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Abstract

We introduce the novel numerical method for fast and accurate evaluation of the
exchange part of the Fock operator in the Hartree-Fock equation which is the (non-
local) integral operator in R? x R3. Usually, this challenging computational problem
is solved by laborious analytical evaluation of the two-electron integrals using “ana-
lytically separable” Galerkin basis functions, like Gaussians. Instead, we employ the
agglomerated “grey-box” numerical computation of the corresponding six-dimensional
integrals in the tensor-structured format which does not require analytical separabil-
ity of the basis set. The core of our method is the low-rank tensor representation of
arising functions and operators on n x n x n Cartesian grid, and implementation of the
corresponding multi-linear algebraic operations in the tensor product format. Linear
scaling of the tensor operations, including the 3D convolution product, with respect to
the one-dimension grid size n enables computations on huge 3D Cartesian grids thus
providing the required high accuracy. The presented algorithm for computation of
the exchange operator and a recent tensor method of the Coulomb matrix evaluation
are the main building blocks in the numerical solution of the Hartree-Fock equation
by the tensor-structured methods. These methods provide the new tool for algebraic
optimization of the Galerkin basis in the case of large molecules.

AMS Subject Classification: 65F30, 65F50, 66N35, 65F10
Key words: Hartree-Fock operator, exchange matrix, canonical model, discrete tensor con-
volution, tensor-structured methods, tensor-product basis functions.

1 Introduction

In recent decades much progress has been achieved in the development of the canonical and
Tucker-type decomposition algorithms in application to the problems of independent com-
ponent analysis, signal processing and higher order statistics, see [3, 4] and a comprehensive
survey on tensor decomposition methods [18].

Theoretical analysis of the multilinear tensor product approaches for the treatment of
some multivariate operators and functions arising in scientific computing have been ad-
dressed in [5, 6, 8, 12]. Application of the tensor decomposition algorithms to discretized



multivariate functions and operators [10, 14, 13, 11] showed that methods of the multi-way
analysis can be applied to the numerical solution of basic equations of mathematical physics
having strong requirements on accuracy of the results. In particular, the Tucker and canon-
ical tensor product approximations allow to reduce dramatically the complexity of accurate
function and operator calculus in R?, d > 3, realized on large Cartesian grids [15]. Tensor-
structured algorithms, working as the “grey-box” schemes, appear to be efficient in electronic
structure calculations [11, 15, 16, 17]. In fact, they provide the required high accuracy of
computations, and also give an opportunity to avoid obligatory analytically treatable basis
sets, like Gaussians, for the solution of the Hartree-Fock equation.

Here, we develop the grid-based tensor-structured method for the computation of the
Hartree-Fock exchange represented on n x n x n Cartesian grid. Numerical complexity of
the respective algorithm scales linearly in the univariate grid size n, O(n). Moreover, this
method is free from the conventional limitations on the basis functions, and can be useful
for further algebraic optimization of the Galerkin basis in the case of large molecules.

The Hartree-Fock model provides a mean-field approximation for the ground state of
many-electron systems. This implies the solution of a nonlinear eigenvalue problem in R?
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for the N,,;, lowest eigenvalues A, and spatial eigenfunctions ¢, (a =1, ..., Nyy4), in the case
of a closed-shell N electron system, N = 2N,,;,. Equation (1.1) corresponds to a nonlinear
single-particle Schrodinger equation in R3, where the potentials Vi and V, represent a mean-
field acting on a single electron which is generated by the remaining N — 1 electrons in the
system. Here, an external potential V,,,. contains the bare Coulomb- or pseudopotentials of
the nuclei.

The tensor-structured methods developed in [14, 10, 13] have been successfully applyed
for the highly accurate grid-based numerical computation of the Hartree potential and the
Coulomb matrix in the Hartree-Fock equation [15, 17]. For the efficient computation of the
Hartree potential in (1.1),

_ [ _r) r e R3
VH(x).—/RS ”x_dey, € R3, (1.2)

which corresponds to the convolution of the Coulomb potential with the electron density

o'rb
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we used the low-rank tensor product representation of the electron density p and the con-
volving kernel on n x n x n Cartesian grid and performed multilinear operations in the
tensor-product format.

