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Abstract

In this article we present a new multigrid algorithm to solve the Ornstein-Zernike
type integral equations of the theory of liquids. This approach is based on ideas com-
ing from the multigrid methods for numerical solutions of integral equations (see §16
in [13]). We describe this method in a general manner as a ’template’ for construc-
tion of efficient multilevel iterations for numerical solution of the integral equations
in the theory of liquids. We report on several numerical experiments to illustrate the
effectiveness of the method. The algorithm is tested on a model problem - a simple
monoatomic fluid with a continuous short ranged potential. The tests have indicated
that the method sufficiently accelerates the convergence of the numerical solution in
all considered cases.

AMS Subject Classification: 65R99, 45G15
PACS numbers: 02.60.Nm, 61.20.Ne, 61.20.Gy
Key words. Ornstein-Zernike equation, integral equations theory of liquids, multigrid
methods.

1 Introduction

The integral equation theory of molecular liquids has been proved to be a powerful tool for the
calculation of both structural and thermodynamical properties of molecular systems in fluids
[17, 8, 5, 9]. However, even for the simplest case of an isotropic liquid the theory requires a
non-trivial numerical solution of a system of integral equations of the Ornstein-Zernike (OZ)
type [15]. The complexity of solution dramatically increases with the increasing number of
different interacting sites of the system [17]. This is explaining the fact why the theory is
still far from being ’tool of the trade’ in the area of computational chemistry of condensed
molecular systems, mainly, because of the lack of efficient algorithms and numerical libraries
available.

The most simple algorithm to solve the OZ-type equations is the Picard algorithm1 which
is based on a successive substitution scheme. This technique is very easy to implement but it

∗Max-Planck-Institut für Mathematik in den Naturwissenschaften, Inselstr. 22-26, D-04103 Leipzig,
Germany ({fedorov,woh}@mis.mpg.de).

1This method is sometimes called “direct iteration method”.
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suffers from poor convergence [22, 17, 10]. Unfortunately, the much more efficient Newton-
Raphson (NR) method cannot be applied directly to the problem because it would require
the calculation and inversion of the Jacobian matrix of a size > 104 which is a tedious task.
Still, there are more efficient algorithms for the OZ type equations than the plain Picard
scheme. The algorithms could be roughly classified into three general domains. In the first
category there are methods to improve the convergence of the Picard iterations with different
techniques like vector extrapolation or iterative subspace extrapolation [18]. In the second
category there are hybrid NR/Picard iteration methods [11, 25, 26, 6, 7, 10, 32] where the
final solution is sought as a combination of ”coarse” and ”fine” components. The ”coarse”
component is represented as a combination of a relatively small number of basis functions
while the coefficients of the expansion are found by the efficient NR algorithm. Then the
obtained approximated solution is refined by the Picard iterations using the ”coarse” solution
as an initial guess. The coarse solution can be obtained as an expansion in the basis of
roof functions [11], plane waves [25, 26, 32] or wavelets [6, 7, 10]. In the third category
there are recently developed procedures for solving the OZ equation with use of matrix-free
iterative Krylov or Newton-GMRES solvers [21, 2]. On a few simple examples of monoatomic
liquids with short-range interaction potential there has been shown that the convergence
and robustness of these methods can be improved by using multilevel iterations [22] and
pseudoarc length continuation methods [28].

These days multigrid numerical methods [13, 3, 1, 33, 31] become very popular in dif-
ferent areas of science and engineering. The multigrid approach to complex computational
problems is actively used in computational chemistry to accelerate quantum chemistry cal-
culations [16, 20, 4, 12] as well as for the treatment of electrostatic interactions in classical
molecular dynamics simulations [30, 19]. However, we are aware of only one published study
on multigrid solvers for OZ equation - the work of Pettitt and Kelley [22]. In [22] a hybrid
scheme have been proposed which combines multilevel nested iterations [13, 21] with Newton-
GMRES algorithm for the coarse grid solver. The method has been tested on one example
of a simple monoatomic liquid. The obtained results clearly indicated the superiority of the
method with one-level Newton-GMRES and Picard methods.

In this article we present a universal multigrid technique for the numerical solution of
the OZ type integral equations. This approach is based on ideas coming from the multigrid
methods for numerical solutions of integral equations [13, 3]. Instead of the nested iteration
method used in [22] we use the coarse-grid correction method which had been shown to
provide better convergence than the nested iteration method [13]. The proposed approach is
very flexible and allows one to combine different numerical methods to construct an effective
multigrid solver for a given problem [13]. Therefore, rather than presenting an exhaustive
comparison of the convergence characteristics of the proposed scheme with the other meth-
ods mentioned above, we describe this method as a general ’template’ for construction of
efficient multigrid iterations for numerical solution of the integral equations in the theory of
liquids. We report several numerical tests proving that the method significantly accelerates
the convergence of the iterations. The proposed approach is tested on a model problem - a
simple fluid with continuous short ranged Lennard-Jones potential. We also investigate the
robustness of the method with regard to the density of model liquid.

