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Abstract

The intertwining operator constructed in [Sz1, Sz2] 1 does not ap-
pear in the right form. It is established there by using only the anticom-
mutators J1 and J ′

1
. The correct operator involves all endomorphisms,

Jα, which are unified by the Z-Fourier transform. Although some of
the correct elements of the previous constructions are kept, this idea
is established by a new technique which yields the various isospectral-
ity theorems stated in the papers on a much larger scale. The new
results include new isospectrality examples living on sphere×ball- and
sphere×sphere-type manifolds. Among them, there are such discrete
isospectrality families where one of the members is homogeneous while
the others are locally inhomogeneous (striking examples). Further-
more, a large class of new isospectrality families are constructed by σ
deformations.

1 Introduction.

In papers [Sz1, Sz2], the intertwining operator is constructed by the complex
linear correspondence

κ∗ : ϕ(|X|, Z)ΘQ1(X,J1)...ΘQp(X,J1)ΘQp+1(X,J1) . . .ΘQp+q(X,J1) (1)

→ ϕ(|X|, Z)ΘQ1(X,J
′
1) . . .ΘQp(X,J

′
1) . . .ΘQp+1(X,J

′
1) . . .ΘQp+q(X,J

′
1),
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where Q1, . . . , Qp+q are arbitrary X-vectors, furthermore, ΘQ(X,J1) = 〈Q+
iJ1(Q),X〉 and the corresponding Θ′

Q(X,J ′
1) are defined by the anticommu-

tators J1 and J ′
1 respectively. These anticommutators σ-relate to each other,

meaning, that the X-space is a direct sum, v = v(a) ⊕v(b), of k(a) resp. k(b)

real-dimensional subspaces such that the components are invariant under the
action of the anticommutators and they agree on the first component while
J1 = −J ′

1 holds on the second one. The complex linear property guaranties
that it intertwines the operators ∂1D1• and ∂1D

′
1•, which appear in the

Laplacians involved to the angular momentum operators M =
∑l

α=1 ∂αDα•
resp. M′. One of the ultimate goals is to intertwine the complete Laplacians.

It was overlooked by the author that one can not allow arbitrary vectors,
Qi, in the definition of κ∗ because the operator becomes ill-defined. In fact,
well-defined complex linear map can be introduced by choosing a system,

{E(a)
i , E

(b)
j }, where 1 ≤ i ≤ k(a)/2; 1 ≤ j ≤ k(b)/2, of independent vectors

in the corresponding component spaces v(a) and v(b) which form a complex
linear basis with respect to both complex structures J1 and J ′

1. Then, the
admissible Q’s are the vectors laying in the real subspace spanned by all

these E
(c)
r ’s. This natural complex linear map can be described in terms

of the complex coordinates {zr} resp. {z′r} determined by the same basis

{Er|1 ≤ r ≤ k(a)/2 + k(b)/2 = k/2} = {E(a)
i } ∪ {E(b)

j }, for the two complex
structures respectively such that the image of a polynomial written up in
terms of the coordinates {zr} is the polynomial of the same form but written
up in terms of the other coordinates {z′r}. One can easily see that these well-
defined maps depend on the real subspaces spanned by {Er}, meaning that
maps defined for different real subspaces correspond different elements to
the very same element in general. Thus, by allowing all possible Q’s, the
above κ∗ is ill-defined indeed.

Unfortunately, this problem can not be eliminated by replacing the ill-
defined operator by one of these well-defined ones. In this case a much
more serious difficulty appears, namely, such a well-defined operator does
not intertwine ∂αDα• and ∂αD

′
α• satisfying α > 1, which are also parts of

the corresponding Laplacians. Let it also be mentioned that the rest parts
of the Laplacians as well as the boundary conditions are intertwined by it.
In the papers, the proof of intertwining of the above parts of M resp. M′

explores the false assumption claiming that the κ∗ operates on functions
defined for imaginary Q’s in the same way as for the real ones.

One of the reasons causing this blunder was that, instead of M and M′,
one was focusing just on Dα• and D′

α•, i. e., tried to define intertwining
operator using only the X-space. An other reason was that the intertwining
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operator was defined just with endomorphisms J1 and J ′
1. The corrected

operator, involving all Jα and focusing on M and M′, is defined by choosing
a basis {E1, . . . , Ek/2} and using Qi’s laying in the real span of these basis
vectors. More precisely, this correspondence is:

κ :

∫

z

ei〈Z,V 〉ϕ(|X|, V )ΘQ1...p(X,Vu)ΘQp+1...p+q(X,Vu)dV → (2)

∫

z

ei〈Z,V 〉ϕ(|X|, V )Θ′
Q1...p

(X,Vu)Θ
′
Qp+1...p+q

(X,Vu)dV,

where ΘQ1...p(X,Vu) := ΘQ1(X,Vu) . . .ΘQp(X,Vu) and the corresponding
Θ′

Q1...p
(X,Vu) are defined by the endomorphisms JVu and J ′

Vu
belonging

to the unit Z-vectors Vu respectively. This operator associates functions
defined by the Z-Fourier transform to each other. Appropriate intertwining,
κ−, can be established by using e−i〈Z,V 〉 in the above formulas. Then also
κR = (κ + κ−)/2 is going to be an intertwining operator. However, this
paper proceeds only with the first version.

The well-definedness of this operator follows from reasons such as only
Q’s laying in the real span of vectors Ei are used in its definition, further-
more, the Fourier transform is an isometry on the corresponding L2 Hilbert
spaces. The intertwining of the Laplacians is due to the Z-Fourier transform
implemented into the formulas. The addition of this Z-Fourier transform to
the original idea makes the mathematical situation much more complex,
requiring a complete rethinking of the original construction. For instance,
beyond proving the intertwining of the Laplacians, it is much more difficult
to prove the intertwining of the boundary conditions for this operator. Ac-
tually, the proof of the latter statement combines the Z-Fourier transform
with an independent idea incorporated into the Independence Theorems.
The ill-definedness of (1) was recognized by H. Fürstenau whose observa-
tion triggered the author’s thorough rethinking of his complete construction.
The much deeper problems hidden under the cover of ill-definedness came
to the light during this revision process. The reborn operator presented here
saves all the previous results and provides also new interesting isospectrality
examples. The main goal is to establish

Theorem 1.1. The ball- resp. sphere-type manifolds, which have the same

radius function ϕ(|X|, |Z|) and are defined on H-type groups H
(a,b)
l having

the same parameters a+ b and l, are isospectral. This statement extends to
a large class of general 2-step nilpotent Lie groups where an isospectrality
family is defined by σ-deformations.
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On ball-type manifolds this statement includes the well-definedness of (2)
and the intertwining of the Laplacians as well as the boundary conditions.
Since the Dirichlet condition is intertwined, by restrictions, the operator
induces bijections between the function spaces defined on the boundaries.
By observing that it is enough to use functions satisfying the Z-Neumann
condition on the ambient manifolds, one can prove the intertwining property
also on the boundary manifolds.

All these statements extend onto the solvable extensions of 2-step nilpo-
tent Lie groups. Furthermore, new examples, not discussed in the original
papers, are also constructed. They live on sphere×ball- and sphere×sphere-
type manifolds. Among them two are particularly interesting. Namely, the
isospectrality family of sphere×sphere-type manifolds, constructed both on

H
(a,b)
3 and SH

(a,b)
3 , the metric is homogeneous for the manifold belonging

to the pair (a + b, 0) or (0, a + b), while the metrics satisfying ab 6= 0 are
locally inhomogeneous. Also the dimensions of groups of isometries acting
on the members are different. These are new contributions to the old list of

striking examples constructed on the sphere×torus-type manifolds of H
(a,b)
3 .

resp. geodesic spheres of SH
(a,b)
3 .

These theorems are established, first, on H-type groups and their solvable
extensions. Then, they are extended to those 2-step nilpotent groups and
their solvable extensions which are defined by endomorphism spaces obtained

by perturbing the endomorphism space of a given H-type group H
(a,b)
l .

The perturbation process mentioned above is as follows. The endomor-
phisms, JZ , on H-type groups are defined by endomorphisms, jZ , acting on
the irreducible components, by the formula JZ = (jZ , . . . , jZ ,−jZ , . . . ,−jZ).
The perturbation primarily concerns the endomorphisms jZ , i. e., close to
the Cliffordian one, a new linear space of endomorphisms is chosen with ele-

ments denoted by j̃Z . Then, the groups, H̃
(a,b)
l and ˜SH

(a,b)
l , resulted by such

a perturbation arise from endomorphisms J̃Z defined by the same formula
in terms of j̃Z .

Such a perturbation results a new family, defined by the same (a + b)
and l, whose members are obviously σ-equivalent. By a theorem proved in
the last section, the κ always intertwines the Laplacians, however, the same
statement for the boundary conditions is not guarantied. This problem is
solved by the independence theorems which state the independence of certain
subspaces formed by functions. This independence is established, originally,
for H-type groups defined by Cliffordian endomorphism spaces and remains
true for groups defined by endomorphism spaces which are close enough to
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the Cliffordian ones. The latter spaces constitute an open set whose mem-
bers are called the small perturbations of a given Cliffordian endomorphism
space. The complete isospectrality theorems are established only on those
σ-equivalent groups whose endomorphism spaces are produced by small per-
turbations of the Cliffordian ones. It is also important to understand that
the independence theorems alone do not validate the intertwining property
for the boundary conditions. They can guarantee it just for intertwining
operators defined by σ-deformations.

The new features in this mathematical process include, first of all, the
integral formula by which the intertwining operator is defined. This formula
deeply roots in quantum theory [Sz4, Sz5], furthermore, it can be used also
for explicit computations of the eigenfunctions and spectra. This rooting
in physics is exhibited by the surprising fact that the Laplacian on the in-
vestigated manifolds can be identified with the Landau-Zeeman operator
attached to electron-positron systems where these particles are orbiting in
constant magnetic fields. Above, the endomorphisms −jZ resp. jZ corre-
spond to electrons resp. positrons, and σ-deformations is interpreted such
that some of the electrons are exchanged for positrons. Yet, the spectra
on all submanifolds investigated in this paper are not changing during this
exchange-process. The local geometry, however, is dramatically changing.
The manifolds in the striking examples, for instance, are homogeneous for
systems having particles of the same type, while, they are locally inhomo-
geneous for mixed particles.

This is a physical interpretation of the above isospectrality theorems.
The perturbation can be interpreted such that, instead of a system of iden-
tically charged particles, one considers ones which are charged distinctly.
Then, the isospectrality theorems are established also for systems produced
by small perturbation of the charge. The fact of non-changing spectra during
electron-positron-exchanges is well known in physics. However, the state-
ment of this form concerns the spectra considered on a non-compact mani-
fold. Our statement claims much more than just this. Namely, the spectra
remain the same also on a large class of compact submanifolds. An other
distinguishing feature is that no attached local geometries are considered in
quantum theory.

The intertwining of the Laplacians can be established by using only the
integral formula. For proving the intertwining property for the boundary
conditions, a new idea, appearing in the Independence Theorems, is involved.
These theorems are also important new features in this field.

The methods developed in this paper apply only for σ-deformations.
A characteristic feature of these discrete deformations is that they do not
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change the Ricci curvature. This fact is strongly used in proving the in-
tertwining regarding the boundary conditions. This experience strongly in-
dicates that the submanifolds considered in this paper are not isospectral
on the Gordon-Wilson [GW] examples where continuous isospectral defor-
mations with changing Ricci tensor are established on groups defined by
2-dimensional Z-spaces. Other arguments supporting this statement are ex-
plained in the end of the last section.

The much more general Theorem 1.1 replaces the Isospectrality The-
orems of the articles. Only the construction of the intertwining operator
(cf. pages 461-465 in [Sz1] and 371-375 in [Sz2]) is effected by this problem.
The major non-effected part includes all the Non-Isometry resp. Rigidity
Theorems and the preparatory part of Sections 4. resp. 3.. This problem
with solution was announced at the CUNY Geometric Analysis Conference,
in 2006 [Sz3].

2 Technicalities.

The constructions are performed on 2-step nilpotent metric Lie groups and
their solvable extensions. The nilpotent groups are defined on correspond-
ing orthogonal direct sums, v ⊕ z, of Euclidean spaces where the compo-
nents, v = R

k and z = R
l, are called X- and Z-space respectively. The

Lie algebra is completely determined by the linear space, Jz, of skew en-
domorphisms whose actions on the X-space are defined by the relation
〈[X,Y ], Z〉 = 〈JZ(X), Y 〉, where X,Y ∈ v and JZ is the endomorphism
associated with Z ∈ z. The Riemannian metric, g, is the left invariant ex-
tension of the natural Euclidean metric on the Lie algebra. The exponential
map identifies the Lie algebra with the group itself, thus also the group
can be considered to be defined on the same (X,Z)-space. Each group,
(N, g), extends into a solvable group (SN, gs), where a point is represented
by (t,X,Z).

