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1 Introduction

Beginning from [7] and [14] the idea of tensor approximation of operators and functions has
led to agreeable tools in large-scale problems of computational physics and chemistry. Recent
papers show that this technique is remarkably efficient in multi-dimensional computations,
where the traditional methods fail due to the storage limitations. In particular, we mention
results for many-particle models based on the Hartree-Fock/Kohn-Sham equations in elec-
tronic structure calculations [12, 15, 2, 3, 17]. In the present paper we discuss numerical
and algorithmic aspects of the modern tensor approximation methods with applications to
electronic structure calculations.

We consider the electron density function f(x, y, z) given as a sum of polynomially
weighted gaussians

f(x, y, z) =

m
∑

i=1

m
∑

j=1

σijΦ
(1)
ij (x)Φ

(2)
ij (y)Φ

(3)
ij (z),

where Φ
(k)
ij (t) is defined for k = 1, 2, 3 as follows:

Φ
(k)
ij (t) = (t − t

(k)
i )β

(k)
i (t − t

(k)
j )β

(k)
j exp

(

−(αi + αj)(t − t
(k)
ij )2

)

.
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The function f(x, y, z) may be written in a form of trilinear decomposition

f(x, y, z) =
R
∑

t=1

σtϕ(x, xorb
t , νt, αt)ϕ(y, yorb

t , µt, αt)ϕ(z, zorb
t , λt, αt),

or in a simpler way as

f(x, y, z) =
R
∑

t=1

at(x)bt(y)ct(z).

This representation is very useful in computations as a data compression tool. After dis-
cretization of f(x, y, z) on a given n × n × n grid it requires n3 words of memory, while the
trilinear form representation is defined by 3nR parameters.

The tensor compression of data looks very promising in chemical computations. However,
the value of tensor rank R, obtained by chemical modelling programs (e.g. MOLPRO), is
quite large even for simple molecules:

R(CH4) = 1334, R(C2H6) = 3744, R(C2H5OH) = 6945.

To make chemical computations really effective, we are to find a tensor approximation
f̃(x, y, z) to the electron density with the following properties:

‖f(x, y, z) − f̃(x, y, z)‖ ≤ ε‖f(x, y, z)‖, (∗a)

f̃(x, y, z) =
r
∑

i=1

ãi(x)b̃i(y)c̃k(z). (∗b)

Of course, we expect that r ≪ R.

The numerical solution of this problem can be carried out as follows.

Algorithm 1.1 (General scheme for trilinear approximation of a 3D function).

1. Introduce a grid in a subdomain in R
3. To utilise the tensor structure of data, we

choose the grid as tensor product of three one-dimensional grids, and for simplicity of
presentation we choose them uniform. Therefore, our grid is a set of points

(xi, yj, zk) = (x0 + ih, y0 + jh, z0 + kh), 0 ≤ i, j, k ≤ N, h = D/N. (1.1)

2. Obtain an initial discretization of the electron density function on the grid

fijk = f(xi, yj, zk) =
R
∑

t=1

at(xi)bt(yj)ct(zk). (1.2)

We choose a collocation approximation method just to simplify the presentation (other
grid-based approximations can be used as well). It should be emphasized that we
need not to store a full 3D array data. An explicit option is to store just the values
at(xi), bt(yj), ct(zk) using only 3RN memory cells. An implicit option is to deal with a
procedure that can compute any entry fijk on demand but actually used to compute
a relativly small subset of all the entries.
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3. Approximate the data array F = [fijk], 0 ≤ i, j, k ≤ N , by another array F̃ = [f̃ijk] of
a smaller tensor rank. Prior to the computations, we have to define a norm to be used
in (∗a) and choose an appropriate discrete norm. Usually we deal with the L2 norm
and construct tensor approximations using the Frobenius norm: for a tensor A = [aijk]
of size n1 × n2 × n3 the Frobenius norm reads

||A|| = ||A||F =

(

n1
∑

i=1

n2
∑

j=1

n3
∑

k=1

a2
ijk

)1/2

.

