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Finite Area and Volume of Pointed k-Surfaces

1 - Introduction.

Immersed hypersurfaces of constant Gaussian curvature are very classical objects of study
which in recent years (in geometric terms) have found various fruitful applications to the
study of negatively curved manifolds. In [6], Rosenberg and Spruck constructed a large
class of examples by solving the boundary value problem. Labourie then showed in [4] that
when the ambient manifold is three dimensional, constant Gaussian curvature surfaces may
be studied in terms of pseudo-holomorphic curves in a contact manifold. The powerful
techniques of this latter theory then allow the construction [5] of a much more general
family of such surfaces, which are well adapted to a number of useful applications, such as
the construction [3] of a canonical foliation of the non-compact ends of certain hyperbolic
manifolds; the realisation of homomorphisms of compact Fuchsian groups into Kleinian
groups as constant Gauss curvature immersions (ch.4 of [9]); and the canonical association
[8] of a complete immersed surface in H3 to each ramified covering of the Riemann sphere,
which is the case that we study in this paper.

Let H3 be three dimensional hyperbolic space. We identify the ideal boundary of H3 with
the Riemann sphere Ĉ. Let Σ be a compact Riemann surface. Let P be a finite subset
of Σ and denote Σ′ = Σ \ P . Let ϕ : Σ → Ĉ be a ramified covering with critical points
contained in P . The pair (Σ′, ϕ) defines a Plateau problem in the sense of [5]. Since Σ′ is
of hyperbolic type, by [7], for all k ∈]0, 1[, there exists a unique immersion ik : Σ′ → H3

of constant Gaussian curvature equal to k which is a solution to this Plateau problem (see
section 5). In [8] we completely described the geometry of the immersed surface (Σ′, ik),
showing that it is complete and asymptotically tubular of finite order (in the sense of [8])
near the critical points (see section 5). Heuristically, the immersed surface has only a finite
number of point singularites, all of which wrap a finite number of times in a cusp shaped
manner about a geodesic.

The aim of this paper is to study the area of and the “volume” contained by the immersed
surface (Σ′, ik). The area is a relatively trivial matter, and we obtain:

Theorem 1.1

The area of (Σ′, ik) is finite.

We volume is more subtle, since (Σ′, ik) is not embedded, and therefore does not have a
well defined interior. Nonetheless, we may define Vol(Σ′, ik) by integrating primitives of
the volume form over (Σ′, ik). This still poses difficulties, since the primitive of the volume
form is not necessarily L1 over (Σ′, ik). However, we show that Vol(Σ′, ik) may be obtained
as the limit of finite integrals. Indeed, using notation from section 5, for all p ∈ P , let γp

be a central geodesic for (Σ′, ik) at p. Let (αp, Ωp) be an asymptotically tubular chart for
(Σ′, ik) about γp and let fp be the graph function of (Σ′, ik) over this chart. For all p ∈ P
and for all t > 0, we define ct,p(s) = fp(t, s). For all t > 0, we define Σ′

t by:

Σ′
t = Σ′ \ ∪

p∈P
αp(S

1×]t, +∞[).

Let β be any primitive of the volume form of H3. Let Ψγp
: R × R2 → H3 be the

parameterisation given by polar coordinates about the geodesic γp, is in section 2. We
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define Vol(Σ′, ik; t) by:

Vol(Σ′, ik; t) =

∫

Σ′

t

i∗kβ +
∑

p∈P

∫

{t}×R2

Wind(ct,p, x)Ψ∗
γp

β.

We obtain the following result:

Theorem 1.2

Vol(Σ′, ik; t) converges to a finite limit as t tends to +∞. Moreover, this limit is indepen-

dant of the choices of (γp)p∈P , (αp, Ωp)p∈P or α.

This now allows us to define the volume of (Σ′, ik) as follows:

Vol(Σ′, ik) = Lim
t→+∞

Vol(Σ′, ik; t).

The key step in proving both these results lies in showing that the cusp ends of (Σ′, ik)
taper off exponentially fast. Following the same philosophy as in [8], this is acheived by
proving the result for the case (D \ {p}, i) of a complete immersed disc with a unique
singularity in its interior, and then showing that the general result may be deduced from
this case.

These results allow us to define two interesting functions over the Teichmüller space of
ramified coverings over the sphere, and provoke the following natural questions:

(i) How do the volume and the area vary as a function of ϕ?

(ii) What is the asymptotic behaviour of the volume and the area as k tends to 0 or 1?

(iii)How do the higher coefficents of the asymptotic series of the volume and the area vary
as a function of ϕ?

(iv)How may these new functions be related to other known functions over the Teichmüller
space?

