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1 The main Results

In this work we prove sharp interpolatory estimates that exhibit a new link between Riesz
transforms and directional projections of the Haar system in R™. To a given direction € €
{0,1}",¢ # (0,...,0), we let P be the orthogonal projection onto the span of those Haar
functions that oscillate along the coordinates {i : ¢; = 1}. When ¢;, = 1 the identity operator
and the Riesz transform R;, provide a logarithmically convex estimate for the LP norm of
P©) see Theorem 1.1. Apart from its intrinsic interest Theorem 1.1 has direct applications
to variational integrals, the theory of compensated compactness, Young measures, and to the
relation between rank one and quasi convex functions. In particular we exploit our Theorem 1.1
in the course of proving a conjecture of L. Tartar on semi-continuity of separately convex
integrands; see Theorem 1.5.

1.1 Interpolatory Estimates

We first recall the definitions of the Haar system in R", indexed and supported on dyadic cubes,
its associated directional Haar projections and the usual Riesz transforms; thereafter we state
the main theorem of this paper.

Let D denote the collection of dyadic intervals in the real line. Thus I € D if there exists
i € Z and k € Z so that I = [i2¥, (i + 1)2*[. Define the Haar function over the unit interval as

hoar = L2 — 1y

The L*° normalized Haar system {h; : I € D} is obtained from hy ; by rescaling. Let I € D,
let I; denote the left endpoint of I, thus I; = inf I. Then put

r—1
h[(l’) = h[o@[ (Tﬁ) , z € R.

Thus defined, the Haar system {h; : I € D} is a complete orthogonal system in L?(R). Next

we recall its n dimensional analog. Let Iy, ..., I, be dyadic intervals so that |I;| = |[;|, where
1 <i,j < n. Define the dyadic cube @ C R",

Q=5 x---x1,.

Let § denote the collection of all dyadic cubes in R™. To define the associated Haar system
consider first A ={e € {0,1}": e # (0,...,0)}. ForQ =1 x---x[, € Sand e = (g1, ...,¢,) €
A let

h$ (@) :th;;(xi), z=(x1,...,2). (L.1)

We call {hg) :Q € S,e € A} the Haar system in R". It is a complete orthogonal system in
L*(R™). Hence for u € L*(R"),

u= Y (uhSRS1QI™, (1.2)
ec A, QeS

where the series on the right hand side converges unconditionally in L?(R™). For € € A define
the associated directional projection on L*(R") by

PEu) =>"(u,hHhSIQI™,  ue LR
QES



The operators P®) e € A, project onto orthogonal subspaces of L? (R™) so that
w=>> POu) and |[ju3="> [P (w3 (1.3)
ecA ecA

Let F denote the Fourier transformation on R” given as
F(u)(&) = /R e @8y (z)dr, €€R", xeR"™
The Riesz transform R; (1 < ¢ < n) is a Fourier multiplier defined by
Riu)(a) = V71 (EF@O ) (0 where €= (@001

The analytic backbone of this paper is the following theorem showing that the norm in LP(R™)
of P©)(u) is dominated through a logarithmically convex estimate by R;,(u), provided that a
carefully analyzed relation holds between iy (appearing in the Riesz transform) and e defining
the directional projections P().

Theorem 1.1 Let 1 <p<oo and 1/p+1/qg=1. For 1 <iy <n define
A, ={ceAd:e=(e1,...6,) and e, =1}

Let u € LP(R"). If e € A;, then P©® and R;, are related by interpolatory estimates in LP(R™),
1PE )], < Collully 1 Rig (W)l if p =2,

and
PO W)ll, < Cpllull/? 1Ry, (W) if p<2.

The exponents (1/2,1/2) for p > 2 and (1/p, 1/q) for p < 2 appearing in Theorem 1.1 are sharp.
We show in Section 7 that for n > 0, 1 < p < oo and N >> 1 there exists u = u,, vy € L so
that

1P ()], = Nl || Rig (W), if p =2,

and
1P ()|, > Nully/P~"| Ry (w) [/ if p<2.

A first consequence of Theorem 1.1. In the next subsection we will show how Theorem
1.1 is used in problems originating in the theory of compensated compactness. To this end we
formulate here a concise inequality that follows from the above interpolatory estimates, and
record its immediate consequences. See (1.5)—(1.7).

Let 1 < j <n. Let e; € A denote the unit vector in R" pointing in the positive direction of
the j — th coordinate axis, e; = (0,...,1,...,0), where 1 appears in the j —th entry. By (1.3)

u— Py =" PO(u).
e€A\{e;}
The above identity and the estimates of Theorem 1.1 combined yield the inequality
1/2
lu = PO @), < Cpallully” | Y- IR)ll,|  p>2 (1.4)

1<i<n
7]



On LP(R™ R™) define the vector valued projection P by
Pv) = (P(el)(vl), ce P(e”)(vn)) ,

where v : R" — R™, v = (vq,...,v,). Applying (1.4) to each component of v yields

n n 1/2
lv = P@)l, < Cpnllv]?- (Z > ”Rz‘(vj)Hp) (1.5)

i=1 j=1,j£i
Assume now that (v,.1,...,0,.,) is a sequence in LP(R", R") so that
lim [|R;(v,j)|l, =0 for 1<i<mn,iz#j. (1.6)

The assumption (1.6) and the estimate (1.5) imply that

TILIEO (Vs Vrn) = P ((0r1y -5 000)) ||, = 0. (1.7)
Being able to draw the conclusion (1.7) from the hypothesis (1.6) provided the main impetus
for proving Theorem 1.1.

1.2 Lower semi-continuity and compensated compactness

Here we provide a frame of reference for the problems considered in this paper. We review
briefly some of the ideas of the theory of compensated compactness which has been developed
by F. Murat and L. Tartar [12, 14, 16, 17].

Weak lower-semicontinuity and differential constraints. Fix a system of first-order,
linear differential operators A. It is given by matrices A® € RP*? § < n, so that

Aw) =3 A0, (0)

where v : R” — R? and 9; denotes the partial differentiation with respect to the i—th coordinate.
To A we associate the cone A C R? of “dangerous” amplitudes. It consists of those a € R? for
which there is a vector of frequencies ¢ € R", & # 0, so that for any smooth h : R — R the
function

w(x) = ah({¢,x)),
satisfies

A(w) = 0.

Thus, to a € A there exists a non-zero £ € R", so that A(w,,) = 0 for the increasingly oscillatory
sequence
W (x) = asin(m(&, x)), meN.

Since £ # 0 there is iy < n so that the sequence of partial derivatives 0;,w,, is unbounded while
A(w,,) = 0. In other words, the linear differential constraint A(w) = 0 does not imply any



control on the partial derivative 0;,. Expressed formally, the cone of “dangerous” amplitudes is
given as

A= {a cRY:3¢ € R"\ {0} such that Z@-A(i)(a) = 0} :
i=1
The methods of compensated compactness allow one to exploit a given set of information
on the differential constraints A(v) (respectively on A) to analyze the limiting behaviour of
non-linear integrands acting on v under weak conmvergence Consider a sequence of functions
v, 1 R* — R? so that
v, = v weakly in LF(R" R%), (1.8)

and
A(v,) precompact in W ~'P(R™ RY). (1.9)

The following comments are included to clarify the relation between the hypotheses (1.8) and

(1.9).

1. Had we imposed, instead of (1.8), that v, — v strongly in LP(R™, R?), then (1.9) would
hold automatically.

2. More subtle aspects of the interplay between (1.8) and (1.9) are depending on the structure
of A or A. For instance, in the special case when A (v) controls all partial derivatives of
v, we use Sobolev’s compact embedding theorem to see that (1.9), implies that v, — v
strongly in LP(R",R?). This case occurs when A = {0},

3. The generic (and most interesting) case arises when A(v) fails to control some of the
partial derivatives of v. This occurs when A # {0}.

In the generic case one goal of the theory is to isolate sharp conditions on a given f : R — R
that compensate for the lack of compactness provided by A, and ensure that (1.8) and (1.9)

imply
fimint [ S (a)ple)dn > [ fol@)pledn  pe @) (1.10)

rT—00

Here (and below) Cf (R™) denotes the set of non-negative compactly supported continous func-
tions on R™. Note that up to growth conditions on f and up to passing to subsequences of v,,
the condition (1.10) states that

weak limit  f(v,) > f(v).

In summary, based on knowledge of A or A one goal of the theory of compensated compactness
aims at describing and classifying those non-linearities f : R — R for which (1.8) and (1.9)
imply (1.10).

Classical results on compensated compactness. We assume now that (1.8) and (1.9)
hold and that the differential operator A satisfies the so called constant rank hypothesis; for
its definition see below. The classical results of compensated compactness, as developed by F.
Murat and L. Tartar [12, 14, 16, 17] assert that a general non-linearity f satisfies (1.10) precisely
when it is A—quasi-convex. Furthermore, in the special case of a quadratic integrand f(a) =
(Ma,a) the constant rank hypothesis is not needed and the conclusion (1.10) is equivalent to
A—convexity of f(a) = (Ma, a). We state now explictely the characterizations mentioned above,

5



and recall the notions of A—convexity, A—quasi-convexity, and the constant rank hypothesis
on A.

A function f:R? — R is A— convex if
fa+ (1 =X)b) < Af(a) +(1=XN)f(b), a—beA, 0<A<L
The following result is due to F. Murat [12], [13] and L. Tartar [17].

Proposition 1.2 If for every sequence v, : R® — R? | the hypotheses (1.8) and (1.9) imply
(1.10), then f : R — R is A—convexr.

Thus A—convexity is a necessary condition on f for (1.8) and (1.9) to imply (1.10). If, moreover
f is quadratic,

f(a) = (Ma,a), M €R™ qecR?
then A—convexity is already sufficient. This is the content of the following result by L. Tartar
[17].
Theorem 1.3 Assume that f is quadratic and A—convex. Then, for every sequence v, : R™ —
R? , (1.8) and (1.9) imply (1.10).

We next review the results beyond the case of quadratic integrands. They involve the
notion of A—quasi-convexity and the constant rank hypothesis. We define f : R — R to be
A—quasi-convex if

fla+ u(@)dz > f(a), (1.11)
[0,1]"
for each smooth and [0, 1] periodic u : R* — R, that satisfies Jioajn =0 and A(u) = 0. Note
that (1.11) asks for Jensen’s inequality to hold under the decisive restriction that A(w) = 0.
It was proved essentially by C.B. Morrey [8] that A—quasi-convexity implies A—convexity (see
[3]). The linear differential operator A satisfies the constant rank hypothesis if there exists
r < n so that
rk(A(§) =r, £eS"

where .
A() =D &GAY.
i=1
The next theorem provides a full characterization of those integrands f for which (1.8) and
(1.9) imply (1.10).

Theorem 1.4 ([14]) Let 0 < f(a) < C(1+|al’) and assume that A satisfies the constant rank
hypothesis. Then f: R — R is A— quasi-convez if and only if (1.8) and (1.9) imply (1.10).

A crucial component in the proof of Theorem 1.4 links the constant rank hypothesis and A—
quasi-convexity as follows:

1. Let v : R® — R? be [0, 1]" periodic and of mean zero in [0, 1]". Under the constant rank
hypothesis, there exists a decomposition of v as

Vv =u-+w,

where
A(u) =0 and  [Jw| zeo,1n) < ClA@)|lw-1r(0,177)-

The decomposition can be expressed in terms of an explicit Fourier multiplier, for which
standard LP estimates are available, provided that the constant rank hypothesis holds.
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2. Let now v, € LP([0,1]",R?) be a sequence of [0, 1]™ periodic, mean zero functions so that
A(v,) — 0 in W=LP. Then, by the foregoing remark, we may split v, as v, = u, + w, so
that

A(u,) =0 and |jw,|[, — 0. (1.12)

3. Assume moreover that f is A—quasi-convex. The decomposition
vy = Uy + W, (1.13)

with the properties (1.12) satisfies then

fla+u.(x))dz > f(a), and [w,|, — 0. (1.14)
[0,1]»

Separately convex integrands. Wide ranging applications illustrate the power of Theo-
rem 1.4, yet there are important linear differential constraints A, for which the constant rank
hypothesis does not hold and the classical proof does not apply. Among the earliest examples
considered is the following Ay, defined as

0;v; i # 7j;
A v PR v !
( 0( ))z,] {O Z:],
where v : R" — R™. Observe that for v = (vy,...,v,) the condition Ay(v) = 0 holds precisely
when v; : R" — R is actually a function of the variable z; alone, that is v;(z) = v;(z;). By a
direct calculation, the cone of dangerous amplitudes associated to A is given as

Ay = O Re;,
i=1

where {e;} denotes the unit vectors in R™. It follows that the Ag—convex functions are just
separately convex functions on R".