In the present paper, we consider the tensor product approximation of the nonlocal
(integral) exchange operator V, in the Hartree-Fock equation. Note that calculation of the
exchange Galerkin matrix in the Hartree-Fock equation is a challenging problem due to the
nonlocal character of the exchange operator

orb
(Vo / Lo()dy, zeR, (1.4)
. H:c - yH



leading to the integration in six dimensions (see (3.1)). This problem is usually solved
analytically by evaluating the so-called two-electron integrals using separable basis sets like
Gaussians, see [27, 20] and references therein.

Here, we propose and implement the agglomerated grid-based computation of the
Hartree-Fock exchange (1.4). We apply the tensor product approximation of arising
operators and functions on n x n x n Cartesian grid and use multilinear tensor operations
providing linear scaling with respect to the one-dimension grid size n, O(n)!. We use the
fast tensor product convolution for the multivariate functions in R¢, d > 3, already employed
in [15] for evaluating V, which provides the complexity O(dnlogn), in our case d = 3.
The tensor product convolution developed in [13] considerably outperforms the benchmark
algorithm based on the 3D Fast Fourier Transform (FFT) having the cost O(n?logn). Note,
that in our numerical examples, we use equal sizes n of the 3D Cartesian grid for three
spatial dimensions and do not use the information on symmetry of the molecules. As the
input data we only use the discrete representation of the Galerkin basis functions, therefore,
we may say, this is a “grey-box” algorithm.

Our initial algorithm for evaluation of (1.4) has the complexity O(nlognR%+n.; Rg Now),
where n.y < n is the “effective” univariate grid size, and Ry is the number of Galerkin basis
functions. Here we reduce the constant in the linear complexity scaling in n by truncating
the regions of the computation intervals, where the values of rapidly decaying basis functions
(in particular, Gaussians) are less than a threshold controlling the accuracy of computations.
Thus, we have for the number of grid points in effective support of the interacting vectors,
nes = an, with o much less than 1.

To reduce the Rg-asymptotics to O(R3), we further apply the canonical-to-Tucker al-
gorithm for decreasing the ranks of intermediate results after every convolution step. The
corresponding rank reduction algorithms are considered in [15].

The main advantage of the proposed computational scheme is the ability to avoid the
“analytically separable” rank-1 basis sets like Gaussians, which are obligatory for the stan-
dard approaches. It is well known that the size of the Gaussian basis sets grows essentially
for larger molecules, which makes the related Hartree-Fock problem with the complexity
scaling as RS computationally unfeasible. Here, we use the discretized Gaussians mostly
for the sake of convenient comparison of the accuracy of computations with the benchmark
results of the standard MOLPRO package [26]. Indeed, we can employ as the Galerkin basis
any appropriate set of functions which are separable algebraically (say, using the Tucker
decomposition), with the ranks larger or equal to 1 and complying with the approximation
requirements. Therefore, the tensor-structured method proposed in this paper provides new
means for the algebraic optimization of the Galerkin basis in the case of large molecules.

The accuracy of the computation on a particular grid is estimated by O(h?), where
h = O(n™') is the step-size of the grid. We achieve O(h?®) accuracy in our evaluation of
the exchange matrix by using the Richardson extrapolation on a couple of consequent grids.
Usually, the univariate size of the computational box for small to medium size molecules

is in the range of 14 + 20 A. Since the tensor-structured techniques enable computations
on huge 3D Cartesian grids, the univariate step-sizes of applied grids are in a range from

'Note that commonly used notation as “linear in the problem size” for the problems in three spatial

dimensions often means linear complexity with respect to the volume size which is V = n3.



h~2-1072 ;1 for n = 1024, up to h ~ 8- 1074 ;1 for the benchmark grids with the number
of entries n® = 163843.