This paper is structured as follows: in sections 2 and 3 we calculate polar coordinates about
a geodesic in H3 in order to determine the Gaussian curvature of an arbitrary surface of
revolution about that geodesic. In section 4, we use the resulting ODE to determine
the asymptotic behaviour of a constant Gaussian curvature surface of revolution about a
geodesic of some function f . Although we only need to know the decay rates of f and f ′ in
order to control the volume and the area respectively, for no extra effort, we are also able
to determine the decay rates of every derivative of f . In section 5, we recall the notion of
immersed surfaces being tubular near a critical point, as defined in [8], and we adapt this
notion to the current context. Finally, using elementary properties of convex curves in R2

obtained in section 6, we prove in section 7 the finiteness of the volume integral over each
cusp, which allows us in section 8 to rapidly deduce Theorems 1.1 and 1.2.

I am grateful to François Labourie for introducing me to the study of Plateau problems
and to Jean-Marc Schlenker for encouraging me to address this aspect of their geometry.
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2 - Polar Coordinates About a Geodesic.

Let H3 be three dimensional hyperbolic space and let g = gij be the hyperbolic metric.
We begin by calculating g in terms of polar coordinates about a geodisic. We identify H3

with the three dimensional upper half space:

H3 =
{

(x, y, t) ∈ R3 s.t. t > 0
}

,
gij = t−2δij .

Let γ : R → H
3 be a geodesic. By applying an isometry of H

3, we may assume that γ is
the unique geodesic going from 0 to ∞ and that γ(0) = (0, 0, 1). Let Nγ be the normal
bundle over γ. We identify Nγ0, the fibre over 0, isometrically with R2. Using parallel
transport, we obtain a bundle isometry τγ : R × R2 → Nγ. Let Exp : TH3 → H3 be the
exponential map. We now define Φγ by:

Φγ = Exp ◦ τγ .

This mapping is unique up to translation of the R coordinate and rotation of the R2

coordinate. Using polar coordinates of the R2 component, Φγ is given explicitely by:

Φγ(t, r, θ) = (ettanh(r)cos(θ), ettanh(r)sin(θ), etcosh(r)−1).

We have the following result:

Lemma 2.1

With respect to the basis (∂t, ∂r, ∂θ), the metric Φ∗
γg is given by:

Φ∗
γg =





cosh2(r)
1

sinh2(r)



 .

Proof: The vectors ∂t point along lines defined by r and θ being constant. These are
straight lines in R3 leaving the origin. Likewise, the vectors ∂r point along vertical circles
in R3 having the origin as their centre. Finally, the vectors ∂θ point along horizontal
circles in R3 having their origin on the vertical line t 7→ (0, 0, t) which passes through the
origin. These vectors are pairwise orthogonal in R3. Since the hyperbolic metric of H3 is
conformally equivalent to the hyperbolic metric of R3, it follows that these vectors are also
orthogonal in H

3. It now remains to calculate the lengths of these vectors with respect to
the hyperbolic metric.

We calculate these vectors over the point (ettanh(r)cos(θ), ettanh(r)sin(θ), etcosh(r)−1).
Firstly:

∂t = (ettanh(r)cos(θ), ettanh(r)sin(θ), etcosh(r)−1).

Thus:

‖∂t‖2 = e−2tcosh2(r)(e2ttanh2(r)cos2(θ) + e2ttanh2(r)sin2(θ) + e2tcosh−2(r))
= cosh2(r).
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The result now follows by an analogous calculation for ∂r and ∂θ. �

We define the mapping Ψγ : R × R+ × [0, 2π] → H3 by:

Ψγ(t, R, θ) = Φ(t, arcsinh(R), θ).

This mapping also yields a form of polar coordinates for H3 about a geodesic. However,
the corresponding metric has a simpler formula, as the following lemma shows:

Lemma 2.2

With respect to the basis (∂t, ∂R, ∂θ), the metric Ψ∗
γg is given by:

Φ∗
γg =





(1 + R2)
(1 + R2)−1

R2



 .

Proof: Since ∂R is merely a rescaling of ∂r, the pairwise orthogonality of the three coor-
dinate vectors is preserved by this reparametrisation. Moreover, the lengths of the vectors
∂t and ∂θ also remain unchanged. Finally, since r = sinh(R), we have:

∂r = cosh(R)∂R

⇒ ‖∂R‖2 = cosh(R)−2‖∂r‖2.

Using the classical relation cosh2(x) − sinh2(x) = 1, we obtain the desired result. �

We now calculate the action on this basis of the Levi-Civita covariant derivative of Ψ∗
γg.