Particular 2-step nilpotent Lie groups are the so called Heisenberg-type
groups, defined by endomorphisms satisfying the Clifford condition J2

Z =
−|Z|2id. These metric groups are attached to Clifford modules, thus the
classification of these modules provides classification also for the H-type
groups. In this case the X-space decomposes into the product v = (Rr(l))a+b =
Rr(l)a × Rr(l)b and endomorphisms JZ are defined by endomorphisms jZ
acting on the smaller space Rr(l) such that they act on Rr(l)a resp. Rr(l)b

according to the Cartesian product jZ × · · · × jZ resp. −jZ × · · · × −jZ .

The H-type groups are denoted by the symbol H
(a,b)
l , which indicates the
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above decomposition. The solvable extensions of H-type groups are denoted

by SH
(a,b)
l .

The Laplacian on a H-type group is of the form

∆ = ∆X + (1 +
1

4
|X|2)∆Z +

r
∑

α=1

∂αDα•, (3)

whereDα• denotes directional derivative along the vector fieldX → Jα(X) =
JZα(X) defined for each element, Zα, of an orthonormal basis of the Z-space.
The integral curves of this field are the Hopf circles defined for the complex
structure Jα. In the isospectrality constructions performed in this paper one
should deal with this compound operator. Earlier, the constructions were
performed on center periodic H-type groups, Γ\H, defined by factorizing the
center of the group with a Z-lattice Γ = {Zγ}. In this case the L2 function
space is the direct sum of function spaces Wγ spanned by functions of the
form Ψγ(X,Z) = ψ(X)e2πi〈Zγ ,Z〉. Each Wγ is invariant under the action of
the Laplacian, i. e., ∆Ψγ(X,Z) = 2γψ(X)e2πi〈Zγ ,Z〉, where operator 2γ ,
acting on L2(v), is of the form

2γ = ∆X + 2πiDγ • −4π2|Zγ |2(1 +
1

4
|X|2). (4)

Note that the first operator involves all endomorphisms Jα while the second
one involves, regarding each invariant subspace Wγ , only Jγ .
Remark. There is pointed out in [Sz3, Sz4, Sz5] that operator (4) is noth-
ing but the Zeeman-Hamilton operator of a free charged particle (the 2D
version is called Landau Hamiltonian), which was used for explaining the
Zeeman effect. Term involving Dγ• is the so called angular momentum
operator, which represents a preliminary version of the spin concept. The
non-periodic metric group (N, g) strongly relates to Dirac’s relativistic multi-
time model, which, in order to furnish relativistic features on the quantum
level, endowed the particles with individual self-times. In the H-type model
the multi-time is represented by the multi-dimensional center of the group.
Regarding this relativistic interpretation, which is not the same as the clas-
sical relativism, Laplacian (3) on the total space (space-time) corresponds
to the Klein-Gordon operator. Note, however, that this multi-time operator
is an elliptic one. This fact points to the distinctive features of the multi-
time and classical relativism. Operator, M, involving all angular momentum
operators is called compound angular momentum operator.
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3 Isospectrality constructions.

The isospectrality constructions are performed on H-type groups, H
(a,b)
l ,

and on their solvable extensions, SH
(a,b)
l , first. It is only the last section

where they are extended to σ-equivalent groups whose endomorphism spaces
are constructed by perturbing the Clifford endomorphism spaces. The main
goal is to describe these constructions on non-periodic groups, however, in
order to see both the similarities and differences, they are briefly reviewed
here also in the center periodic cases. For fixed a + b and l, these groups
are defined on the same (X,Z)- resp. (t,X,Z)-space. There is established

in many different ways that the metrics, g
(a,b)
l , in a family have completely

different local geometries (cf., for instance, the striking examples), yet they
are isospectral on a wide range of submanifolds.

3.1 Constructing the ball×torus- and sphere×torus-examples.

These examples are constructed for a family, Γ\H(a,b)
l , of Z-periodic man-

ifolds. The submanifolds considered are torus bundles over a ball (resp.
sphere) around the origin of the X-space. An intertwining operator can
be constructed such that, for each invariant space Wγ constructed above,

just an orthogonal transformation conjugating J
(a,b)
γ to J

(a′,b′)
γ on the X-

space should be considered. The intertwining operator on Wγ is defined
by the map induced on functions ψ(X), defined in the Fourier-Weierstrass
decomposition, by this point transformation. This transformation clearly in-
tertwines 2γ with 2

′
γ such that it keeps also the boundary conditions. (The

boundary conditions can be described in terms of radial functions. The
intertwining of boundary conditions is then due to the invariance of these
functions under the action of the operator.) It induces an appropriate in-
tertwining operator also on the boundary manifolds. The striking examples

appear on the quaternionic families H
(a,b)
3 , in which case the sphere×torus-

type boundary manifolds in Γ\H(a+b,0)
3 are homogeneous while the others

in the family are locally inhomogeneous. Note that the simplicity of this
case is due to the fact that the intertwining operator is constructed, on each
invariant space Wγ separately, by a single endomorphism, Jγ .

3.2 The ball- and sphere-type domains.

These examples were originally constructed in [Sz1, Sz2]. The ball-type
domains are, by definition, diffeomorphic to Euclidean balls such that the
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sphere-type boundary manifolds are level sets described by equations of the
form ϕ(|X|, |Z|) = 0 resp. ϕ(|X|, |Z|, t) = 0. These domains are invariant
under the action of the orthogonal group O(Rk) × O(Rl), thus, they may
be called domains of (X,Z)-revolutions. They can be visualized such that
there is an X-ball centered at the origin of the X-space considered over the
points of which there are Z-balls of radius RZ(|X|) around the origin of
the Z-space considered. Then, the boundary is a level set defined by the
equation ϕ(|X|, |Z|) = |Z| − RZ(|X|) = 0. By this reason, function ϕ is
called radius function.

Note that radiusRZ(|X|) is constant along a sphere defined by a constant
radius RX = |X| in the X-space. Furthermore, the ball bundle defined by
the Z-balls over this X-sphere is trivial. These are the so called sphere×ball-
type manifolds whose boundaries are sphere×sphere-type manifolds. The
new examples, not discussed in the earlier papers, are constructed on these
domains and surfaces.

An other visualization can be started out with a Z-ball in the Z-space
over the points of which there are X-balls of radius RX(|Z|) considered.
Then the boundary is defined by |X| − RX(|Z|) = 0. However, this paper
proceeds with the first description.

In the solvable case one should consider (Z, t)-balls and (Z, t)-spheres
around the origin (0Z , 1) defined for the hyperbolic (Z, t)-space. The base
manifold is the same X-sphere as before. Note that a Z-ball BRZ

(0Z) (resp.
Z-sphere SRZ

(0Z)) uniquely extends into a geodesic ball (resp. sphere) of
the hyperbolic (Z, t)-space. A sphere×ball-type domain can be described as
a hypersurface in a ball-type domain such that the Z-balls (resp. (Z, t)-balls)
of the ball type domain are considered only over the points of a sphere SRX

laying in the X-space. Similarly, the sphere×sphere-type manifolds can be
regarded as hypersurfaces in the sphere-type manifolds.

The isospectrality will be investigated, first, for the discrete families,

H
(a,b)
l , defined by the same a+ b and l. The Laplacian is described then by

(3). Comparing with the Zeeman operator (4), this operator involves all the
endomorphisms, making the constructions much more difficult. The Lapla-
cians of the members in a family differ from each other just by the last term,
M, which is called compound angular momentum operator. The spectral
investigation both of M and ∆ is completely missing in the literature. Note
that this most intriguing operator, M, commutes with both operators in the
rest part of (3).
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3.3 Eigenfunctions motivating the intertwining operators.

The eigenfunctions constructed next are not directly used in the isospectral-
ity constructions and the rest part of this paper is understandable without
knowing about their actual explicit form described in the second half of
this section. However, there are important concepts introduced in the first
part which are heavily used later on. The ultimate reason for describing
these functions here is that they very clearly suggest the explicit form of the
sought intertwining operators.

Since M commutes with the rest part, O, of ∆, the eigenfunctions of ∆
can be sought as common eigenfunctions for both operators M and O. In the
very first step we look for the eigenfunctions of a single angular momentum
operator DV •, defined by a Z-vector V . For a fixed X-vector Q and unit
Z-vector Vu = 1

|V |V , consider the X-function ΘQ(X,Vu) = 〈Q+ iJVu(Q),X〉
and its conjugate ΘQ(X,Vu). For vector V = |V |Vu, these functions are
eigenfunctions of DV • with eigenvalue −|V |i resp. |V |i. The higher order
eigenfunctions are of the form Θp

QΘ
q
Q with eigenvalue (q − p)|V |i.

In order to find eigenfunctions of the compound operator M, consider a
sphere SRZ

of radiusRZ around the origin in the Z-space. For an appropriate
function φ(|X|, V ), depending on |X| and V ∈ SRZ

, define

FQpqRZ
(φ)(X,Z) =

∮

SRZ

ei〈Z,V 〉φ(|X|, V )Θp
Q(X,Vu)Θ

q
Q(X,Vu)dV. (5)

By Vu = V/|V |, the Vu is considered as a function depending on V . Due to
the relation M

∮

=
∮

iDV •, this function is an eigenfunction of M with the
real eigenvalue (p−q)RZ . These functions are eigenfunctions also of ∆Z with
eigenvalue R2

Z . Also note that these eigenvalues do not change by varying
Q, or, if the simple functions Θp

Q(X,Vu) resp. Θ
q
Q(X,Vu) are exchanged for

their pluralistic versions ΘQ1...p(X,Vu) := ΘQ1(X,Vu) . . .ΘQp(X,Vu) resp.

ΘQp+1...p+q(X,Vu).
Functions (5) defined by simple resp. pluralistic functions are said to

be one-pole resp. multiple-pole functions with poles Q resp. {Qi}. The
function space generated for fixed 1-pole (resp. multi-poles) by all possible
φ is not invariant with respect to the action of ∆X , thus the eigenfunctions
of the complete operator ∆ do not appear in this form. In order to find the
common eigenfunctions, the homogeneous but non-harmonic 1-pole polyno-
mials Θp

QΘ
q
Q (resp. the multiple-pole polynomials) of the X-variable should

be exchanged for the 1-pole harmonic polynomials Π
(n)
X (Θp

QΘ
q
Q), (resp. to

the corresponding multiple-pole harmonic polynomials) defined by the pro-
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jection, Π
(n)
X , onto the space of n = (p + q)-order homogeneous harmonic

polynomials of the X-variable. These projections are explicitly described in
the form

Π
(n)
X = ∆0

X +B
(n)
1 |X|2∆X +B

(n)
2 |X|4∆2

X + . . . (6)

in [Sz2] (cf. formula (3.14) there), where ∆0
X = id and the constants B

(n)
i

are determined by a recursion formula. This formula easily implies that also

HFQpqRZ
(φ)(X,Z) =

∮

SRZ

ei〈Z,V 〉φ(|X|, V )ΠX(Θp
Q(X,Vu)Θ

q
Q(X,Vu))dV

(7)
are eigenfunctions of M and ∆Z with eigenvalues belonging to (5). The
same statement is true regarding the multiple-pole-cases.

The action of the complete Laplacian (3) is a combination of X-radial
differentiation, ∂|X|, and multiplications with functions depending just on
|X|. I. e., the action is completely reduced to X-radial functions. Also this
reduced form of the Laplacian is not changing by varying Q, or, switching to
multiple-pole functions. The eigenfunctions of ∆ can be found by seeking the
eigenfunctions of the reduced operator among the X-radial functions. The
explicit computations are carried out in [Sz4, Sz5]. Since these details are
not used in this paper, we just indicate that the eigenfunctions appear in the

form
∮

SRZ
ei〈Z,V 〉φ(V )F

(p,q)
Q (X,Vu))dV, (resp. in a corresponding multiple-

pole version of this function), where F
(p,q)
Q (X,Vu)) is an eigenfunction of

operator 2γ satisfying |Vγ | = |V | = RZ . The latter ones are explicitly
described in [Sz4, Sz5] in terms of homogeneous harmonic polynomials which
are multiplied with radial functions. The eigenfunctions are determined
below also by a different method, using the so called Itô polynomials.

