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Neurons  in the central nervous system are affected by complex  and noisy signals due 

to fluctuations in their cellular environment and in the inputs they receive from  many 

other cells 1,2.   Such noise  usually  increases the probability  that a neuron will send 

out a signal  to its target cells 2-5.  In stochastic resonance,  which occurs in many 

physical and biological systems, an optimal response is  found at a particular noise 

amplitude 6-9.   We have found that in a classical neuronal model  the opposite can occur 

- that  noise can subdue or turn off repetitive neuronal activity in both  single cells and 

networks of cells. Recent experiments on regularly firing neurons with noisy inputs

confirm these predictions 10,11.  Surprisingly,  we find that in  some cases  there is a 

noise level at which the response is a minimum, a phenomenon which is called 

   Suppression of rhythmic behavior by noise and inverse 

stochastic resonance  are predicted  to occur not only in neuronal systems but more 

generally in diverse nonlinear dynamical systems where a stable limit cycle  is 

attainable from a stable rest state.  

inverse 

stochastic reson ance.

In the central nervous system, neurons are embedded in complex networks of other neurons 

and glial cells 12,13. They receive input signals from many other nerve cells through thousands 

of excitatory and inhibitory synapses at unpredictable or random times 14,15.  Many aspects of 

the transmission of signals in the nervous system are stochastic and the transmission process
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is itself unreliable or stochastic16.  In order for a neuron to send out a signal, called an action 

potential, it must receive sufficient net excitation (over inhibition) in a small enough time 

interval. Technically this means that the current or voltage distribution in the cell must pass 

through some threshold condition 17. Once the threshold is reached, self-exciting processes 

lead to the emission of an action potential. 

For many years the responses of neurons to input currents, whether injected or synaptic, have 

been investigated experimentally and theoretically18. Although it had long been realized that 

noise may accelerate neuronal activity 2-5, we have found that noise, especially of small 

amplitude, can decrease firing rates and even stop neuronal activity altogether, a finding which 

has been recently confirmed experimentally 10.  Furthermore,  even though several recent 

investigations have demonstrated the phenomenon of stochastic resonance 6,7,9 in which a 

measure of response, such as a signal to noise ratio, rises to a  maximum and then decreases 

as the noise amplitude is increased, we have found that the opposite behavior can occur; that 

is, as the noise increases from zero the response undergoes a minimum. Since the behavior is 

the reverse of that in stochastic resonance this new phenomenon can be called 

.

To study neuronal response to signals with noise we use the classical  Hodgkin-Huxley model 

19 which is capable of reproducing spiking properties which are similar to those of real neurons

17. While cortical neurons present an intricate structure, with synapses distributed over an 

extensive dendritic tree (Fig1A left panel), for the purposes of our study we ignore the 

inverse 

stochastic resonance



influence of such structure and consider a point neuron model. We also employ a simplified 

model of the signal and the noise: the signal is a constant time-independent current input to 

the cell  while the noise is a diffusion approximation to randomly timed synaptic inputs 20. 

Figure 1B shows the voltage responses of such a model neuron to input

currents with various noise levels. The incoming signal has mean of strength µ and a noisy 

component of amplitude s.  Without noise (top left record) there is, for the value of the steady 

input, µ=6.6, a repetitive stream of output spikes, there being 8 in the time period shown. 

Adding noise makes the output sequence irregular. Moreover small amounts of noise can 

actually stop the spiking. In the cases shown, a small noise of s =0.1 stops the firing of action 

potentials after 5 spikes; a somewhat larger noise level of s =0.5 has an even greater effect 

and stops the spiking after just one spike. When the noise level is turned up to s =1.5, more 

spikes are emitted,  there being 6 in the trial shown. 



Figure 1.  A. At left is shown an outline of a pyramidal cell, the most frequently occurring type of neuron in the 

cerebral cortex. Arrowed lines represent schematically the arrival of excitation and inhibition, with blue for 

excitation and red for inhibition. On the right is shown a voltage recording showing 8 spikes emitted in about 200 

msec. The spikes are seen to arise from a threshold.   B.  Plots of depolarization V  in  mV versus time (time unit 

.005 sec) showing spikes from a Hodgkin-Huxley model neuron with no noise and with noise of increasing

magnitude. 



In Figure 2 we show the results of a systematic exploration of  the effects of noise on the 

regular spike train.   The number of action potentials emitted by a Hodgkin-Huxley neuron (as 

typified by the records in Figure 1B) is plotted for input currents with various values of the 

mean current µ and of the noise level s. Without noise (s=0) there i s a critical value of  µ, µc

which is about 6.44, at which sustained repetitive firing occurs. For each data point with noise,

500 trials were performed.   

Figure 2. Inverse Stochastic Resonance in the Hodgkin-Huxley model. The mean number of spikes N versus 

mean µ and noise level s.  The values of µ are above the critical value. Minima are clearly seen as s increases

especially when  µ  is just greater than µc.   Values of N for three particular values of   µ are shown in the next 

Figure.   



