss-weaker. On the other hand, this allowed to
avoid the technique of quasimeasures, considerably stiogi¢he argument. The main ideas are the absolute continuit
of the spectral density for large frequencies, compactaggamnent to extract the omega-limit trajectories, and then
usage of the Titchmarsh Convolution theorem to pinpoinstiectrum to just one frequency.

Let us give the plan of the paper. In the remainder of thisisecive formulate the assumptions and the results.
The absolute continuity of the spectrum is analyzed in 8ac@. The proof of the Main Theorem takes up Section 2
(where we analyze the absolute continuity of the spectrurtafge frequencies) and Section 3 (where we select omega-
limit trajectories and analyze their spectrum with the aidh® Titchmarsh Convolution Theorem). The example of
a multifrequency solitary waves in the situation wheris orthogonal to some of the solitary waves is constructed in
Section 4. In Appendix A we give a brief sketch of the proofte# global well-posedness for equation (1.1).

1.1 Hamiltonian structure
We set¥(t) = (Y(x,t), r(x,t)) and rewrite the Cauchy problem (1.1) in the vector form:

0 1
A—m? 0

0
(o g(-,1)))

whereW, = ({),, T,). We assume that the nonlinearityadmits a real-valued potential:

L'p(t):l ]W(t)—kp(x)[': ] W =%, xeR" n>1 teR, (12

F(z7=-0U(z2), zeC, UeC?Q), (1.3)

where the gradient is taken with respect tozR@d Imz. Then equation (1.2) formally can be written as a Hamiltania
system,

: 0 1
Y(t) =IDs# (W), J= l ) O]’

whereD./Z is the variational derivative of the Hamilton functional

W) =5 [ (R Dy PPl gR) U (o), W= (14

We assume that the potenti4(z) is U(1)-invariant, whereJ (1) stands for the unitary groug?, 8 € Rmod 2. Namely,
we assume that there existg C?(R) such that

U =u(Z?, zeC. (1.5)

Conditions (1.3) and (1.5) imply that
F(2=a(l2%z  zeC, (1.6)

wherea(-) = —2u/(-) € CY(R) is real-valued. Therefore,
F(d%)=€%F(z, 6eR, zeC. (1.7)
Due to theU(1)-invariance, the Nother theorem formally implies that filnectional

Y(x) ]

00 (1.8)

oW m=3 [ @r-Ty)dx W=

is conserved for solutiori®(t) to (1.2).
We introduce the phase space of finite energy states foriequdt2). Denote by|- || , and||- [|4s the norms in

L?(R") and the Sobolev spad¢S(R"), s € R, respectively. We also denote Hy ||H§, R> 0, the norm inHS(B"(R)),
whereB"(R) is a ball of radiuRRin R". Let us fix an arbitrang > 0.
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W(x)

Definition 1.1. (i) & = HY(R") & L?(R") is the Hilbert space of the statés= [ 0
(X

] , with the norm

[WIIZ = 17l + | OliEe + |l
(i) &7 =H¢(R") oH ¢(R") is the space with the norm
1We = 1(L—2)"*2W] .
(i) &F ¢ is the space with the Fréchet topology defined by the semmigsor
|91 e 1= e + D0l e+ P @lFe,  R>O

Remarkl.2 The space ¢ is metrizable (but not complete). The metric can be intredizy

Wl g—e = FZ 2 RIWlls e g
F -1 ’

(1.9)

(1.10)

(1.11)

(1.12)

Equation (1.2) is formally a Hamiltonian system with the phapace’ and the Hamilton functional”’. Both .72
and .2 are continuous functionals afi. We introduced into (1.9), (1.11) the factof > 0, so that#’ (W) = %||LIJ||§+

U({p, ).