For the operator A, the constant rank hypothesis, does not hold, since kerAy(¢) = 0 for
¢ €{ey,...,e,} and kerAg(e;) = Re;, i < n. As a result the classical theory of compensated
compactness for non quadratic functionals does not apply to the operator Ay. Nevertheless
it is an important consequence of the interpolatory estimates in Theorem 1.1 that separately
convex functions yield weakly semi-continuous integrands on sequences v, : R®™ — R" for which
Ap(v,) is precompact in W~1P(R", R?). The following theorem verifies a conjecture formulated
by L.Tartar [19].

Theorem 1.5 Let 1 < p < co. Assume that f : R" — R is Ag— convex and satisfy 0 < f(a) <
C(1+ |al?). Let v, : R™ — R™ satisfy

v, = v weakly in LP(R",/R"), (1.15)
and
Ao(v,) precompact in W~ HP(R™, R"). (1.16)
Then,
liminf [ f(v.(2))p(x)dz > fv(x))p(x)de, o € CF(R™). (1.17)
r—00 R R™



As discussed in [10] this result implies that gradient Young measures supported on diagonal
entries are laminates, and this in turn gives an interesting relation between rank-one convexity
and quasi-convexity on subspaces with few rank-one directions.

In the approach of the present paper we fully exploit the methods introduced in [10]. We
base the proof of Theorem 1.5 on the decomposition given by the directional Haar projection

v=P)+{v— Pv)},

invoke the interpolatory estimates of Theorem 1.1, and use the fact that Ag—convexity yields
Jensen’s inequality on the range of P :

1. By inequality (1.5), the norm of {v — P(v)} in L? is controlled by the norm of Ay(v) in
Wte,

2. The operator Ay does not exert any control over P(v). It is Ag—convexity that compen-
sates for that. Indeed when f is separately convex we have the following form of Jensen’s

inequality
P(v)dz | < P(v))dzx. 1.18
r(f, pe) < [ seo) (119
By rescaling of (1.18) we get
f(Eu(P(v)) < En(f(P(v))), vel”(R"R"), M eLZ, (1.19)

where Fj; denotes the conditional expectation operatpor given as

Pu@e) = X[ ipiel). ge @)

{ReS:|R|=2-M"}

We verify (1.18) below. The proof is based on the observation that Haar functions are
exactly localized, three-valued martingale differences.

3. Assume that f is separately convex and that v, € LP([0,1]",R"™) is a sequence of [0, 1]"
periodic, mean zero functions so that Ag(v,) — 0 in W12, With u, = P(v,) and w, =
{v, — P(v,)}, the decomposition

Uy = Uy + W, (1.20)

satisfies the central properties

fla+u.(x))dz > f(a), and |w.|, — 0. (1.21)

[0,1]™

The splitting (1.20) with the property (1.21) is parallel to the classical decomposition
(1.13) and (1.14) based on Fourier multipliers and the constant rank hypothesis.

Jensen’s inequality on the range of P. We prove (1.18) by induction over the levels of
the Haar system. Fix e;, the unit vector in R" pointing along the j—th coordinate axis and a

dyadic cube () = I} x --- x I,,. The restriction of hgj) to the cube @ is a function of x; alone,
indeed
he (@) = hay(z;), @€ Q.
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Hence for a = (ay,...,a,) and ¢ = (¢4, ..., ¢,) we have the identity

/ f(al + Clh(Qel)(x)v cee 5 Qn + Cnhgn)<x>>dx

@ (1.22)

= / flay + cihp (x1), ... an + cyhy, (x,))dx.
Q

Using (1.22) and applying Jensen’s inequality to each of the variables x1, . . ., x,, of the separately
convex integrand f gives

/ f<a1 + Clhgl)(x)a e ,CLn _'_ C”h’(Qen)<x))dx Z |Q|f<a> (123)
Q
Next we fix v = (v1,...,v,) € LP(R",R") and assume that v; is finite linear combination of
Haar functions and not constant over the unit cube. Define

€; €;) —

Apj = > coih”,  cq = (v, hgHQI™.
{Qes:|Q|=2Fn}
Choose M € N and put
M
SM] = Z Ak,j
k=—o00

By our assumption on v; the sum defining Sy ; is actually finite, and there exists M, with
My > 0 so that
Siteg = P9(v), 1<j<n.

Choose now M < M,. Fix a dyadic cube @ contained in [0, 1]" with |Q| = 27", Note that
Sa—1,; is constant on @), and put a; = Sy_1,j(y) where y € @ is chosen arbitrarily. Furthermore,

Aniy(2) = cqih (@), =€ Q.

Then, using Syr; = Sy-1,; + Anm; and (1.23) we obtain

/ F(Sma(x),...,Sun(z))de = / f <a1 + CQ71hSI)(l‘), cey Gt chhS")(x)) dx
Q Q
> |QLf (Sv-11(y), - Su-1n(y)) -

It follows from (1.24) by taking the sum over @ C [0, 1] with |Q| = 27" that

(1.24)

f(Sai(), ..., Sun(z)) do > f(Sv-11(y), -+, Su-1a(y)) dy.

[0,1]" [0,1]»

We next replace M by M — 1 and repeat. Starting the process with M = M, and stopping at
M =1 yields the claimed inequality

F (Smpa(), ..., Supn(x))de > f (/[O’l]n P(v)) :

[0,1]"



Proof of Theorem 1.5 : Choose v € LP(R", R") and a sequence v, € LP(R" R") so that
(1.15) and (1.16) hold. Let Cy ((0,1)") denote the continuous, non-negative and compactly
supported functions on the open unit cube (0,1)". We first show the conclusion (1.17) under
the additional restriction that

v = const, and ¢ € Cy((0,1)"). (1.25)

Clearly we may then assume that vjg1y» = 0, since otherwise we replace f by f(- +c). Next we
choose a smooth function o € Ci((0,1)") so that a(x) = 1 for = € supp ¢. By considering the
sequence (awv,) instead of (v,) we may further assume that

v, — 0 weakly in L” and Ag(v,) — 0 in WP, (1.26)
By (1.26) we obtain for v, = (v,1,...,v,,) that
L[| Ri(ori) || oeny = 0, 27 5.

Hence by (1.7),
rli_glo |vr — P(vr)|| Lo mmy = 0. (1.27)

Since f is separately convex and satisfies f(t) < C(1 + [t|P) we get
[f(s) = f(O)] < CA+Is| + [t~ s — ¢]. (1.28)

Using (1.28) and 1/p+1/g =1 gives

n

/ Fopdr= | F(Pw))pde + / (F(or) — F(P(v,)) oz
" e (1.29)

> /Rn FP(vr))pdz — ClIL+ [or] + [P )15 40, — P(vr)]]-

Next fix M and rewrite by adding and subtracting the conditional expectation operator Fj;,

| sPegds = [ 5(P@)Ew(@de+ [ fPEDe— Buleddr (130

Clearly the conditional expectation E); satisfies

/Rn F(P(v,))En(p)dx :/ Ev(F(P(v.) B (i) dz.

n

Now we may invoke (1.19), Jensen’s inequality on the range of P. This gives,

/ Bt (F(P@) Ba(@)de = [ (Bar(P(er)) Bus(p)do

R

Hence adding and subtracting f(0) to the leading term in the right hand side of (1.30) gives

FPE)Eu(e)dn > [ 1OBu(e)da+ [ (F(EulP) = F0) Bul)de. (131)

n

]Rn
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It remains to specify how the above estimates are to be combined: Given € > 0 choose M
large enough so that

lp — Enepl| < e
Next, depending on M, and € select rq € N so that for r» > rq,

[Ex(P(or))l <€ and  lo, = P(or)]l, < e

Combining now (1.28) — (1.31) with our choice of M and r we get

f(v,)pdx > f(0)pdr — Ce.
R

R

It remains to show how to remove the additional restriction (1.25). In view of the Lipschitz
condition (1.28) it suffices to prove the theorem for those weak-limits v that are contained in a
suitable dense set D where dense refers to the L = topology. We take

D ={ve LP(R",R"):v is a finite sum of Haar functions} .

Let v € D. Since the estimate (1.17) is invariant under dilations  — Az it suffices to consider

the case
v(@) =Y bl (), (1.32)
kezn
and only finitely many of the by are different from zero.
Let n € C; ((0,1)") and extend 7 to a (0,1)" periodic continous function on R™. Since we
proved (1.17) already under the restriction (1.25) we obtain for functions v satisfying (1.32)
and ¢ € Cy (R™) that

lim inf - (e (@) (0 - ) (2)d = - f(w(@)) (e - n)(x)dz. (1.33)

r—00

Finally we remove 7 from the estimate (1.33). To this end let n, € C;((0,1)") be a sequence
that converges pointwise to 1y 1» and extend each 7, periodically. Then for each k by (1.33)

lim inf /Rn f(ve(2))p(z)dr > liminf - f(p(2)) (- M) (x)dx

o T (1.34)
> [ f(@))(e-m)(z)de.
R?’L
Apply now the monotone convergence theorem to conclude that (1.17) holds true.
]

2 Multiscale Analysis of directional Haar Projections

In this section we outline the proof of Theorem 1.1. We start by performing a multiscale analysis
of P®) with the purpose of successively resolving the discontinuities of the Haar system. We
expand P in a series of operators, where each summand corresponds to a dyadic length scale.
Thereafter we state the estimates of Theorem 2.1 and Theorem 2.2 that quantify the interplay
between the resolving operators and the inverse of the Riesz transform R;,. Finally we show
how the assertions of Theorem 1.1 follow.

11



Recall that A = {¢ € {0,1}" : ¢ # (0,...,0)}. We decompose the projection P ¢ € A,
using a smooth compactly supported approximation of unity. To this end we choose b € C*°(R),
supported in [—1, 1], so that for ¢t € R,

+1
b(t) = b(—t), 0 <b(t) <4, Lip(b) <8, and / b(t)dt = 1.

-1

Let
d(x) =b(xy)----- b(x,) — 2"b(2x1) - -+ - - b(2x,), x=(T1,...,2,).

Since b was chosen to be even around 0, we have fjll tb(t)dt = 0 hence also

/d(:pl, ey Ty ey Ty )Xidx; = 0, (1 <i<n). (2.1)
R

Let Ay, ¢ € Z be the self adjoint operator defined by convolution as
Ag(u) =uxdy, where dy(x)=d(2'x)2™. (2.2)

Foru € LP(R") we get u = >_,° _ Ay(u). Convergence holds almost everywhere and in LP(R").
Recall that S denotes the collection of all dyadic cubes in R™. Let 5 € Z and put

S={Qes:|Ql =2} (23
Let £ € Z, € € A, define TZ(E) as

7,7 (u Z 3w A (h) G 1QI

Jj=—00 QES;

Since the operators A, are self adjoint,

P(s Z T(s

l=—00

Let 1 < iy < n. Recall that 4;) ={e¢ € A:e=(e1,...,6,) and ¢, =1} Leteec A;. In
Section 3 we verify that

T(E R RZO + ZT E:,0: R,

z;ém
where R; denotes the i—th Riesz transform, 0; denotes the differentiation with respect to the
x; variable and E;, the integration with respect to the z;, — th coordinate,

T,
:/ flxy, ..., s,...,2,)ds, x=(T1,...,Tp).
— o

The following two theorems record the norm estimates for the operators T and T R by
which we obtain the upper bounds for P®)(u) stated in Theorem 1.1.