We obtain the following result:

Lemma 2.3

The Levi-Civita covariant derivative of Ψ∗
γg is determined by the following relations:

∇∂t
∂t = −R(1 + R2)∂R,

∇∂t
∂R = R(1 + R2)−1∂t,

∇∂t
∂θ = 0,

∇∂R
∂R = −R(1 + R2)−1∂R,

∇∂R
∂θ = R−1∂θ,

∇∂θ
∂θ = −R(1 + R2)∂R.

Proof: This follows directly from the preceeding lemma and the Kozhul formula. �
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3 - Surfaces of Revolution.

Let I be an interval in R. Let f : I →]0,∞[ be a positive valued smooth function. We
define Σf,γ ⊆ H3 by:

Σf,γ = {Ψγ(t, f(t), θ) s.t. t ∈ I, θ ∈ [0, 2π]} .

Σf,γ is a surface of revolution in H3 about the geodesic γ. We aim to obtain differential
conditions on f for the surface Σf to have constant Gaussian curvature. Let κ(t) be the
Gaussian curvature of the surface Σf at the point Ψ(t, f(t), 0). We have the following
result:

Lemma 3.1

The Gaussian curvature, κ satisfies:

κf((1 + f2) + (f ′)2(1 + f2)−1)3/2 = (1 + f2)(−f ′′(1 + f2) + f(1 + f2)2 + 3f(f ′)2).

Proof: We work now in the coordinates of R×]0,∞[×[0, 2π]. We define the function

f̂ : I × [0, 2π] → R×]0,∞[×[0, 2π] by:

f̂(t, θ) = (t, f(t), θ).

We define the vector fields ∂̂t = Df̂ · ∂t and ∂̂θ = Df̂ · ∂θ. These vector fields span the
tangent space of Σf . We have:

∂̂t(t, θ) = (1, f ′(t), 0),

∂̂θ(t, θ) = (0, 0, 1).

We now define the vector field N̂ by:

N̂(t, θ) = (−f ′, (1 + f2)2, 0).

This vector field spans the normal bundle to Σf . Moreover:

‖N̂‖2 = (f ′)2(1 + f2) + (1 + f2)3.

By taking the covariant derivative of this vector field with respect to ∂̂t and ∂̂θ, we
obtain the second fundamental form of Σf . Let D be the canonical flat connexion of
R×]0,∞[×[0, 2π]. We have:

D∂̂t
N̂ = ∂tN̂ = (−f ′′, 4(1 + f2)ff ′, 0),

D∂̂θ
N̂ = ∂θN̂ = (0, 0, 0).

By Lemma 2.2, we have:

〈D∂̂t
N̂, ∂̂t〉 = −f ′′(1 + f2) + 4f(f ′)2, 〈D∂̂t

N̂, ∂̂θ〉 = 0,

〈D∂̂θ
N̂, ∂̂t〉 = 0, 〈D∂̂θ

N̂, ∂̂θ〉 = 0.
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Let Ω be the connexion one form of ∇ with respect to D, so that, for any vector fields X
and Y :

∇XY = DXY + Ω(X, Y ).

Using Lemmata 2.2 and 2.3. We obtain:

〈Ω(∂̂t, N̂), ∂̂t〉 = f(1 + f2)2 − f(f ′)2, 〈Ω(∂̂t, N̂), ∂̂θ〉 = 0,

〈Ω(∂̂θ , N̂), ∂̂t〉 = 0, 〈Ω(∂̂θ, N̂), ∂̂θ〉 = f(1 + f2)2.

Let N be the unit normal vector field to Σf :

N = ‖N̂‖−1
N̂.

Let II be the second fundamental form of Σf . That is, if X and Y are vector fields tangent
to Σf :

II(X, Y ) = 〈∇XN, Y 〉.

If X and Y are both vector fields tangent to Σf , then 〈∇XN, Y〉 = ‖N̂‖−1〈∇XN̂, Y〉. We
may thus calculate II:

II(∂̂t, ∂̂t) = ((f ′)2(1 + f2) + (1 + f2)3)−1/2×
(−f ′′(1 + f2) + f(1 + f2)2 + 3f(f ′)2),

II(∂̂t, ∂̂θ) = 0,

II(∂̂θ, ∂̂t) = 0,

II(∂̂θ, ∂̂θ) = ((f ′)2(1 + f2) + (1 + f2)3)−1/2f(1 + (f ′)2)2.

Observing that ∂̂t and ∂̂θ are orthogonal to one another, we obtain:

Det(∂̂t, ∂̂θ) = ‖∂̂t‖2‖∂̂θ‖2

= f2(1 + f2)((1 + f2) + f ′(1 + f2)−2).

If we denote by A the matrix of II with respect to the basis (∂̂t, ∂̂θ), then the Gaussian
curvature, κ, satisfies:

κ = Det(A)/Det(∂̂t, ∂̂θ).