The approximation problem becomes of the form

‖F − F̃‖F ≤ ε‖F‖F , f̃ijk =

r
∑

t=1

ãitb̃jtc̃kt, (1.3)

where ãit, b̃jt and c̃kt can be thought of as grid values of functions ãt(x), b̃t(y) and c̃t(z)
from (∗b). We also use a shorter notation for the trilinear decomposition via a triple of
matrices: F = (A, B, C).

The approximation step is not simple, especially for large grids and complicated
molecules (when N and R are about some thousands). Most usually, it consists in
the two steps:

(a) Compute a Tucker approximation for a given data array

‖F − F̃‖F ≤ ε‖F‖F , f̃ijk =

r1
∑

i′=1

r2
∑

j′=1

r3
∑

k′=1

gi′j′k′uii′vjj′wkk′. (1.4)

Here, the matrices

U = [uii′] ∈ R
N×r1, V = [vjj′] ∈ R

N×r2, W = [wkk′] ∈ R
N×r3

(referred to as Tucker factors) can be chosen orthogonal, and this is formally
required by the definition of the Tucker decomposition. But in our paper we
treat the orthogonality of Tucker factors as an additional property and consider
Tucker-like decompositions with general U, V and W as well. We also use a shorter
tensor-matrix notation:

F̃ = G ×1 U ×2 V ×3 W.

The symbol “×p” is used to define a tensor-by-matrix contraction along the mode
p; for a tensor A = [aijk] ∈ R

n1×n2×n3 and a matrix B ∈ R
m2×n2 the result of

“A×2 B” is a tensor C = [cijk] ∈ R
n1×m2×n3 with elements

cijk =
n
∑

j′=1

aij′kbjj′.

The Tucker approximation with orthogonal factors is often used as a dimension-
ality reduction tool, in a way similar to the SVD. Despite that all entries of the
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initial array may not differ much in the magnitude, the entries of the Tucker core
array G get to vary in the magnitude a lot stronger (like singular values of a
matrix) and many can be neglected without a big loss in accuracy. In the result,
we can work with a reduced core array whose mode sizes are considerably smaller
than the initial ones: r1, r2, r3 ≪ N .

(b) Consider the reduced core array G = [gi′j′k′] and approximate it in the trilinear
format:

gi′j′k′ =
r
∑

t=1

u′

i′tv
′

jtw
′

k′t.

Substitute the result in (1.4) and build up the trilinear approximation (1.3) for
the array F̃ .

4. When a trilinear approximation (1.3) for F is computed, we can interpolate the tri-
linear factors uit, vit, wkt and come up with a trilinear approximation (∗) to the initial
function.

The two-step procedure for computation of (1.3) is more viable, because the trilinear de-
composition (which is the most tricky part of computation) is now applied to a small array.

A detailed discussion of the two-level tensor representations (formats) can be found in
[16, 18, 19]. All the same, the Tucker approximation of large-scale arrays requires some
special tools. A standard method for the Tucker approximation involves three SVD applied
to unfoldings of F . The cost ammounts to O(N4) flops, which we cannot afford. Utilising
the initial trilinear decomposition, we reduce the complexity to O(NR2), this approach is
better but still very slow for large R and N. Thus, we should be interested to apply the cross
3D algorithm proposed in [21] as it requires O(Nra) flops, 1 ≤ a ≤ 2.

2 SVD-based algorithms for Tucker approximation

2.1 Tucker decomposition via SVD

The unfoldings of n1 × n2 × n3 tensor A are rectangular matrices A(1) of size n1 × n2n3, A(2)

of size n2 × n1n3 and A(3) of size n3 × n1n2, with elements

A(1) = [a
(1)
ijk] = [ai(jk)], A(2) = [a

(2)
ijk] = [aj(ki)], A(3) = [a

(3)
ijk] = [ak(ij)].

The superscripts 1, 2, 3 in the definitions of unfoldings point to the mode index (first, second
or third), two other mode indices are merged into one “long index”.