12



Theorem 2.1 Let 1 < p < oo and 1/p+1/q =1 and ¢ > 0. For ¢ € A the operator Tg(a)
satisfies the nmorm estimates,

Cp27% if p>2;

1T, <3 7 e (2.4)
Cp2 if p <2

Let 1 <ig <mn, and ¢ € A;, then

C, 212 if p>2;

2.5
C2tr if p<2. (2:5)

1757 B3l < {
Theorem 2.2 Let 1 < p < oo. Let £ < 0. Then for e € A the operator TK(E) satisfies the norm

estimates,
—|e : .
ey, < { G20 e (2.6
C,271 if p<2.

If moreover 1 < iy < n, and € € A;,, then

_ C,2- 1/ if p>2;
ITORM <3 e (2.7)
" if p<2.
We show how Theorem 2.1 and Theorem 2.2 yield the proof of Theorem 1.1.
Proof of Theorem 1.1. Let 1 <1y < n. Define M € N by the relation
|| Rio (w)]lp
Consider first p > 2. Let € € A;,. Theorem 2.1 and Theorem 2.2 imply that
[ee) M-—1
YT, < G277 and Y ITFR], < C2M
=M {=—o00
Since P©)(u) =372 Te(e) (u) triangle inequality gives that
o] M-1
PO, < S N7 pllully + > TR | 1R (w)]
(=M l=—00 (29)

< Cp2 M2 Jull, + Cp2M|| Rig () -
Inserting the value of M specified in (2.8) gives
Cp2 M2 [l + Cp2M2|| Ry ()|, < Col[ull/ [ Rg () ||, 2.

Assume next that p < 2. Let ¢ be the Holder conjugate index to p so that 1/p+ 1/q = 1.
By Theorem 2.1 and Theorem 2.2, for ¢ € A

109

[e'e) M—1
STl < G2 and > ITOR; M|, < C2M7.
=M l=—00

13



Triangle inequality applied to P (u) =Y 50 T, K(E)u gives

00 M—1
1PO@, < S NT pllelly + Y 1T Rl Ry ()]l
=M

P (2.10)
< Cp27M/q| Jullp + CPQM/p| | Rio (w)]p-
With M defined as in (2.8) above we obtain
G2~ ully + o277 Rigull, < Cyllully?|| Riguul ;™.
]

3 Tooling up

In this section we prepare the tools provided by the Calderon Zygmund School of Harmonic
Analysis. They simplify our tasks and save the reader time and effort. We exploit the Haar
system indexed by (and supported on) dyadic cubes, its unconditionality in LP(1 < p < 0),
projections onto block bases of the Haar system, the connection of singular integral operators
to wavelet systems, and interpolation theorems for operators on dyadic H' and dyadic BMO.

The Haar system in R". We base this review on the work of T. Figiel [4] and Z. Ciesielski
[2]. Denote by D the collection of all dyadic interval in the real line R, and let {h; : I € D} be
the associated L> normalized Haar system. It forms a complete orthogonal system in L?(R).
Analogs of the Haar system in the multi-dimensional case were developed by Z. Ciesielski in
[2]. For our purposes the mere tensor products of the one dimensional Haar system is not quite
sufficient. Instead we employ the Haar system supported on dyadic cubes.

Recall that S denotes the collection of dyadic cubes in R™. and that A = {e € {0,1}": ¢ #
(0,....0)}. The system

(hS) Qe S,ec A

is a complete orthogonal system in L?(R") with ||hg) |2 =Q|. Tt is also an unconditional basis
in LP(R™) (1 < p < 00). Given f € LP(R") define its dyadic square function S(f) as

P =Y (f,h5)1lQ1 (3.1)

ecA, QeS

The norm of f € LP(R™) and that of its square function S(f) are related by the estimate

Gy I f ey < AIS(Hzo@ny < Collflloen. (3.2)

where C), < Cp?/(p—1). Repeatedly we exploit the unconditionality of the Haar system in the
following form. Let {cg) : @ € S,e € A} be a bounded set of coefficients and f € LP(R").

Then
g= Y. LRG0,
ec A, QeS

satisfies the square function estimate S(g) < (sup |c(Q€)\> S(f), hence by (3.2)
lgllzogeny < Cp (sup 1el) - I sy (3.3)

14



Wavelet systems. We refer to Y. Meyer and R. Coifman [7] for the unconditionality of the
wavelet systems and the fact that they are equivalent to the Haar system. Recall that S denotes
the collection of dyadic cubes in R”. We say that

{05 :QeS e

is a wavelet system if {wg ) /4/1Q] : Q € S, e € A} is an orthonormal basis in L?(R") satisfying

i 1/18 ) = 0 and there exists C' > 0 so that for Q € S, and € € A the following structure condition
holds,

supp ¢05' CC-Q,  [w5)1<C,  Lip(y) < C diam(Q) . (3.4)

The wavelet system {Q/Jg: '.QeSece A} is an unconditional basis in L(R") (1 < p < o0) and

equivalent to the Haar system {hg) :Q € S,e € A} : Indeed there exists C, < Cp?/(p — 1), so
that for any choice of finite sums,

T2 X g ma o= g
c€A,QES ceA, QES

the following norm estimates hold,
Cp 1 oy < Ngllzony < Coll Fllon - (3.5)

Notational convention. Given a dyadic cube @) € S we write hg as shorthand for any of

the functions
hS), e € A. (3.6)

If a statement in this paper involves hg where () € S then that statement is meant to hold

true with hg replaced by any of the functions h(a), ee A

Square function estimates and integral operators. In this (and the following) paragraph
we isolate a class of integral operators for which boundedness in LP(R") (1 < p < 0o0) can be
obtained directly from the unconditionality of the Haar system. (Naturally we discuss those
operators here because they will appear in later sections.) Let {CQ, Q) € S} be a set of bounded
coefficients where (for convenience) only finitely many of them are # 0. Let u € LP(R™). Then

K(u)(x) = /n k(x,y)u(y)dy with kernel k(z,y) = Z thQ(x)hQ(y)|Q|_1, (3.7)
Qes

satisfies the square function estimate S(K (u)) < (sup|cq|) S(u). Hence by (3.3),

K (W)l ey < G (sup [cg) - l[ull o, (3.8)

where C), < Cmax{p* p/(p—1)}.
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Projections onto block bases. Our reference to projections onto block bases of the Haar
system is [6] by P. W. Jones. Let B be a collection of dyadic cubes. For @ € B let U(Q) denote
a collection of pairwise disjoint dyadic cubes. We assume that the collections U(Q)) are disjoint
as () ranges over the cubes in B. More precisely we assume the following conditions throughout:

W eldQ), W eU(Q'), and Q # Q" then W #£ W' (3.9)

It W, W' € U(Q) and W # W' then W N W' = 0, (3.10)

Consider the block bases
dg= > hy, Q€EB

Weu(Q)
Given scalars cg we are interested in the operator

i) = 3 cqlu, h)dolQ|™ (3.11)
QeB

that maps ZQeB aghg to ZQeB agcqdg- Similarly, given a wavelet system {1 } as above and
scalars by we consider the block bases

o = Z bwbw
Wel(Q)

and the operator

Ko(u) = Z co (u, ho) Ua|Q| ™.

QeB
We shall see below that K5 can be controlled by K;. To estimate K;(u) it is sometimes conve-
nient to use a different collection of cubes as follows. Let U(Q) = Uggyg) W denote the pointset
covered by the collection U(Q)). Suppose that there exist dyadic cubes F1(Q), ..., Ex(Q) , where
k may depend on (), so that

U(Q) € Er(Q)U--- U Ex(Q).

Assume that the collections {E1(Q), . .., Ex(Q)} are disjoint as @) ranges over the cubes in B.
Let

k
9= hr@ QEB (3.12)
i=1
put 7 = sup |y, and define the integral operator

Ko(u) =~ Z<U7 hQ>gQ|Q‘71'

QeB

Our construction gives the square function estimate
S(K1(u)) < S(Ko(u)),
hence || K (u)||, < Cp||Ko(u)||,.- Consequently, LP — L7 duality gives the norm estimate
KTl < Coll Kgllp- (3.13)

Note that the transposed operators K; and K are given as,

Ki(u) =) cqlu,dg)hglQ™" and  Kg(u) =7 ) (u,gq)helQI™"

QeB QeB
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Exchanging Haar functions and wavelets. The equivalence of the wavelet system to the
Haar basis allows us to write down further examples of LP bounded integral operators We use
again the notational convention to write 1)g denoting any of the wavelet functions w e € A

Assume that U(Q), Q € B satisfies (3.9) and (3.10). Let by, W € U(Q) be scalars, and
assume that |by| < B. Recall that

w) =Y coluwhe) PalQ™,  do= Y bwiw,

QeB Weu(Q)

and that K; was defined in (3.11). Since K5 can be viewed as the composition of K; with the
map hy — by it follows from (3.3) and (3.5) that

() o ny < CpB - |1 (W) Loy (3.14)
Duality gives estimates for the transposed operator as,
K31l < CpBIIKTlp, (3.15)
where

=Y colu,do)holQI™ and  Ki(u) =) cou,dghholQ[™". (3.16)

QeB QeB

Calderon Zygmund kernels. We use the book by Y. Meyer and R. Coifman [7] as our
source for singular integral operators and their relation to wavelet systems. Let {kg : Q € S}
be a family of functions satisfying [ kg = 0 and these standard estimates: There exists C' > 0
so that for Q € S,

supp ko € C'-Q, kol <1, Lip(kg) < C diam(Q)~". (3.17)

Let {cg : @ € S} be a bounded sequence of scalars. Assume for simplicity that only finitely
many of the ¢, are different from zero. Then

ZCQwQ |Q‘ 1
defines a standard Calderon-Zygmund kernel (see [7]) so that
Ka(w)(@) = [ tale. p)uty)dy

satisfies the norm estimate
[ K5 ()|, < Cpsup [cgl - [[ullp.

By (3.5), the operator

Ky(u)(x) = /k4(x,y)u(y)dy with kernel  ky(x,y) ZCQhQ QI

satisfies
[ Ka(u)ll, < Cpsup [cgl - [[ullp. (3.18)
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We will apply (3.18) in the following specialized situation. Let W be a dyadic cube and let
V' be a cube in R™ (not necessarily dyadic) so that

Voo w,  |[VI<GIW]. (3.19)
Let @ C W be a dyadic cube. Since [ kg = 0 and supp kg C V we have

(u, kq) = (lv(u —my(u)), kq),

where my (u) = [i, u/|V|. This yields the identity

D (u kQ)holQIT = (T (u— my(u)), ko) hol Q.

QEW QEW

To the kernel Y-,y hg(2)kg(y)|Q]~! we apply the estimate (3.18) with p = 2. Since the Haar
system is orthogonal we obtain

D (w kIR =1 D (u k)hol@I 3
QTW QCW

= > (Wv(u—mv(u)ho)|QI 73 (3.20)

QCw
< 11 (u = my (w))[l3-

With (3.20) we obtain BMO estimates for operators with Calderon Zygmund kernels as above.

The Riesz Transforms. We review basic facts about Riesz transforms and base the discus-
sion on chapter IIT of [15] by E. M. Stein. Let F denote the Fourier transformation on R™. The
Riesz transform R; is a Fourier multiplier defined by

F(R(w)(€) = Fé] (W)(€) where 1<i<n, €= (.. .6 (3.21)

Riesz transforms, satisfy the estimates ||R;jull, < Cyllull, (1 < p < 00), hence define bounded
linear operators on the reflexive LP(R™) spaces. The defining relation (3.21) yields a convenient
formula for the inverse of R;, again by Fouriermultipliers. Consider for simplicity ¢ = 1. Let
u be a smooth and compactly supported test function such that F1(|€]/&F (u)(€)) is well
defined. Then compute F(R;*(u))(£) as

FURL )6 = VTR = FO = Y

SRR
|£|+Z£1 \g]'

=2

= —V-1F(u)()

Taking the inverse Fourier transform yields

Ri'=Ri+ > E0;R;, (3.22)
=2
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where Eq(f)(z1,...,2,) = ff;o f(s,xa,...,2,)ds and 0; denotes the partial differentiation with
respect to the ¢ — th coordinate.