Thus:
κf2(1 + f2)((1 + f2) + (f ′)2(1 + f2)−1)3/2

= f(1 + f2)2(−f ′′(1 + f2) + f(1 + f2)2 + 3f(f ′)2).

The result now follows. �

4 - Surfaces Of Constant Curvature.

We now study the asymptotique behaviour of solutions to the differential differential equa-
tion given by Lemma 3.1. We have the following result:

Lemma 4.1

Let k be a real number in ]0, 1[. Let f : [0,∞[→]0,∞[ be such that the surface of revolution

Σf,γ is of constant Gaussian curvature equal to k. Suppose, moreover, that f(t) and f ′(t)
both tend to zero as t tends to +∞. Then, for all δ > 0, there exists T > 0 and constants

B > A > 0 such that for all t > T :

Ae−(λ+δ)t 6 f(t),−f ′(t), f ′′(t) 6 Be−(λ−δ)t,

where λ2 = 1 − k.
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Proof: By Lemma 3.1, f , satisfies the following differential equation:

f ′′/f = (1 − k) + ǫ,

where ǫ : [0,∞[→]0,∞[ is a smooth function such that ǫ(t) tends to zero as t tends to
infinity. We define the function g(t) = Log(f(t)). Thus:

g′ = f ′/f, g′′ = (ff ′′ − (f ′)2)/f2 = f ′′/f − (g′)2.

The function g therefore satisfies the following differential relation:

g′′ + (g′)2 = (1 − k) + ǫ.

We define h(t) = g′(t). We then obtain:

h′ + h2 = λ2 + ǫ.

Let δ > 0 be such that δ < λ. Let T0 > 0 be such that for t > T0:

ǫ(t) < δ2.

Let t > T0 be arbitrary and suppose that h(t) > λ + δ. Then:

∣

∣λ2 − h(t)2
∣

∣ >
∣

∣δ2 + 2δλ
∣

∣ > δλ.

Thus:
∣

∣ǫ/(λ2 − h(t)2)
∣

∣ 6 δ/λ.

Combining this with the differential equation for h, we obtain:

∣

∣h′(t)(λ2 − h(t)2)−1 − 1
∣

∣ 6 δ/λ.

Consequently, if we define η(t) = λ−1arccotanh(h(t)/λ), we obtain:

|η′(t) − 1| 6 δ/λ.

It follows that, for any t1 > t0 > T0, if h(t) > λ + δ for all t in the interval [t0, t1], then:

η(t1) 6 η(t0) + (t1 − t0)(1 + δ/λ).

Thus, under the same conditions:

h(t1) 6 λcoth(λη(t0) + (λ + δ)(t1 − t0)).

This tells us that if t > T0 and h(t) is ever greater than λ + δ, then, in finite time, it will
fall below λ + δ. Moreover, for all t > T0, h′(t) < 0 whenever h(t) = λ + δ. It thus follows
that the function will never thereafter be greater than λ+ δ. Heuristically, we have shown
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that the function behaves like the positive branch of the hyperbolic cotangent. We thus
conclude that, for any solution, h, there exists T1 > 0 such that, for t > T1:

h(t) 6 λ + δ.

A similar analysis for the interval ] − ∞,−λ − δ[ reveals that there exists T2 > 0 which
depends only on the function ǫ such that if there exists t > T2 with h(t) < −λ − δ, then
h(t) tends to −∞ in finite time (since, heuristically, it behaves like the negative branch
of the hyperbolic cotangent). However, f exists and is positive for all time. Thus g and
g′ = h both exist for all time, and this is not possible. It thus follows that, for t > T2:

h(t) > −λ − δ.

Finally, by considering the interval ]−λ+ δ, λ− δ[, there exists T3 > 0 which depends only
on ǫ and a constant ∆T3 > 0 which depends only on δ such that if there exists t > T3 with
h(t) > −λ+ δ, then, for all t′ > t+∆T3, h(t′) > λ− δ. This happens heuristically because
the solution in this case behaves like the hyperbolic tangent.

We have thus shown that there exists T4 > 0 such that, for all t > T4, either |h(t) − λ| < δ
or |h(t) + λ| < δ.

We now exclude the case where |h(t) − λ| < δ when t > T4. Indeed, suppose that δ < λ/2.
In this case, since h(t) = g′(t), it follows that, for large values of t, the function g(t) grows
faster than λt/2. Since f is the exponential of g it then follows that f tends to infinity as
t tends to infinity, and this contradicts the hypotheses on f .

It thus follows that, for all t > T4, |h(t) + λ| < δ. Consequently, there exists a constant
C1 such that, for all t > T4:

C1 − (λ + δ)t 6 g(t) 6 C1 − (λ − δ)t.