A well-known method for the computation of the Tucker decomposition is based on the
SVD algorithm.

Algorithm 2.1 (Tucker decomposition/approximation).

1. Given data array F , consider three rectangular unfolding matrices of appropriate sizes
F (1), F (2), F (3), which contain mode vectors (columns along i, rows along j and fibers
along k).
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Table 2.1: Memory and time requirements for Tucker approximation via 3 SVDs

grid size N 1280 2560 5120
memory for N3 elements 16Gb 125Gb 1 Tb

time for SVD-s⋆ 7 hours 5 days 76 days

⋆ Time is given for hypothetic 10GHz CPU, working at 100% efficiency on SVD algorithm with
complexity 32mn min(m, n) flops (where m × n is matrix size).

2. The left (“short”) singular vectors of the SVD-s of these matrices

F (1) = UΣ1Φ
T
1 , F (2) = V Σ2Φ

T
2 , F (3) = WΣ3Φ

T
3 (2.1)

give the factors U, V, W of the Tucker decomposition. A Tucker approximation can
be obtained with prescribed accuracy by appropriate truncation of singular vectors in
Tucker factors, corresponding to the singular values below the chosen threshold.

3. The core is computed as contraction of the data array with the Tucker factors

gi′j′k′ =
N
∑

i=0

N
∑

j=0

N
∑

k=0

aijkuii′vjj′wkk′, or G = A×1 UT ×2 V T ×3 W T . (2.2)

This method is quite simple and provide us with a robust tool for approximation of data
arrays with prescribed accuracy. However, it is computationally expensive: for an N×N×N
array F , the complexity for the SVDs is O(N4), and memory to keep the unfoldings is 3N3.
In Table 2.1 it is easy to see, that these performance requirements are tough for typical grids
used in the modelling in quantum chemistry. Therefore, the standard Tucker decomposition
method is not feasible for our purposes.

2.2 SVD filtering of trilinear factors

To develop a faster method for the Tucker approximation, let us make use of the initial
trilinear structure of data (1.2). If the tensor rank R is sufficiently small, we can proceed in
a trivial way.

Algorithm 2.2 (Low-rank 3L → Tucker)

1. Compute the QR decomposition of the trilinear factors

A = URa, B = V Rb, C = WRc, Ra, Rb, Rc ∈ R
R×R

2. Form the core array G = [gi′j′k′]

gi′j′k′ =

R
∑

t=1

(ra)i′t(rb)j′t(rc)k′t, 1 ≤ i′, j′, k′ ≤ R.
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3. Apply the Tucker approximation Algorithm 2.1 to the core array and reduce the di-
mensionality:

‖G − G̃‖F ≤ ε‖G‖F , G̃ = H×1 U ′ ×2 V ′ ×3 W ′, H ∈ R
r1×r2×r3.

4. Finally, the Tucker approximation of F reads

F̃ = H×1 UU ′ ×2 V V ′ ×3 WW ′

One part of this method is the Tucker decomposition of an R × R × R array and therefore
requires O(NR2 + R4) flops. Hence, it is also inapplicable when R exceeds some thousands.

To improve the method in case of large R, we perform pre-filtering of the Tucker factors
U, V, W prior to computing the core G, i.e. before step 2 of Algorithm 2.2. This filtering
changes trilinear factors A, B, C so that we can control accuracies

ε1 = ‖A − Ã‖F , ε2 = ‖B − B̃‖F , ε3 = ‖C − C̃‖F .

The question is how should we choose ε1, ε2 and ε3 for the required accuracy in (1.3) to be
guaranteed? Let F = (A, B, C) and F̃ = (Ã, B̃, C̃). Assuming that differences

∆A = A − Ã, ∆B = B − B̃, ∆C = C − C̃

are small enough, we neglect squares and cubes of them and write down

F − F̃ ≈ (∆A, B, C) + (A, ∆B, C) + (A, B, ∆C),

‖F − F̃‖F ≤ ‖(∆A, B, C)‖F + ‖(A, ∆B, C)‖F + ‖(A, B, ∆C)‖F .