Next fix 1 < iy < n and ¢ € A4;,. After permuting the coordinates the above calculation
gives the formula for R;OI as follows

Ry' = Ry, + > Ei,0:R:. (3.23)

=1
1#10

Dyadic BMO, H} and Interpolation. We use [1] by C. Bennett and R. Sharply as basic
reference to interpolation theorems. Recall first the definition of dyadic BMO. Let f € L*(R")
with Haar expansion given by (1.2) We say that f belongs to dyadic BMO and write f € BMOy
if the norm defined by (3.24) is finite

+ sup — 0 Z > <f, h%,f,)> Wt (3.24)

o = | 1]
Qes Il ceawcq
Given a dyadic cube () the system
{1} U{rld): W esS W CQecec A}

is a complete orthogonal system in the Hilbert space L*(Q,dt). This yields the identity

Lo(f —mo(f) =D (. Rhng W,

ecAWCQ

where mg(f) = (fQ £)/]1Q|- Hence the BMO4 norm of f can be rewritten as

”fHBMOd ‘/ |Q‘

Given f € BMO, with [ f = 0. Let G = {W € & : 3= (f,hl3)) # 0}. It is well known that
in order to evaluate the BMOy norm of f it suffices to consider the cubes in G. Put

= sup = S SR

eq | Q) ccAWCQ

+sup / £(8) = ma(f)] (3.25)

We claim that
Ao = I f1IEmo,- (3.26)

It suffices to observe that Ay > || f||Zy0,, since Ay < || fllgmo, by definition. To this end we
fix a dyadic cube K € § so that K ¢ G. Let M C G denote the collection of maximal cubes
of G that are contained in K. (Maximality is with respect to inclusion.) Thus M consists of
pairwise disjoint dyadic cubes,

> lQI< K],

QeM

ST =D TS AR)AW

ee AWCK QEM ec AWCQ

and,
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Since M C G, for Q) € M,
DD ALEPIWIT < Al
eEAWCQ
Consequently we have the following estimates
DD AEWIWIT =40 1)
e€cAWCK QeM
Taking the supremum over all such K implies that A > || fl[Eyo,-

We review the definition of dyadic H!, its relation to the scale of LP spaces and to BMO,.
Let K be a dyadic cube in R". We say that a : R” — R is a dyadic atom if

llal| L2@ny < |K|~Y2, suppa C K, and /a = 0. (3.27)

By definition a function f € L'(R") belongs to dyadic H! if there exists a sequence of dyadic
atoms {a;} and a sequence of scalars {\;} so that

= Z)‘iai and Z |Ai| < o0. (3.28)
We denote
1f = nf LY [Nil} (3.29)
where the infimum is extended over all representations (3.28). For the resulting space of func-
tions we write Hj. Recall also that the dual Banach space to H} is identifiable with BMO,.
Interpolation of operators links the spaces H}, BMO, on the one hand and the scale of L?
spaces on the other hand. Assume that 7' is a bounded operator on H} and on L?. Let A;
denote the the norm of 7' on H} and let Ay denote the norm of 7" on L% Then for 1 < p < 2
and 0 =2 —2/p
ITll, < CA"A;.
If on the other hand the operator 7" is bounded on BMO,; with norm equal to A, then for
2<p<ooand®=2/p
|7, < CAL?AS,
In addition to dyadic BMO at one point of the proof we employ the continuous analog of
BMO,. Let f € L*(R"). Let W C R" be a cube (not necessarlly dyadic). Write

n=[, 10 |W|
dt

We say that f € BMO(R") if
s [ 150 - mu P < o,

I o = | 7 -

where the supremum is extended over all cubes W C R" (not just dyadic ones). Clearly for
a given function | f||smowr) = ||f|lBmo,- In Section 4 we use BMO(R™) and interpolation as
follows. Let T : L?*(R") — L*(R™) and T : BMO,; — BMO(R") be bounded. Let A, be the
operator norm of 7 on L*(R") and put

= ||T : BMO(R") — BMOy||.

Then for 1 < p < oo and 0 = 2/p,
|17, < CALPAS.
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4 Basic Dyadic Operations

The norm estimates for the operators T, Z(E) reflect boundedness of two basic dyadic operations.
These are rearrangement operators of the Haar basis and averaging projections onto block bases
of the Haar system. In this section we isolate the basic dyadic models and prove estimates in
the spaces H!, L? and BMO. In later sections the boundedness properties of Te(e),ﬁ < 0, are

reduced to the case of rearrangement operators. The estimates for TZ(E), ¢ > 0, are harder and
involve rearrangements as well as orthogonal projections onto certain ring domains, surrounding
the discontinuity set of Haar functions.

4.1 Projections and Ring Domains

The following definitions enter in the construction of the orthogonal projection (4.5). Recall
the set of directions A = {e € {0,1}" : ¢ # (0,....0)}. Let B be a collection of dyadic cubes.
For Q € B and ¢ € A let D®(Q) denote the set of discontinuities of the Haar function hg).
Fix A € N and define

D(Q) = {z e R": dist(z, D(Q)) < €27 diam(Q)}.

Thus Dg\a) (Q) is the set of points that have distance < C27* diam(Q) to the set of discontinuities
of hg). Let k(Q) < C2"~D and let E(Q),. .., Exq)(Q) be the collection of all dyadic cubes
satisfying

diam(E,(Q)) = 27 diam(Q),  Ex(Q) N D(Q) # 0. (4.1)

We assume throughout this chapter that B is such that the collections {E1(Q), ..., Ex)(Q)}
are pairwise disjoint as () ranges over B.

Thus we defined a covering of DE\S)(Q) with dyadic cubes {E1(Q), ..., Eyg)(Q)} satisfying
these conditions:

1. There holds the measure estimate
[B1(Q) U+ U By (Q)] < C277Q. (4.2)

2. Let Q, Qo € B, k < k(Q) and ko < k(Q).
It £,(Q) C By, (Qo) then Q C Q. (4.3)

3. Let Q,QQ € B, k < /{?(Q), k(] < ]{Z(Qo) and Q C Qo.
If E,(Q) N Eiy (Qo) # 0 then Ep(Q) C Ey (Q). (4.4)

Note that our hypothesis (4.2)—(4.4) are modeled after Jones’s compatibility condition in [6].
With U(Q) = {E1(Q), ..., Ek)(Q)} we define the block bases as go = > peyq) he- The
associated projection operator is given by the equation

S(u) = {u.ho)galQ™". (4.5)

QeB
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Recall that hg is shorthand for any of the Haar functions hg), where ¢ € A. Moreover, if a
statement in this paper involves h¢ then that statement is meant to hold true with hq replaced

by any of the functions hg).

The norm estimates for the operator S are recorded in the next theorem. For its use in the
later sections of this paper the relation between the spaces, on which the operator acts, and
the dependence of the operator norm on the value of A\ becomes crucial.

Theorem 4.1 There exists Cy = Co(C,n) so that the orthogonal projection given by (4.5)
satisfies these estimates

1S 1 < Co272, I1Sl2 < Co272, and  ||S||sao, < Co.

PROOF. The proof splits canonically into three parts. The first part treats L?, the second part
H}, and the last part the BMO, estimate of the operator S.

Part 1. We start with L?. Since |E1(Q) U - U Ex)(Q)| < C,274|Q|, we have ||ggl3 <
C,277|Q|. As we assume that the collections {E1(Q), ..., Ey)(Q)} are pairwise disjoint as Q
ranges over 53, the induced block bases {gqg : @) € B} are orthogonal. Hence

IS)lI3 =) (u, ho)?llgqll3Q]
QeB (4.6)

< C27Y|ulf3.
Part 2. The H} estimate. Let a be a dyadic atom supported on a dyadic cube K so that
lal|3 < |K|71. If (a, hg) # 0, then @ C K and supp gx C C - K. Hence
supp S(a) C C - K.
The L? estimate (4.6) gives [|S(a)||3 < C,27*K|™L. As supp S(a) C C - K, we obtain the H}
estimate, [|S(a)|q1 < 2772,

Part 3. The BMO, estimate. Define
G=U{R(Q), ... By (@)}

QeB

Given u € BMOy, by (3.26), it is sufficient to test the BMOy, norm of S(u) using only the cubes

K € G. Indeed,
1 1
S(u)l|3 :sup—/Su——/SUQ.
10 o, =m0 i [ 1560 - - [ st
Let K € G. Note that, ﬁ S 1S (u) — ﬁfK S(u)|? coincides with

hg 2
S{uig) ¥ In@l (47)

QeB {k:E(Q)CK}

Choose Qo € B, ko < k(Qo) so that K = Ey,(Qo). By (4.3), if Q@ € B and Ex(Q) C Ek,(Qo),
then @ C Qo and if moreover Ex(Q) N Ey,(Qo) # 0 then, by (4.4), Ex(Q) C Ej,(Qo). Hence if

Q C Qo then
> IBQI= [ g

{k:Ex(Q)CK}
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and (4.7) equals,

> <u,%>2/1(gé. (4.8)

QREB,RCRo

To get estimates for (4.8) consider s € NU {0} such that s < A. Split the (effective) index
set in (4.8) into

H, = {Q €B:QCQp diam(Q)=2"* diam(Qp), / g5 # o} L s <,
K

and

Hy = {Q €B:QCQy diam(Q) <27 diam(Qy), /ng2 + 0} )

First estimate the contribution to (4.8) coming from Hy. If Q@ € H,, then by (4.2), [, gé <
C272Q|. Since clearly the pointset covered by H,, is contained in C' - K, we get

ho \° 21 |-1
> (wig) [dzet 3 wherlal

QHoo QMo (4.9)
< C27M|ulfng0, | K-

Next turn to the Hg, s < A. The analysis is parallel to the previous case. The cardinality of H,
is bounded by (), with C,, independent of s or A. For () € H, we get fK g% < C27°|K|. Hence

ho \” .
3 <u ﬁ> | g < €2l 1K1
QeH, K
Taking the sum over 0 < s < A, gives
A h 2
S5 (wi) [ o< Cluluo (4.10)
s=0 QeHs K

Adding (4.9) and (4.10) gives the BMO, estimate ||S(u)||smo, < C|lullBmo,-

4.2 Rearrangement Operators

We next turn to defining the rearrangement operator S given by (4.12) below. Let A € N and
let Q € S be a dyadic cube. The X — th dyadic predecessor of @, denoted @™, is given by the
relation

QVes, QW =2"Ql, QcQW.
Let 7: S — S be the map that associates to each () € S its A — th dyadic predecessor. Thus
Q) =QY, QeSs.

Clearly 7 : § — S is not injective. We canonically split S = Q; U --- U Qgux such that the
restriction of 7 to each of the collections Qy, is injective: Given ) € S, form

UQ) ={wesS:wh =g}.
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Thus U(Q) is a covering of Q and contains exactly 2" pairwise disjoint dyadic cubes. We
enumerate them, rather arbitrarily, as W1(Q), ..., Wanr (Q). For 1 < k < 2™ define

Qr ={W(@Q):Q €S},
Note that 7 : Q, — S is a bijection, and
TWe(@Q) =Q,  Wi@) e Qr, QEeS.

Let 1 <k < 2™ Let {gog) : Q € S} be a family of functions for which [ cp%ﬂ = 0 and which
satisfy the following structural conditions: There exists C' > 0 so that for each Q) € S

k k . k . _

supp ) €C-Q, o1 <C, Lip(ply)) < C diam(Q) ™. (4.11)

We emphasize that the actual function 90(5) may depend on k, by contrast the structural con-
ditions (4.11) are independent of the value of k. Define the operator S by the equation

2n/\
S =% <g,(p(T]22)> holQI™". (4.12)
k=1 QeQy

The action of S is best understood by viewing it as the transposition of the rearrangement
operator defined by 7 followed by a Calderon Zygmund Integral. The next theorem records the
operator norm of S, particularly its joint (n, \)—dependence, on the spaces H}, L? and BMO,.

Theorem 4.2 The operator S defined by (4.12) is bounded on the spaces H}, L* and from
BMO(R™) to BMOy. The norm estimates depend on the value of A € N and the dimension of
the ambient space R™ as follows:

152 < Co2, 1S] g1 < Co2™, 1S : BMO(R™) — BMOy|| < CoAY?2™ . (4.13)

PROOF. The three parts of the proof correspond to the three operator estimates in (4.13). The
first part treats L?, the second part H} and the third part BMO,.