Taking the exponential of each of these functions, we see that there exists a constant C2

such that, for t > T4:
C2e

−(λ+δ)t 6 f(t) 6 C2e
−(λ+δ)t.

Since f ′′ = f((1 − k) + ǫ), there exist constants C3, C4 > 0 and T5 > T4 such that for
t > T5:

C3e
−(λ+δ)t 6 f ′′(t) 6 C4e

−(λ+δ)t.

Finally, since f ′(t) tends to 0 as t tends to +∞, we obtain the relation for f ′(t) by
integrating f ′′(t) back from +∞. The result now follows. �

We may also estimate the higher derivatives of f :

Corollary 4.2

With the hypothesis and notation of the previous lemma, for all k > 2, there exists

Bk > Ak > 0 such that for t > T :

Ake−(λ+δ)t 6 (−1)kf (k)(t) 6 Bke−(λ−δ)t.
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Proof: By induction, for all k > 0:

f (k+2) = f (k)(1 − k) + Σk
i=0ǫif

(i),

where, for all i, ǫi(t) tends to zero as t tends to +∞. The result now follows by induction. �

This allows us to control the area of Σf,γ and the volume that it contains:

Corollary 4.3

Let Area(t) and Vol(t) be respectively that area of and the volume inside the restriction

of Σf to [t, +∞[. Then, for all δ > 0, there exists T > 0 and B > A > 0 such that, for all

t > T :
Ae−(λ+δ)t 6 Area(t) 6 Be−(λ+δ)t,
Ae−2(λ+δ)t 6 Vol(t) 6 Be−2(λ+δ)t,

where λ2 = 1 − k.

Proof: This follows directly by calculating the area and volume integrals, bearing in mind
that Ψ∗

γg is uniformly equivalent to the Euclidian metric in an ǫ-neighbourhood of γ. �

5 - Asymptotically Tubular Immersed Surfaces.

Let Σ be a compact Riemann surface and let P be a finite subset of Σ. Define Σ′ = Σ \P .

Let ϕ : Σ → Ĉ be a ramified covering such that the ramification points are contained in
P . The pair (Σ′, ϕ) defines a Plateau problem in the sense of Labourie, [5].

Let i : Σ → H3 be a convex immersion. Let Ni : Σ → UH3 be the exterior unit normal
over i. We call this the Gauss lifting of i and in the sequel we denote it by ı̂. Let
−→n : UH3 → ∂∞H3 = Ĉ be the Gauss-Minkowski mapping. Thus, if γ : R → H3 is a unit
speed geodesic in H3, then:

−→n (∂tγ) = γ(+∞).

Since i is convex, elementary hyperbolic geometry (see for example, [1]) allows us to show
that −→n ◦ ı̂ is a local homeomorphism.

For k ∈]0, 1[, following [5], the pair (Σ′, i) is said to be a solution of the Plateau problem
(Σ′, ϕ) with Gaussian curvature equal to k if and only if:

(i) the mapping i is a convex immersion with Gaussian curvature equal to k,

(ii) (Σ′, ı̂) is complete in the sense of immersed surfaces, and

(iii)ϕ = −→n ◦ ı̂.

Since the surface Σ′ is of hyperbolic conformal type, by [7], for all k ∈]0, 1[, there exists a
unique solution (Σ′, ik) of the Plateau problem (Σ′, ϕ) with Gaussian curvature equal to
k.

Let p be an arbitrary point in P . Let n be the order of ramification of ϕ at p. In [8], we
defined the notion of a surface being asymptotically tubular of finite order near a point

11
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singularity, and we showed that the immersed surface (Σ′, ı̂k) is asymptotically tubular of
order n near p. This implies that there exists:

(i) a geodesic γ such that γ(+∞) = ϕ(p),

(ii) a smooth function f : S1×]0, +∞[→ R2,

(iii) a neighbourhood Ω of p in Σ containing no other point of P , and

(iv) a diffeomorphism α : S1×]0, +∞[→ Ω \ {p},

such that:

(i) Ψγ(t, f(s, t)) = (i ◦ α)(s, t),

(ii) α(s, t) tends towards p as t tends to +∞, and

(iii) f(·, t + ·) converges to 0 in the C∞
loc topology as t tends to +∞.

Moreover:

(iv) for all t, f(·, t) has index n in a sense that will be made clear shortly.

In the sequel, we refer to γ as a central geodesic for (Σ, ik) at p, we refer to (α, Ω) as an
asymtotically tubular chart for (Σ, ik) about γ at p, and we refer to f as the graph function
of (Σ, ik) over this chart.