To bound ‖(∆A, B, C)‖F , consider the contraction of this array along first index. This does
not change the Frobenius norm

‖(∆A, B, C)‖F =

∥

∥

∥

∥

∥

R
∑

t=1

∆aitbjtckt

∥

∥

∥

∥

∥

F

= ‖∆AK‖F ≤ ‖∆A‖F‖K‖F ,

where

K = [k(jk)t] ∈ R
N2

×R, k(jk)t = bjtckt, ‖K‖2
F =

R
∑

t=1

‖bt‖
2
2‖ct‖

2
2

Therefore, we show that

‖(∆A, B, C)‖F ≤ ‖∆A‖F

√

√

√

√

R
∑

t=1

‖bt‖
2
2‖ct‖

2
2.

Of course, we can write also ‖(∆A, B, C)‖F ≤ ‖∆A‖F‖B‖F‖C‖F , but this pretty-looking
bound is too much overestimated to be good for practice.
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Finally, we have

‖F − F̃‖F ≤ ‖A. |F‖K‖F + ‖∆B‖F‖L‖F + ‖∆C‖F‖M‖F ,

‖K‖2
F =

R
∑

t=1

‖bt‖
2
2‖ct‖

2
2, ‖L‖2

F =

R
∑

t=1

‖at‖
2
2‖ct‖

2
2, ‖M‖2

F =

R
∑

t=1

‖at‖
2
2‖bt‖

2
2.

(2.3)

Now we can set

ε1 = (ε/3)‖F‖F/‖K‖F , ε2 = (ε/3)‖F‖F/‖L‖F , ε3 = (ε/3)‖F‖F/‖M‖F , (2.4)

filter trilinear factors with thresholds

‖∆A‖F ≤ ε1, ‖∆B‖F ≤ ε2, ‖∆C‖F ≤ ε3,

and have ‖F − F̃|F ≤ ε‖F‖F .
To complete the prescriptions, we should find a method of fast computation for ‖F‖F =

‖(A, B, C)‖F . Here it is:

‖F‖2
F =

N
∑

i,j,k=0

(

R
∑

t=1

aitbjtckt

)2

=
R
∑

t,τ=1

(

N
∑

i=1

aitaiτ

)(

N
∑

j=1

bjtbjτ

)(

N
∑

k=1

cktckτ

)

.

‖F‖2
F =

R
∑

t,τ=1

(GA ◦ GB ◦ GC)tτ , GA = AT A, GB = BT B, GC = CT C, (2.5)

where “◦” defines element-by-element multiplication of matrices.

We are ready to present

Algorithm 2.3 (High-rank 3L → Tucker)

1. Compute the norm of a given data array F = (A, B, C) as shown in (2.5). It requires
6NR2 flops for computing the Gram matrices and 3R2 flops to compute the sum of
elements of their product.

2. Perform SVD-s with the factors A, B and C and filter small singular numbers and
vectors using the threshold values ε1, ε2 and ε3, defined in (2.4):

‖A − Ã‖F ≤ ε1, ‖B − B̃‖F ≤ ε2, ‖C − C̃‖F ≤ ε3,

Ã = UΣ1Φ1, B̃ = V Σ2Φ2, C̃ = WΣ3Φ3,

U ∈ R
N×ρ1 , V ∈ R

N×ρ2 , W ∈ R
N×ρ3 .

This step requires O(NR min(N, R)) flops.

3. Rewrite F̃ = (UΣ1Φ1, V Σ2Φ2, WΣ3Φ3) as the Tucker decomposition

F̃ = G ×1 U ×2 V ×3 W, G = (Σ1Φ1, Σ2Φ2, Σ3Φ3) ∈ R
ρ1×ρ2×ρ3 .
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Table 2.2: Tucker approximation results by Algorithm 2.3, N = 5120, ε = 10−7

molecule R mode ranks ρ1, ρ2, ρ3 mode ranks r1, r2, r3 time⋆

CH4 1334 79 × 86 × 86 41 × 41 × 41 5.5min
C2H6 3744 80 × 100 × 133 30 × 50 × 44 1h40min

C2H5OH 6945 129 × 198 × 176 70 × 70 × 72 14h 20min

⋆ Time is measured on 2.2GHz Pentium4 CPU, with code compiled by g77/GNU Fortran (GCC) 3.4.6
compiler, optimised by -O2 option and linked with GotoBLAS-1.24 library.