1.2 Global well-posedness

To have a priori estimates available for the proof of the glatell-posedness, we assume that

U(z) >A-B|z?> forzeC, whereAcRand0<B< 2ol
L2

Theorem 1.3. Let F(z) satisfy conditions (1.3), (1.5), and (1.13). Then:
(i) Forevery¥, e & the Cauchy problem (1.2) has a unique solutiE C(R, &).
(i) The map Wt) : W, — W(t) is continuous ing” and & for each te R.

(i) The values of the energy and charge functionals are conderve
H (W) = (W),  2(W¥(1)=2(%,), tek
(iv) The followinga prioribound holds:
WO, <C(W¥), teR.

(v) Foranye € [0,1],
WeCE(R,&79),

where G¢) stands for the Klder functional space.

We prove this theorem in Appendix A.

1.3 Solitary waves

Definition 1.4. (i) The solitary waves of equation (1.1) are solutions of threnfo

Pxt) = @,(x)e',  wherewe R, @,(x) € HYR").

(1.13)

(1.14)

(1.15)

(1.16)

(1.17)

(il) The solitary manifold is the s&= {(@,, —iw@,): w € R}, whereg, are the amplitudes of solitary waves.
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Identity (1.7) implies that the s&is invariant under multiplication bg®, 6 € R. Let us note that since(0) = 0 by
(1.6), for anyw € R there is a zero solitary wave with,(x) = 0.

Define 5(2)
p
V(Xvw) = g}*}x EZ—|—m2— w2:|a
whereC"™ = {w € C: Imw > 0}. Note thatV (-, w) is an analytic function ofv € C* with the values irH*(R"). Since
IV (x, w)| < cons{im w|~* for w € C*, we can extend for any< R" the functionV (x, w) to the entire real linev € R as
a boundary trace:

we ChU(—mm), (1.18)

V(X,w) = Iirg+v(x,w+i0), weR, (1.19)
E—
where the limit holds in the sense of tempered distributions

Proposition 1.5 (Existence of solitary waves)Assume that Fz) satisfies (1.7), and that € . (R"), p # 0. There may
only be nonzero solitary wave solutions to (1.2) éoe [-m,m|UQ,, where

Q, = {weR\[-mm: (&) =0 forall & € R" such that® + &2 = w?}. (1.20)

The profiles of solitary waves are given by

~ oo cp(é)
(€)= m7

where ce C, c#£ 0 is a root of the equation
S(w)a(ef|Z(w)?) =1, (1.21)
where

1 PP
2 =(p,V(- = . 1.22
The existence of such root is a necessary condition for tiséece of nonzero solitary waves (1.17).
The condition (1.21) is also sufficient foen5 and for|w| # m, n> 1.
For |w| = m, n< 4, the following additional condition is needed for suffiagn

A(2Y[2
B e o, w29
rn &
Remark1.6. As follows from (1.21) and (1.22)%(w) is strictly positive for|w| < m (sincep # 0) and takes finite
nonzero values for alb that correspond to solitary waves (foK 4, the finiteness of (w) at w = +mfollows if (1.23)
is satisfied).

Remarkl.7. One can see that generically the solitary wave manifold ésdimensional.

Proof. Substituting the ansatpw(x)e“‘*" into (1.1) and using (1.6), we get the following equationggj

— 0 Qo(X) = BPo(X) — MP@o(X) +P(X)F (P, @), XER™. (1.24)
Therefore, all solitary waves satisfy the relation
(E2+ 17— w?) (&) = P(E)F (P, o). (1.25)

Forw ¢ [-m,m UQ, the relation (1.25) leads t@, ¢ L?(R") (unlessg, = 0). We conclude that there are no nonzero
solitary waves fokw ¢ [—-m,m U Q,,.
Let us consider the cagec [-m,m UQ,. From (1.25), we see that

(X )} (1.26

Using the functiorV (x, w) defined in (1.18), we may expreg@g(x) = cV (X, w), with c € C. Substituting this ansatz into
(1.26) and using (1.6), we can write the conditionadn the form (1.21).
Forn < 4, the finiteness of the energy of solitons corresponding te +mis equivalent to the condition (1.23).
This finishes the proof of the proposition. O
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1.4 The main result
Assumption A. We assume thai € .(R"), the selQ,, is finite, and that

Z(w) #£0, weQ,. (1.27)
Above,Q, andZ(w) are defined in (1.20) and (1.22).