We have the following result:

Lemma 5.1

Let γ be a central geodesic for (Σ, ik) at p and let (α, Ω) be an asymptotically tubular

chart for (Σ, ik) about γ at p. For all t > 0, (Ω \ {p}, ik) is transverse to Ψγ({t} × R2).

Proof: Let p : H
3 → γ be the orthogonal projection. Let f be the graph function of (Σ, ik)

over (α, Ω). Then:
(ik ◦ α)(s, t) = Ψγ(t, f(s, t))

⇒ (p ◦ ik ◦ α)(s, t) = γ(t).

The orthogonal projection onto the geodesic is thus surjective, and the result now follows. �

For t > 0, we define the mapping ct = f(·, t), and we obtain the following corollary:

Corollary 5.2

For t > 0, the mapping ct is a smooth immersed curve. Moreover, for all t, ct is convex

with respect to the hyperbolic metric Ψ∗
γg over {t} × R2.

Proof: By transversality, ct is immersed. Since (Σ′, ik) is convex and {t} × R2 is totally
geodesic, ct is also convex. The result now follows. �

For all t, we define the exterior unit normal Nt of ct. We then orient ct such that Nt lies
to its right hand side. By composing Nt with the Gauss-Minkowski mapping, we obtain
a continuous mapping from S1 into ∂∞Ψγ({t} × R2), which itself is homeomorphic to S1
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(the orientation of ∂∞Ψγ({t} × R2) may be explicitely specified although it is not very
important). We thus define Ind(ct), the index of ct, by:

Ind(ct) = Ind(−→n ◦ Nt).

Condition (iv) may now be made explicit:

(iv) for all t, Ind(ct) = n.

6 - Convex Curves in Real and Hyperbolic Space.

We now require the following elementary results concerning the geometry of convex curves:

Lemma 6.1

Let M be either R2 or H2, so that ∂∞M is homeomorphic to S1. Let UM be the unitary

bundle of M and let −→n : UM → ∂∞M be the Gauss-Minkowski mapping.

Let c : S1 → M be a smooth, closed, convex curve. Let p ∈ M be any point in the

complement of the image of c. If Wind(c, p) be the winding number of c about p, then:

0 6 Wind(c, p) 6 Ind(c).

Proof: Let N be the exterior unit normal to c. We assume that c is oriented so that
N lies to its right hand side. By deforming c by a small amount, we obtain a curve c′

arbitrarily close to c in the C∞ topology which is convex and intersects itself transversally.
In particular, if c′ is sufficiently close to c, then:

Ind(c) = Ind(c′), Wind(c, p) = Wind(c′, p).

We thus assume that c intersects itself transversally. In particular, c only intersects itself
at a finite number of points. We may therefore decompose c into a finite collection c1, ..., cn

of piecewise smooth, simple, closed curves which are convex except possibly at the apexes,
where different curves join to each other. The number of apexes of ci equals the number
of distinct components of c comprising ci. For each i let Ni be the restriction of N to ci.
The ci may be labelled by the vertices of a tree, according to how they join to each other.
The leaves are then precisely the curves with only one apex. By induction from the leaves
downwards, we may show that each Ni only points into one of the connected components
of the complement of ci (i.e. it does not change sign at the apexes).

For each i, let Ω0
i and Ω∞

i be respectively the bounded and unbounded components of the

complement of ci in M . Let Ω̂i be the convex hull of ci in M . Let Γ be a supporting
geodesic of Ω̂i. Γ intersects ci non trivially. By the convexity of ci, we may assume that
that it intersects ci away from the apexes. At this point of intersection, Ni points into the
complement of Ω̂i. Consequently, Ni always points into Ω∞

i .

It follows that, for all i, Ni points outwards from Ω0
i . Consequently, for each i, Ind(ci)

brings a contribution of +1 to Ind(c), and Wind(ci, p) brings a contribution of 0 or +1 to
Wind(c, p). The result now follows. �
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We now recall the following generalisation of Stokes theorem:

Lemma 6.2

Let c : S1 → R
2 be a smooth, closed curve. If α is a 1-form over R

2, then:
∫

c

α =

∫

R2

Wind(c, x)dα(x).

Proof: By deforming c a small amount, we obtain a curve c′ arbitrarily close to c in
the C∞ topology such that c′ is convex and intersects itself transversally. By choosing
c′ sufficiently close to c, we may assume that Wind(c, ·) = Wind(c′, ·) except on a set of
arbitrarily small measure. We may thus assume that c intersects itself transversally. As
in the proof of Lemma 6.1, we may decompose c into a finite collection c1, ...cn of simple
closed curves. By Stokes’ theorem, the result holds for each ci, and the general result holds
by additivity. �

This also allows us to obtain the derivative of the winding number of a smoothly varying
family of curves as a distribution over R2:

Lemma 6.3

Let ct : S1×]− ǫ, ǫ[ be a smoothly varying family of smooth curves in R2. If β is a 2-form

in R2, then:

∂t

∫

R2

Wind(ct, x)β(x) =

∫

ct

i∂tct
β.