Figure 3. 

Inverse stochastic resonance in the Hodgkin-Huxley model. Detailed plots of the results in Figure 2 for the three 

indicated values of  µ showing number of spikes N versus noise level.  Note the pronounced minimum  when µ is 

6.8,  not far above  the critical value for repetitive spiking. 

Figure 3 shows how the presence of inverse stochastic resonance is  dependent on the level 

of the deterministic input to the cell; that is, the mean incoming signal strength.  To highlight 

the different behaviors for different values of  µ, we have plotted N versus s at three values of 

µ.  When  µ=4 (not shown),  there are no spikes without noise but increasing the noise level 

steadily increases N. As  µ increases a small number of spikes occurs with no noise and the 

values of N again increase steadily as the noise level grows. However, as  µ approaches the 

critical value, turning the noise on at first decreases and then increases the spiking activity.  

When  µ is at or near the critical value there is a dramatic decline in spiking activity when the 



noise is switched on.  This manifests as a pronounced minimum in the number of spikes as the 

noise increases, for values of  µ  just below  µc  and just above  µc. The minimum in the data 

for µ=6.8 is clearly discernible whereas there is no minimum at the smaller value µ=5.5 and a 

less noticeable minimum at the larger value µ=8. 

The minimum in the response as the noise level increases through a certain value illustrates 

the phenomenon of inverse stochastic resonance. Note that the minimum in firing rate does 

not yield a minimum in the number of spikes divided by noise intensity, a quantity which could 

be called a signal to noise ratio.   Our investigations of the silencing effects of noise on 

Hodgkin-Huxley neurons were motivated  by our studies of pairs of coupled neurons of a 

different type21 where a similar phenomenon was observed, namely that noise could cause the 

cessation of repetitive activity.  We also investigated the effects of noise on repetitively firing 

pairs of coupled Hodgkin-Huxley neurons and obtained similar results and simulation of larger 

networks has yielded the same kind of behavior. 



Figure 4.  Voltage is plotted against potassium conductance variable  n for results similar to those of Figure 1B.

From top to bottom, no noise, s=0;  middle, small noise, s=0.2 and bottom, large noise,  s=1.2.  The limit cycle is 

clearly seen in the noise-free case and the manner in which small noise, s=0.2, may switch the orbit away from 

the limit cycle.  

The above results are explainable in terms of the behavior of the voltage and other variables 

on what are called stable limit cycles 22, 23 which occur when, for example, a neuron fires 

repetitively at the same frequency.  Such a stable limit cycle in a dynamical system often



appears by a bifurcation mechanism 22,23  when a parameter, like the input current strength µ 

in a Hodgkin-Huxley model,  varies continuously and crosses  some critical value. Just above 

that critical value, the  basin of attraction of the limit cycle, that is, the region from which it is 

approached, is rather narrow. The stable limit cycle coexists then with one or more other 

attractors. In the Hodgkin-Huxley model, the only other attractor is a stable quiescent or resting 

state.  Noise can make the solutions leave the basin of attraction of the limit cycle for that of 

the quiescent state so that spiking ceases. When the noise is small, the solution will then

typically stay quiescent for a very long time, but for larger noise there is then a considerable

probability that the solutions get kicked back up to threshold so that spiking may resume. This 

may be followed by a period of relative silence and so on. This is illustrated in detail in Figure 4 

where the voltage variable is plotted against the potassium conductance variable for µ=6.6,  

with no noise, s=0,  (top part), small noise, s=0.2 (middle) and large noise,  s=1.2 (bottom). 

In the recent experiments on squid axon with noise 10, the effect of small noise has been 

likened to a switch. Thus, the functional significance of these effects of noise on rhythmic 

activity is that a very small disturbance can lead to a drastic change in behavior. In the brain,

electrical activity is often broadly rhythmic,  involving limit-cycles in both normal and epileptic 

activity 24, 25. If such oscillations arise near a bifurcation point, then a small noisy signal could 

lead to the cessation of, or a sharp modification of, rhythmic activity. This is true also for 

impulsive disturbances, not necessarily ones composed of smooth noise as we have 

investigated.  Since stable limit cycles occur in dynamical systems in diverse fields, we expect 



to find that the phenomena of suppression of cyclic or rhythmic activity by noise and possibly 

nverse stochastic resonance will have widespread occurrence.  For example, limit cycle 

activity is found in circadian rhythms 26, cardiology 27, cell kinetics and tumor growth 28,29 and 

oscillating neural networks 24,25 as well as in climatology, ecology and astrophysics.   Although 

the phenomena we have described are of great interest, as indeed is stochastic resonance, 

their functional significance in neurobiological and other dynamical systems remains to be fully 

explored. Similar findings were reported in a heuristic nonlinear stochastic model of affective 

disorders 30. It seems that  these effects could sometimes arise as pathologies rather than 

normal conditions, as for example if cardiac pacemaker activity was affected adversely by 

noise.   
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