Remarkl.8. Note thats(w) is well-defined forw € Q,, sincep| = 0 then.

€]=V w?—n?

As we mentioned before, we need to assume that the nonlipéapolynomial. This assumption is crucial in our
argument: It will allow to apply the Titchmarsh convolutitreorem. Now all our assumptions Bncan be summarised
as follows.

Assumption B. F(z) satisfies (1.3) with the polynomial potentldlz), and also satisfies (1.5) and (1.13). This can be
summarised as the following assumptionfz):

N
U= wz? uweR, N>2 uy>0. (1.28)
n=1

Our main result is the following theorem.

Theorem 1.9 (Main Theorem). Assume that the coupling functipiix) satisfies Assumption A and that the nonlinearity
F (z) satisfies Assumption B. Then for a#ly € & the solution¥(t) € C(R, &) to the Cauchy problem (1.2) converges to
Sin the spaces= ¢, for anye > 0:

tﬂTm distgF,s(LP(t), S) =0, (1.29)

wheredistgF,g(-, -) is the metric (1.12) andistggg(W,S) = (Lr;fsdistggg(w,d)).

Remarkl.1Q0 The &7 ¢-convergence to the attractor stated in this theorem is erethlan thes-convergence proved in
[KKO7a] and [KKO7b], where we considered the Klein-Gordaidiin dimensiom = 1, coupled to nonlinear oscillators.

Obviously, it suffices to prove Theorem 1.9 fors +oo.

2 Absolute continuity for large frequencies

2.1 Splitting of a dispersive component

First we split the solutiony(x,t) into Y(x,t) = x(x,t) + ¢ (x,t), wherex and¢ are defined as solutions to the following
Cauchy problems:

X6t =X () —nPx(xt), (X, X)|_, = Yo (2.1)
B(xt) =Dp(xt) —mPP(x 1) +p(X (L),  (9.9)_, = (0.0), (2.2)
whereW, is the initial data from (1.2), and
f(t) :=F((p.¢(-.1))). (2.3)
Note that(p, ¢(-,t)) belongs taC,(R) since(y, ) € C (R, &) by Theorem 1.3i¢). Hence,
f(-) € G(R). (2.4)
On the other hand, singg(t) is a finite energy solution to the free Klein-Gordon equatisa also have
(X:X) € G(R,&). (2.5)
Hence, the functiog (t) = Y (t) — x(t) also satisfies
(¢.9) €C,(R,&). (2.6)

The following lemma reflects the well-known energy decaytifier linear Klein-Gordon equation.

Lemma 2.1. There is a local decay gf in the & seminorms. That iR > 0,

IXO.XO)ler—0,  t—oo (2.7)
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2.2 Complex Fourier-Laplace transform

Let us analyze the complex Fourier-Laplace transform©ft):
B0 = Fi o0 = [ €*p(xtdl, weC, xeR" (2.8)
0

whereC* := {zc C: Imz> 0}. Due to (2.6)§ (-, w) is anH!-valued analytic function ofo € C*. Equation (2.2) forp
implies that .
— WP (x,0) =DF(x, ) —MPH(x,w)+p(x)f(w), weC’, xeR"

wheref (w) is the Fourier-Laplace transform 6ft):
f(w) = Fi o [OO)f ()] :/ doft)dt, weC.
0

The solutiond (x, w) is analytic forw € C* and can be represented by

d(x,w) =V(xw)f(w), weC". (2.9)