Note that this construction is carried out for a fixed 1-pole Q (resp. a
fixed multiple-pole, {Q1, . . . , Qp, Qp+1, . . . , Qp+q}). An other type of con-
structions is as follows. For any unit vector Vu of the Z-space, consider a
complex orthonormal basis {QVu1, . . . , QVuk/2} on the complex X-space de-

fined by the complex structure JVu such that the vectors in front lay in v(a)

and all the others are in v(b). Such a basis defines the complex coordinate
system {zVu1 = ΘQ1Vu

, . . . , zVuk/2 = ΘQ(k/2)Vu
} on the X-space. This ba-

sis field must be smooth on an everywhere dense open subset of the unit
Z-sphere such that it is the complement of a set of 0 measure. For given

values p1, q1, . . . , pk/2, qk/2, consider the polynomial
∏k/2

i=1 z
pi

Vuiz
qi

Vui. Then the
functions

∮

SRZ

ei〈Z,V 〉φ(V )ϕ(|X|)
k/2
∏

i=1

zpi
Vuiz

qi
VuidV (8)
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are eigenfunctions of the compound angular momentum operator M. In
order to have an eigenfunction for the complete Laplacian, one can use
the above described method of projecting the polynomial into the space of
homogeneous harmonic polynomials which have order (p1 + q1 + · · ·+pk/2 +
qk/2). In [Sz4, Sz5], the eigenfunctions of 2γ are determined also by an other

method, seeking them in the form h
(piqi)
Vu

e−RZ 〈zVu ,zVu 〉, where the h
(piqi)
Vu

is
an (p1 + q1 + · · · + pk/2 + qk/2)-order polynomial. Then this function is an
eigenfunction of 2γ satisfying |Zγ | = RZ if and only if the latter function is
an Itô polynomial regarding the complex structure JVu . The final form of
the eigenfunction is

∮

SRZ

ei〈Z,V 〉φ(V )h
(piqi)
Vu

e−RZzVu ·zVudV. (9)

Since Itô’s polynomials are non-homogeneous, this is a different representa-
tion of the eigenfunctions. These explicit descriptions of the eigenfunctions
will not be used in the rest part of the paper.

4 Constructing the intertwining operators.

4.1 Constructions on ball-type domains.

The constructions described in this sections are carried out for Heisenberg

type groups, H
(a,b)
l and H

(a′,b′)
l , which are in the same isospectrality family,

i.e., a + b = a′ + b′ holds. From each eigenfunction-construction described
above one can derive the corresponding intertwining operator intertwining
the corresponding eigenfunctions provided by the construction. Note that
the functions appearing there are not of class L2 regarding the Z-variable
thus integral formulas (5), (7), (8) can not be directly used for defining the
operator. This is why function φ(|X|, V ), depending on |X| and V ∈ SRZ

originally, is exchanged for one which an L2 function of the V-variable, for
any fixed |X|, and the integral is taken over the whole Z-space R

l. In other
words, the Z-Fourier transform on L2

Z-setting is considered.
Also the order for introducing the various versions of the intertwining

operators is an important issue. The first version is defined for a fixed basis,

QF = {Q1, . . . , Qk/2} = {Q(a)
F ,Q

(b)
F }, which does not depend on Vu, where

the first k(a)/2 number of vectors are in v(a) and the following k(b)/2 number
of vectors are in v(b). If these vectors are chosen such that they form an
orthonormal basis regarding a fixed JV0u , then they form a complex (in
general, non-orthonormal) basis for Vu’s which form an everywhere dense

12



open subset on the unit sphere of the Z-space. This operator is defined by
means of the polynomials written up in terms of the coordinate functions

zVu1(X) = ΘQ1(X,Vu), . . . , zVuk/2(X) = ΘQk/2
(X,Vu) (10)

resp. {z′Vu1, . . . , z
′
Vuk/2}. The denotation indicates that, although the basis

is fixed, these coordinate functions depend on Vu.
For constructing the eigenfunctions in the previous section, one is using

a fixed Z-sphere and functions, φ(V ), of Dirac-type concentrated on this
sphere. Then the eigenfunctions are represented by Z-Fourier transforms of
these Dirac-type functions. Whereas, in defining the intertwining operator
κQF

determined for a constant basis QF , one considers Z-Fourier transforms
of appropriate L2

Z -functions. More precisely, for an L2
Z -function, φ(V ), de-

fined on the Z-space and arbitrary set {pi, qi}, where i = 1, . . . , k/2, of
natural numbers the intertwining operator is defined by

κQF
: FQF {piqi}(φ)(X,Z) =

∫

Rl e
i〈Z,V 〉φ(V )

∏k/2
i=1 z

pi

Vui(X)zqi

Vui(X)dV (11)

→ F ′
QF {piqi}

(φ)(X,Z) =
∫

Rl e
i〈Z,V 〉φ(V )

∏k/2
i=1 z

′pi

Vui(X)z′qi

Vui(X)dV.

I. e., the κQF
corresponds to a function, which is defined by the Z-Fourier

transform formula in terms of φ, zpi
i , z

qi
i , the function defined by the same

expression but which is written up in terms of φ, z′pi
i , and z′qi

i . In these for-
mulas, the Vu = V/|V | is considered as a function depending on V , further-
more, the dependence of the complex coordinate functions on the X-variable
is described in (10). Note that in this first version of the operator function
φ depends just on V and not on |X|.

The domain and range of this operator is discussed in the next section.
In this section one is focusing on the well-definedness and the intertwining
of the Laplacians. Concerning these questions, we have.

Theorem 4.1. The above κQF
is a well defined one-to-one operator.

Proof. This theorem is well established by proving that the image of a func-
tion which is in the domain of κQF

and vanishes almost everywhere is a
function vanishing almost everywhere. For proving this statement, suppose
that function

ϕ̃(X,Z) =

∫

Rl

ei〈Z,V 〉
∑

{pi,qi}

φ{pi,qi}(V )

k/2
∏

i=1

zpi

Vui(X)zqi

Vui(X),

where the terms of the sum (series) are defined regarding the independent

polynomials
∏k/2

i=1 z
pi

Vuiz
qi

Vui, vanishes almost everywhere. Since the Z-Fourier

13



transform is a one-to-one map on the corresponding L2-Hilbert space, for

any fixed X, function ϕ(X,V ) =
∑

{pi,qi}
φ{pi,qi}(V )

∏k/2
i=1 z

pi

Vui(X)zqi

Vui(X)
(whose Fourier transform is considered) must vanish almost everywhere.

By the independence of the polynomials
∏k/2

i=1 z
pi

Vuiz
qi

Vui, what is satisfied for
almost all Vu, a general function ϕ defined by this formula is non-zero if
there is a non-zero L2-function φ{pi,qi} among the component functions.
Therefore, due to the assumption of this theorem, all these φ’s must vanish
almost everywhere. Then, also the image ϕ̃′ must vanish almost everywhere.
This proves the statement completely.

Actually, one has proved the following stronger statement: Function
ϕ̃′ is zero almost everywhere if and only if its preimage ϕ̃ is zero almost
everywhere. Thus also the one-to-one property is established completely.

Much more handy alternative definitions of the very same κQF
are es-

tablished in the following theorem.

Theorem 4.2. (A) In the definition of κQF
, function φ may depend also on

|X|, or, even more,on |X(a)| and |X(b)|, where X = X(a) +X(b) corresponds
to the decomposition v = v(a) ⊕ v(b). I. e., an equivalent version is:

κQF
: FQF {piqi}(φ)(X,Z) =

∫

Rl

ei〈Z,V 〉φ(|X|, V )

k/2
∏

i=1

zpi

Vui(X)zqi

Vui(X)dV (12)

→ F ′
QF {piqi}

(φ)(X,Z) =

∫

Rl

ei〈Z,V 〉φ(|X|, V )

k/2
∏

i=1

z′pi
Vui(X)z′qi

Vui(X)dV.

In the more general version, the φ(|X|, V ) is replaced by φ(|X(a)|, |X(b)|, V ).
(B) The κQF

intertwines both the Euclidean Laplacian ∆X and the pro-

jections Π
(n)
X , Π

(na)
X , Π

(nb)
X with themselfs respectively. These projections are

described in (6), furthermore, n = p + q =
∑

pi +
∑

qi, na = pa + qa =
∑a

i=1(pi + qi), nb = pb + qb =
∑a+b

i=a+1(pi + qi). The operator can be written
in the following alternative form:

κQF
: HFQF {piqi}(φ)(X,Z) =

∫

Rl

ei〈Z,V 〉φ(|X|, V )Π
(n)
X (

k/2
∏

i=1

zpi

Vuiz
qi

Vui)dV (13)

→ HF ′
QF {piqi}

(φ)(X,Z) =

∫

Rl

ei〈Z,V 〉φ(|X|, V )Π
(n)
X (

k/2
∏

i=1

z′pi

Vuiz
′qi

Vui)dV.

In the more general version, the φ(|X|, V ) resp. Π
(n)
X (

∏k/2
i=1 . . . ) are replaced

by φ(|X(a)|, |X(b)|, V ) resp. Π
(na)
X (

∏a
i=1 . . . )Π

(nb)
X (

∏a+b
i=a+1 . . . ).

14



(C) These versions for defining κQF
allow to introduce its domain in a

more precise way. In order to work on L2 function spaces, one should con-
sider functions of the form φ(|X|, V ) = e−|X|2ϕ(|X|, V ), where ϕ, for any
fixed |X|, is of class L2 with respect to the V-variable, and it is a polynomial
with respect to the |X|-variable. By plugging them into the Fourier trans-
form formula, they generate a pre-Hilbert space whose closure, regarding the
L2-Hilbert norm, is a Hilbert space. (In the next section, this domain is
identified with the standard L2-Hilbert space defined on R

k ⊕ R
l.) A larger

domain can be generated by functions φ(|X|, V ), where, keeping the above
assumption regarding the V -variable, function φ(|X|, V̇ ) depending on vari-
able |X| is of class L2 for almost all fixed V̇ on any interval 0 ≤ |X| ≤ R.

Proof. (A) This proof explores that the system QF of independent vectors
decomposes into two subsystems, QF = {Q(a),Q(b)}, consisting vectors from
v(a) resp. v(b). They form a complex basis, both for JVu and J ′

Vu
, for an

everywhere dense open set of unit vectors Vu. This basis can not be orthonor-
mal for all Vu, even though it is orthonormal for some Vu. For each Vu, let

RVu = {R(a)
Vu
,R

(b)
Vu
} be a complex orthonormal basis, regarding the complex

structure JVu , defining the complex coordinate system {zRVu i}. Then, there
exist complex matrix, (cij(Vu)), such that zRVu i =

∑

j cij(Vu)zQVuj hold.
The equation expressing the orthonormality is

∑

mn cimcjn〈Qm, Qn〉 = δij ,
where matrix with entries 〈Qm, Qn〉 is real. The basis field can be chosen
such that it is continuous on an everywhere dense open subset of the unit
vectors Vu.

In terms of J ′
Vu

, the above matrix transformation defines an other com-
plex coordinate system, z′

R′

Vu
i =

∑

j cij(Vu)z′QF Vuj , with the corresponding

complex basis R′
Vu

. Although it is not the same as RVu , but, due to the

relations J
′(a)
Vu

= J
(a)
Vu

and J
′(b)
Vu

= −J (b)
Vu

, this new basis also yields the above
orthonormality equation. Therefore, it is orthonormal regarding the com-
plex structure J ′

Vu
and, according to the computations:

|X|2 =
∑

i

zRVu izRVu i =
∑

i

(
∑

j

cij(Vu)zQF Vuj)(
∑

r

cir(Vu)zQF Vur) = (14)

=
∑

j,r

(
∑

i

cij(Vu)cir(Vu))zQF VujzQF Vur)

=
∑

i

z′RVu iz
′
RVu i =

∑

j,r

(
∑

i

cij(Vu)cir(Vu))z′QF Vujz
′
QF Vur)
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the X-radial function |X|2 appears in the same polynomial form regarding
both coordinate systems {zQF Vuj} and {z′QF Vuj}. The same statement is
true for any power, or, by using power series, for any function φ(|X|) of the
basic radial function. This observation proves (A) completely.

(B) Regarding the Laplacian the same computation yield:

∆X =
∑

i

∂zRVui
∂zRVu

i =
∑

i

(
∑

j

cij(Vu)∂zQF Vuj
)(

∑

r

cir(Vu)∂zQF Vur) = (15)

=
∑

j,r

(
∑

i

cij(Vu)cir(Vu))∂zQF Vuj
∂zQF Vur)

=
∑

i

∂z′
RVu

i
∂z′

RVu
i
=

∑

j,r

(
∑

i

cij(Vu)cir(Vu))∂z′
QF Vuj

∂z′
QF Vur

),

i. e., also this Laplacian appears regarding both coordinate system in the
same form. This proves the invariance of ∆X under the action of κQF

. The

explicit formula (6) regarding Π
(n)
X along with (A) and the above statement

concerning ∆X prove (B) completely.
(C) This statement is self-contained.

Yet an other alternative definition of κQF
can be introduced by using

1-pole functions Θp
QΘ

q
Q, where Q is in the real span of the vector-system

QF , i. e., Q ∈ SpanR(QF ). The version using multi-pole functions, defined
by vectors laying in SpanR(QF ), adds nothing new to the above polynomial-
version, therefore, this case is omitted here. Also note that the multi-pole
functions span the same function space spanned by the 1-pole functions,
thus, complete analysis can be performed by using only the simple ones.