Part 1. We start with L2. Let u € L?. Then

2n/\
2
k _
IS@I3 =303 (wely) QI
k=1 QeQy

Let 1 < k < 2™ Since 7 : Qp — & is bijective, the standard conditions (4.11) and the L?
estimates for Calderon Zygmund operators (3.18) yield,

2
> (uelly) IH@1 < Clull3 (4.14)
QEQy

Recall that |7(Q)| = 2"|Q|. On the left hand side of (4.14) replace |7(Q)|~* by 27™*|Q|~! then
take the sum over 1 < k < 2™, This gives

2n/\

(k) 2 ~1 < (192nA 2
ZZ U Pr) QI < [[ul[2-
k=1 QeQy

Hence ||S||s < Cp2™, as claimed.
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Part 2. The H} estimate. Let a be a dyadic atom supported on a dyadic cube K. Define

—{Qes: diam(r(Q) > diam(K), {a,¢%)) #0}.

Then put S(a) = by + by where

b= (S(a),hq) holQ| ™",

QeH

and by = S(a) — by. We treat separately the norm of by and by. First we estimate [|b;|1. Fix
s € NU {0} and put

H, ={Q € H: diam(7(Q)) = 2° diam(K)}.

Let Q € Qx N'H, and let ¢ € Q. As [ 'a = 0 we obtain

0 \| _ (k) (k)
’<“’ 90T<Q>>’ - ’<“ Yr@ ‘PT<Q><‘1>>’

< Clally diam(Q)Lip(p"),)

By the structural conditions (4.11), @ € QxN'H, implies Lip((p(% ) < C27¢ diam(K)~!. Hence

|{a, T(Q)>| < (C27*. Note that the cardinality of Q) N H, is bounded by an absolute constant
C. Hence,

oo 2nA

DI o)l < C2 (4.15)

s=0 k=1 QeQrNHs

Since hq/|Q| is of norm one in Hj, the triangle inequality and (4.15) give ||bi|[g1 < C2m . Tt
remains to consider [|bs|[;1. Here the estimates are a direct consequence of the operator L?
norm of S. First

62113 < [[S(a)]]2

< 02"|al)3
< C2 K.

Second, a moments reflection shows that the Haar support of by is contained in C'- K. Let
M={WeS:Wnsupp by #0, |W|=|K|}

Clearly the union of the cubes in M covers supp by. The cardinality of M is bounded by a
constant C,,, and fW by = 0 for W € M. Hence the functions

C127 " by, W e M,

are dyadic atoms, and [|baflz < C2". Since 1S(@)llgy < o1l + [|b2f[1 it follows that
S]] ary < Co2".
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Part 3. Let u € BMO(R"). We obtain the BMO, estimate for S(u) by verifying that for
every dyadic cube W,

onA

YooY (wlH)IQIT < CIWLA- 22l Byogen- (4.16)

k=1 QeQy,QEW

To this end fix a dyadic cube W. Split {Q € §,Q C W} = G UH, where
H={QcS: QCW, diam(Q)> diam(W)2™*} and G={QecS,QCW}\H.

Fix 1 < k < 2™, put G, = G N Q;, and observe that
U n@cw
QG

Recall further that 7 : G, — S is injective. Hence the standard conditions (4.11), the Calderon-
Zygmund estimate (3.20), and (3.19) yield

k _
> u, @5@)2\7(@)\ L < CIW - lullBao ey (4.17)
QEGk

Next replace |7(Q)|~! by 27"Q|}, then take the sum of (4.17) over 1 < k < 2™, We obtain
that

2n)\

ZZ u, T(Q QI < Clw|- 22 ||u||BMO(]Rn)

k=1 Q€gs
We turn to estimating the contribution to (4.16) coming from H. Let 0 < s < X. Write

Hs ={Q € H: diam(Q) = 27° diam(W)}.

The cardinality of H, equals 2™°. It is useful to observe that, since s < A, there exists exactly
one dyadic cube K so that

7(Q) = K,, forall Q € H,.

Hence the following identity holds

onA
Z Z u, SOT(Q QI = (u, ‘PKS [Z QI 1] (4.18)
k=1 QeHsNQy Q€eHs

Each Q € H, satisfies |Q| = |W|27"%. As H, has cardinality equal to 2", it follows that

> QI =22

Q€eHs
By definition |K,| = 277"} |W|. Squaring and regrouping gives

22ns|W|—1 — 22n>\|K5|_2|W|.
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Hence the right hand side of (4.18) equals
2
2N (u, o8 )[R (4.19)

By (4.11), ||<pK)|| < | K |1/2 Let By be a cube in R" so that supp (go( )) C B, and diam(By) <
C diam(Kjy). Let mp, (u ‘B | fB x)dx. As fcpK = 0 we get

k k
megnzuu—m&mx@&|
< O|1g, - (u—mp, (W) K| ? (4.20)
< C|Ks| - HUHBMO(R")-

Inserting (4.20) into (4.19) gives that the latter is bounded by
2" W1 - [[ullBaogn)- (4.21)

Thus we showed that the left hand side of (4.18) equals (4.19) which in turn is bounded by
(4.21). Hence

2n)\

Z Z bl T(Q QI < c2 W HUHBMOR" (4.22)

k=1 QEHNQy
Finally in (4.22) we take the sum over 0 < s < A and obtain (4.16)

5 The Proof of Theorem 2.1.

In this section we prove Theorem 2.1. The sub-sections 5.1 — 5.3 are devoted to the estimates
for the operator Tg , 0 >0.In sub-section 5.4 we discuss the reduction of the estimates for

T(a)RlO , € € A;,, to those of T . Recall that

A, ={c€Ad:e=(e1,...6,) and ¢, =1}
Let € € A;,. Let £ > 0. Recall that for j € Z we let S; be the collection of all dyadic cubes in
R™ with measure equal to 27, Let @ € S; and define

5= 8ji(hg). (5.1)
With the abbreviation (5.1) we have
T(f'?) — (e) h(f) -1 59
S =D Igag eI (52)
QeS

The functions fc(;)z have vanishing mean and satisfy the basic estimates

supp 5, € DY(Q),  |fS) <O, Lip(f5)) < C2°( diam(Q)) ™, (5.3)
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where Dée)(Q) is the set of points that have distance < C27¢ diam(Q) to the set of discontinu-
ities of hg). Based only on the expansion (5.2) and the scale invariant conditions (5.3) we prove

in the following subsections that TE(E), ¢ > 0 satisfies the norm estimates

C,27t% f > 2
HTf)HpS{ ’ o= (5.4)

C27%1 for p<2.

To this end we decompose the operator TE(E), ¢ > 0 into a series of operators 1p,,,m € Z
using a wavelet system {1/1&?) K €S,a € A} so that {@Z)&?/V | K|} is an orthonormal basis in
L*(R™), satisfying [ @Z)&?) = 0 and the structure conditions,

supp ¢y € C'- K, | < O, Lip(¢'¢) < € diam(K)™".

To simplify expressions below we suppress the superindeces (a) and, with a slight abuse of
notation, in place of {w?)} we write just {1k }. Then expanding a function f along the wavelet

basis we get
1= X (AR v

KeS

Fix m € Z and define T}, by the equation

L.H=3Y 3 Y <f7|%><Aj+z(h$)),wz<>h$)\62l1- (5.5)

j:—OO QESJ' KESj+g+m

Then .
T = Y Tinlf). (5.6)
In this section we prove that
IS T, 0l < C27%  and T G2~ for p2>2; 5.7
3 il < G2 an m;u wlb <Y crots gor pea O

The bounds of (5.7) imply the norm estimates for TE(E), ¢ >0 as stated in (5.4).
There are three relevant length scales in the series (5.5).

1. The scale 2779, This is the sidelength of Q) € S;, the cube under consideration.

2. The scale 27U+ This is the scale of AJH(hg)). More precisely, since Aj, is given by a
convolution kernel of zero mean, the function Aj+g(hg)) is supported in a strip of width

proportional to 27U+ around the discontinuity set of hg)

3. The scale 27U++™)_ This is the scale of the test functions ¥y, K € S r1m.

The estimate (5.7) follows from Proposition 5.1, Proposition 5.2 and Proposition 5.3 below
which deal with the regimes

1. 2-GHHm) 5 9-7
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9. 9—(+t+m) ~ 27(]#6)7
3. 27Ut ¢ [9-0+0) 9=i],

respectively. Accordingly we treat separately the following three cases, m > 0, 0 > m > —/,
and m < —/.

5.1 Estimates for 7j,,, { > 0, m < —/.

In the case when m < —¢ and £ > 0 we have 2-UT™) > 27 Thus the length scale of the test
function vk is larger than the scale of hg) when @ € ;.

We obtain in Proposition 5.1 the estimates for 7}, from those of the rearrangement opera-
tors treated in the previous section, and from the fact that the wavelet bases in LP(1 < p < c0)
are equivalent to the Haar basis. The fruitful idea of exploiting rearrangements of the Haar
system in the analysis of singular integral operators originates in T. Figiel’s work [4]. (See also
[9] for an exposition of T. Figiel’s approach.)

Proposition 5.1 Let 1 <p < oo and 1/p+1/q=1. For £ >0, and m < —{ the operator
- wK 5 € —
T.H=3 3 ¥ <f, ) el e @1
j=—00 QESJ' K65j+[+m
satisfies the morm estimate

Cp2™/—m — L for p>2;
[ Temllp <

Cp2m for p<2.

and consequently
—r—1

Y I Temlly < C27°

m=—0oQ

PRrROOF. Fix ¢ > 0 and —oo < m < —(. Let j € Z and fix a dyadic cube ) € §;. Then form
the collection of dyadic cubes

Upm(Q) = {K € Sjip4m WK’AJ‘H(hS))) # 0}.
Clearly for Tj,,(f) holds the identity

L= S % <f,|%><Aj+z<hé§’>,wf(>hé§>\@|1. (5.9)
J=—00 QES; KUy m (Q)

Observe that for —oo < m < —/¢ the cardinality of the collection Uy, (@) is uniformly bounded.
Next for K € Uy, (Q)) we prove that

(A 4e(hS), vi)| < C27|Q). (5.10)

Since

/ Ay (hE)dz < C27(Q),
R?’L
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and since AjM(hS)) has vanishing mean, we get for ¢ € Q

(A 1e(RS), )| = [(Ajae(hS)), (0r — v (0))))]
< CLip(be) diamn(@) | 18y14(4)ldo

diam(Q)

diam(K) 210l

Next recall that Q@ € S; and K € Sjirim. Hence diam(Q) = /n277 and diam(K) =
v/n2797m=¢ Inserting these values gives (5.10).
By (3.8), in combination with (5.9) and (5.10) we obtain that

ITon(F)ll, < G2 |3 Z <f [ﬁg>hQ | (5.11)

QES Kely,m »
Recall K € Uy,,(Q) satisfies | K| = |Q[2"(—*™). Hence | K|~!|Q|2™ = 2(»+m+nf Thus the right
hand side of (5.11) is bounded by

C 2(n+1 Yym+nt Z Z f 'QZ)K hQ|Q| 1 ' (512)

QES KEM[ m(Q) P

Given @ € S let K¢(Q) be a cube in Uy, (Q). As there exist at most C' = C,, cubes in Uy (Q),
the expression in (5.12) is bounded by

max

C 2(n+1)m+n£
P s<C

D tr@hel @ (5.13)

QeS

p

Fix s < (' so that the maximum in the right hand side is assumed. We invoke rearrangement
operators to obtain good upper bounds for (5.13). Let 7 S — S be the map that associates
to @ € S its (—m — £) — th dyadic predecessor, denoted Q( . Thus

(@ = Q.
In sub-section 4.2 we defined the canonical splitting of S as
S=9,U---U Q2n(7mfl)7

so that for each fixed k < 2n(=m- 5) the map 7 : Qr — S is a bijection. Fix now k < on(=m=1{)
and define the family of functions {(pw W € S} by the equations

<P(T(Q VK.(Q) Q€ Q.