2.3 Traces of distributions forw € R
First we remark that
O(t)9(x,t) € Gy(R,H'(R") (2.10)

by (2.6) sincep (x,0+) = 0 by initial conditions in (2.2). The Fourier-Laplace tréorsn of ¢ in time, 7 _, ,[©(t) ¢ (-,1)],
is a temperedH *-valued distribution ofo € R by (2.6). We will denote this Fourier-Laplace transformdily, w), w € R,
which is the boundary value of the analytic functi(, w), w € C™, in the following sense:

qﬁ(-,w):sir&cﬁ(-,wﬂe), weR, (2.11)

where the convergence is in the spacéldfvalued tempered distributions af, .’ (R,H*(R")). Indeed,
¢('7 W+ |$) = %aw[e(t)d)('at)e_m]a

while O(t)(-,t)e T;O(t)qb(-,t), with the convergence taking place irf’(R,H*(R")) which is the space dfi*-
E—

valued tempered distributions ofc R. Therefore, (2.11) holds by the continuity of the Fouriemsform.7_,, in
<'(R). Similarly to (2.11), the distributiori () for w € R is the boundary value of the analytic@" function f (w),
weCt:
flw)= lim f(w+ig), weR, (2.12)
£—0+

since the functio®(t) f (t) is bounded. The convergence holds in the space of tempestithdiions ' (R).

Let us justify that the representation (2.9) fix, w) is also valid wherw € R, w # +m, if the multiplication in (2.9)
is understood in the sense of distributions.

Proposition 2.2. For any fixed e R", V(x, w), w € R\{—m,m}, is a smooth function, and the identity

d(x,w) =V(xw)f(w), wecR\{-mm}, (2.13)
holds in the sense of distributions.
Proof. Consider o
VR = i s 0y s 219
where 1 '
ROG) = 370 /‘a:né“mf)dsf. (2.15)

For eachx € R", R(x,n) is smooth form > 0 and satisfie$R(x,n)| = O(n"1). It follows that for eachx € R", V (x, )
is a smooth function ofo € R\ {—m, m}, and hence is a multiplicator in the space of distributions. O
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2.4 Absolutely continuous spectrum
Let k (w) denote the branch af w? — n? such that Im/w? —m¢ >0 forw € C*:

K(w) =V w?—m2, Imk(w) >0, weCh. (2.16)
Thenk (w) is the analytic function fot € C*. We extend it taw € C* by continuity.

Proposition 2.3. The distributionf (w+i0), w € R, is absolutely continuous fdw| > m and satisfies

/‘w‘>m|f~(w)|2//l(w)dw§const< o, (2.17)

where.# (w) = LZKW) Z(N) = £y [P(E)PdS,, n €R.

K(w)

Remark2.4. Note that the functionZ (w) is non-negative fofw| > m. The set of zeros of# (w), |w| > m, coincides
with Q, defined in (1.20).

Remark2.5. Recall thatf(w), w € R, is defined by (2.12) as the trace distributidiiw) = f(w+i0).

Proof. We will prove that for any closed intervalsuch that N ([-m,mUQ,) = 0 the following inequality holds:

/|f W) 2.4 (w)dew < C, (2.18)

for some constan€ > 0 which does not depend dn Since there is a finite number of connected components of
R\([-m,mUQy,), this will finish the proof of the proposition.
Let us prove (2.18). The Parseval identity applied to

B (X, w+ie) =/ p(x, )9 edt,  £>0,
0
and a similar relation fody@ (x, w+i€) leads to

| I#¢orie)fadw=2m [ o(0]Fe > du

Since sup. || (-,t)[],;1 <« by (2.6), we may bound the right-hand side@y ¢, with someC, > 0. Taking into account
(2.9), we arrive at the key inequality

/ [f(w+ig) PV (-, w+ig)|3dw < % (2.19)

Lemma 2.6. Assume that | is a closed interval such that([—m,m U Q,) = 0. Then there existg > 0 such that

. C,.
||V(-,w+le)||ﬁlz%(“’), wel, 0<e<g, (2.20)

where G does not depend on the interval |.