Theorem 4.3. The κQF
is well defined by each of the following correspon-

dences:

κQF
: FQpq(φ)(X,Z) =

∫

Rl e
i〈Z,V 〉φ(V )Θp

QVu
(X)Θ

q
QVu

(X)dV (16)

→ F ′
Qpq(φ)(X,Z) =

∫

Rl e
i〈Z,V 〉φ(V )Θ′p

QVu
(X)Θ

′q
QVu

(X)dV,

κQF
: FQpq(φ)(X,Z) =

∫

Rl e
i〈Z,V 〉φ(|X|, V )Θp

QVu
(X)Θ

q
QVu

(X)dV (17)

→ F ′
Qpq(φ)(X,Z) =

∫

Rl e
i〈Z,V 〉φ(|X|, V )Θ′p

QVu
(X)Θ

′q
QVu

(X)dV,

κQF
: HFQpq(φ)(X,Z) =

∫

Rl e
i〈Z,V 〉φ(|X|, V )Π

(p+q)
X (Θp

QVu
Θ

q
QVu

)dV (18)

→ HF ′
Qpq(φ)(X,Z) =

∫

Rl e
i〈Z,V 〉φ(|X|, V )Π

(p+q)
X (Θ′p

QVu
Θ

′q
QVu

)dV,
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where Q ∈ SpanR(QF ) is an arbitrary vector and ΘQVu(X) := ΘQ(X,Vu).
There is a more general version also in this case which corresponds to the

exchange of Q for a pair, (Q(a), Q(b)), followed by the exchange of functions

φ(|X|, V ), Θp
QVu

Θ
q
QVu

, Π
(p+q)
X (..) for the following ones

φ(|X(a)|, |X(b)|, V ), Θpa

Q(a)Vu
Θ

qa

Q(a)Vu
Θpb

Q(b)Vu
Θ

qb

Q(b)Vu
, Π

(pa+qa)

X(a) (..)Π
(pb+qb)

X(b) (..)

respectively.

Remark. Although, it is not defined by an appropriate basis, the well-
definedness of the operator is not jeopardized in this theorem. It can be
defined, however, by constructing a basis as follows.

For fixed Q and natural numbers p and q, let ΦQpq (resp. ΞQpq) be the
L2 function space spanned by functions of the form FQpq(φ)(X,Z) (resp.
HFQpq(φ)(X,Z)), where φ(|X|, V ) can be an arbitrary L2

Z-function. For
fixed p and q, all these spaces sum up to the total spaces Φpq =

∑

Q ΦQpq

(resp. Ξpq =
∑

Q ΞQpq). There exist finite many Qi such that the total
space is the direct sum of the independent subspaces ΦQipq (resp. ΞQipq).
For the two type of total spaces these numbers are different. Due to the
non-degeneracy of κQF

, the total spaces Φ′
pq (resp. Ξ′

pq) are the direct sums
of the independent subspaces Φ′

Qipq (resp. Ξ′
Qipq). The κQF

can be defined
just by its actions κQF

: ΦQipq → Φ′
Qipq (resp. κQF

: ΞQipq → Ξ′
Qipq) on

these subspaces. This construction method, which will not be used in this
paper, can be applied for explicit spectral computations.

Above, six versions of the very same intertwining operator defined by
a constant complex basis, QF , were introduced. A changing orthonormal
complex basis field, Q(Vu) = {Q(a)(Vu),Q(b)(Vu)}, which is supposed to be
continuous on an everywhere dense open subset of the unit vectors Vu, also
defines an intertwining operator. Unlike the constant field, which can be
orthonormal only for Vu’s of zero measure, the changing field is supposed

to be orthonormal almost everywhere. Then, by J
′(a)
Vu

= J
(a)
Vu

and J
′(b)
Vu

=

−J (b)
Vu

, also the basis Q′(Vu) is orthonormal regarding the complex structure
J ′

Vu
. The starting version of the intertwining operator κQ(Vu) defined by a

changing complex orthonormal basis is introduced by formula (11), where
the complex coordinates, zVui, are defined by Q(Vu). Now we have

Theorem 4.4. Operator

κQ(Vu) : FQ(Vu){pi,qi}(φ)(X,Z) → F ′
Q(Vu){pi,qi}

(φ)(X,Z), (19)

defined for all sets, {pi, qi}, of natural numbers and L2-functions φ(V ), is
a well-defined one-to-one map leaving the X-radial functions, the Laplacian
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∆X and the projections Π
(n)
X invariant. Thus, this operator can be defined

in the alternative ways

κQ(Vu) : FQ(Vu){pi,qi}(φ)(X,Z) → F ′
Q(Vu){pi,qi}

(φ)(X,Z), (20)

κQ(Vu) : HFQ(Vu){pi,qi}(φ)(X,Z) → HF ′
Q(Vu){pi,qi}

(φ)(X,Z), (21)

where the φ(|X|, V ) may depend also on |X|, or, |X(a)| and |X(b)|.

The proof is the same as for the constant basis case. Since both basis’,
Q(Vu) and Q′(Vu), are orthonormal, the proof of the invariance of the radial

functions, Euclidean Laplacian ∆X , and projections Π
(n)
X is even simpler as

in the previous case. Let it also be mentioned that versions (16)-(18) can
not be introduced for the changing basis case because the Q’s must be in
the intersection of all real subspaces spanRQ(Vu).

Now we are ready to prove the first main theorem in this paper.

Theorem 4.5. Both in the constant and the changing basis cases, the κQ

intertwines the complete Laplacians ∆ and ∆′.

Proof. There is proved above that both the Laplacian ∆X and operators de-
fined by multiplication with radial functions are intertwined by the κQ. The
other parts of the Laplacians are also intertwined because of the following
identities.

κQ : MFQ(Vu){pi,qi}(φ) = FQ{pi,qi}((q − p)|V |φ) (22)

→ F ′
Q{pi,qi}

((q − p)|V |φ) = M′F ′
Q{pi,qi}

(φ),

κQ : ∆ZFQ{pi,qi}(φ) = FQ{pi,qi}(−|V |2φ) (23)

→ F ′
Q{pi,qi}

(−|V |2φ) = ∆ZF ′
Q{pi,qi}

(φ)

where p =
∑

pi and q =
∑

qi. These formulas remain true if F is exchanged
for HF .

4.2 Constructions on sphere×ball-type domains.

For introducing the intertwining operators on sphere×ball-type domains,
one can start with version (13), where it is defined for a constant basis
in terms of homogeneous harmonic polynomials of the X-variable defined
on the ambient space. It is pointed out there, that the operator is well
defined without using a basis, but now, for each n, consider functions of

the form Π
(n)
X (

∏k/2
i=1 z

pi

Vuiz
qi

Vui) = |X|2nσVu{pi,qi} such that, for a fixed Vu,
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functions σVu{pi,qi} form a basis among the corresponding spherical har-
monics defined on the unit sphere of the X-space. Note that the dimen-
sion of nth-order harmonic polynomials is less than the dimension of nth-
order homogeneous polynomials, thus, not all polynomials from the lat-
ter set are subjugated to the projection. Anyhow, such choices for such
basis’ exist. All those Vu’s satisfying this property form an everywhere
dense open subset of the unit Z-vectors. The functions whose Fourier trans-
forms are considered in an arbitrary version of the intertwining operator
have unique expansions,

∑

{pi,qi}
φ{pi,qi}(|X|, V )σVu{pi,qi}, by these spheri-

cal harmonics and the intertwining operator defined by this representation
is the same as for the original representation. These spherical harmonics
can be pulled back from the unit X-sphere to the considered X-sphere by
the central projection π : X → Xu = X/|X|. Then, for any function
c(V ), function c(Y )π∗(σVu{pi,qi}) defined on the sphere×ball-type manifold
is the restriction exactly of those functions φ{pi,qi}(|X|, V )σVu{pi,qi} for which
φ{pi,qi}(RX , V ) = c(V ) holds. Thus we have

Theorem 4.6. Both in the fixed and changing basis cases, intertwining
operator κQ induces a well defined action on functions defined by restrictions
from the ambient manifolds onto the sphere×ball submanifolds. This induced
operator, κ̃Q, is well defined for all versions and is the same as the operator
constructed by a basis of the space of spherical harmonics.

This induced operator intertwines the Laplacians defined on the sphere×-
ball-type submanifolds.

The proof of well-definedness for a basis of the space of spherical har-
monics is the same as on the ambient manifold. The Laplacian on the
submanifold differs from (3) just by the terms ∆X and |X| which should be
exchanged for ∆SX

(which is the Laplacian on the X-sphere) and RX (which
is the radius of the X-sphere), respectively. Note that the X-directional
derivatives included into M concern directions tangent to the sphere. Thus
this term is the same as for the ambient space. In other words, in order to
have the Laplacian on the submanifold, just the radial Laplacian, ∆r, of the
X-space should be dropped from (3). Since both the radial and the com-
plete Laplacians are invariant under the action of the ambient intertwining
operator, also the Laplacian on the submanifold is invariant.

5 Domain and range of κQ.

The domain and range of the intertwining operators is determined by a
function transformation which is noteworthy also without this application.

19



5.1 The dual Radon transform.

This transform was first investigated in [Sz6], pages 264-266, where it is
called boomerang transform. The results provided there include also an
inversion formula, which, by a new proof, was reestablished by Á. Kurusa
[Ku1, Ku2]. He called the operator itself dual Radon transform which name
better describes the area this transform belongs to. We adopt this name,
however, the following review proceeds with the author’s original ideas.

Let gθ(r) be a half-line parameterized by arc-length r which has its end-
point, corresponding to r = 0, at the origin O of R

l and which is pointing
to the point θ ∈ Sl−1

0 (1) of the unit sphere Sl−1
0 (1) ⊂ R

l around the origin
O. Then (θ, r) serve as polar coordinates for the points, Z, of R

l. These
denotations indicate that this transform will be used on the Z-space of H-
type groups. If f(θ, r) is a continuous function defined on R

l, then, for each
fixed θ0, it determines a cylindrical function f c

θ0
(Z) defined on the unique

half-space whose perpendicular projection onto the line spanned by gθ0(r) is
equal to this half-line. If the projection of Z is the point having the polar co-
ordinates (θ0, r), then, by definition, f c

θ0
(Z) = f(θ0, r). By considering this

construction for each θ, one can define the function-valued function θ → f c
θ .

The dual Radon transform, f → fτ , is defined by the integral

fτ :=

∫

Sl−1

f c
θdθ, (24)

which can be written also in the form

fτ (Z) :=

∫

〈θ,Z〉≥0
f(θ, 〈θ, Z〉)dθ. (25)

Apply Thales’ theorem to the last formula to see that the transform is
defined by the integral of f on the sphere of diameter [0, Z] by the measure
dθ. Note that this measure differs from the canonical measure of the Thales
sphere. By (24) and Fubini’s theorem we have:

Lemma 5.1. Let f(Z) be an arbitrary continuous function and let µ be a
continuous function with compact support in R

l. Then the integral formula

∫

Rl

fτ (Z)µ(Z)dZ =

∫

Sl−1

∫ ∞

0
f(θ, r)µR(θ, r)drdθ (26)

holds, where µR(θ, r) is the Radon transform of µ defined by the integrals
of this function on the hyperspaces intersecting gθ at the points having the
polar coordinates (θ, r) perpendicularly.
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Formula (26) reveals that the considered transform is dual to the Radon
transform, indeed. The main result in this section is:

Theorem 5.2. Let fτ (θ, r) be an arbitrary function of class C2m with com-
pact support in R

l, where l = 2m+ 1 is odd or l = 2m is even. Then fτ has
an inverse, f , regarding the dual Radon transform, which is of the form

f =
(−1)m

(2π)2m
((fτ )R)(2m), if l = 2m+ 1, (27)

where (2m) means the 2mth derivative of the functions with respect to r,
resp.

f =
(−1)m(l − 1)!

(2π)2m
((fτ )R)[2m], if l = 2m, (28)

where ϕ[2m](r) is defined for a function ϕ(t) on R by

ϕ[2m](r) :=

∫ ∞

0

1

t2m

(

ϕ(r + t) + ϕ(r − t) (29)

−2
[

ϕ(r) +
t2

2!
ϕ′′(r) + · · · + t2m−2

(2m− 2)!
ϕ(2m−2)(r)

])

dt.

Proof. Let µ be a function of class C2m with compact support in R
2m+1.

From (26) we get

∫

Rl

[((fτ )R)(2m)]τ (Z)µ(Z)dZ = (30)

∫

Sl−1

∫ ∞

0

(−1)m

(2π)2m
((fτ )R)(2m)(θ, r)µR(θ, r)drdθ = (31)

∫

Sl−1

∫ ∞

0
(fτ )R(θ, r)

( (−1)m

(2π)2m
(µ)

(2m)
R (θ, r)

)

drdθ = (32)

∫

Rl

fτ (Z)
( (−1)m

(2π)2m
(µ)

(2m)
R

)

τ
(Z)dZ =

∫

Rl

fτ (Z)µ(Z)dZ.

In the last step the well known Radon inverse formula is used. Since µ is
arbitrary, formula (27) is established. Formula (28) can be established in
the same way.

Let it be mentioned that all non-trivial isospectrality examples con-
structed in this paper arise from odd dimensional Z-spaces. Thus, only
formula (27) applies to these cases.