The rest of the paper is organized as follows. In Section 2 we recall the definitions of
the basic rank-structured formats and describe the multilinear tensor-product operations in
the rank-R canonical format. In Section 3, we discuss the representation of the exchange
operator in the particular Galerkin basis and the discrete computational scheme. The latter
does not depend on the character of the basis finctions, and allows arbitrary vectors of the
canonical agglomerated representation of a given 3D tensor. We give the detailed description
of the algorithm and provide the complexity estimate. Section 4 describes numerical results
of computations of the Hartree-Fock exchange matrix for the pseudopotential case of some
organic molecules and all electron case of water molecule using huge 3D Cartesian grids up
to size 163843, Figures illustrate the accuracy O(h?®) and the linear scaling of computation
time in the univariate grid size n. Numerical experiments are performed in Matlab 7.6, on a
standard SUN station. The results of computations are given in comparison with the output
of the standard benchmark package MOLPRO [26].

Tensor-structured computation of the Hartree-Fock exchange, along with the tensor-
based algorithms for calculating the Coulomb matrix considered in [15] are the main building
blocks in the recent grid-based numerical solution of the Hartree-Fock equation by the tensor-
structured methods (see a 3D nonlinear EVP solver [16]).

2 Tensor-structured representation of multivariate
functions and operators

2.1 Rank-structured tensor approximation

A tensor of order d is a multidimensional array of real/complex data whose elements are
referred by using a tensor-product index set Z = I; x ... x I;. We use the common notation

A=lay, i, i€l €RY, L={1,.,n}, (=1,..4d,

to denote a dth order tensor, and n for the d-tuple (nq,...,n4). A tensor A is an element of
the tensor-product linear space V,, = @¢_,V, with V, = R%, equipped with the Euclidean
scalar product (-,-) : V, x V,, — R defined as

<A, B> = Z a,i17...’z‘dbi17___7id fOI‘ A s B c Vn. (21)

(i15-50q)ET

Assume for simplicity that dimV, = #I, = n for all £ = 1,...,d, then the number of
entries in V amounts to n?, hence growing exponentially in d.

To get rid of exponential scaling in the dimension, the approximate data-sparse “rank
structured” representations of tensors in V,, can be applied. As the simplest rank structured
ansatz, we make use of rank-1 tensors. Specifically, the tensor product of vectors u, =
{wei, Yijer, € Vo (€ =1, ...,d) forms the canonical rank-1 tensor

A= uiliez =u1 ® ... Quq € V,,  with entries  w; = w4, - - - Ugyy,



which requires only dn numbers to store it.
We define a tensor in the canonical format

R
A = chu,(j) ®...0 u,(cd), cr € R, (2.2)
k=1

with normalised vectors uff) €V, (¢ =1,...,d), where the minimal parameter R € N in (2.2)
is called the rank (or canonical rank) of a tensor. In our tensor-structured computations, we
use the rank-R canonical representation for the multilinear operations.

Given the rank parameter r = (ry,...,74), we can represent the initial tensor A in the
so-called Tucker format

T1 T4
AmAm=3_ > Bl @ o), (2.3)

v1=1

with some vectors vl(,? €V, = R (1 < vy < ry), which form the orthonormal basis of
e
v=1

span{vl(,é) (¢ =1,...,d). Here we call the parameter

r= mgxx{rg}
the mazimal Tucker rank. For classes of function related tensors, the choice r = O(logn)

ensures the approximation order O(1/n) [5, 6, 10]. The coefficients tensor 8 = [5,,.. .,)s
that is an element of a tensor space

B, = R/W>Ja g, =11 r}, £=1,...d, (2.4)

is called the core tensor.
Introducing the (orthogonal) side matrices V) = [vg)...vﬁf)], we then use a tensor-by-
matrix contracted product to represent the Tucker decomposition of A,

Ay =B x1 VW 5, VO o v, (2.5)

In present computations we also use the mixed Tucker-canonical format,
R
A(r) = (Z bkug) X...Q u,@) X1 V(l) X9 V(Q) X3 ... Xq V(d)
k=1

that is visualized in Figure 2.1. In this case the Tucker core is represented by a rank-R
canonical tensor. More detailed description of the tensor decomposition algorithms and
of the multigrid rank reduction scheme based on the canonical-to-Tucker approximation is
given in [15].