4. Optionally, we can apply the Tucker approximation algorithm 2.1 to G and re-
approximate the core.

‖G − G̃‖F ≤ ε‖G‖F , G = H×1 U ′ ×2 V ′ ×3 W ′,

F̃ = H×1 UU ′ ×2 V V ′ ×3 WW ′, H ∈ R
r1×r2×r3 .

As a rule, this leads to a significant reduction in the mode ranks, because the thresholds
ε1, ε2 and ε3 applied on the step 2 are not exact. It requires O(ρ4) flops with ρ =
max(ρ1, ρ2, ρ3).

The overall complexity of the presented method is O(NR2) . Numerical results and timings
are given in Table 2.2. The performance is acceptable for CH4, but for bigger molecules the
running time is still too large.

3 Cross 3D approximation method

There are four main ideas behind the cross 3d method [21].

3.1 Computation of data array entries only on demand

Preliminary experiments ensure us that data arrays F computed as discretization of the
electron density function are likely to admit the Tucker approximation (1.4) with reduced
mode ranks r1, r2, r3 for a given relative accuracy ε. The same data reduction is achieved by
using a Tucker-like approximation

F̃ = G′ ×1 U ′ ×2 V ′ ×3 W ′, G′ ∈ R
r1×r2×r3 (3.1)

with (non-orthogonal) matrices U ′ ∈ R
N×r1, V ′ ∈ R

N×r2, W ′ ∈ R
N×r3 , consisting of columns,

rows and fibers of F . The accuracy of such an approximation is cε, where the deterioration
coefficient c > 1 depends only on sizes and ranks, but not on the array entries [20, 21].
Moreover, the elements of the core tensor G′ can be computed from the elements of U ′, V ′, W ′

[20, 21].
A nice property of multidimensional arrays in the chemical applications is that we do

not need the whole array F to compute its Tucker approximation F̃ . All we need is the
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knowledge of a small number of very important columns, rows and fibers, that represent with
prescribed accuracy the subspace of the Tucker factors and therefore the subspace spanned
by all columns/rows/fibers of the given array. The existence of such an approximation and
setting it as a target is the first key idea on which Cross 3D hinges.

3.2 Maximum-volume principle in matrix approximation

Consider a matrix approximation problem: given a matrix F ∈ R
n×n, find a low-rank ap-

proximation

‖F − F̃‖F ≤ ‖F‖F , F = UGV T , U, V ∈ R
n×r, G ∈ R

r×r

with a prescribed relative accuracy ε. This problem can be solved by the SVD, but it requires
n3 flops and all elements of F to be handled. We are looking for faster methods that do not
require all elements of F. Let us restrict ourselves to the skeleton decomposition, where U
and V consist of columns and rows of F, and G = B−1, where B is r × r-submatrix at the
intersection of the columns of U and rows of V. In [22], a good choice for B was proposed
and substantiated: we should search for a submatrix B with the maximal modulus of deter-
minant (this value is referred as volume) among all r× r submatrices. This maximal volume
submatrix excels in a good accuracy bound to hold [22]. In practice, maximum-volume ap-
proximation is not the best, but is close to the best skeleton and SVD approximations. The
maximum-volume strategy is the second key idea in Cross 3D.