21



5.2 The domain of the intertwining operators.

The above theorem is used to prove that the function space generated by
functions of the form FQ{piqi}(φ)(X,Z) contains all functions P (X)f(Z),
where P (X) is a complex valued polynomial and f(Z) is a smooth function
of compact support on the Z-space. Thus, by using appropriate limiting
procedures, the whole standard L2

C
-Hilbert space on the (X,Z)-space can

be generated in this way. Note that the Z-Fourier transform of φ is “twisted”
with the polynomials appearing in the formula which depend, beside X, also
on Vu. By this reason, it is called also twisted Z-Fourier transform. It is
this feature what makes the constructions of the above functions highly
non-trivial.

The proof of the above statement needs some preparations. For a fixed
unit Z-vector V 0

u and positive number δ, let Tδ(V
0
u ) be the tube of radius

δ around the half-line gV 0
u
(r). By the standard definition, it is the union

of those discs, D
(l−2)
δ (r), of radius δ about the points of the half-line which

intersect the half-line perpendicularly. The characteristic functions of this
tube and the half-line, defined on the whole Z-space resp. line determined
by gV 0

u
(r), are denoted by χδV 0

u
(Z) and χg

V 0
u
(t) respectively. Then,

lim
δ→0

1

V ol(D
(l−2)
δ )

FQ{piqi}(χδV 0
u
φ)(X,Z) =

k/2
∏

i=1

z′pi

V 0
u i

(X)z′qi

V 0
u i

(X)Lc
Vu

(φV 0
u
)(Z),

where function LVu(φV 0
u
)(t) = χg

V 0
u
(t)Fou±Vu(χg

V 0
u
φV 0

u
)(t), defined on the

whole line spanned by V 0
u and parameterized by t satisfying t(Vu) = 1,

vanishes for t < 0 and it is the Laplace transform of φV 0
u
(r) defined on the

half-line gV 0
u
(r). In the latter formula, this function is described in terms

of the 1-dimensional Fourier transform Fou±V 0
u

defined on the whole line
spanned by V 0

u .
Note that the above function does appear as a product of X- and Z-

depending functions. In the next averaging process they are used to con-
struct P (X)f(Z) such that one considers the same polynomial P (X) for
all Vu and, in the end, the f appears as the dual Radon transform of an
appropriate function defined on the Z-space.

For a complex valued polynomial, P (X), let PV 0
u
(X) be a representa-

tion of the polynomial in terms of the complex structure JV 0
u
. Further-

more, let PV 0
u
(X,Vu) be the function defined by replacing V 0

u with gen-
eral Vu in PV 0

u
(X). Therefore, PV 0

u
(X) = PV 0

u
(X,V 0

u ) holds, but for other
Vu’s there are other polynomials defined. Denotation FQP

V 0
u

means that
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∏k/2
i=1 z

′pi

V 0
u i

(X)z′qi

V 0
u i

(X) is replaced by PV 0
u
(X,Vu) in the above formulas. Then

we have:

lim
δ→0

∫

Sl−1

1

V ol(D
(l−2)
δ )

FQP
V 0

u
(χδV 0

u
φ)(X,Z)dV 0

u = (33)

P (X)

∫

Sl−1

L
c
V 0

u
(φV 0

u
)(Z)dV 0

u = P (X)(L±Vu(φ))τ (Z),

where L±Vu(φ) denotes the function defined on the whole line spanned by
±Vu by the Laplace transforms of functions φVu(r) resp. φ−Vu(r). Thus we
have:

Theorem 5.3. For given polynomial P (X) and smooth function f(Z) of
compact support the product P (X)f(Z) is limit of convergent sequences of
functions belonging to the domain of an intertwining operator. This sequence
is constructed by the above method, where function φ(V ) = L

−1
±Vu

(fτ−1)(V )
is derived from φ by the inverse dual-Radon resp. 1-dimensional Laplace
transforms defined above on the corresponding half-lines. (The inverse for-
mula for the Laplace transform is called Mellin’s formula. An alternative
version is the so called Post’s formula.)

The same proof yield those versions of the theorem when function f is
of the form f(|X|, Z) such that, for any fixed |X0|, function f(|X0|, Z) is
of compact support on the Z-space, or, when this problem is considered on
a sphere×ball-type domain and P (X) is replaced by its restriction, P̃ (X),
onto the sphere and f(Z) is the same function as before. In these cases
P (X)f(|X|, Z) resp. P̃ (X)f(Z) are in the domain of the intertwining op-
erator. In both cases, functions φ(|X|, V ) resp. φ(V ) can be found by the
same inverse operations defined on the Z-space.

6 Intertwining of the boundary conditions.

The most important tool applied in establishing the intertwining of the
boundary conditions is a theory developed for one- and two-pole functions.

6.1 Formulas for one- and two-pole functions.

For a unit Z-vector Z0 and Q ∈ R
k, denotation XQZ0 means that this

X-vector is in the subspace spanned by Q and JZ0(Q). On the plane
P (Q,JZ0(Q)) spanned by these two vectors the polar coordinates (|XQZ0 |, α)
are defined such that α(Q) = 0, α(JZ0(Q)) = π/2 hold. By the restriction
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α ≤ π imposed for all Z0, one has a spherical coordinate system on the
(l + 1)-dimensional space, SQ, spanned by Q and all JZ0(Q). Thus these α
parameter lines are half circles running in the half-plane P+(Q,JZ0(Q)) ⊂
P (Q,JZ0(Q)) bounded by RQ and containing JZ0(Q).

Function ΘQ can be described by this coordinate system as follows. If
the orthogonal projection, XQ, of X onto SQ is in P+(Q,JZ0(Q)), then

ΘQ(X,Vu) = 〈Q,XQ〉+ i〈[Q,XQ], Vu〉 = |XQ|(cosα+ i〈Z0, Vu〉 sinα). (34)

Powering performed in Θp
QΘ

q
Q yield:

Theorem 6.1. On those vectors, X, whose projections onto SQ fall onto
a fixed α-half-circle around the origin of the half-plane P+(Q,JZ0(Q)), a
1-pole function FQpq(φ) has the form:

FQpq(φ)(X,Z) =

∫

Rl

φ(|X|, V )Θp
Q(X,Vu)Θ

q
Q(X,Vu)ei〈Z,V 〉dV = (35)

p+q
∑

s=0

|XQ|p+q cosp+q−s α sins α

∫

Rl

Aspq〈Z0, Vu〉sφ(|X|, V )ei〈Z,V 〉dV = (36)

p+q
∑

s=0

|XQ|p+q cosp+q−s α sins α(Aspq(−i)s∂s
Z0

)

∫

Rl

φ(|X|, V )|V |−sei〈Z,V 〉dV.(37)

Function φs(X,V ) = φ(|X|, V )|V |−s, whose Z-Fourier transform, φ̃s, ap-
pears as the last integral term of (36), is derived from φ such that it de-
pends just on |X| and the Z-variable. Term behind sins α is denoted by
Ãspq(|X|, Z0, Z). If both |X| and Z are fixed, then Ãspq is constant for those
X’s which project onto the half circle determined for Z0 by the parameter-
range α ≤ π. On SQ, whose points are denoted by XQ, this function appears
in the form

p+q
∑

s=0

|XQ|p+q cosp+q−s α sins α Ãspq(|XQ|, Z0, Z), (38)

where, for fixed values of |X| and Z, the Ãspq is an sth-order polynomial
which can be described in terms of the unit vectors JZ0(Qu), where Qu =
Q/|Q|, as follows.
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Originally, this polynomial can explicitly be determined on the Z-space
by the expansion 〈Z0, Vu〉s =

∑s
j=0Bjσ

s−j
Z0

(Vu) in terms of the spherical

harmonics σs−j
Z0

(Vu). Since, for any fixed Z0, function 〈Z0, Vu〉s defined
on the unit Z-sphere is radial about the center Z0, thus also the spherical
harmonics are radial about Z0 and the convolutions with them are nothing
but the projections onto the corresponding subspaces of spherical harmonics.
Thus,

Ãspq(|X|, Z0, Z) =
∑

j

Bjϕ
(s−j)(|X|, Z0, Z),

where ϕ(s−j) is the corresponding spherical harmonics appearing in the ex-
pansion of ϕ(|X|, Z, Vu) =

∫ ∞
0 Aspqφs(|X|, Vu, r)e

ri〈Z,Vu〉dr which function
is defined, for fixed Z and |X|, by integrals with respect to dr defined for the
polar coordinate system (Vu, r).

But this function depends on X. In its final form, it can be viewed such
that the function determined on the Z-space defines, first, a 0-homogeneous
function on the equator plane EQu spanned by the X-vectors JZ0(Qu). Then,
it extends onto SQ such that, on an XQ, it takes the value determined by Z0

if and only if XQ ∈ P+(Q,JZ0(Q)).
For other points, which are outside of SQ, the function is determined by

this function and projection onto SQ. Note that the Ãspq is defined for X
and not for XQ, meaning that, instead of |XQ|, function φ involves |X| to
this term. The latter parameters stand in front of the formula and are in
connection with the trigonometric polynomials.

Such formulas can be established also for HFQpq(φ). Functions Θ
q
Q resp.

Θp
Q are homogeneous harmonic polynomials of the X-variable, thus in cases

satisfying p = 0 or q = 0, the function in (35) is nothing but HFQpq(φ). If

pq 6= 0, there are new terms, |X|2rΘp−r
Q Θ

q−r
Q , appearing in the X-harmonic

polynomial ΠX(Θp
QΘ

q
Q). For each r, an additional sum shows up both in (36)

and (37). Comparing the first and the rth sums, the p+q is exchanged for p+
q−2r, which is the greatest possible value for sr in the sum. Such a new sum
can be combined with the first one, where r = 0, by multiplying the rth sum
by 1 = (cos2 α+sin2 α)r. Thus one gets trigonometric polynomials appearing
in the first sum. By collecting the terms belonging to the same trigonometric
polynomial, the first term behind the integral sign of (36) is exchanged for

a polynomial of the form Pspq(|X|, 〈Z0, Vu〉) =
∑s

r=0A
(s−r)
spq |X|r〈Z0, Vu〉s−r,

resulting the integral terms
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P̃spq(|X|, Z0, Z) =

∫

Rl

Pspq(|X|, Z0, Vu)φ(|X|, V )ei〈Z,V 〉dV, (39)

P̃spq(|X|, ∂s−r
Z0

, φ̃s−r) =

s
∑

r=0

A(s−r)
spq (−i)s−r|X|r∂s−r

Z0
φ̃s−r

behind sins α in formulas (36) resp. (37). Note that constants A
(s−r)
spq are

built up by but not equal to the constants Aspq. Thus we have:

Theorem 6.2. On SQ, function HFQpq(φ) appears in the form

p+q
∑

s=0

|XQ|p+q cosp+q−s α sins α P̃spq(|XQ|, Z0, Z), (40)

where Pspq is explicitly described in (39). For fixed values of |X| and Z also
this term is an X-depending sth-order polynomial which appears in the same
form as Ãspq does. But this one has also lower order terms, 〈Z0, Vu〉s−r,
beneath the main term. For other points not being on SQ also this function
is determined by projections onto SQ, in which case it is defined in terms of
|X| and not |XQ|.

The above constructions restricted onto spheres SRX
provide the formu-

las on sphere×ball-type domains. In this case function |X| is constant, thus
functions φ̃s−r depend just on Z and Z0. Let it be pointed out again that
the latter variable is involved by the assumption XQ ∈ P+(Q,JZ0(Q)), i.
e., it is determined by X over which the Fourier transform in the Z-space
is performed. In other words, it is an X-depending function whose precise
denotation would be Z0(X).

Since the Z-balls, BRZ
(X), where X ∈ SRX

, are naturally identified on
this trivial ball-bundle, they determine the same functions in the Z-space
for all those X’s which project onto the half-plane P+(Q,JZ0(Q)). Thus
functions FQpq(φ) resp. HFQpq(φ) appear in the form (38) resp. (40) such
that |X| = RX is constant in this case.

Later on, we need these functions described also on circles, C = P2∩SRX
,

which are represented as intersections of 2-dimensional linear subspaces,
P2, with SRX

. If Q ∈ P2, these functions are perfectly described by the
above formulas also on these circles. Therefore, we suppose Q 6∈ P2. First
also suppose that P2 ⊂ SQ holds, in which case the computations below
are carried out on the 3-space, SQ3, spanned by P2 and RQ. This space
intersects SRX

at the 2-sphere denoted by SRX2. The north-pole, O, of
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this sphere is cut out by the ray R+Q. The north-pole, OC , on the circle is
defined by the closest point to O. Let αC be the angle parameterization of C
with origin OC such that on both sides 0 ≤ αC ≤ π hold. The angle between
C and the great circle CEO with center O (equator) on the 2-sphere SRX

2 is
denoted by βC . It is uniquely determined by the assumption 0 ≤ βC ≤ π/2.
For a point P ∈ C satisfying 0 ≤ αC ≤ π/2, let C̃P be the great circle
connecting O and P , which intersects CEO at a point N perpendicularly.
If MC = C ∩ CEO, then the spherical sine theorem applied to the right
spherical triangle PNMC yields

sin(π
2 − α(P ))

sinβC
=

sin(π
2 − αC(P ))

sin π
2

⇒ cosα(P ) = sin βC cosαC(P ) (41)

This equation along with sinα(P ) =
√

1 − sin2 βC cos2 αC(P ) imply that
functions (38) and (40) restricted onto C can be expressed in terms of
cosαC(P ).