2.2 Multilinear operations in the tensor product format

In our numerical scheme we apply the following linear operations with dth order tensors:

1. summation of tensors;
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Figure 2.1: Mixed Tucker-canonical format.

2. scalar product of tensors;
3. Hadamard product of tensors;
4. convolution product of tensors.

A comprehensive description of the multi-linear tensor-product operations for the multidi-
mensional tensors is presented in the survey [18], see also [14, 13, 22] for details on function
related tensors.

Let us consider tensors A, As, represented in the rank-R canonical format, (2.2),

Ry Ro
Ay :chul(ﬁl)(}b...@ul(ﬁd), Ay = mev$)®...®v§,‘f), (2.6)
k=1 m=1

with normalized vectors u,(f), ol e R (For simplicity of notation, we consider n, = n.)

1. A sum of two canonical tensors given by (2.6) can be written as

Ry R2
A+ A=) qul®.  ou’ +> bl e.. @u?, (2.7)
k=1 m=1

resulting in the canonical tensor with the rank Rg = R; + Ry. This operation has no cost
since it is simply a concatenation of two tensors.

2. For given canonical tensors A;, Ay, the scalar product (2.1) can be computed by

Ri1 Rz d
(A, As) =33 b [ <u§f), vﬁ,{)> . (2.8)
k=1 m=1 (=1



Calculation of (2.8) includes R;R; scalar products of vectors in R”, leading to the overall
complexity

./\/’<.7.> = O(anle)

3. The Hadamard product A® B € R of two tensors A, B € RY, A = [a5], B = [bj], of
the same size 7 is defined componentwise

(A@B)i:aibi, iel.

Hence, for Ay, Ay given by (2.6) we tensorize the Hadamard product by

AL O A, _Zchb ( )®v1))® ..®(u,§d)@v§j>>. (2.9)

This leads to the complexity O(dnR;Rs).

4. In electronic structure calculations, the three dimensional convolution transform with
the Newton convolving kernel, p(x — y) = ”m ik is the most computationally expensive
operation. We employ the discrete version of the multi-dimensional convolution transform
[13]

w(r) = . fWp(z —y)dy, xR supp f C [-b,b]°,

by applying the standard collocation scheme to discretise the convolution product on a tensor
grid

Wgp =w) Xwy Xwsg, wp:={-b+m—-1)h:m=1..,n+1}, £{=1,..,3, (2.10)
with mesh-size h = 2b/n with n being an even number. We denote the grid points by {xmy,},
m € M = {l,..,n+ 1}3. For given piecewise constant basis functions {¢;}, i € Z :=

{1,...,n}?, associated with w3 ,, and a given continuous density function f, let f; = f(y;) be
the representation coefficients of f in {¢;},

~ Zfi¢i(y)a (2.11)

i€z

where y; is the midpoint of the grid-cell (voxel) d; := d;; X d;, X d;; numbered by i € Z, with

8i, = [=b+ (i — 1)h,—=b+ish] (¢ =1,...,3). Now the collocation scheme reads as
f *p = {Wm}mEM7 Z fl 1 - y)dy, ITm € W3 n-
iceZ

As a first step, we precompute the coefficients

n= [ st i€

The coefficient tensor P = [p;] € R? for the Coulomb potential p(z — y) = m is ap-
proximated in the rank-Ry canonical tensor format using the optimised sinc-quadratures

7



2], where the rank parameter Ry = O(|loge|logn) depends logarithmically on both the
required accuracy € > 0 and the grid size n. The 3rd order coefficient tensor F' = [f;] € R?
is approximated either in the rank r = (r,r,r) Tucker format or via the canonical model
with tensor rank R.