3.3 Adaptive search for the good cross

The search for a maximum-volume submatrix is NP-difficult, so there is no fast and robust
method to solve this problem as it is exactly. However, we may be satisfied with a “sufficiently
good” submatrix and some heuristic algorithms. Since these algorithms are to fetch a cross
of some columns and rows, we call them cross algorithms. Probably the most simple and
effective cross algorithm is the Gauss elimination method using some pivoting technique
over dynamically selected sets of the entries of the “active matrix”. Using the column and
row pivoting considered in [9] we observe that this method is simple but may have break-
downs (quiting when a good approximation is not obtained) if applied as it is. A cheap
practical remedy proposed in [24] is a restarted version of this cross method. For the readers
convenience, we give here a brief description of the algorithm.

Algorithm 3.1 (Cross 2D)
Given a matrix F of approximate rank r, approximate it by a matrix F̃r, which is a sum

of r rank-1 matrices upv
T
p (so-called skeletons).

1. Calculate column jp of the matrix F (on first iteration set p = 1 and pick random
jp) and subtract from all elements the corresponding elements of already calculated
skeletons (on first iteration there are none). In the resulting vector find the largest
magnitude element. Suppose it is located in the row ip.

2. Calculate the row ip of the residue and the next pivot which is its largest magnitude
element with a restriction that the element from the jp-th column can not be chosen
again. Suppose this pivot is located in the jp+1-th column.

9



Table 3.1: Tucker approximation results by Algorithm Cross 3D, N = 5120, ε = 10−7

molecule R mode ranks ρ1, ρ2, ρ3 mode ranks r1, r2, r3 time⋆

CH4 1334 48 × 46 × 47 41 × 41 × 41 14.5min
C2H6 3744 34 × 60 × 53 30 × 50 × 44 34min

C2H5OH 6945 81 × 85 × 87 69 × 70 × 72 2h 50min

ρ1, ρ2, ρ3 — number of columns, rows and fibers, computed by Cross 3D method;
r1, r2, r3 — mode ranks after Tucker re-approximation (like in step 4 of Algorithm 2.3).
⋆ Time is measured on 2.2GHz Pentium4 CPU, with code compiled by g77/GNU Fortran (GCC) 3.4.6
compiler, optimised by -O2 option and linked with GotoBLAS-1.24 library.

3. Calculate the new cross with center at (ip, jp). Update F̃ := F̃ + upv
T
p to make the

approximation exact on the elements, occupied by new cross.

4. If a stopping criterion ‖F − F̃‖F ≤ ‖F‖F is not satisfied, set p := p + 1 and go to step
1.

This algorithm provides us with a fast and robust tool of matrix approximation. We need
to generalise it to 3D arrays.

3.4 Internal cross 2d procedure

The central part of the Tucker decomposition algorithm 2.1 is the SVD applied to matrix
unfoldings.

Suppose we do the same things with some other tool, i.e. apply Cross 2D algorithm to
unfoldings of F . Let us start with F (3). All we have to compute from this matrix are:

columns (short vectors of size N presenting fibers of F)
and rows (long vectors of size N2 presenting slices of F).

The last key idea of Cross 3D is that we can also apply ‘internal’ Cross 2D procedure to
compute slices in the skeleton decomposition ansatz with common column and row matrices
for all slices. On this way we come up with an algorithm of linear by N complexity.

3.5 Cross algorithm for 3D arrays

Algorithm 3.2 (Cross 3D, simplified version)
Given an array F approximate it as shown in (3.1)

0. Numbering the steps by p, set p to 1. Choose a slice Ak = [(ak)ij] in A, for example,
and assume its index to be k1. Set Ã = 0.

1a. Find an approximation Akp
to the kp-th slice of the residue R = A − Ãp by the

cross-method:

Akp
=

r
∑

q=1

uqv
T
q .
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1b. Find the largest magnitude element in the matrix Akp
, let it be located at (ip, jp).

2. Compute the vector w corresponding to the fiber of R with index (ip, jp)

wk = Rip,jp,k,

perform the scaling
w := w/wkp

and find in w the largest magnitude element from those whose index is not equal to
kp. Suppose it is located at the kp+1-th position of w.