It is a very important issue to understand the precise appearance of
functions Ãspq and P̃spq on these circles. They appear as polynomials on
the equator circle CEO but on C they appear as functions which are pulled
back from the equator to the C by the central projectivity τO : C → CEO.
This τO can be explicitly computed as follows.

Parameterize both P2 and EO by complex numbers z and z′ respectively
such that these coordinate systems have common imaginary axis R+i ⊂
P2 ∪EO and z = 1 and z′ = 1 correspond to P = OC and NP = C̃P ∩CEO

respectively, where C̃P is the great circle connecting O and P . This circle
intersects CEO at NP perpendicularly. Pick up also such unit complex
numbers, u and u′, between the units and the imaginary numbers which are
corresponded to each other by the τO.

Actually, the τO is a real projectivity between the two projective lines C̃
and C̃EO defined by identifying the antipodal points on the great circles C
and CEO. Thus, it can be described in terms of the real cross ratio defined on
these projective lines. But this real one is the same as the complex cross ratio
defined on the complex planes if the points are laying on the same half-circle.
(This statement is well known in conform geometry of 2-spheres.) Also note
that the common imaginary numbers cut the great circles into half-circles
which are corresponded to each other by the τO, therefore, this projectivity
can be described in terms of the complex cross ratio by the relation (z′ =
τO(z), 1′, i′, u′) = (z, 1, i, u). This equation describes the τO as a fractional
linear function (Möbius transform) of the form z′(z) = (az + b)/(cz + d).
Since such a function preserves the circles and the three corresponding points
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(1′, i′, u′) and (1, i, u) are on CEO and C, the transformation is really defined
between the two circles. Thus we have:

Lemma 6.3. The τO is a fractional linear function (Möbius transform) be-
tween the two great circle which pulls back a trigonometric function cosu α =
(1/2)(uz+uz), defined on the complex plane E0 by a fixed complex unit u, to
the trigonometric rational function (a cosu +b)/(c cosu +d) defined on C. All
trigonometric polynomials can be generated on CE0 by the functions cosu,
therefore, all trigonometric polynomials are pulled back to a trigonometric
rational function defined on the other great circle. Functions Ãspq and P̃spq

can be described by the trigonometric functions ϕ(s−j) defined on the unit
sphere of E0. Thus they are trigonometric polynomials on CE0 which pull
back to trigonometric rational functions defined on C.

For a P2 which is not subspace of SQ these functions can be determined
by projecting it into SQ. Almost every plane projects to a plane of SQ. If P ′

2

is the projected plane, then the sought functions on P2 are the pull-back’s
of the corresponding functions defined for P ′

2. Note that cosα′
C arises from

a linear function, therefore, so does the pull-back function whose kernel is
the pull-back of the line (linear subspace) connecting the points MC′ and
−MC′ defined above for C ′. Then the closer midpoint, OC , to the O, which
is between the pull-back-points MC and −MC on C, is called the north-
pole on C. This point determines the parameterization αC . The functions
restricted onto C are described in terms of this parameter. Thus we have

Theorem 6.4. When the constructions are restricted onto a fixed sphere
SRX

, functions FQpq(φ) resp. HFQpq(φ) appear in the form (38) resp. (40)
such that functions Ãspq and P̃spq involve the constant |X| = RX . In the
following statement denotation R̃spq can be replaced by any of these two
functions.

On a circle, C = P2∩SRX
, represented by intersection of a 2-dimensional

linear subspace P2 with SQ, these functions are of the form

p+q
∑

s=0

Kp+q
C (sin βC′ cosαC)p+q−s(1 − sin2 βC′ cos2 αC)

s
2 R̃spq(Z0, Z), (42)

where C ′ is the projected circle cut out by the projected 2-space P ′
2 which

intersects the equator E′
O on the projected space SQ3′ at angle βC′ . Constant

Kp+q
C is due to the fact that the pulled back linear functions are restricted to

a circle in this process. For circles in SQ this constant is KC = RX .
For any fixed Z and |X|, function R̃spq(Z0, Z) defines a trigonometric

rational function on C which is the pull back of an sth-order polynomial
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with such a combined map, where the first map, τ ′O, is a Möbius transform
between C ′ to CE′

O and the second one takes C onto C ′ by a projection.

We need these theorems in the more general case when, instead of Q, one
considers a pair, (Q(a), Q(b)), of vectors and functions φ(|X|, V ), Θp

QVu
Θ

q
QVu

,

Π
(p+q)
X (..) are exchanged for the following ones

φ(|X(a)|, |X(b)|, V ), Θpa

Q(a)Vu
Θ

qa

Q(a)Vu
Θpb

Q(b)Vu
Θ

qb

Q(b)Vu
, Π

(pa+qa)

X(a) (..)Π
(pb+qb)

X(b) (..),

respectively. Such functions are called 2-pole functions which can be inves-

tigated in two ways. They can be considered either on subsets (X
(a)
F ,X(b))

defined by a fixed X
(a)
F , or, on the similarly defined subsets (X(a),X

(b)
F ).

Because of the exact similarities, only the first case should be described,
when, functions

φ(|X(a)
F |, |X(b)|, V ), Θpa

Q(a)Vu
Θ

qa

Q(a)Vu
, Π

(pa+qa)

X(a) (..) (43)

depend (non-trivially) just on |X(b)| and V . On a circle (X
(a)
F , C(b)) the con-

sidered functions appear in the form (42) where the last function is defined
by those listed in (43) and the other functions are defined on v(b).

6.2 Intertwining of the Dirichlet conditions.

The Dirichlet Intertwining Theorem will be established, first, for a constant
basis, QF . The changing basis case will be traced back to this first one.

Observe that functions cosp+q−s(α) sins(α), satisfying 0 ≤ s ≤ p+ q are
linearly independent, furthermore, for any fixed Z0 and Z, function Ãspq is
constant on the α-parameter line determined by Z0. These two statements
yield the following theorem obviously.

Theorem 6.5. A function FQpq(φ) satisfies the Dirichlet condition at the
boundary points (X,Z) if and only if functions Ãspq vanish on the sphere
SRZ

, for all Z0(X) and 0 ≤ s ≤ p+ q. Regarding HFQpq(φ), this condition
is P̃spq = 0, for all 0 ≤ s ≤ p+q and Z0(X) at any boundary point Z ∈ SRZ

.
For fixed Q and natural numbers p and q, function spaces ΦQpq resp.

ΞQpq are defined by the L2 function spaces spanned by functions of the
form FQpq(φ)(X,Z) resp. HFQpq(φ)(X,Z), where φ(|X|, V ) (which de-
pends, non-trivially, just on V on sphere×sphere-type manifolds) can be an
arbitrary L2-function. For fixed Q but running p and q, all these spaces
sum up to the total space ΦQ =

∑

p,q ΦQpq = ΞQ =
∑

p,q ΞQpq. Then, for
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functions ϕQ resp. ϕ′
Q = κQF

(ϕQ) from ΦQ resp. Φ′
Q the Dirichlet condi-

tion is satisfied always simultaneously. Actually, the intertwining operator
κQF

: ΦQ → Φ′
Q between these total spaces is induced by a point transforma-

tion of the form (TQ(X), idZ ), where the TQ is an orthogonal transformation
on the X-space, depending on Q.

Such simple proof can be given only for total spaces defined by a fixed
pole Q. The proof is much more difficult on the complete L2-Hilbert space,
which can be represented both as

∑

Q∈spanR(QF ) ΦQ, and
∑

Q∈spanR(QF ) Φ
′
Q,

i. e., by the sums of all functions defined by all poles, Q, which are in the
real span of QF . The main idea of such an extension is as follows.

Suppose that a function ϕ(X,Z) =
∑

Qi
ϕQi(X,Z) satisfies the Dirich-

let condition. Decompose each ΘQ in the form ΘQ(X,Vu) = 〈Q,X〉 +
i〈JVu(Q),X〉 and ΘQ(X,Vu)〈Q,X〉 − i〈JVu(Q),X〉, which, after multiplica-
tions, result the decomposition

ϕ = ϕevnJ
+ ϕoddJ

=
∑

Qi

ϕQievnJ
+

∑

Qi

ϕQioddJ
, (44)

where the first function involves all terms having even number of JVu while
for the other one this number is odd. For a fixed boundary point Z, these
functions depend just on X. One can prove, by formula (42), that these two
functions are in two completely independent subspaces of functions. The
proof will be based on the fact that, on a circle C, the first function appears
as a trigonometric rational function depending on sin2 βC′ cos2 αC while the
other function depends irrationally on these terms. This independence im-
plies then that both ϕevnJ

(X,Z) and ϕoddJ
(X,Z) must satisfy the Dirichlet

condition. In the next step one decomposes these functions in the form

ϕevnJ
(X,Z) = ϕevnJevn

J(b)
(X,Z) + ϕevnJ odd

J(b)
(X,Z), (45)

ϕoddJ
(X,Z) = ϕoddJ evn

J(b)
(X,Z) + ϕoddJ odd

J(b)
(X,Z), (46)

where the first term of each function involves all terms having even number

of J
(b)
Vu

, while, for the second one, this number is odd. Now using the double
pole version of (42), one can see that all 4 functions in this final decom-
position fall in completely independent subspaces. But, then, all these 4
functions must satisfy the Dirichlet condition. Now we observe that

κQF
: ϕevnJevn

J(b)
(X,Z) → ϕevnJ evn

J(b)
(X,Z), (47)

κQF
: ϕevnJ odd

J(b)
(X,Z) → −ϕevnJ odd

J(b)
(X,Z), (48)

κQF
: ϕoddJ evn

J(b)
(X,Z) → ϕoddJ evn

J(b)
(X,Z), (49)

κQF
: ϕoddJ odd

J(b)
(X,Z) → −ϕoddJ odd

J(b)
(X,Z), (50)
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which relations are due to J (a)′ = J (a), J (b)′ = −J (b). Thus ϕ and ϕ′ satisfies
the Dirichlet condition simultaneously.

For completing this proof only the above mentioned Independence The-
orems should be established. Suppose the contrary, there is a function ϕ
which can be represented as linear combinations both of evnJ - and oddJ -
type functions:

∑

Q̃r

ϕQ̃revnJ
= ϕ =

∑

Qi

ϕQioddJ
. (51)

We may suppose that the trigonometric polynomials cospj+qj−s sins are of
the same order n = pj + qj and there are only finite linear combinations in
this expression. Consider a circle C on which each term in the linear combi-
nations appears in the form (42) with the corresponding constant sinβC′

j
and

origin (north pole) OCj on C. (The origin (pole), OC , on C is constructed
above Theorem 6.4.)

Next we work just on the right side of (51), involving only the oddJ -
type functions. They can be sorted out into classes according their pa-
rameters sin βC′

j
and OCj . Re-numerate these classes with m in the form

{(βC′m,OCq)|m = 1, 2, . . . , d} such that at least one of the parameters is
different for two distinct m’s. From the partial sum determined by a class
factor out (1− sin2 βC′m cos2 αCm)

1
2 . Thus, it appears in the one-term-form

S̃m(1− sin2 βC′m cos2 αCm)
1
2 , where S̃m is a rational trigonometric function.

Furthermore,

ϕ =
d

∑

m=1

S̃m

√

1 − sin2 βC′m cos2 αCm =

d,∞
∑

m,r=1

ArS̃m sin2r βC′m cos2r αCm,

(52)
where

∑∞
r=1Arx

r is the Taylor expansion of
√

1 − x about x = 0. All the
coefficients Ar are non-zeros. Since the left side of (51) is a trigonometric
rational functions, all terms

d
∑

m=1

S̃m sin2r βC′m cos2r αCm, (53)

considered for a fixed r, vanish for big numbers r, say, if r > N .
Now observe that there exist an everywhere dense open subset, B ⊂ C,

such that, for any fixed point P ∈ B the function values sinβC′m cosαCm(P ),
considered for all m = 1, . . . , d are distinct and, therefore, the d × d-
matrix (Tmk = sin2(k+N) βC′m cos2(k+N) αCm(P ), where k = 1, . . . , d, is non-
degenerated. Thus equations

∑

m TmkS̃m(P ) = 0,∀k, implies S̃m(P ) = 0 on
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the whole circle C. This argument can be repeated in those cases when S̃m

is substituted by S̃m sin2r βC′m cos2r αCm,∀r ≥ 0. Therefore, ϕ = 0, which
proves the independence of the considered function spaces completely.