Let A =279 and define the rearrangement operator S by

- Z > (£6l ) halol ™.

k=1 Q€Qy
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What we have obtained so far can be summarized in one line as follows
[T (f)llp < CRREFI™YS ()], (5.14)

It remains to find estimates for ||S(f)|/,- To this end observe that the family of functions
{(pgf,) : W € S} satisfies the structural conditions (4.11): There exists C' > 0 so that for each

WesS
supp o) € C-Q, oM< Lip(pl) < € diam(W)".

Hence Theorem 4.2 applied to the operator S, with A = —m — /, gives

C2Mm=0y/—m — ¢ for p>2;
151, <

Cp2"(*m*£) for p<2

Inserting the norm estimate for S into (5.14) and simple arithmetic implies (5.8).

5.2 Estimates for 7},,, { >0, m > 0.

In this subsection we treat the case m > 0 and ¢ > 0 or equivalently 2-UT+m) < 20+ Here
the length scale of the test function ¢ is finer than the scale of Aj+g(hg)). We estimate the
norm of Ty ,, by reduction to the projections onto ring domains.

Proposition 5.2 Let 1 <p < oo. and 1/p+1/q=1. Form >0 and { > 0, the operator

La.H=3 3 Y <f7|%><Aj+z(h$)),wz<>h$)\62l1-

j:—OO QESJ' KESj+g+m

satisfies the norm estimate

C,27m27t2  for p>2:
||Te,m||ps{ v Jor 2 (5.15)

C,27m27t for p<2.

Proor. We divide the proof into three parts. First we rewrite the operator by isolating the
cubes ) € §; and K € Sy, that contribute to the series defining 77 ,,. Second we define
auxiliary operators that dominate 77 ,,. These turn out to be projections onto ring domains as
considered in sub-section 4.1. Finally we invoke norm estimates for the resulting projections
onto ring domains.

Part 1. Here we rewrite 7, by making explicit the index set {K € S;is1} that actually
contributes to the series defining 7y ,,. Fix () € §; and define the collection of dyadic cubes

Upn(Q) = {K € Sjavim : (Dj4e(hS)) ) # 0},

Let Up,,(Q) be the pointset that is covered by the collection Uy,,(Q). Note that Up,,(Q) is
contained in the ring domain of points that have distance < C'277 to the set of discontinuities
of hg). Thus Up,,(Q) can be covered by at most C2"~D¢ dyadic cubes of diameter \/n2=¢7.
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We denote these cubes (that are pairwise disjoint) by £, ..., E4 where A = C21¢ If we
wish to emphasize the dependence on () we write Ey = Ei(Q). Thus

A
Urm(Q) C U E(Q), diam(E(Q)) = vn2™"9, A= Con=Dt
k=1

With Uy, (Q) as index set we define the block bases of wavelet functions

g = Z <Aj+£(hg))>¢K>@/}K|K|_l,

Keuﬁ,m(Q)

by which we rewrite the operator 7}, as follows,

Timlf) = Y (£ da) AR (5.16)

QeS

Part 2. Here we exploit (5.16) and relate the representation 7}, to its dyadic counterpart,
the projection onto ring domains. To this end we start by giving pointwise estimates for the
function 1q. Fix K € Up,,(Q). Use that 1, has mean zero and that diam(K) = /n2(-7=m)
to obtain,

(A 1e(BS)), )| - |K | < € diam(K)Lip(A;4.0(hS)))
< C diam(K)27 (5.17)
=2 ™,
Recall that
dist(Upm(Q),Q) < C - diam(Q) Q € S.

Hence there exists a universal Ay € N so that for j € Z the collection S; may split as

1) (Ao)
SW,... 8,

so that for s < Ay the sets {Up,(Q) : Q € S](S)} are pairwise disjoint. Fix s < Ay and form the
collections ©
B.={]Js)”.
jET

As s < Ay is fixed, the collections {U;,,(Q) : Q € Bs} satisfy the conditions (3.9) and (3.10).

Define
do= >, hx,
KEM@,m(Q)
and put
Fig) = > {9.dg)hql@|™".
QEBs
By (5.17) and (3.15), (3.16),
Ao
| Temlly < Co27™ > | Fillp-
s=1
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Next we replace the operator F; by a related one that is easier to analyze. To this end we
define for Q € B,

A
9o =) hui, ~A=02"0
k=1

where the collection of dyadic cubes {E1(Q) ... E4(Q)} are defined in part 1 of the proof. The
block bases {gg : @ € B} give rise to the operators G defined by,

G(f) =D (f.90)holQI™".

QEBs
By (3.13), || Fsll, < Cp||Gsl|p- Hence
Ao
| Temlly < C2™ Y 1IGl- (5.18)
s=1
Part 3. In the last part of the proof we obtain norm estimates for 7} ,, by recalling the

bounds for the projection G obtained in Section 4. Fix s < Ay, let
B=B, and G =G,.

The transposed operator G* is just

G*(f) =) (f ho) galQ|™".

QeB

In part 1 of the proof, for @ € B, we defined the collections {E1(Q), ..., Ea(Q)}.They satisfy
conditions (4.2)—(4.4). Hence we apply Theorem 4.1 with S = G* and A = ¢. By duality this
gives the following three norm estimates for G,

1G]y <€, lIGlla <C27% and  ||Gllpmo, < C2772 (5.19)
By interpolation and (5.19), for 1 <p < oo and 1/p+1/¢=1
C,27%2% for p>2;

It < { A (5.20)
» or p<2.

With (5.20) and (5.18) we deduce (5.15).

5.3 Estimates for 7j,,, { > 0, —¢ <m <0.

Here we analyze the operators 1 ,,, when ¢ > 0, —¢ < m < 0. In this case the scale of the

test functions 1 lies in between the scale of the cube ) and that of A]-H(hg)). Again we
estimate T}, by reduction to projection operators onto ring domains, following the pattern of
the previous sub-section.

Proposition 5.3 Let 1 < p < oo. and 1/p+1/qg=1. Let £ > 0 and —¢ < m < 0 then the

operator
Tom(f)=>. > > <f,r%><Aj+z<hé§>>,wf<>hé§’|@|—1

Jj=—00 Q€ES; KESjt1otm
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satisfies the norm estimate

m/20—£/2 > 9.
[ Tomlly < Cp2m 2 jor »2 2 (5.21)
’ C,2m/22=a  for p<2.

PROOF. The proof splits canonically into three parts. First we analyze and rewrite 7} ,,. Then
we define auxiliary operators that dominate 77 ,,, and continue with norm estimates for those
operators. As above we are led to consider projections onto ring domains.

Part 1. Fix /> 0and —¢ <m < 0. Let j € Z and choose a dyadic cube () € §;. Then form
the collection of cubes

Usin(Q) = {K € Sjrerm = (U, Ajre(hG))) # 0},
Observe that with the above definition of the collections Uy, (@) the following identity holds

Tom(f)= > > > <f,|%><A]~+g<hé§’>,¢f(>hé§>|@|1.

J=—00 QES; K€Uy 1m(Q)
Part 2. Fix Q € §; and K € Uy, (Q). To find the auxiliary operators we prove first that

(A5selhly ), )| < 027 K] (5.22)

To see this make the following observation. First note that |Q| = 27 and diam(K) =
/1n2797m=¢ Then observe that Aj+g(hg) is supported in the ring domain D,(()) and estimate

’<Aj+z(h(c§))a¢1<>’ < C/K|Aj+f(h(5))|
< CD(Q) N K]
< 0277 ( diam(K))"*
< 0K,

For a cube K € U;,,,(Q) its distance to @ is bounded by the C' diam(()). Hence, there exists
a universal Ay so that for j € Z the collection S; can be split into

1) (Ao)
sW,...,8),

so that the sets {U;,(Q) : Q € S](S)} are pairwise disjoint. Fix s < A; and form the collections
_ (s)
B,=[]Js).
JEL
Note that {U(Q) : @ € B} satisfies the conditions (3.9) and (3.10). Define
F(f)=2" > (f.do}hol@Q™",  de= > hx
QEB; Kelp,m(Q)

The integral estimates (3.16), (3.15) and (5.22) imply

Ag
Tomlle < Co > I Fellp-

s=1
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Part 3. It remains to estimate ||Fs||,. Notice that the collections Uy, (Q), @ € B satisty
conditions (4.2)—(4.4). Next apply Theorem 4.1 to S = 27" FF and A = ¢+ m. By duality this
vields for F, the norm estimates on L?, H} and BMO,

|Flla < G209 || Fflyy < €27, and  [|Fu]|Bao, < €209/, (5.23)

By interpolation from (5.23) we get for 1 < p < oo and 1/p+ 1/g = 1 that,

C,2m=0/2 for p>2;
||F3||p — C 2771/2—[/(] f
» or p<2.

5.4 Estimates for T(E)Ri_l, ¢>0.

L0>0,e€ A, and 1 < iy < n. We do this by reduction

We give the norm estimates for 7T, E)RZ e

to the estimates for the operator T ,£ > 0. Strictly speaking we discuss the reduction to the

proof given in the previous sub sections. We obtain a series representing T( R! analyze the

20
shape and form of the measures E;,0; h( and describe how the convolution operator A; , acts
on those measures In the following analys&s we also collect the information needed for the
estimates of the T R when ¢ < 0.

The representation of Tg(a)Ri_0 !, In Theorem 2.1 and Theorem 2.2 we aim at estimates for

Tg(a)R;)1 when ¢ € A;,. Hence we seek an explicit expansion for 7, Z(E)Ri_ol. By (3.23) we have

Ry = Ry + Y BydiR and TEOR = TOR, + Y TR, 0:R; (5.24)
i=1 =1
i#£10 1#£1i0

Let j € Z. Recall that S; denotes the family of dyadic cubes @ for which |Q] = 27", Let
Q €S, i # 1y, and € € A;,. Then form

KD = Ay <Ei08ih(5)) . (5.25)
Thus by (5.24)
£ _ (e Ez (e
TR ) = T Riy(u) + Z WaSQI. (5.26)
QeS 27&1
1#£10

Given the representation (5.26) we further analyze the functions {k:(h Q € S}. It is only at

this point of our analysis that we exploit the fact that ig and ¢ are related by the condition
€ € Aio-
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The measures Em@ihg) . We defined k:g’i) by a convolution operator applied to

Em@zhg), 7 7& io, £ € Aim

where 0; denotes the differentiation with respect to the y; variable and E;, denotes integration
with respect to the x;, — th coordinate,

E;, (f)(x) = /_% flz,..0y8, ..., x,)ds, r=(21,...,2T,).

Thus, Em@ihg) admits a convenient factorization: Let x = (z1,...,z,), then

E;,0;hS) (z) = { / OO hj’f“(s)ds} (0315 (7)) [H{higg(xk) k¢ {ig,i}}| . (5.27)

0

The properties of the three factors appearing in (5.27) are as follows.

1. As e € A;,, we have g;, = 1, hence the first factor in (5.27)
l‘io Eio
Ty — hIiO(s)ds

is supported in the interval I;,. Furthermore it is bounded by |[;,| and piecewise linear
with nodes at [(1;,), m(l;,) and r(I;,) and slopes +1, —1 or 0. Here we let I(/;,) denote the
left endpoint of I;,, and m(1;,), r(1;,) denote its midpoint, respectively its right endpoint.

2. The partial derivatives 0; applied to hg) induces a Dirac measure, at each of the discon-
tinuities of h7'. The resulting formulas depend on the value of ¢; € {0, 1}, since

Oihr, = 01,y — 20m(1) + Or(1y),
0ily, = 0ury) — Op(ry)-

In either case, for ¢ € C*°(R) the above identities yield the estimate,

: s) — p(t
‘(&hi,gpﬂ SZSUP{% ; s,t,el}|lz~|. (5.28)

3. The third factor in (5.27) is the function

v — [[{ni () & ¢ {io,i}} (5.29)

It is piecewise constant and assumes the values {—1,0, +1}. When restricted to a dyadic
cube W with diam(W) < diam(Q)/2 the factor (5.29) defines a constant function.