3. Compute a new approximation:

Ã := Ã + Akp
× w = Ã +

(

r
∑

q=1

uqv
T
q

)

× w = Ã +
r
∑

q=1

uq × vq × w.

4. Check accuracy on a sample of untouched entries. If it is not satisfactory, then set
p := p + 1, and go to step 1.

This algorithm is linear by N (but every computation of array element fijk requires R
flops, so overall complexity is O(NR)). However, it is far from being robust. We have to
solve a lot of interesting matrix problems (for example, at step 1b we need to find a maximum
element of a matrix from its low-rank format) and implement a bunch of matrix tricks to
boost the speed of method. You can find the mathematical background and all details of
this algorithm in [21]. Notice that the so-called multigrid accelerated best orthogonal Tucker
approximation of rank-R trilinear decomposition is presented in [19]. This method is proven
to have linear scaling in all significant characteristics of the model, O(drRN), where d is
the dimensionality parameter and r is the Tucker rank. Extensive numerics on the trilinear
and Tucker approximation of operators and functions in electronic structure calculations are
presented in [2, 3].

3.6 Numerical results

The numerical results and timings for Cross 3D are given in Table 3.1. Comparing Cross
3D with prefiltering trilinear factors (Algorithm 2.3), we find that Cross 3D method is 3
times faster for C2H6 and 6 times faster for C2H5OH. You can also compare values of
‘actually computed’ mode ranks ρ1, ρ2, ρ3 and values of mode ranks r1, r2, r3 after Tucker
re-approximation for both methods. It is easy to note, that for Cross 3D method computed
mode ranks are closer to ‘real’ mode ranks. This means that Cross 3D has implemented
better stopping criteria, than SVD-based method, and performs less work to provide the
approximation with prescribed final accuracy. We can optimistically say, that for more
complicated molecules Cross 3D can give even better advance.

We also take a look at mode ranks and timings of Cross 3D approximating electron
densities of different molecules with accuracies varied from 10−3 to 10−10. The results are in
Table 3.2.
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Table 3.2: Tucker mode ranks and timings or different accuracies, N = 5120

ε CH4 C2H6 C2H5OH
10−3 14 × 14 × 14 1:05⋆ 11 × 18 × 15 3:40 26 × 26 × 25 23:15
10−4 20 × 20 × 21 1:45 14 × 24 × 21 5:40 34 × 35 × 35 43:00
10−5 28 × 28 × 29 2:15 20 × 36 × 30 9:00 47 × 47 × 47 58:45
10−6 35 × 35 × 35 3:10 24 × 45 × 37 11:20 59 × 60 × 61 1:24:45
10−7 41 × 41 × 41 4:00 30 × 50 × 44 14:30 70 × 70 × 71 2:00:00
10−8 49 × 48 × 48 5:30 37 × 60 × 52 20:10 83 × 82 × 85 2:47:30
10−9 55 × 55 × 55 7:20 45 × 69 × 59 27:30 95 × 93 × 98 3:41:40
10−10 60 × 60 × 60 10:20 52 × 78 × 67 32:00 105× 104 × 110 4:48:10

⋆ Time is given as [hh]:mm:ss. It is measured on 3.2GHz Pentium4 CPU, with code compiled by ifort
(IFORT) 9.0 20060120 Fortran compiler, optimised by -O3 -tpp7 -axW -aW options and linked with

GotoBLAS-1.24 library.

Table 4.1: Tucker approximation results by the multigrid Cross 3D, N = 5120, ε = 10−7

molecule R size of VIP sets ρ1, ρ2, ρ3 mode ranks r1, r2, r3 time⋆

CH4 1334 61 × 70 × 71 41 × 41 × 41 5min
C2H6 3744 61 × 76 × 64 30 × 50 × 44 12.5min

C2H5OH 6945 87 × 113 × 146 68 × 70 × 72 1hour

⋆ Time is measured on 2.2GHz Pentium4 CPU, with code compiled by g77/GNU Fortran (GCC) 3.4.6
compiler, optimised by -O2 option and linked with GotoBLAS-1.24 library.