Following [13, 14], the resultant discrete convolution tensor [Wy,] can be obtained by
copying the corresponding portion of the tensor convolution in V,

FxP:=l[zy], 2= fipis1, J€T={1,...2n—1} (2.12)
ieZ

centred at j = n, where the sum is over all i,j € Z, which lead to legal subscripts for vj_j1,
le,j—i+1eZl.

Approximating F' in the rank-R canonical format, see (2.2), enables us to compute F % P
in the form (for two canonical tensors as in (2.6))

Ry R

FxP:= A %Ay = Z chb (uk *v(l ) ® (ulg) *0(2)) ® <ul(€) *v(?’)) (2.13)

k=1 m=1

Assuming that one-dimensional convolutions ul(C) « vl € R 1 can be computed in

O(nlogn) operations, the complexity estimate takes the form
N... = O(nlognRnR).

As we already mentioned the tensor product convolution considerably outperforms the con-
ventional 3D FFT having the complexity O(n?logn), see numerics in [15].

3 Calculation of the Hartree-Fock exchange

3.1 Agglomerated representation of the exchange operator

The exchange Galerkin matrix K., with respect to the normalized basis set {gx}r=1. g, is
given by

{KZJ ,_] ik ZJ = __/ / g]( )dxdy, 1,7 =1,... Ry, (3.1)
R3 JR3 Haz yll

where the density matrix 7(z,y) is defined as

Norp

Z%

over all occupied orbitals a.

The low cost of the three-dimensional convolution using the canonical representation of
the convolving tensors makes possible the aggromerated numerical evaluation of the exchange
matrix in the Fock operator. For this purpose, we divide the integration in (3.1) into the



following steps. First, we compute the convolutions of the pointwise products of molecular
orbitals with the vectors from the normalized Gaussian basis set

Waj<x> = / wd’y a = 1, .. .,Nm«b, j = 1, .. .,Ro. (32)
re [z =yl

These are further used for the calculation of contributions to the Galerkin matrix elements
from every orbital a,

Vija = /3 ©a(2)gi(x)Wej(z)dx, 1,57 =1,...Ry. (3.3)
R

The entries of the exchange matrix are then the sums of the corresponding values over all

orbitals
N/2

a=1

We compute the exchange matrix (3.1) using the discrete tensor product representation of
arising functions and operators.

The orbital of the molecule is considered as an expansion over the basis set of well
separable continuous functions gi(x),

Ry
o) = Z cargi(z), T = (31,79, 73) € R?, (3.5)
k=1
where the basis functions g, £ =1, ..., Ry, are represented as the rank-R canonical tensor
products,
R
1 2
(@) =3 gt (@) g (w2) g (w3), (3.6)
v=1

with 1, 2, 3 designating spatial dimensions.

3.2 Discrete computational scheme

GTOs are used as conventional basis sets in electronic structure calculations due to their
separability in spatial variables which is used in the analytical evaluation of the integrals in
the calculation of the Hartree and exchange potentials.

In the following, for numerical illustrations, we choose the discretized Gaussians as vec-
tors in the rank-1 canonical representations of the basis functions, mainly for the sake of
convenient verification of the results of computations (the corresponding Galerkin matrix)
with the standart MOLPRO output [26].

The rank-1 GTO basis functions gx(z), k = 1, ... Ry, are given by (3.6) with R = 1, where

“(4) denotes the generalized univariate Gaussians. The univariate Gaussians g,ig) (x0) =

gk,i
©)
k.1

g, 1(xe), £ = 1,23, are the functions with infinite support given as

)

g;(f)(wz) = (zy — Agp)"* exp(—ag(z — Arg)®), w0 €R, ap >0,



where pyp = 0,1, ... is the polynomial degree, and the points (A; x, As g, A3x) € R? specify
the positions of nuclei in a molecule. In our scheme we use the discrete basis functions (given
by vectors of the canonical tensor representation (2.2)) which are constructed by discretizing
the Gaussians on the given tensor grid by using the associated piecewise constant basis
functions.