As a result of the above discussion Eioaihg) is a measure supported on ) so that for any
continous function on R",

(Eiy0ih), o) <1Q] - ¢llw  and (B dihS), 1) = 0.
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The convolution A;,, acting on Eioﬁihg). Recall that in (2.2) the operator A;, is given
as convolution with d;,, so that

Ajye (Em@ihg)> = Eioaihg) * djpe,
with
supp djy¢ C [~C27UT0 C2=UO - d; | < C2"UTD | Lip(d;,) < C20mHDUTO - (5.30)

Moreover for 1 <i <n by (2.1)
/ dito(x —y)ydy; =0 and / dije(x —y)dy =0, xe€R" (5.31)
R n

We derive next for kg’i) its structural estimates concerning support, Lipschitz properties
and pointwise bounds. It turns out that these depend critically on the value of sign (¢) :

1. The case £ > 0. For Q € S and ¢ € A;, let D)(Q) denote the set of discontinuities of
the Haar function hg). Fix ¢ € N and define

DE(Q) = {z e R" : dist(z, D®(Q)) < C27¢ diam(Q)}.

Thus Dée)(Q) is the set of points that have distance < C27¢ diam(Q) to the set of dis-

continuities of hg ),

Fix x ¢ Déa)(Q). As we observed in the paragraphs following (5.27) there exist A €
{—1,0,1} and a € R so that,

Ei, b (y) = Alys, —a), for y € B(a,c270), (5.32)
Combining now (5.30) with (5.31) and we find
ByusEh)) = [ st~ )L )y
5.33
= A/ dje(r — y)(Yi, — a)dy (5-33)

= 0.

Since A,y is a convolution operator it commutes with differentiation, and we obtain for

z & DI(Q),
Ajie(Eig0:hS)) (@) = 0:0 10 (Eigh)) ()

. (5.34)

Combining (5.34) with (5.30) we obtain that the functions {kg’i) QeS8 i >0}
satisfy the structural conditions

supp ky' € DIY(Q), kY| < €2, Lip(ky") < C2%( diam(Q))',  (5.35)

with C' > 0 independent of Q) € S, @ # iy, or £ > 0.
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2. The case ¢ < 0. In this case we use (5.28) and (5.30) to see that the family {kg’i) N ONS
S, i #1ip, L < 0}, satisfies the following conditions

supp ki C (C2)-Q, k57| < €2 Lip(kg?) < €21 (diam(Q)) !, (5.36)
were again C' > 0 is independent of Q) € S, 7 # iy, or £ < 0.

Proposition 5.4 Let 1 <p < oo. Let 1 < i #ig <n ande € A;,. For { > 0 the operator X

defined by
X} 5 _
X(f) =D kg")hg QI

Qes
satisfies the norm estimates

Cp2t?if p>2;

X <3 o (5.37)
P if p<2

PROOF. Recall the expansion (5.2) asserting that

TO(f) = S U FSInS QI

Qes

where fg)z has vanishing mean and satisfies the basic estimates (5.3),

supp f5, C D@, IS <C, Lip(f§) < 02( diam(Q)) 7,

and where Dée)(Q) is the set of points that have distance < C27¢ diam(Q) to the set of dis-

continuities of hg). Using only the scale invariant conditions (5.3) we proved that 7, 5(6), (¢>0)
satisfies the norm estimates (5.4), that is,

HT(a)H < C27%2 for p>2;
= Cp2*5/q for p<2.

Observe that by (5.35) the functions {Q_Ekg’i)} satisfy the very same structure conditions (5.3)
as { fg)é} Hence for the norm of the operator 27*X there hold the same upper bounds as for
TZ(E), ¢ > 0. Consequently, the norm of X can be estimated as

CpR2 it p> 2
Xl <457
» it p<2.
Proposition 5.4 in combination with (2.4) and (5.26) implies that for ¢ > 0,

C2%  if p>2;

T(E)Rfl <
|| ¢ 1, ||P— Cpgé/p if p<2.
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6 The Proof of Theorem 2.2.

In this section we prove Theorem 2.2. It turns out that for £ < 0 the norm estimates for Tg(a)R;O1
and Te(e) are much simpler than for £ > 0. Indeed for ¢ < 0 the scale of ) € §; is finer than
the scale of A]M(hg)) and the discontinuities of the Haar function are completely smeared out.
We can therefore reduce the problem to estimates for rearrangement operators acting on Haar
functions, treating T R and T(€ simultaneously by the same method.

Let u be a smooth functlon Wlth vanishing mean and compact support. Let ¢ # iy and

e € Aj;,. Then
TR (u) = )+ Z Shel,
QeS =1
1#i0
where

kS = Ajro(Ei 0ih)), Qes,

Since ¢ < 0 the functions {k ()

that

: Q€ S, #ip, { <0}, satisfy conditions (5.36). Recall also

T (w) =Y (u, FEHRS1QI,

QceS

where

QZ_ J+£(h6) QeS;

It is easy to see that also the family { fQ) : @ € §,0 < 0} satisfies the same structural
conditions (5.36), that is

supp f5) € (C2)- @, |f5)] < o271 Lip(f5)) < C27 M) diam(Q)) 7t (6.1)
Proposition 6.1 If¢ <0 then

Cp27 2P for p> 2

T(e) T(a)R-_l <
T,y + (I, io lp < Cpg*\fl for p<2.

PROOF. Let 1 <i# iy <n.Let @ € S. Choose signs d¢, e € {+1,0, —1} and form

0
[ 3 ikl

i=1, i£ig

+eqfs) (6.2)

We emphasize that the definition of gg, depends on the choice of signs ¢ ;, g € {+1,0, —1};
nevertheless our notation suppresses this dependence. Note that by (5.36) and (6.1) the func-
tions {gg ¢} are of mean zero and satisfy structure conditions, not depending on the choice of
signs, namely

supp gg.e C 2l -Q,  goul < 02’("“)'5‘, Lip(gg.r) < ¢~ (2l diam(Q)’l. (6.3)

Consider the rearrangement 7 : & — § that maps @ € S to its |¢| — th dyadic predecessor.
Let Q1,..., Qqnie be the canonical splitting of S so that for fixed k < 27l the map7:Qr — S

is bijective. Fix k < 2", Determine the family {go%,‘k/) : W € 8} by the equations

(k) _ 2(n+1)\€|gQ7z’ Q€ Q. (6.4)

PrQ)
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Thus defined the functions cpgf,) are of mean zero and satisfy the structural conditions
supp ly) € C-W,  |ol)| <C. Lip(ply) < C diam(W)™".

Define the operator

onle|
k € —
5= 3 () W01
k=1 QeQy
Apply Theorem 4.2 to S with A = |¢|. This yields
1S]l2 < Cp2M, 5]y < Co2", 1S : BMO(R"™) — BMOy|| < Cyle|*22™4. (6.5)

Note that by (6.2) and (6.4) the algebraic definition of the operator S depends on the choice
of signs g, €9 € {+1,0,—1}, yet by (6.5) our estimates for ||.S||, are independent thereof.
Let g € LP. Depending on g we choose ¢, eg € {+1,0,—1}, hence S, so that

1T ()l + 1T R (9) [l < Cp2~ DGS9l (6.6)

Consequently, our upper bounds for HTK(S)HP + HTK(E)R;;HP follow from (6.5). Indeed, by inter-
polation and the estimate |¢|'/2 < 21972/ (6.5) and (6.6) imply that

C,2-2/p for p>2;

TEN 4+ ||ITO R <
|| ¢ ||P || i i0 ||p— CPQ*W for p < 2.

7 Sharpness of the exponents in Theorem 1.1.

In this section we construct the examples showing that the exponents (1/2,1/2) respectively
(1/p,1/q) are sharp in the estimates of Theorem 1.1,

1P ()], < Cpllully | Rig(w)[1,%, p>2, (7.1)
and
1P ()], < Cpllull}/? | Ri (W) [/, p <2, (7.2)

where 1 < iy <nand ¢ € A,,.

When we say that we obtained sharp exponents in Theorem 1.1 we mean the following: Let
n > 0. Since the Riesz transform is a bounded operator on LP(1 < p < o0), replacing in (7.1)
the pair of exponents (1/2,1/2) by (1/2 —n,1/2 4+ n) would lead to a statement that implies
(7.1), hence would yield a stronger theorem. Our examples show, however, that improving the
exponents in the right hand side of (7.1) is impossible. (The same holds for (7.2).) Specifically
we have this theorem:

Theorem 7.1 Let 1 <ip <n, ande € A;,. Let 1 <p<oo,1/p+1/g=1. andn > 0. Then
1P (w)]l,

1/2— 1/24n
wel [Jully > Ry (u)]| >

P> 2, (7.3)

and

1P ()],

1/p— 1
welr [[ully" 7| Rig (w)]| "

= 00, p < 2. (7.4)
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For simplicity of notation we verify Theorem 7.1 only in the case when n = 2. The passage
to arbitrary n € N is routine and left to the reader. Moreover we carry out the proof of
Theorem 7.1 with the following specification

n=2, io=1 &=(1,0). (7.5)
Throughout this section we assume (7.5) and put
p=pto.

We obtain Theorem 7.1 by exhibiting a sequence of test functions for which the quotient in
(7.3) respectively (7.4) tends to infinity. On each test function we prove lower LP bounds for
the action of P and upper L? estimates for R;. In sub-section 7.1 we define building blocks s®d
and the test functions f. using a procedure that resembles that of adding independent copies of
the basic building blocks. The proof of (7.3) requires upper estimates for || fc||, and || Ri(fe)]|ps
that we prove in sub-section 7.2 and a lower estimates for || P(f.)||, obtained in sub-section 7.3

7.1 The building blocks s ® d.

We build the examples showing sharpness of exponents on the properties of the functions s ® d
defined here. Throughout this section we fix ¢ > 0.
Let A, B be Lipschitz functions on R. Assume that

supp A C [0,1], /A =0 and supp B C[-1,1]. (7.6)

Given x = (x1, z2) we define
s(x1) = A(xy), d(zg) = B(xg/e),

s®d(x) = s(x1)d(xs).

We rescale ¢ = s ®d to a dyadic square () = I x J as follows. Let l;,[; denote the left endpoint
of I respectively J. Put

SL’Q—ZJ
/1l

.Tl—l[
]

), dj(ze) = d( ),

sr(zy) = s(

and
9o(x) = si(x1)d;(x2). (7.7)

We next define the testing function f, that is obtained by first forming “almost independent”
copies of g = s ® d and then adding % of those. Below we define a collection of dyadic squares

g and form
fe=> g0 (7.8)
Qeg

To define G we proceed as follows. Fix j € N. Let D; denote the collection of dyadic intervals
I satisfying }
IC0,1] and |I|=27".
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Let £; C D; satisfy

I,JeL; implies dist(I,J) > |I], (7.9)
and ]
> =5 (7.10)
JeL;

To define £; simply take the even numbered intervals of D;, counting from left to right. Next
assume that € > 0 is power of 1/2, thus

e=2""" for some ngeN. (7.11)
For 1 <k <1/e put
1/e
Gr = J{I x J: T € Doy, J € Loy} and G =G
k=1

Observe that |Q] = €** for Q € Gy, and by (7.10)

> Q| :% and Y |Q| = % (7.12)

Qe Qeg

7.2 Upper estimate for | f||, and ||Ri(f)||,-

We obtain our LP estimates of f. by proving an upper bound for its norm in the space dyadic
BMO. These in turn follow from scale-invariant L? estimates and “ almost orthogonality” of
the functions

1
Qe
Proposition 7.2 Let f. be defined by (7.8). The support of fe is contained in [—1,1] x [—1, 1]
and
[fellBro, < C-. (7.13)

Hence || fe|l, < Cp.

PROOF. Let Qg € G and form g = > "/5c6 gcgyy 9o- The BMO, inequality (7.13) is a conse-
quence of uniform L? estimate

2
19122 @2y < ClQol, (7.14)
in combination with the Lipschitz estimates,
Yo Naslge = mas(9e))lliz@2) < CelQol'?, (7.15)

{Qeg,1QI1>(Qol}

where mg,(g9g) = |Qo|™* fQo go- In two separate paragraphs below we will verify that (7.14)
and (7.15) hold. Before that we show how these estimates yield (7.13). Let

K={WeS:3k (f,h)) £0}

Let W be a dyadic square with [W| < 1/4, then [, fe = 0. Hence for W € K, diam(W) < 1. By
(3.26), to estimate the BMO, norm of f. it suffices to test the cubes of K. Next we fix a dyadic
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square W € K. Since diam (W) < 1 we may choose k € Ny such that ¢2*+) < diam(W) < €2,
Define a decomposition of G as G = H; N Hy U Hz where

H,={Q € G: diam(Q) = *, QNn2-W # 0},
Hy ={Q € G: diam(Q) > D QN2 W £ 0},

and

Hs={Q € G: diam(Q) < %D Qn2-W #0}

Accordingly let
9= 9o Jje{1.2,3}

QEHJ'

The cardinality of H; is bounded by C. Hence |1y gi|ls < C[W|Y2. With A = [W|™! [, g», and
triangle inequality (7.15) gives [i,[g2 — A|> < C€*|W|. The estimate (7.14) implies ||1y gsl2 <
C|W 2. To see this let M denote the maximal squares of Hs. The collection M(C H3) consists
of pairwise disjoint squares so that

> @l <.