Proof: Let L denote the Lie derivative. Let β′ : R
2 → R be a compactly supported 2-form

such that:
∫

R2

β′ = 0.

Let γ be a primitive of β′. By Lemma 6.2, for all t, we have:
∫

ct

γ =

∫

R2

Wind(ct, x)β(x).

We have:
∂t

∫

R2 Wind(ct, x)β′(x) = ∂t

∫

ct
γ

=
∫

ct
L∂tct

γ

=
∫

ct
(di∂tct

+ i∂tct
d)γ

=
∫

ct
i∂tct

β′.

By reducing ǫ if necessary, we may construct a 2-form, β0 such that Supp(β0) is disjoint
from ct for all t, β − β0 has compact support, and:

∫

R2

β − β0 = 0.

Since the integral of Wind(ct, x)β0(x) is constant, we obtain:

∂t

∫

R2

Wind(ct, x)β(x) =

∫

ct

i∂tct
β.

The result now follows. �
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7 - The Volume Contained by a Cusp.

Let γ be a central geodesic for (Σ, ik) at p. Let (α, Ω) be an asymtotically tubular chart
for (Σ, ik) about γ at p, and let f be the graph function of (Σ, ik) over this chart. We
begin by controlling the image of (Σ, ik):

Lemma 7.1

For all δ > 0, there exists T > 0 and A > 0 such that, for all t > T :

‖f(s, t)‖ 6 Ae−(λ−δ)t,

where λ2 = 1 − k.

Proof: By applying an isometry of H3, we may suppose that γ is the unique geodesic in
H3 joining 0 to ∞. Let D be a disc in Ĉ centred about the origin such that no other point
in ϕ(P) lies in D. We may assume that D has unit radius. Let j : D \ {0} → H3 be
the unique solution of the Plateau problem (D \ {q}, Id) with constant Gaussian curvature
equal to k. We observe that this mapping is an embedding.

We will show that the immersed surface (Σ′, ik) lies entirely within the interior of (D \
{0}, j). Indeed, for t ∈]0, 1] we define Dt ⊆ C and kt ∈]0, 1[ by:

Dt = {z ∈ C s.t. (1 − t)/2 < |z| < (1 + t)/2},
kt = (1 − t) + tk.

For all t, let jt : Dt → H3 be the unique solution to the Plateau problem (Dt, Id) with
constant Gaussian curvature equal to kt. We see that (Dt, jt)t∈]0,1[ defines a foliation of
the exterior of (D, j). There exists ǫ > 0 such that for t < ǫ:

(Σ, i)∩(Dt, jt) = ∅.

Let us define t0 ∈]0, 1] by:

t0 = Inf{t ∈]0, 1] s.t. (Σ, i)∩(Dt, jt) 6= ∅.}.

Suppose that t0 < 1. By compactness, there is some point in the closure of (Σ′, i) in

H3 ∪ Ĉ which lies in the image of (Dt0 , jt0). Since (Dt0 , jt0) does not intersect ϕ(P), it
follows that (Σ′, i) intersects the image of (Dt0 , jt0) at some finite point of H3. However,
since (Dt, jt)t∈]0,t0[ forms a foliation of the exterior of (Dt0 , jt0), (Σ′, i) lies in the interior
of (Dt0 , jt0). However, this is impossible by the geometric maximum principal (see, for
example, [5]), since the Gaussian curvature of (Dt0 , jt0) is greater than that of (Σ′, i).
Thus t0 = 1, and (Σ′, ik) lies in the interior of (D \ {0}, j).

The result now follows by Lemma 4.1, since, by uniqueness, (D \ {0}, j) is a surface of
revolution about γ. �
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We now obtain estimates concerning the “volume” bounded by (Ω, i). Let α be any
primative of the volume of H3. We define the function V : [T, +∞[→ R by:

V (t) =
∫

[T,t]×S1(i ◦ f)∗α

+
∫

{T}×R2 Wind(cT , x)α(T, x)

−
∫

{t}×R2 Wind(ct, x)α(t, x).

First, we have:

Lemma 7.2

Let dVol be the hyperbolic volume element of R × R2. The function V (t) satisfies:

V (t) =

∫

[T,t]×R2

Wind(ct, x)dVol(t, x).