This argument repeated for 2-pole functions proves the desired inde-

pendence, first, on the subsets (X
(a)
F ,X(b)). But this statement obviously

implies the independence on the whole X-space.
Both independence theorems can be formulated in terms of polynomials

such that, after considering the decompositions, the evnJ - resp. oddJ -type
subspaces are spanned by functions involving even resp. odd number of J ’s.
This observation leads to a simple establishment of the independence and
Dirichlet-intertwining theorems regarding changing basis cases as follows.
First consider the complex matrix cij(Vu) transforming the fixed basis QF

to the changing one, Q(Vu). It is obvious that, both in the 1-pole and 2-pole
cases, both type of subspaces regarding the two systems are transformed to
each other by the non-degenerated map

ω : FQF {pi,qi} → FQ(Vu){pi,qi} , HFQF {pi,qi} → HFQ(Vu){pi,qi} (54)

induced by the basis-transformation. This proves both independence theo-
rems for the changing basis case immediately. Thus we have:

Theorem 6.6. The κQ intertwines the Dirichlet condition both in the fixed,
QF , and the changing basis, Q(Vu), cases.

The proof is based on the Independence Theorem stating that the
total space

FQF ,n =
∑

{n=
P

(pi+qi)}

FQF {pi,qi},

defined for a fixed n and Z, is the direct sum of the independent subspaces
FQF ,n,evnJ

and FQF ,n,oddJ
, where, after implementing the above described

natural decomposition, the functions from the first resp. second space con-
tain even resp. odd number of J ’s. Both of these subspaces further decom-
pose into the independent subspaces FQF ,n,parJ ,evn

J(b)
and FQF ,n,parJ ,odd

J(b)

defined by the options par = evn or odd given for the parities of the number
of J (b)’s in the expressions. Vector Z should not be the same for the par-
ticipating functions but it can be chosen individually and independently both
for the even- and odd-type functions.

The independence guaranties that all 4 component functions of a ϕ and
ϕ itself satisfy the Dirichlet condition always simultaneously. The same
statements hold for the function spaces HFQF ,n as well as for both versions
of function spaces defined by changing basis fields.
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7 Intertwining of the Neumann conditions.

The Neumann conditions create a new more complicated situation which
requires reformulations of the proofs given for the Dirichlet conditions at
several points. The Z-Neumann conditions, however, which require the van-
ishing of the derivatives of functions taken from the Z-radial directions at the
boundary points, can be strait-forwardly traced back to the Dirichlet condi-
tions. Let it also be mentioned that the proofs on the boundary manifolds
exploit only the intertwining of the Dirichlet and Z-Neumann conditions.
By this reason, the Z-Neumann conditions are considered first.

In the following computations the integral defining the Z-Fourier trans-
form is considered on the polar coordinate system. The computations are
carried out by formulas ∂|Z|e

i〈Z,V 〉 = i〈Zu, Vu〉|V |ei〈Z,V 〉 = |Z|−1|V |∂|V |e
i〈Z,V 〉

combined with integration by parts. Without loosing the generality, one can
suppose that the test-function, φ, vanishes at the infinity. Then, in terms
of φ′ := ∂|Z|φ, we have

∂|Z|FQ{pi,qi}(φ) = −|Z|(FQ{pi,qi}(|V |φ′) + lFQ{pi,qi}(φ)). (55)

Therefore, a function FQ{pi,qi}(φ) satisfies the Z-Neumann condition if an
only if FQ{pi,qi}(|V |φ′)+ lFQ{pi,qi}(φ) satisfies the Dirichlet condition. Since
the Dirichlet condition is intertwined in all cases, we have

Theorem 7.1. The Z-Neumann condition is intertwined both in the fixed
and changing basis cases.

From now on, the standard Neumann condition is scrutinized. By for-
mulas (3.2) and (3.7) of [Sz2], the normal vector at a boundary point (X,Z)
and the Laplacian on the boundary manifolds are of the form

µ = A(|X|, |Z|)Xu +B(|X|, |Z|)JZ (X) + C(|X|, |Z|)Zu, (56)

∆̃ = ∆SX(Z) + (1 +
1

4
|X|2)∆SZ(X) +

l−1
∑

α=1

∂αDα•, (57)

where SX(Z) is the X-sphere over Z and SZ(X) is the Z-sphere over X,
furthermore, {∂1, . . . , ∂l−1} is an orthonormal basis in the tangent space of
the Z-sphere SZ(X) at Z. On sphere×ball-type manifolds the first term of
(56) should be omitted.

The standard Neumann condition is considered, first, for one pole func-
tions. The derivative with respect to the normal direction is built up by
X- resp. Z-radial-derivatives and JZ(X)•. If the foot of perpendicular
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through X to SQ is XQ, and thus X = XQ + X⊥
Q holds, then JZ(X)• =

JZ(XQ)•+JZ(X⊥
Q)•. First JZ(XQ)• is considered. If XQ = |XQ|(cos(β)Q+

sin(β)JZ0(Q) ∈ P (Q,Z0), then

JZ(XQ) = |XQ|(cos(β)JZ(Q) − sin(β)〈Z0, Z〉Q+ sin(β)JZ⊥JZ0(Q)), (58)

where Z⊥ is the perpendicular component of Z to Z0. Therefore, the JZ⊥

and JZ0 are anti-commuting and the JZ⊥JZ0 is a skew endomorphism. Thus,

〈Q,JZ(XQ)〉 = −|XQ| sin β〈Z0, Z〉 , (59)

〈JZ0(Q), JZ(XQ)〉 = |XQ| cos β〈Z0, Z〉, (60)

JZ(XQ) • cosα = −|XQ| sin β〈Z0, Z〉 , (61)

JZ(XQ) • sinα = |XQ| cos β〈Z0, Z〉, (62)

JZ(XQ) • HFQpq(φ)(X,Z) =
∑

|XQ|p+q cosp+q−s(β) sins(β)S̃T
spq, (63)

where S̃T
spq = −|XQ|〈Z0, Z〉((p + q − s+ 1)P̃(s−1)pq − (s+ 1)P̃(s+1)pq). (64)

The computations with JZ(X⊥
Q)• are based on

〈Q,JZ(X⊥
Q)〉 = 0 , 〈JZ0(Q), JZ(X⊥

Q )〉 = −〈JZ⊥JZ0(Q),X⊥
Q 〉. (65)

Since differentiation JZ(X⊥
Q )• acts, non-trivially, on the considered functions

only by its contribution 〈JZ0(Q), JZ(X⊥
Q )〉(cos β∂α +sinα∂r) to the ∂α- and

the radial ∂r-direction, therefore:

JZ(X⊥
Q ) • cosα = 〈JZ⊥JZ0(Q),X⊥

Q 〉 cos β sin β, (66)

JZ(X⊥
Q ) • sinα = −〈JZ⊥JZ0(Q),X⊥

Q 〉 cos β cos β, (67)

JZ(X⊥
Q) • HFQpq(φ)(X,Z) = |XQ|p+q

∑

s

cosp+q−s(β) sins(β)S̃⊥
spq, (68)

S̃⊥
spq = −〈JZ⊥JZ0(Q),X⊥

Q 〉((p + q)|XQ|−1 sin βP̃spq − cosβD̃spq), (69)

D̃spq = (p+ q − s+ 1)P̃(s−1)pq − (s+ 1)P̃(s+1)pq . (70)

A preliminary version of the standard Neumann condition for a one-
pole function can be stated in the following form. A φ-generated one-pole
function satisfies the Neumann condition if and only if

R̃spq = (A∂|X| + C∂|Z|)P̃spq +B(S̃T
spq + S̃⊥

spq) = 0 (71)

holds at the boundary points, for all Z0(X) and 0 ≤ s ≤ p + q, where co-
efficients A,B and C are defined by the normal vector µ. Already this
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version reveals that only the intertwining regarding the first two terms
in this condition can be traced back to the intertwining of the Dirichlet
conditions. The other two terms involve functions such as 〈Z0, Z〉 and
〈JZ0(Q), JZ(X⊥

Q )〉 = |X⊥
Q |〈JZ0(Q), JZ(X⊥

Q0)〉 which appear outside of the
integral terms. It is noteworthy that the second function is zero on spaces

H
(a,b)
3 and H

(a,b)
7 . This is due to the fact that the irreducible components

H
(1,0)
3 and H

(1,0)
7 , yield the well known J2-condition, meaning, that for any

product JZ⊥JZ0 there exist JZ̃ such that JZ⊥JZ0 = JZ̃ holds. On arbi-
trary H-type groups, for fixed Z and unit vector X⊥

Q0, all these terms define
polynomials which are suitable to establish the independence theorems seen
for the Dirichlet condition also for the Neumann condition. Similar formu-
las can be established also for the two-pole functions which also yield the
corresponding independence theorem. Finally we get:

Theorem 7.2. The κQ intertwines the standard Neumann conditions both
in the fixed, QF , and the changing basis, Q(Vu), cases.

The proof is based on observing that the total space

µ • HFQF ,n = µ •
∑

{pi,qi}

HFQF {pi,qi},

defined for fixed Z, n and running {pi, qi} satisfying n =
∑

(pi + qi), is a
direct sum of independent subspaces HFQF ,n,evnJ

and HFQF ,n,oddJ
, which

are defined such that the functions from the first resp. second space con-
tain even resp. odd number of J ’s (i. e. , sinβ’s, according to the above
decomposition). Both subspaces further decompose into the independent sub-
spaces µ • FQF ,n,parJ ,evn

J(b)
and µ • FQF ,n,parJ ,odd

J(b)
defined by the options

par = evn or par = odd, available for the parity of number of J (b)’s in the
expressions. The independence guaranties that all the 4 component func-
tions of a ϕ along with ϕ satisfy the standard Neumann condition always
simultaneously. The same statements hold for the function spaces FQF ,n as
well as for both versions of function spaces defined by changing basis fields.

8 Intertwining on the boundary manifolds.

Since the intertwining operator preserves the Dirichlet condition, by re-
strictions, it induces a well defined bijection between the L2 spaces defined
on the boundaries. Since each smooth function on the boundary extends
to ones satisfying the Z-Neumann condition, furthermore, this condition is
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also preserved by the operator, it is enough to represent the functions on
the boundary by restrictions of those satisfying the Z-Neumann condition.

If ∂l = ∂|Z| is the Z-partial derivative with respect to the normal direc-

tion Zu, then the angular momentum operator M (resp. M̃) on the ambient
(resp. boundary) manifold differ from each other just by ∂|Z|DZu•. This
operator vanishes on functions satisfying the Z-Neumann condition, thus M

and M̃ acting on these functions provide the same results. This argument
proofs that not just M and M′ but also M̃ and M̃′ are intertwined by the
operator. This is the most crucial part in the proof of the pursued theorem.
The intertwining regarding ∆SX(Z) has already been established on the am-
bient manifold, thus one should consider only ∆SZ(X). Since the intertwining
regarding ∆Z is established on the ambient manifold, only the intertwining
of the radial Laplacian ∆|Z| should be established. Since this operator acts
on functions satisfying the Z-Neumann condition, the question is if ∂2

|Z|2 is in-
variant under the action of the operator. This statement immediately follows
from the following computations where the integral defining the Z-Fourier
transform is considered on the polar coordinate system. The computations
start out with ∂2

|Z|2e
i〈Z,V 〉 = −〈Zu, Vu〉2|V |2ei〈Z,V 〉 = |Z|−2|V |2∂2

|V |2e
i〈Z,V 〉

and are completed by integration by parts. Then, in terms of φ′ = ∂|Z|φ, we
have

∂2
|Z|2FQpq(φ) = |Z|−2(FQpq(|V |2φ′′) + 2(l + 1)FQpq(|V |φ′) + lFQpq(φ)), (72)

where the |Z| = RZ is a constant. Like in case of the Z-Neumann condition,
this formula establishes the desired intertwining property for ∂2

|Z|2.

9 Intertwining on solvable extensions.

The isospectrality theorems naturally extend to the solvable extensions. The
Laplacians on the ambient- and boundary-manifolds, furthermore, the nor-
mal vectors at the boundaries are described in formulas (1.12), (3.30), and
(3.29) of [Sz2]. The generator functions are of the form φ(|X|, t, V ) in this
case, till, the intertwining operator is defined by the same Z-Fourier trans-
form like on H-type groups. I. e., the intertwining on the solvable group is
completely determined by its action induced on the nilpotent group. The
details in [Sz2] show that the terms due to the t-variable, which are in a cer-
tain combination with the terms of the Laplacian defined on the nilpotent
group, make no effect on proving the intertwining for the solvable groups in
the same way as for the H-type groups.
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10 The new striking examples.

There is a subgroup, Sp(a)×Sp(b), of isometries on a Heisenberg-type group

H
(a,b)
3 which acts as the identity on the Z-space. Note that these isometries

act transitively on the X-spheres of H
(a+b,0)
3 .