4 A miltigrid version of the cross 3D algorithm

The cross 3D algorithm computes the (r1, r2, r3) Tucker approximation of a data array from
some r1 columns, r2 rows and r3 fibers of data array. These columns, rows and fibers can
be referrred to as “very important vectors”, or shortly “VIP vectors”. A tricky part is how
to choose the VIP vectors. However, if we knew the positions of these vectors in the data
array, our work would be almost done. Since the data is quite smooth, we can probably
take some information using a coarser grid. A multigrid accelerated best orthogonal Tucker
approximation is presented in [19]. It seems just natural to accommodate this sort of idea
into the general version of the cross 3D algorithm.

Suppose we are to find the Tucker approximation for a discretization of F (x, y, z) on a
grid (1.1) with N = NL = n02

L. To speed up computations, we can first apply Cross 3D to
a similar discretization of the same function on a coarser grid with N = n02

L−1, remember
the indices or coordinates (y, z), (z, x) and (x, y) of the VIP columns, rows and fibers, and
then exploit these already known indices when computing the Tucker approximation for the
data array with N = NL. Thus we repeat Cross 3D for a sequence of grids but so that it
works faster due to some additional information taken from the coarser grids.

12



Algorithm 4.1 (Cross 3D, multigrid version)

0. Start with a grid of size N = Nl = n02
l with l = l0. Apply Algorithm 3.2 to compute the

Tucker approximation F̃ [l0] for F [l0] = [f(xi, yj, zk)]. Acquire and retain the positions
of ρ1 rows, ρ2 columns and ρ3 fibers computed by Cross 3D as VIP sets I1, I2 and I3.

1. Consider a next-level grid with N = Nl+1. Array F [l] from the previous level is a
subarray of F [l+1] = [f(xi, yj, zk)] with all indices i, j, k even. To find the positions
of good mode vectors in F [l+1], multiply all indices in VIP sets I1, I2 and I3 by two.
Compute them and from matrices U, V, W as a non-orthogonal basis for the Tucker
approximation.

2. Othogonalize U, V and W and find maximum-volume submatrices U�, V� and W� in
them (a suitable algorithm is presented in [13, 20, 21]). Compute a subarray F� = [fijk]
with indices i, j, k corresponding to positions of U� in U, V� in V and W� in W
respectively. Compute the Tucker approximation F̃ with the factors U, V, W, so that
it is exact on the elements of F�:

F̃ [l] = G ×1 U ×2 V ×3 W, G = F� ×1 U−1
�

×2 V −1
�

×3 W−1
�

.

3. Use the approximation F̃ [l] as an initial guess to start Cross 3D for the next-level grid.
On return we have an updated approximation F̃ [l] and additionally computed ρ

[l]
1 rows,

ρ
[l]
2 columns and ρ

[l]
3 fibers. Add the positions of these additional vectors to VIP sets

I1, I2 and I3. Set ρp := ρp + ρ
[l]
p , p = 1, 2, 3.

4. Set l := l + 1 and if l < L, go back to step 1.

This algorithm is linear in N, R and max(r1, r2, r3),, where r1, r2, r3 are the Tucker mode
ranks. For smooth functions F (x, y, z) this multigrid version outperforms the standard
Cross 3D. It can be also used to define the optimal grid size N for a given approximation
accuracy ε without an a priori information about the smoothness of F (x, y, z).

The numerical results and timings are given in Table 4.1. Note that sizes of VIP sets
ρ1, ρ2, ρ3 are considerably large. This may signify that some of VIP vectors obtained from
low levels are not very good as approximations on finer levels. Some filtering of sets I1, I2, I3

can be applied on Step 3, but this still needs to be studied in more detail. Nevertheless, the
current version of the multigrid Cross 3D algorithm is 3 times faster than the standard Cross
3D for all considered molecules. It is also interesting to compare timings of the multigrid
Cross 3D (given in Table 4.2) and timings of the plain Cross 3D (Table 3.2) for different
accuracies and molecules.
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