Proof: Let L denote the Lie derivative. Let ∂t denote the derivative in the direction of
the first coordinate in R × R2, and let ∂tct denote the infinitesimal variation of ct. We
recall that:

L∂t
α = di∂t

α + i∂t
dα.

Thus:
∫

[T,t]

∫

{s}×R2 Wind(ct, x)(i∂t
dα)(x)ds =

∫

[T,t]

∫

{s}×R2 Wind(ct, x)(L∂t
α)(x)ds

−
∫

[T,t]

∫

{s}×R2 Wind(ct, x)(di∂t
α)(x)ds.

Since dα = dVol:
∫

[T,t]

∫

{s}×R2

Wind(ct, x)(i∂t
dα)(x)ds =

∫

[T,t]×R2

Wind(ct, x)dVol(t, x).

Next, using Lemmata 6.2 and 6.3, and taking care with orientations:
∫

[T,t]

∫

{s}×R2 Wind(ct, x)(di∂t
α)(x)ds =

∫

[T,t]

∫

{s}×S1(i ◦ f)∗(i∂t
α)(θ)ds

= −
∫

[T,t]×S1(i ◦ f)∗α

−
∫

[T,t]

∫

{s}×S1(i ◦ f)∗(i∂tct
α)(θ)ds

= −
∫

[T,t]×S1(i ◦ f)∗α

−
∫

[T,t]
∂t

∫

{s}×R2 Wind(ct, x)α(x)ds

+
∫

[T,t]

∫

{s}×R2 Wind(ct, x)(L∂t
α)(x)ds.

Combining these relations, we obtain:
∫

[T,t]×R2 Wind(ct, x)dVol(t, x) =
∫

[T,t]×S1(i ◦ f)∗α

+
∫

[T,t] ∂t

∫

{s}×R2 Wind(ct, x)α(x)ds.

The result now follows by integrating the last integral. �

This allows us to prove the convergence of V (t):

Lemma 7.3

The function V (t) converges to a finite limit as t tends to +∞.

Proof: By the convexity of (Σ′, ik), corollary 5.2 and Lemmata 6.1 and 7.2, the function
V (t) is positive and increasing. We recall that the hyperbolic metric Ψ∗

γg is uniformly
equivalent to the Euclidean metric in an ǫ-neighbourhood of γ. It thus follows by Lemmata
7.2 and 7.1 that V is bounded from above. The result now follows. �
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8 - Finiteness of Area and Volume.

We are now in a position to prove Theorem 1.2:

Proof of Theorem 1.2: The existence and finiteness of this limit follows from Lemma
7.3. If α′ is another primitive of the volume form, then d(α′ − α) = 0. Thus, since the
homology of H3 vanishes in dimension higher than zero, the integral of α′ − α over any
closed surface vanishes and this limit does not depend on the choice of α. For any p ∈ P ,
two different asymptotically tubular charts about γp differ only by a rotation of the S1

coordinate and a translation of the R coordinate. It thus follows by Lemma 7.3 that this
limit does not depend on the asymtotically tubular chart chosen. An analogous reasoning
shows that the integral does not depend on the choice of the central geodesics. The result
now follows. �

The finiteness of the area of (Σ′, ik) is significantly simpler to prove:

Proof of Theorem 1.1: Since there are only a finite number of cusps, it suffices to prove
that the area of each cusp is finite. Let p be a point in P . Let n be the order of ramification
of the function ϕ at p. We define q = ϕ(p). Let D be a disc in Ĉ about q which contains
no other point of P . By applying an isometry of H

3, we may assume that q = 0 and that
D is the unit disc about the origin. Let jk,n : D \ {q} → H3 be the solution of the Plateau
problem (D \ {q}, z 7→ zn) with Gaussian curvature equal to k. By Lemma 7.2.1 of [5],
(D \ {q}, jk,n) is a graph over (Σ′, ik). In otherwords, there exists a neighbourhood Ω of
q in Σ′, a diffeomorphism α : Ω \ {p} → D \ {q} and a smooth function f : Ω → [0, +∞[
such that, if ı̂k is the Gauss lifting of ik, then, for all x ∈ Ω \ {p}:

jk ◦ α(x) = Expx(f(x)̂ık(x)).

Using elementary hyperbolic geometry (see, for example, [1]), the mapping α is dilating
with respect to the metrics induced by the immersions. However, if jk,1 : D \ {q} → H

3

is the solution of the Plateau problem (D \ {q}, z 7→ z), then, by uniqueness of solutions,
jk,n factors through as an n-fold covering of jk,1. Finally, by Corollary 4.3, the area of the
cusp end of (D \ {q}, jk,1) is finite. Thus, the area of the cusp of (Σ′, ik) about p is finite.
The result now follows. �
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