Assume that the molecule is embedded in a certain fixed computational box [—b, b]* with
a suitable b > 0. For simplicity of notation, we take n, = n equal for all dimensions. We
introduce the equidistant tensor grid ws, , see (2.10) in §2. The grid points are denoted by
{Zm}, m € M :={1,...,n+1}3. We use representation like (2.11) with f(z) = gi(z), where
the rank-1 coefficients tensor G}, is given by the values of /-mode functions g,(f) at the centers

yz(f) of intervals of the univariate grid [ng),ngll], ip = 1,...,n. This results in canonical

vectors of length n with the entries {g,(f)(yi(f)) n

i[:17

W = {0 W)Y €RY, for (=123, k=1, R, (3.7)

ig=1
such that Gy = 7,21) ® 7,(?2) ® 7,23). By summing tensor products of the canonical vectors with
the corresponding weights ¢, as in (2.2) we obtain the discrete representation of the orbital
Ya, @ = 1,... Ny, in the rank-R,y canonical format,

Ry
U, = Z ca,m,(:) ® 7,&2) ® 7,23), Car €R, (3.8)
k=1

where Ry is the number of basis functions. This discretization can be considered as a
representation in the Galerkin set of basis functions {Gy} obtained by representing the
initial continuous basis set {gx} via piecewise constant basis functions {¢;} on the uniform
grid (see (3.7)).

We use the rank-Ry canonical tensor product representation of the coefficient tensor P
for the Newton potential m, on the same grid. This tensor is precomputed by using the
optimized sinc-quadratures [2, 13], where the rank parameter Ry = O(|loge|logn) depends
logarithmically on both the required accuracy € > 0 and the univariate grid size n. In
particular, for our computations the tensor P, representing the Newton potential has the
canonical rank in the range 20 < Ry < 30, depending on the one-dimension grid size n and
accuracy requirements € > 0.

We present Algorithm 1 describing the computational scheme for evaluation of (3.2) -

(3.4) in tensor product format?.

Lemma 3.1 The complexity of Algorithm 1 for the computation of the exchange Galerkin
matriz K., in the Hartree-Fock equation using the discretized GTO basis is estimated by

2The Hadamard product 6, ; = U, ® G; in the Algorithm 1 can be either (1) stored for all vectors 7, at
step (A) or (2) recomputed before evaluation of the scalar products at step (C) . Due to very low cost of
this operation, and large storage requirements for the case of large grids, O(R2n), we prefer the case (2).

10



Algorithm 1 Computation of the Exchange Matrix in Tensor Arithmetics
Input data: rank-Ry canonical tensors U, € V,, a =1,..., Ny, rank Ry tensor P € V,,,
rank-1 canonical tensors G, = 7,21) ® *y,(f) ® ’y,(:’) , k=1,... Ry, and the filtering threshold
erp > 0.
(A0) Find effective supports o; C [—b,b] for ;, 7 =1,..., Ry, by ep-thresholding,

(2)

3 ¢ o
=0, X0, x o Whereaﬁ):{z:|7](.)(xi)|25p}c{1,...,n}, (=1,23.

VR

fora=1,..., N,

for k=1,.... Ry

(A) Compute the Hadamard product 6, = U, ® G, of tensors U, and Gy by using (2.9).
(B) Compute the tensor convolution O, = 6, * P by using (2.13).

for j=1,..., Ry

(C) Compute the restricted scalar products in the window o,

Ka,k,j = <0a,ja @a,k>\oja

end for j

end for &

end for a.

(D) Sum matrix elements over all orbital indices, Ky; = >
Output data: the exchange matrix K = {Kkj}ﬁ‘;zl.