Proof. Let us compute théil-norm using the Fourier space representation. S\'?((i& w+ig) = &#’37(7&”)2, we
have:
. 1 m + dn (m? +n? (m? +n? d
HV(,CLH-IS)Hal (2 E |p | 262 / > r’ 5 > / > rl ) 227 (2 21)
(2 ) € +me— (w+ig)?| N2+ m2 — w+|e | [N2+m? — w+|e)|
wherek (1) is given by
K()={n>0:y/n2+mel}. (2.22)

For w € | given in the condition of the Lemma, we denote

No = K(w) € K(I).
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Since the denominator in the integral in the right-hand sid@.21) vanishes whea = 0 andn = nj, the inequality in
(2.20) is due to the contribution of a small neighbourhoodq ef n, which we will specify shortly. Since the function
(m? +n?)2%(n) is smooth and strictly positive dn there exist®) > 0 (that does not depend on a particulae 1) so
that(m? +n?)2%(n) > 3(m?+ny2)2%(n,), for all n € k(1) such thatn — ny| < &. Hence, (2.21) takes the form

(n§+n?)2%(n,) / dn

: ie)|2, > .
VG @Fie)ll = 2 21— (wiie)??

(2.23)
k(N[Ng—98.ny+9]
We require thad, < |k(1)|/2; then eithefny — & ,ng] C k(1) or [Ny, g+ ] C k(1), or both. Therefore, the integral in

the right-hand side of (2.23) restrictedr¢l ) N [n, — &, Ny + §] becomes unboundedly large @is- 0+, and moreover
there existg, > 0 (which does not depend on a particuar 1) such that

/ dn >} / dn - }/ dn
[N2+mP — (w+ig)22 ~ 2 IN2+m— (w+i€)22 = 3/ N2+ m— (w+ie)
k(1)N[Ng—9:no+3] (Mo—9:No+3] R

77 (2:29)

forall € > 0, € < g. The last integral, evaluated by the Cauchy theorem, islequg/ (2ewn,) +O(1). Therefore, we
may assume that > 0 is so small (independently of a particutarc 1) that

dn 1
> | <g. 2.2

/ IN?+m — (w+i€)?)? ~ 33ewn,’ wel, O<e<s (2.25)
K(I)m[no_éﬂﬂlo""q]

Note thatwn, = wk(w) > 0 because, fow € R\[-m,m], k(w) € R and is of the same sign asis. Combining (2.23)
and (2.25), we get:

: W %Ny 1 1 1 wZ#
IV(-,w+ig)|[Z: > 2(n0)§£wn =5 n(no), wel, 0<e<g. (2.26)
0 0

O
Substituting (2.20) into (2.19), we get

/I|f(w+i£)|2,///(w)dw§C1/C2, 0<e<g. (2.27)

We conclude that the set of functiogs, (w) = flw+ie)/#(w), 0< e < g, defined forw € 1, is bounded in the

Hilbert space.?(1), and, by the Banach Theorem, is weakly compact. The conueega the distributions (2.12) implies
the weak convergenas . s g, in the Hilbert spacé&.?(1). The limit functiong, (w) coincides with the distribution
e—0+

f(w)\/(///(w) restricted ontd. This proves the bound (2.18) and finishes the proof of thpgsition. O

3 Omega-limit trajectories

3.1 Compactness
We are going to prove compactness of the set of translatibihe singular componen{g (x,t +s): s > 0}.

Proposition 3.1. For any sequence s— o there exists an infinite subsequence (which we also dencﬂie) bych that

(B(,t+8),0(-t+8)) — (B(.1).B(1),  j—e, (3.1)

for someg € C,(R,H(R")) with B € C, (R, L%(R")).
In (3.1), the convergence holds in the topology GFCT, T}, & ¢), for any T> 0 and any smalk > 0. The following
bound holds:

tngp||<B<-,t>,B<-,t>>|\g < oo, (3.2)
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This proposition is a consequence of Theorem ). 8/ich implies thaty, ) € C'&)(R, &~¢), (x, x) € CE (R, &),
and thus(¢, ) € C)(R,&¢).