We will consider the problem of finding a numerical solution for the OZ equation in the
simplest case of a mono-atomic isotropic liquid with spherically symmetric Lennard-Jones
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interaction potential between the particles,

ULJ (r) = 4η

[

(σ

r

)12

−
(σ

r

)6
]

, (1.1)

where σ and η are the size and energy parameters, respectively, and r is the interparticle
distance .

In the theory of liquids the principal structural quantity of interest is the pair correlation
function, g(r,Θ), which is proportional to the probability of observing a pair of particles
at a given distance r and mutual orientation Θ. For the case of a mono-atomic liquid with
spherical potential between particles we can omit the Θ–dependence of the pair correlation
function and consider it as a function g(r) only, with r = |r|.

Let us introduce the total correlation function as h(r) := g(r) − 1. The OZ equation
relates this function with the direct correlation function c(r) for an isotropic liquid with
density ρ by

h(r) = c(r) + ρ

∫

R3

c(|r − r′|)h(|r′|)dr′. (1.2)

There are two unknowns in Eq. (1.2) and, therefore, it is still incomplete. A second
equation, usually called ”closure relation”, is required which couples these functions with
the interaction potential U(r). Formally the closure relation is written as

h(r) = exp[−βU(r) + h(r) − c(r) + b(r)] − 1, (1.3)

where β = (kBT )−1 is the inverse temperature, while kB is the Boltzmann constant. The
closure relation introduces the bridge function b(r) [27]. Given U(r), T , ρ, and b(r), one
can find all the required correlation functions by solving the system (1.2)-(1.3) and, hence,
all the thermodynamic and structural properties of the fluid can be obtained. It is common
to characterise the OZ equation by the two dimensionless parameters: normalised density
ρ∗ = ρσ3 and temperature T ∗ = (βη)−1 [18, 10]. We will also use these notations henceforth.

Since there is no exact expression for b(r), the approximation of the bridge function
is the key to contemporary IE theories. The list of such approximating closures is still
expanding and includes, for example, b(r) = 0 for the hypernetted chain (HNC) closure,
or b(r) = ln(1 + h(r) − c(r)) − h(r) − c(r) in the Percus-Yevick approximation, etc. These
approximations have been studied extensively for simple liquids, and their pros and cons are
well documented in the literature [14, 27]. In this work we are using the Partially Linearised
Hypernetted Chain closure [23, 24] which linearises the exponent in (1.3) for the case of
b(r) = 0 depending on the sign of the function Ξ(r) = −βU(r) + h(r) − c(r):

b(r) =







0 Ξ(r) < 0

ln(h(r) + 1) − h(r) Ξ(r) > 0
(1.4)

This closure has been proved to provide better convergence of the numerical iterations than
the plain HNC closure [23, 24].

There are only a few special cases where Eqs. (1.2) and (1.3) can be solved analytically
and, therefore, numerical solutions are necessary. For numerical calculations, the Fourier
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representation of the OZ equation,

ĥ(k) − ĉ(k) =
ρĉ2(k)

1 − ρĉ(k)
, (1.5)

is usually applied, where the hat means the three-dimensional (3D) Fourier transform (FT).
This is formally a 3D equation but taking into account the spherical symmetry of the corre-
lation functions it can be reduced to a 1D equation for the radial parts of the functions:

ĥ(k) − ĉ(k) =
ρĉ2(k)

1 − ρĉ(k)
, (1.6)

where the mapping from k-space to r-space is done by the spherical Fourier-Bessel transform
which for a spherically symmetric function f(r) reads as

f̂(k) = T (f(r)) =
4π

k

∫

∞

0

r sin(kr)f(r)dr. (1.7)

The inverse spherical Fourier-Bessel transform T −1 can be obtained in a similar manner:

f(r) = T −1(f̂(k)) =
4π

r

∫

∞

0

k sin(kr)f̂(k)dk. (1.8)

In numerical calculations, the function f(r) can be assumed to be of finite support,
i.e., f(r) = 0 for r ≥ R. For simplicity, we approximate f(r) on a regular grid ΩL with
NL = N02

L points, where N0 is the size of the coarsest grid, and L is an integer which
determines the step size dL of the grid as dL = 2−LdL=0. Therefore, we can regard L as
the resolution level. On a regular grid, the discrete versions of the transformations (1.7)
and (1.8) can be calculated with O(NL log NL) operations using the Fast Fourier Transform
(FFT).