Norb
a=1

ak.,js for k,j = 1, ceuy Ro.

Proof. This estimate includes the cost of the evaluation of convolutions in (3.2) for every
orbital, O(N,,RxR3nlogn), and the scalar product (3.3) of the tensor O, with the prod-
ucts of the orbitals and Gaussians, O(NypRy Rney). [ ]

Since the canonical rank Ry of tensor P corresponding to the Coulomb potential depends
only logarithmically on n, it can be treated as a constant.

Remark 3.2 Notice that the rank reduction of the canonical tensor Oy after step (5.2)
reduces the complexity to

WKex,red = O(NorbRgnef)- (39)

In the case of large molecules further optimization up to O(N,,,Ran.)-complexity is possible
due to the rank reduction applied to the rank-R, orbitals (tensors U,).

Remark 3.3 The rank-Ry tensors U,, a = 1,..., Ny, representing the orbitals, can be
chosen as the Galerkin basis set {G,}, a = 1,..., Ny, where Ny is usually much smaller
than Ro. This may relaz the critical dependence O(R3) as in Lemma 3.1 above (see also
Lemma 3.1 in [16]).

3.3 Rank reduction

The maximal initial rank of tensor O, at the step (B) in Algorithm 1 is given by Re =
RxRy. We perform the rank reduction for this tensor by the canonical-to-Tucker (C2T)

11



| | CH, | CH;0H | C,H50H |

| Ro | 1250 | 1875 | 2775 |
rr =12, er <1077, Rgpp | 80 90 110
coefr 15 20 23
rr =10, e <1075 Rpgp | 50 70 100
coefr 25 26 27

Table 3.1: Rank reduction for 6, in computation of the exchange matrix for the pseudopo-
tential case of some molecules.

and Tucker-to-canonical (T2C) algorithm introduced and discussed in details in [9, 15]. In
particular, it is shown that the multigrid version of the C2T algorithm applied to the 3-rd
order rank-R canonical tensors has linear comlexity with respect to all parameters of the
input tensor: the canonical rank R, the Tucker rank r, and the univariate grid size n. Thus,
we can reduce the complexity of Algorithm 1 to (3.9) by solely multilinear algebraic methods,
which do not take into account any previous knowledge on the molecular structure.

Table 3.3 shows the average rank reduction by the C2T and T2C algorithms applied
to tensor O, in calculations for the molecules CHy, CH30H and CoH;OH. We present
the approximate canonical ranks Rrgpp (and respective Tucker ranks r7) of the tensors
corresponding to the largest value, over the parameters a = 1,..., Ny, &k = 1,... Ry, to
achieve the prescribed approximation error ey,

Rrep = max Rrep(a, k),
1<a<Norp, 1<k<Ro

where Rrpp(a, k) denotes the reduced canonical rank of ©,, for a given ¢, and g;. Table

3.3 gives also the corresponding reduction coefficient, coefr = RI;;)D.

3.4 Window technique for fast computation of the inner products

We compute the algebraic tensor representation of the discrete electron orbitals U, given
by (3.8) using the coefficients of their representation in the discrete Gaussian basis set fy,(f).
It turns out by the construction that most of 7,(f) have local character (fast exponential
decay) with respect to the size of the whole computation domain [—b,b]*>. Therefore we
precompute effective supports of the canonical vectors 7,(f) by truncating their parts, which
are lower than some predefined threshold ¢ > 0. We call it the “windowing” procedure for
finding the active interval for each Gaussian. In our case, the resulting effective vector size
of the canonical vectors is at average 3 times smaller than the corresponding grid size n
even for small molecules. The resulting “effective” univariate grid size is n.y = an, with
a = a(e) < 1. For example, for small molecules a ~ 0.2 + 0.3 for ¢ = 107°. This leads to
reduced cost of the scalar products with respect to the univariate gris size n.