We callomega-limit trajectoryany functionf3(x,t) that can appear as a limit in (3.1). Previous analysis detrates
that the long-time asymptotics of the solutignix,t) in & depends only on the singular compongiit.t). By Proposi-
tion 3.1, to conclude the proof of Theorem 1.9, it sufficesheak that every omega-limit trajectory belongs to the set of
solitary waves; that is, '

B(xt) =@, (e,  xeR", teR, (3.3)

with somew, € R.

3.2 Nonlinear Spectral analysis

The convergence (3.1) and equation (1.1), together withrhar@d.1, imply that any omega-limit trajectof(x,t) is a
solution to equation (1.1) (although(x,t) is not!):

B(x,t) = AB(x,t) —MPB(x,t) + p(F((p,B)), XeR" teR. (3.4)
For a particular omega-limit trajectofy(x,t), we denotegy(t) = F({p, B(-,1))).

Proposition 3.2. There is the inclusioBuppg'C [-m,m|UQ,, whereQ, is defined in (1.20).

!

7
Proof. The convergence (3.1) implies that, for aaye C3(R") and{ € C5(R), (a (Z «P)(t+s)) — (a,({ =
B)(-,1)). Due to the continuity of the Fourier transform frosff (R) into itself, we also have

!

()(@,(.0)e s T (@) a.Blw), s — . (35)

Assume that suppn ([—m,mUQ,) = 0. Then, by Proposition 2.2, we may substitditev) § (x, w) by { (w)V (x, w) flw),
getting

@)V (W) f(@e ™ L {(w)(a,fw), s —w. (3.6)

Sincef'is locallyL? onR\ ([—m, m] UQ,) by Proposition 2.2, while (for eachc R") V (x, w) is smooth forw € R\ {£m},
the product{ (w)(a,V(:,w)) f(w) is an absolutely continuous measure. Therefore the left-Hsale of (3.6) converges
to zero. It follows tha(x,w) =0 forw ¢ [-m m U Q,. O

Proposition 3.3. suppg'C supﬁp,ﬁ(-, w)).
Proof. By Proposition 3.1, It follows that

C(-T.T)) :
ft+s)=F({p,0(,t+s)) — F(p,BL)) =0), =

for anyT > 0. Using (2.13) and taking into account thgix, w) is smooth forw # +m, we obtain the following relation
which holds in the sense of distributions:

B(x, ) =V (X, w)§(w), xeR", w € R\ {£m}. (3.7)
Taking the pairing of (3.7) witlp and using definition o (w) (see (1.22)), we get:
(0.B( ) =Z()d(w), weR\{&m}. (3.8)
First we prove Proposition 3.3 modulo the set {+m}.

Lemma 3.4. suppgi\{£m} C supﬁp,ﬁ(-, w)).

Proof. By Proposition 3.2, suppC [—-m,mUQ,. Thus, the statement of the lemma follows from (3.8) and fnaicing
that>(w) is smooth and positive fab € (—m, m) and moreover, by Assumption A, it is nonzeroQp. O

To finish the proof of Proposition 3.3, it remains to consither contribution oo = +m.

Lemma 3.5. If &y, = £m belongs tsuppg; thenw, € supp(p,ﬁ).
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Proof. In the case whemy, = £mis not an isolated point ifi—m,m] N suppg; we use (3.8) to conclude that, €
supp(p,ﬁ) due to positivity of>(w) for |w| < m(which is apparent from (1.22)).