2 Multigrid iterations

2.1 One-level Picard iterations

For numerical treatment of the OZ equation it is common to introduce a new function
v(r) = h(r) − c(r) and rewrite Eqs.(1.3) and (1.5) in the following way:

c(r) = exp[−βU(r) + v(r) + b(r)] − 1 − v(r), (2.1)

and

v̂(k) =
ρĉ2(k)

1 − ρĉ(k)
. (2.2)

One can reformulate the problem of finding a numerical solution of the system (2.1) –
(2.2) with functions v(r) and c(r) represented on a grid ΩL as the solution of a nonlinear
equation:

v(r) = F (v(r)), (2.3)
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where F (v(r)) is given by

F (v(r)) = T −1 ∗
ρ(T ∗ c(r))2

1 − ρ(T ∗ c(r))
, (2.4)

and c(r) is given by Eq. (2.1). For the sake of clarity in the following we will refer on the
v(r) and c(r) functions as v and c.

The simplest way of finding the numerical solution of (2.3) is the Picard scheme of
successive iterations [21, 29] where an i -iteration is given by:

vi := F (vi−1). (2.5)

To facilitate the convergence the damped Picard method [29] is often used where the i -th
iteration is given as

vi := εF (vi−1) + (1 − ε)vi−1, 0 < ε ≤ 1; (2.6)

where ε is a damping parameter. In the following we will refer on the damped Picard method
applied to the problem (2.1) as Picard method and denote an n-steps Picard iteration for
(2.1) as

v := Υn(v, ε). (2.7)

We note that the convergence of the method is not guaranteed and normally it is quite
slow. Nevertheless, the method is still commonly used in the theory of liquids (often in
combination with other methods) [17, 10] because it is very easy to implement.

2.2 Two-grid iteration

In this subsection we will briefly describe the two-grid iteration method (TGM) which is the
base for the construction of multi-grid iterations [13, 3]. The proposed approach mimics the
idea of the TGM method for linear problems with coarse-grid correction [13, 3].

Let us firstly introduce two inter-grid conversion operators: a restriction or fine-to-coarse
operator R which maps the function f from the fine grid ΩL to the coarse grid ΩL−1 :

fL−1 = R ∗ fL, (2.8)

and a reciprocal operator to restriction - prolongation or coarse-to-fine operator P which
interpolates the function f given on the coarse grid ΩL−1 to the fine grid ΩL:

fL = P ∗ fL−1. (2.9)

There are many possible choices of these operators and advantages and disadvantages of
some of them are well described in [13]. In our work we use the trivial injection [13, 3]
for the restriction operator I and the cubic spline interpolation [29] for the prolongation
operator P .

Let us now consider the problem of finding a numerical solution of (2.3) on the fine grid
ΩL starting from an initial guess vinitial

L
.
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Let us assume that there is an iterative process Φ0 (e.g. (2.7) with a reasonably large n)
which gives an accurate numerical solution2 of the problem on the coarse grid ΩL−1 starting
from vinitial

L−1
= R ∗ vinitial

L

vacc.

L−1
= Φ0(v

initial

L−1
). (2.10)

Therefore, the correction or defect of the solution on the level L − 1 is given by

dL−1 = vacc.

L−1
− vinitial

L−1
. (2.11)

The main idea of the TGM iterations is to interpolate this correction to the fine level L

using the prolongation operator P and improve the solution on this level as

vL = vinitial

L
+ P ∗ dL−1. (2.12)

The procedure then can be repeated to achieve the required accuracy of the solution on the
fine grid. It has been shown in [13] that the convergence of the iterations can be sufficiently
improved by additional one-level smoothing steps (2.7) before and after the coarse-grid cor-
rection (2.12). As a result we obtain the following TGM iteration loop:

Algorithm 1 Two-grid iteration.

procedure vout :=TGM (L, vin, n1, n2)

v := Υn1(vin, ε = 1); (pre-smoothing)
vr := R ∗ v; (restriction)
v := v + P ∗ (Φ0(v

r) − vr); (coarse-grid correction)
vout := Υn2(v, ε = 1); (post-smoothing)

2.3 Multi-grid iterations

The extension of the TGM iterations to a more general multi-grid case is very straightfor-
ward: the main idea is to substitute the accurate solution on the coarse level L − 1 by a
recursive approximation of the solution with another two-grid iteration on level L− 2, L− 3
and so on until the coarsest level L0 where the coarsest solution is found as vacc.

0
= Φ0(v

initial

0
).

As the general principles of the multi-grid iterations construction are well explained in [13]
we will only briefly describe our algorithm below:

The parameter µ is rarely chosen bigger than 2 when the iteration is usually called W-
iteration. If µ is equal to 1 it is common to call such iteration as V-iteration. In all our
calculations we used n1 = n2 = 1 steps for pre- and post-smoothing.