QoEM
Next write G, = > oens.0c0, 9@» t0 obtain
g3= ) Gq and |lgslz= Y lIGquls.
QoEM QoeEM

Apply (7.14) to G, to obtain
lgslls < C Z Qo

QoEM
<cow.

Finally [|1wgsll2 < [lgsl2 < C|W|'/2.
Moreover for ¢ € W there holds the identity

fe(t) = gi(t) + g2(t) + g3(t).
Invoking the estimates for g1, g2, g3 we obtain
|1t ap<cpw.
w

By (3.25) this estimate yields (7.13).

Verification of (7.14). By rescaling it suffices to consider @y = [0, 1] x [0, 1]. For Q,Q" € G
with |Q] = |Q'| and @ # Q" we have (gg, go') = 0. Hence the left hand side of (7.14) equals

> (99.90) +2 > (90: 9¢7)- (7.16)

Qeg {Q.Qeg:|QI<IQ'}

In view of (7.16) we aim at estimates for the entries of the Gram matrix (g¢, 9¢)-
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We first treat the diagonal terms of the Gram matrix. A direct calculation gives (gg, 9g) =
€|@|/4, hence by (7.12)
> (90,99) < C. (7.17)
Qeg
Next we turn to estimating the off diagonal terms. Consider @, Q" € G such that |Q| < |Q'].
Write @ = I x J and Q' = I’ x J'. Note, first if dist(Q, Q') > 2 diam(Q’) then (gg, g¢) = 0.
Hence it remains to consider the case dist(Q, Q') < 2 diam(Q’). Let I; denote the left endpoint
of I. The Lipschitz estimate Lip(s;) < C|I'|! and that [ |d;(x2)|dxs < €|J| imply that

(g0 90} = ' [uw) = sulw)sitonyin|- ' [ dsteisteniv,
1]
i

Since Q = I x J € G there exists k € N so that |I| = ¢2*. Hence for Q' = I’ x J' € G with
|Q'] > |Q| there exists & € N with &' < k — 1 so that |I'| = €', and |I|/|I'| = ¢?*~?¥. Note
that for each ) € G the cardinality of the set

{Q/ €g: |Q‘ < |Q,|7 <gQ7gQ’> 7£ 0}

is bounded by (', say. Consequently in the double sum appearing on the left hand side of
(7.19), for each @ only Cy cubes @' give a contribution. Thus by (7.18)

k—1
> {90, 91)] < CEFF1Y " N Q)
P

(Q.eg:QI<I']} =1 Qg (7.19)

<CeéN Q)

Qeg
By (7.12) the last line in (7.19) is bounded by C'¢?. Combining (7.17) and (7.19) gives (7.14).

Verification of (7.15). Fix Q,Qy € G so that |Qy| < |Q| and dist(Q,Qy) < C diam(Q).
Then

1@y (90 —mas(90) 12 < CLip(gg) diam(Qo)|Qol"*. (7.20)
Moreover if @, Qy € G so that |Qy| < |Q| and dist(Q, Qp) > C diam(Q), then
1ao (90 — may(90))ll2 = 0. (7.21)

Note that Lip(gg) < C(e diam(Q))™*. Since Q, Qo € G, with |Qo| < |Q)|, there exists k, kg € N,
with k < ko — 1 so that diam(Qg) = v2 - €?* and diam(Q) = /2 - €?*. The cardinality of

{QeG: diam(Q) = V2 ¥, dist(Q,Qy) < CV2-€*}
is bounded by a constant C. Hence by (7.20) and (7.21),

Yo (oo —maeu(ga))llz < CelQof 2.
{Q€6. 1Q1>1Qol)

Thus we verified (7.15).
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We emphasize that the above upper bound on || f¢||, works when the test functions ¢ = s®d
and its rescalings gg = sy ® d; are defined with Lipschitz functions A, B satisfying (7.6), that
is, supp A C [0,1], [ A =0 and supp B C [—1,1]. We next impose furthermore that

A’ is Lipschitz and/B =0. (7.22)

Proposition 7.3 Let f. be defined by (7.8), assume that (7.22) and (7.6) hold. Then for
1 <p< oo,
IRy (f)llp < Cpe.

PrROOF. The Fourier multipliers of the Riesz transforms R; respectivley Ry are & /|£| and
&2/€|. Hence using (7.22) for go = s; ® d; we have the identity

Ri(g9q) = R2(01Eagq), (7.23)

where 0, is differentiation with respect to the variable z; and Esgg(z1, 22) = f_mzo 9o(z1, s)ds.
Define now

t
§(xy) = Al(xq), d(z2) = C(aafe), C(t) = / B(s)ds.
Let 5;7,d; be obtained from 3(z;), d(z2) by rescaling,

xy —1 ~ ~ Xy — 1

Sr(w1) = 3(

where {;,[; denote the left endpoint of I respectively J. Then with g = 5; ® d; the identity
(7.23) assumes the following form,

Ri(g9q) = €Ra(gq)- (7.24)

By (7.22) the Lipschitz functions A’, C satisfy (7.6). Hence Proposition 7.2 implies that
fe =2 geg Jq satisfies the L? estimate

Ifelly < Gy

By (7.24) we have Ry(f.) = eRy(f.). Hence the L” boundedness of the Riesz transforms yields

[R1(f)lp < €||Rz(~fe)||p
< Cpell fellp
< Cpe.

We remark that the proof given above containd the following estimates estimates that we
will use again later. For g = s® d and g = s ® d,

[1B1(9)]lp = €l B2(9)l],
< eGypllglly (7.25)

< Cpelﬂ/p.
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7.3 Lower bound for ||P(f.)|,, p > 2.
We first specialize once more the class of Lipschitz functions A, B we use to define
s(z1) = A(xy), d(zg) = B(xz/e)

g=s®d and fE:ZgQ.
Qeg

We simply take now

0 g € R\ [-1,1].
and choose A to be smooth, so that supp A C [0,1], [ A =0 and

Blzy) = {sin(ch) xe € [—1,1];

1 1
/ A(.’L‘l)h[o’l} (l’l)dﬂfl = / SiIl(Qﬂ'.Tl)h[Q,l] (.Tl)dl’l.
0 0

The following list of identities relates the Haar functions {h(Ql’O)} to the test functions {gg}.

1. The scalar products (gq, hg’o)) and (go, gg) are as follows,

/gQ(:c)h(Ql’O)(x)daz = EM and /gQ(:c)gQ(x)da: = e@. (7.26)

2 4

2. Let Q' =1 x J', be a dyadic square where J’ is the dyadic interval adjacent to J so that

the right endpoint of J is the left endpoint of J'. Then

/meme:—/%m%Wmm
(7.27)

_ Al
2
3. For all choices of Q' = I x J' with |J'| = |J| and dist(J,J’) > |J| we have
/ 9o (2)hy” (x)dz = 0. (7.28)
4. It Q, Q" € S so that |Q'| < |Q| then
/ 9o (2)h” (x) = 0. (7.29)

We consider p > 2. Since P(f) is compactly supported, lower L? estimates for P(f.) result
from lower L? estimates. We obtain the latter by exploiting again the fact that {gg : Q € G}
is an “almost orthogonal” family of functions.

Proposition 7.4 Let f. be defined by (7.8). The support of P(f.) is contained in [—1,1] X
[—1,1] and
IP(f)ll2 > ce'?. (7.30)

Hence for p = 2, | P(f.)]l, = ce?.
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PrRoOF. By Bessel’s inequality,

Y (g ™VIQIT < IP()I3. (7.31)

Qeg

Using (7.31) and (7.12) we prove below that (7.30) follows from the following lower estimate
for the Haar coefficients

[(f B )] > celQ| for Q€ G. (7.32)
To prove (7.32), fix a dyadic square @ = I x J with @) € G. Write the Haar coefficient as
(ferh™) = (90:hg ™)+ D2 (90 ho™). (7.33)
Q'eG\{Q}

Recall (7.26) asserting that
(90, hq”) = e|Q|/7*.

: : - 1,0
Next we show that the off diagonal terms in (7.33) are negligible compared to (go, h(Q )). We
claim,
Yo g g™ < CelQl. (7.34)
Q'eg\{Q}

The first step in the verification of the claim consists in observing that the only contribution
to (7.34) comes from the index set {Q' € G\ {Q} : |Q'| > |Q|}. Indeed, if Q' € G, Q' # Q and
|Q'| = |Q] then (7.28) in combination with (7.9) implies that <gQ/,h(Ql’0)) = 0. Also by (7.29)
for Q" € G and |Q'| < |Q| we have <gQ/,h(Ql’0)) = 0.

Next we provide an estimate for the contribution to (7.34) coming from {Q’ € G\ {Q} :
|Q'| > |Q|}. Choose k € N so that |Q| = €'* and let &’ € N satisfy k' < k. There exists at most
one square Q' € G satisfying

Q| =™ and  (go, hy”) #0.

Next fix Q" = I' x J' with |Q'| = €¢** and k' < k. Write Q = I x J and Q' = I' x J'. Let I;
denote the left endpoint of I. Recall that Lip(sy) < C|I’|~! and [ |dj(x2)|dxs < C|J|. Hence,

(g hI0)| = ' [sete) = seaain | [ drean
J
<o)l 1I'YQ) (7.35)
— C€2k72k"Q|.

By definition of gg and hg’o) if |Q'| > |Q] and (g, h8’0)> # 0 then dist(Q’, Q) < C diam(Q").
It now follows from (7.35) that for any @Q € G,

k—1
Yoo Hganhg™) <ClQIEFY e .
Qe 1@ 1>IQl} k=1 (7.36)

< CeQ|.
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Thus by (7.36) we verified the claim (7.34). Hence we have (7.32). It remains to show how the
coefficient estimates (7.32) imply the norm inequality of (7.30). Using first (7.31) then (7.32)
and (7.12) we obtain
IP(fII5 = e Y 1Q)
Qeg
> CE.

7.4 The proof of theorem 7.1 .

We choose Lipschitz functions A, B with specification of the previous sub-section and define
testing functions g = spp,1) ® do,1}, fe as above.

Consider first the estimate (7.4) of Theorem 7.1. Let 1 < p < 2. Fix n > 0. Let g =
sp0,1] @ dpo,1) be defined by (7.7). Since g is bounded and supported in [0, 1] x [—¢, €], we have

lgll, < Ce'/?. (7.37)

Next observe that for the square function S(P(g)) we have the obvious estlmate S( (9)) >

(9, hio " xjoap) |- Next recall that [ P(g)]l, ~ [[S(P(9))ll, hence [[P(g)lly = el{g, higx01)]- By

(7.26), we have (g, hfo 1[)><[0 i = 4e/m?, hence

1P(g)llp = ce. (7.38)
By (7.37) and (7.25)
gl Ra(g) 1/ 7" < Cet*. (7.39)
Combining (7.38) and (7.39) yields
[

gl | Ri(g) |1/ "

Since n > 0 is fixed and € > 0 is arbitrarily small we verified (7.4).
Next we turn to the case p > 2. The test function f. is defined by (7.8). Proposition 7.2
and Proposition 7.3 give the upper bounds

[fellp < €y and  [[Ra(fo)llp < Cpe.

Hence for n > 0
£l 2 M IR (F /24 < Cpet/2H0,

By Proposition 7.4 we have the lower estimate
IP(flly = cpe'/?.

so that

1Pl .
— > cpe .
(AN
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