We are left to consider the case whep= mor —mis an isolated point ifi—m, m Nsuppg” We can pick an open
neighbourhood) of w, such that) Nsuppy'= {w,} since supg € [-m,mUQ, andQ, is a discrete finite set. Pick
{ € C5(R), supp{ C U, such that (w,) = 1. First we note that

{(@)§(w) =M3(w—ap),  M#£0, (3.9

where the derivatives of th#® w— wy,) are prohibited becaugex g(t) is bounded. By (3.7), we hatén supp»ﬁ C{ap},
hence

{(W)B(x, @) =3(w—aw)b(x),  beH R, (3.10)
Again, the terms with the derivatives 8fw — ) are prohibited becauser, = B(-,t)) are bounded for ang € C3'(R"),
while the inclusiorb(x) € H(R) is due toB € .7/ (R,H%(R)).
Multiplying (3.4) by { (w) and taking into account (3.9), (3.10), and the relatign= m?, we see that the distribution
b(x) satisfies the equation

0= Ab(x) + Mp(X). (3.12)
Thereforep(x) # 0 due toM # 0 andp(x) # 0. Coupling (3.10) withp and using (3.11), we get:
R <Aba b>
{(w){p, B, w)) = 5(w—ap){p,b) = ~5(ww— &) —7— #0, (3.12)
sinceb € H(R") is nonzero. This finishes the proof of Lemma 3.5. O

Lemmas 3.4 and 3.5 allow to conclude that sgfap)"C supp(p,ﬁ(-, w)), finishing the proof of Proposition 3.3.
Finally we reduce the spectrum git) to one point.
Lemma 3.6. (p,B(-,t)) =0or supp(p,[?(-, w)) = {w, }, for somew, € [-m mUQ,.

Proof. Denote
y(t) = (p,B(-,1)). (3.13)
By (1.28),9(t) := F(y(t)) = — TN_; 2nun| y(t)|?"~2y(t). Then, by the Titthmarsh Convolution Theorem,

SuUpsSUP@™=  max _ supsupgysy)x...* (y*y)*y=Nsup supy+ (N — 1)sup suppy. (3.14)
ne{n<N,un#0}

n-1

Remark3.7. The Titchmarsh theorem applies because §upp—m,m| UQ,, and hence is compact.
Noting that sup supp= — infsuppy, we rewrite (3.14) as

sup sup = supy+ (N — 1)(supsupfy — infsuppy). (3.15)
Taking into account Proposition 3.3 and (3.15), we get tileviong relation:
Ssup suply > supsup = supsupiy+ (N — 1) (supsuply — infsuppy). (3.16)

This is only possible if suppC {w, }, for somew, € [-mmuUQ,. O

3.3 Conclusion of the proof of Theorem 1.9

We need to prove (3.3). As follows from Lemma 3y6w) is a finite linear combination a¥(w — w, ) and its derivatives.
As the matter of fact, the derivatives could not be presecabse of the boundednessydf) := (p, B(-,t)) that follows
from Proposition 3.1. Therefor§= 2nCd(w— w, ), with someC € C. This implies the following identity:

yt)y=Ce ! CeC, teR. (3.17)

The representation (3.7) implies thax,t) = B(x,0)e '+ sinceg’= 21C(w— w, ), C € C. Therefore, equation (3.4)
and the bound (3.2) imply th@&(x,t) is a solitary wave. This completes the proof of Theorem 1.9.
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4 Multifrequency solutions

Let us construct a multifrequency solution for the case whgn) vanishes at certain points &,, and hence Assump-
tion A is violated. Fixw, € (m,3m). Pickp € .(R") so that the following two conditions are satisfied:

0 =0, 4.1
hl. S (4.1)
1 p(&)[Pd"E
> = =0. 4.2
(0)1) (27'[)“ RN 524‘”12—0012 ( )
Lemma 4.1. There exist & R, b < 0 so that equation (1.1) with the nonlinearity
F(y)=ay+blyi’y,  veC,
admits multifrequency solutiong € C(R,H?) of the form
Y(X,t) = @(x) sinwyt + @ (X) sinawyt, Wy = %, @, @ € HY(RM),
with bothg, and ¢, nonzero.
Proof. To make sure that the nonlinearity does not produce higkguincies, we assume that
(0. @) =0. (4.3)