The complete isotropy group of isometries fixing the origin is (Sp(a) ×
Sp(b)) ·SO(3), where the action of SO(3), described in terms of unit quater-
nions q by αq(X1, . . . ,Xa+b, Z) = (qX1q, . . . , qXa+bq, qZq), is transitive on
the Z-sphere. The elements of this isotropy group induce isometries on the
sphere×sphere-type submanifolds, furthermore, there is proved in the Ex-
tension Theorem of [Sz2] that these are the only isometries on these subman-
ifolds. Note that these isospectral manifolds in a family have non-isomorphic
isometry groups of different dimensions such that they are homogeneous in

H
(a+b,0)
3

∼= H
(0,a+b)
3 , while the other members are locally inhomogeneous.

The sphere×sphere-type submanifolds of the solvable extensions of H-
type groups is defined such that, over each point of a sphere in the X-
space, one considers the same geodesic sphere around the origin (0, 1) of the

hyperbolic (Z, t)-space. The isotropy group of isometries acting on SH
(a,b)
3 ,

where ab 6= 0, is (Sp(a) × Sp(b)) · SO(3), while it is Sp(a + b) · Sp(1) on

SH
(a+b,0)
3

∼= SH
(0,a+b)
3 . The above statements extend also to these groups.

These are the new striking examples brought by the reconstructed inter-
twining operator. The sphere-type striking examples discussed in the earlier
papers can be explained similarly. They are the geodesic spheres defined by

the same radius for the family SH
(a,b)
3 . In this case the metric on SH

(a+b,0)
3

is two-point homogeneous, therefore, having homogeneous geodesic spheres.
The geodesic spheres on the other groups are locally inhomogeneous.

It should be mentioned that Schüth [Sch1] constructed the literature’s
first isospectral metrics defined on simply connected manifolds on Cartesian
products of spheres. Among them there are also sphere×sphere-type mani-
folds. Her construction arises from a completely different setting, however,
and all provided metrics are locally inhomogeneous.

11 Isospectralities for σ-equivalent metrics.

A σ-deformation of an endomorphism space Jz is defined by an involutive
orthogonal transformation, σ, of the X-space which commutes with all endo-
morphisms of Jz. The σ-deformed endomorphism space consists of endomor-
phisms σJZ . By using irreducible decomposition regarding the orthogonal
Lie algebra generated by the elements of Jz, for any σ-deformation, there
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exist a decomposition v = v(a) ⊕ v(b) with components invariant under the
action of the endomorphisms such that for their restriction onto the com-

ponents the relations σJ
(a)
Z = J

(a)
Z and σJ

(b)
Z = −J (b)

Z hold. Note that the

family, J
(a,b)
l , of Cliffordian endomorphism spaces defined by the same a+ b

and l consists of σ-equivalent endomorphism spaces. In papers [Sz1, Sz2]
the isospectrality is stated on the ball- and sphere-type domains of such
σ-equivalent 2-step nilpotent Lie groups and their solvable extensions whose
endomorphism spaces contain at least one anticommutator. Thus the ex-
tension of the isospectrality theorems to σ-equivalent 2-step nilpotent Lie
groups and their solvable extensions provide plenty additional examples to
those produced by the anticommutator technique. For the sake of simplic-
ity, we consider such two step nilpotent Lie groups whose endomorphism
spaces contain at least one non-degenerated endomorphism. Then almost
all endomorphisms must be non-degenerated acting on an even dimensional
X-space.

First, we look for the necessary modifications which make the techniques
developed for H-type groups working also for σ-deformations. The Lapla-
cians in these general cases differ from the Laplacians of H-type groups just
by the term (1/4)|X|2∆Z , what is now (1/4)

∑〈Jα(X), Jβ(X)〉∂2
αβ . Also the

intertwining operator, defined for the changing basis case, must be modi-
fied as follows. Let (Q1(Vu), . . . , Qk/2(Vu)) = (Q(a),Q(b)) be an appropriate
orthonormal basis field such that each QVui is an eigenvector of J2

Vu
with

eigenvalue −λ2
i (Vu). Let J̃Vu be the normalized endomorphism which has the

same kernel as JVu and is defined by (1/λi(Vu))JVu on the maximal eigensub-
spaces belonging to λi > 0. Note that the kernel is trivial for an everywhere
dense open subset of the unit vectors Vu, furthermore, this endomorphism
may not be in Jz. Then, by definition, ΘQ(Vu)(X,Vu) = 〈Q + iJ̃Vu(Q),X〉.
The complex coordinate system defined by this basis for non-degenerated
endomorphisms is denoted by {zVu1, . . . , zVuk/2}. Then the intertwining is
defined by these changing complex coordinates such that functions φ should
be of the form φ(|XV 1|, . . . , |XV r|, V ), where X =

∑

XV i is the decomposi-
tion regarding the eigenspaces of J2

V . This requirement is slightly different
from that what is considered on H-type groups, but one can reach to them
in the same way: Start with functions depending just on V , first. Then, it
turns out that the same operator is defined by the above more complicated
functions. Furthermore, the domain is the largest possible, containing the
complete L2- function space. Also Theorem 4.4 concerning the intertwining
of the Euclidean Laplacian and radial functions on the X-space, remains
true for σ-deformations. Therefore, by J ′2

V = σJV σJV = σ2J2
V = J2

V and
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formulas (22), (23), which also extend to σ-deformations, this is indeed an
operator intertwining the Laplacians ∆ and ∆′ term by term.

One should check out also the intertwining of the boundary conditions.
First note that the technique developed for H-type groups works out strait-
forwardly only on groups where the intertwining can be established also
with a fixed basis QF , therefore, one can use one- and two-pole functions
with poles being in spanR(QF ). Also well-defined polar coordinate systems
established on RQ⊕ J̃z(Q), where J̃z is spanned by endomorphisms of the
form J̃Vu , are necessary conditions for this technique. All these requirements
are satisfied only in those cases where, for all unit pole Q ∈ spanR(QF ), the
unit vectors J̃z(Q) form an everywhere dense open subset of the unit sphere
of the space spanned by these vectors (equator). Then, any such vector is
connected with the pole by an α-parameter circle defined for 0 ≤ α ≤ π such
that it has the parameter π/2. The possible missing circles, which are due
to the degenerated endomorphisms, can be implemented by limiting. The
extension to this cases works out after other additional modifications.

First we check on formula (34) of Section 6.1, where, on a parameter-
circle, the corresponding Z0 should be exchanged for Z∗(Z0) defined by
the dual of the functional ϕ(Z) = 〈J̃Z0(Q), JZ(Q)〉. Yet, the Z∗(Z0) is
a polynomial function of Z0, implying that functions R̃spq, introduced in
(42), will be polynomials on the above equator. Thus the computations
can be processed in the same way as earlier. Since for σ-deformations the
relations ϕ(Z) = ϕ′(Z) , Z∗ = Z ′

∗ hold, the proof regarding the Dirichlet
and Z-Neumann condition can be completed by the same argument seen for
H-type groups.

Regarding the Neumann condition the Z0 inside of the integral term
should be exchanged for Z∗, while terms 〈Z0, Z〉 resp. 〈JZ⊥ J̃Z0(Q),X⊥

Q 〉
outside of the integral should be exchanged for much more complicated ex-
pressions. Even so, they provide polynomial functions and the modified
computations concerning formulas (59)-(64) along with 〈JZ∗ J̃Z0(Q), Q∗〉 =
〈J ′

Z∗ J̃ ′
Z0

(Q), Q∗〉 yield the intertwining also of the Neumann conditions for
the σ-deformations whose endomorphism spaces satisfy the above condi-
tions. In these cases, the theorem extends also to the boundary manifolds
and the solvable extensions.

Fortunately, one should not go through the steps of this complicated
construction which is incomplete without scrutinizing the question of the
existence. Basically, what the above proof exploits is that the operator
introduced by the changing-basis-technique for σ-deformations intertwines
both the Laplacians and boundary conditions if the manifold satisfies the
independence theorems. But this theorems are certainly yielded on groups
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having endomorphism spaces which are the results of “small” perturba-
tions performed on the endomorphism space of H-type groups such that,
by choosing a new endomorphism space close to the Clifordians, one per-
turbs the endomorphism space acting on the irreducible space R

r(l). This
defines uniquely determined perturbations for the reducible endomorphisms
(see more details in the end of Introduction). If the perturbation is “small”
which changes the endomorphisms just slightly, the subspaces in the inde-
pendence theorems (which are closed in the ambient Hilbert space) keep
being independent. Even the conditions for the existence of polar coordi-
nate systems are satisfied on manifolds defined by “smaller” perturbations.
However, the above construction can be left out completely because the idea
of perturbation provides more examples than those provided by the above
process. Also the non-isometry proofs, guaranteeing that the considered
isospectral metrics have different local geometries, are inherited from the
metrics being “slightly” perturbed. For the latter metrics the non-isometry
proofs are completely established in [Sz1, Sz2]. Thus we have:

Theorem 11.1. The intertwining operator introduced for σ-equivalent groups
by the changing-basis-technique always intertwines the Laplacians both on
ball×ball- and sphere×ball-type manifolds. Furthermore, there exist an open
neighborhood, U , in the space of l-dimensional endomorphisms spaces with
endomorphisms acting on the irreducible space R

r(l) of a given Clifford endo-
morphism space, Jz such that the latter one is in U and all 2-step nilpotent
groups and their solvable extensions constructed by endomorphism spaces be-
longing to U satisfy the independence theorems. Therefore, for these groups,
the intertwining operator intertwines also the boundary conditions. In other
words, small perturbations performed on the endomorphism spaces of H-type
groups provide a wide range of σ-equivalent groups which are isospectral on
the corresponding ball×ball- and sphere×ball-type submanifolds.

This theorem extends to solvable groups as well as to the boundary man-
ifolds, both in the nilpotent and solvable cases. For dimensions satisfying
l = 4n + 3 also such U exist for which the corresponding metrics in an
isospectrality family have different local geometries.

Remark. The key point in the above process dealing with one-pole func-
tions is that the multi-linear function

H(X,X∗, Z, Z∗) := 〈JZ(X), JZ∗(X∗)〉 (73)

does not change during σ-deformations. The Ricci tensor can be described
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in terms of this function by

R(X,X∗) = −(1/2)
∑

H(X,X∗, Zα, Zα) , (74)

R(Z,Z∗) = (1/4)
∑

H(Ei, Ei, Z, Z
∗) , R(X,Z) = 0 (75)

(cf. formula (1.9) of [Sz1]), thus also this tensor is not changing during
σ-deformations.

The Gordon-Wilson [GW] isospectrality examples were constructed on
ball×torus-type manifolds by spectrally equivalent endomorphism spaces,
meaning the existence of orthogonal transformations associating isospectral
endomorphisms to each other. More precisely, they constructed continuous
families of metrics which are isospectral on functions. These metrics are not
isospectral on 1-forms, however, due to the fact that the norm of the Ricci
tensor is changing during these deformations [Sch2]. The question arises if
the domains investigated in this paper are isospectral on the Gordon-Wilson
examples.

Even though the changing Ricci tensor strongly suggests the negative
answer, the question is more complicated. Indeed, the intertwining oper-
ator, constructed on ball×torus-type manifolds such that the globally de-
fined operator is the direct sum of operators constructed on the invariant
subspaces Wγ by the single endomorphism Jγ separately, provides an opera-
tor intertwining the Laplacians also for the ball×ball- and sphere×ball-type
manifolds which are in the ball×torus-type manifold. Actually, this is a
discrete version of those constructions where one is using changing basis.

There are many problems arising when one tries to establish the inter-
twining of the boundary conditions for this operator on the Gordon-Wilson
examples. First of all, one can not pass to a fixed basis and involve one-
and two-pole functions because no fixed basis exists which is transformed
to a well defined fixed basis by all those point transformations which define
the intertwining operator for the subspaces Wγ . The metrics in the Gordon-
Wilson examples are out of the touch also of the perturbation technique.
Even though the independence theorems were guaranteed in an other way,
they would work together just with the σ deformations for which the de-
composition v = v(a) ⊕v(b) holds. (This argument shows that the complete
isospectrality can not be directly established by this discrete version of the
intertwining operators even in case of σ-deformations, because,it is neces-
sary to involve 1-and 2-pole functions defined by a constant basis.) In short,
there is no way to prove the intertwining of the boundary conditions by our
technique.
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On the other hand, by the above considerations, a non-changing Ricci
tensor is always a necessary condition for intertwining even the Dirichlet con-
ditions on ball×ball-type manifolds. Therefore, these particular continuous
operators change the Dirichlet conditions along with the Dirichlet spectra.
Thus, they can not induce operators transforming functions defined on the
boundaries either. In other words, operators defined by restrictions onto the
boundary manifolds are not well defined regarding the GW-deformations.
Even though they were introduced by suitable reductions, they would change
the spectra also on the boundary manifolds. This phenomena strongly sug-
gests that no other suitable operators exist and the spectra of the ball×ball-
and sphere×ball-type manifolds change during these continuous deforma-
tions.
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[Sz1] Z. I. Szabó: Isospectral pairs of metrics on balls, spheres, and other
manifolds with different local geometries. Ann. of Math. (154), 437–
475, 2001.
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