As there is no way to find an exact solution of the problem the choice of Φ0 is quite
ambiguous. It could be, e.g., the Picard process (2.7) with a sufficiently large number of
iterations as well as the more efficient but more computationally expensive Newton-Raphson
iterations algorithm [29, 10] or any other numerical procedure which can provide a coarse-
grid solution with a reasonable accuracy (see, e.g., [21, 22]). For the sake of simplicity in
our calculations we have chosen Φ0(v) = Υn(v, ε), n = 102, ε = 0.5.

2Note the difference between this method for a nonlinear problem which uses an accurate solution and
the TGM method for linear problems which uses an exact coarse-grid solution.
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Algorithm 2 Multi-grid iteration.

procedure vout :=MGM (L, vin, n1, n2, µ)

if L = 0 then vout := Φ0(v
in) else

v := Υn1(vin, ε = 1); (pre-smoothing)
vr := I ∗ v; (restriction)
for j := 1 step 1 until µ do vout :=MGM(L − 1, vr, n1, n2), µ)
v := v + P ∗ (vout − vr), (coarse-grid correction)
vout := Υn2(v, ε = 1); (post-smoothing)

3 Complexity analysis

3.1 Iterations cost

The cost of the iterations is limited by the cost of FFT which is O(NLlog(NL)). So, one can
estimate that the computational work Ao.l. of one step of the one-level iteration is:

Ao.l. = CNLlog(NL) (3.1)

where C is some constant and NL is the number of grid nodes. Some rough estimations show
that the computational work AV for one step of the V-iteration is

AV ≤ 6CNLlog(NL) = 6Ao.l., (3.2)

and, consequently, computational work AW for one step of the W-iteration is

AW ≤ 15CNLlog(NL) = 15Ao.l.. (3.3)

So, one could compare the efficiency of the iterations, normalising the computational cost
to the cost of one step of the W-iteration.

3.2 Numerical results

In order to compare the efficiency of V- and W- multigrid iterations for different density
parameters of the OZ equation we performed a series of V- and W-iteration calculations at
constant value of the normalised temperature T ∗ = 2 varying the density parameter ρ∗ from
0.1 to 1.0. In our calculations we used 9 different grids with the size and step of the finest
grid N8 = 217 and d8 = 2−12 correspondingly. The quality of the solution was controlled
by the norm of difference between the finest grid solutions at the neighbouring iterations
∆(i) = ‖vi − vi−1‖. For each value of ρ∗ the iterations started from the same initial guess
for the both methods and continued until ∆(i) > 10−10 (which is close to the maximum
precision in this case). The initial guess for ρ∗ = 0.1 was calculated using the fast wavelet
algorithm for finding an approximate solution of the OZ equation [10]. For all the next follow
up ρ∗ values the initial guess was taken as the final solution for the previous ρ∗ value.

Figure 1 shows the dependence of the number of steps for V- and W- iterations necessary
to achieve the threshold value of ∆ = 10−10 from ρ∗. In accordance to (3.2) and (3.3) the
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Figure 3.1: Density dependence of the computational work necessary to achieve ∆ ≤ 10−10

accuracy for two different multigrid iterations: V-iteration (circles) and W-iteration (trian-
gles). The amount of computational work for the V-iteration was normalised per one step of
the W-iteration. The points are connected by lines as a guide for the eye. For all calculations
T ∗ = 2.0.

absolute numbers of the V-iteration steps were normalised by the factor 2.5 to allow one to
make the direct comparison of the computational work.

As one can see from the picture, for the W-iteration method the amount of computational
work necessary to achieve the required accuracy remains constant for the whole range of
densities. In contrast, the computational work of V-iteration increases with ρ∗. At the low
densities, the V-iteration is somewhat more efficient than the W-iteration but this method
looses its advantage when ρ∗ becomes bigger than 0.9 (see also inset on Figure 2). The
results clearly indicate the good robustness of the W-cycle iteration.

We note that, despite of the different behaviour at different ρ∗, both multigrid methods
provide very high efficiency compared to the one-level Picard iteration method. As an
illustrative example we will consider the problem of finding a numerical solution of the OZ
equation with T ∗ = 2.0 and ρ∗ = 1.0 by different methods. Figure 2 shows the direct
comparison of the computational work necessary to achieve an accuracy ∆ by different
methods: W- and V- multigrid iteration and the one-level plain Picard method. The inset
shows the detailed comparison between the convergence of W- and V- multigrid iteration
methods. The computational work was normalised to the amount of computational work
per one step of the W-cycle (see Eqs.(3.1)-(3.3)).

The parameters of the finest grid were the same as in the previous example. As one can
see from the picture, the multigrid iterations provide much better convergence rate than the
one-grid Picard one. The W-iteration has the best convergence rate among the all three
methods and is ≥ 102 times more efficient than the one-level iteration method.
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Figure 3.2: Dependence of ∆ from the computational work for three different numerical
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methods.
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