Due to this assumption,

3 3sinwyt — sin 3t
) :

F((p,¥)) =F({p. @) sinagt) = alp, @) sinayt + b{p, @)

Collecting the terms with the factors of gigt and sinwt = sin3wyt, we rewrite the equatioy = Ay — My +
pF({p,y)) as two following equalities:

3b(p, @)
Py = gy - Py + p(x) (alp. @y + B (4.9)
b{p, @)®
— Wi =A@ — P — p(X) <p4%> : (4.5)
We defineg, by (]b(f) = ?2%‘;)_—(02, and picka andb which satisfy (4.4). We takie < 0 so that Assumption B is satisfied.
Then the functiorp, is defined by
o6 - DPw?®  pE)  bI(@)®  p(E)
k! 4 2rm-w? 4 rm-w?
Due to (4.1)¢ € HY(R"). Since(p, @) = const=(w, ) = 0, the assumption (4.3) is indeed satisfied. O

A Appendix: Global well-posedness

The global existence stated in Theorem 1.3 is obtained Imglatd arguments from the contraction mapping principle. To
achieve this, we use the integral representation for theisak to the Cauchy problem (1.2):

0

WX W% ZWI0, 20 = (-], O

}ds w:[ﬂ, t>0. (A1)
HereW(t) is the dynamical group for the linear Klein-Gordon equatidich is a unitary operator in the spaée The
bound
1Z[W4] (1) = Z[W,] (1), <Ct s;ép] [Wi(s9) =Wr(9)lls,  C>0, 0<t<1, (A.2)
sc[0t
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which holds for any two function®;, W, € C([0,1],&’), shows thaZ[(] is a contraction operator @([0,t],&) if t >0
is sufficiently small.
To prove the a priori bound (1.15), we use (1.13) to bo|li# .. in terms of the value of the Hamiltonian:

2P

W=
Wl = 2By,

(2 (Y)—A), Yeé. (A.3)

We now concentrate on the Holder continuity of the soluti(il.2). First we consider the linear case.

Lemma A.1. Let u(x,t) be the solution to the Cauchy problem
U=Au—nrfu,  (U0)_ = (Uy V) €.

Then(u,u) € C¥)(R,&¢(RM) for0 < £ < 1.

Proof. It suffices to prove the continuity stated in the lemma neaptiintt = 0. We will only prove the estimateu(-,t) —
u(+,0)[[,;1-¢ < constt|®; the bound|u(-,t) —v(-,0)||, . < consit|® is obtained similarly. The differenc€é,t) —0(&,0)
is given by

(& 1) — 0(E,0) = (costy/E7 1 1) — 1)0g(€) + %%m (A4)

Let us analyze the contribution int(-,t) — u(:, )HHl . of the second term from the right-hand side of (A.4) only (the
first term is analyzed similarly). We have:

. _ Siré(t
(&2 ) Esi(t/E7 P a2 < sup Y S T / 9(8) " < constt|? V]2
in EERN E +rr12
where we used the inequalitginz| < 7, valid for any O< € < 1 andz € R. This finishes the proof. O

Now we can prove the inclusion (1.16) stated in Theorem 1.3.
Lemma A.2. The solution to (1.2) with’| _ € & satisfies¥ € CE)(R,&¢),0< e < 1.

Proof. It suffices to prove the statement of the lemma riea0. The representation (A.1) f&(t) yields
W(t) - W(0) = (Wp(1)¥(0) — W(0)) +Z[W](1). (A5)

Estimating the contribution intp¥(t) — W(0)|| ,_ of the first term in the right-hand side of (A.5) by Lemma A.Hdhe
contribution of the second term by the bound (A.2) (whereake¥, = W, W, = 0), we get

V(1) = W)l e <CiftI*+Colt],  C;, C;>0.
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