We expect much stronger windowing effect in the case of large molecules, while it can be
directly applied to the Hadamard products U, ® Gj.

12



H,0, K, Ri, n=8192->n=16384

10

40

Figure 4.1: Left: the entries of exchange matrix for all electron case of H,O. Right: absolute
error of the tensor-structured computation on the grids with n = 8192 and n = 16384.

4 Numerical experiments

We tested the presented tensor-structured method, by the computation of the exchange
Galerkin matrix for the following molecules:

e all electron case : HyO (Nyp, =5, Ry = 41), CHy (Nowp = 5, Ry = 55);

e pseudopotential case: CHy (Ny = 4, Ry = 50), CH30H (N, = 7, Ry = 75) and
CoH;0H (N, = 11, Ry = 111).

The calculations are performed on a standard SUN station using Matlab 7.6. In presented
figures we give the absolute difference of the results of our computations with the corre-
sponding exchange matrix calculated by the MOLPRO program [26].

The computational box [—b, b]* for small molecules is in the range of 2b = 14 A for H,0,
and 20 = 20 ;1 for CHy, CoH5OH, and CH30H. The mesh-size varies from h ~ 2 - 1072 to
81071 A.

4.1 All electron case

For the molecules with moderate size Ry of basis sets, like CH4 or HyO the grid-sizes up to
n ~ 1.6-10* are computationally feasible for MATLAB, which is equivalent to computations
with n® ~ 10'2 nodes in the volume. These grids enable accurate computations for all
electron case, resolving strong cusps corresponding to the core electrons, see Figures 4.2 and
4.1.

Computation of the exchange Galerkin matrix for all electron case of HoO molecule
is a challenging problem due to “sharp” Gaussians corresponding to core electrons of the
Oxygen atom which should be resolved using fine grids. Our technique solves this problem
by enabling fine grids up to n = 16384. Figure 4.1 (left) shows the absolute values of

13



abs. er. CH4, K_, Ri 4096
ex

Figure 4.2: Left: the entries of exchange matrix for CHy. Right: absolute approximation
error of the tensor-structured computations on the grids with n = 2048 and n = 4096.

abs.er. KEX, Pseudo CH3OH, Ri(512,1024)

x 10

c)

Figure 4.3: Left: the exchange matrix for the pseudopotential case of CH3OH. Right: absolute
approximation error of the tensor-product computation on the grids with n = 512 and
n = 1024.
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abs. er. Kex’ PC2H50H, Ri 512

abs. er. Kex, pseudo CH4, Ri: n=1024

Figure 4.4: a) Absolute error in the tensor-product computation of the exchange matrix for
the pseudopotential case of molecules CHy (left) and CoH;OH (right).

| n® | 643 [ 1283 [ 2567 | 512° | 10247 |
H,0 1 [13 [20 [32 [80
CHy (ps) 1 [13 [20 [36 [89
CH3OH (ps) |1 |13 |19 [33 [5.1

Table 4.1: Comparison of relative times.

the exchange matrix entries, Figure 4.1 (right) shows that the absolute error of the tensor-
structured computations using the Richardson extrapolation on the grids with n = 8192 and
n = 16384. We reach the accuracy 1.89 - 1075 in the “cusp area”, the remaining entries are
computed with the absolute error in the range of 1076 = 1072,

Figure 4.2 (left) shows the absolute values of the exchange matrix of CH, and Figure
4.2 (right) shows the absolute error of tensor-structured computations reaching the accuracy
10~ by using the Richardson extrapolation on the grids with n = 2048 and n = 4096. Again,
the matrix entries apart from the “cusp area” are computed with much higher accuracy.

4.2 Pseudopotential case

We consider the pseudopotential case for larger molecules, achieving the accuracy up to 107¢,
using smaller grid sizes up to n = 1024. The Fortran version of the loops including steps
(C) = (D) in Algorithm 1 can improve dramatically the CPU computation time.

Figure 4.3 (left) shows entries of the exchange matrix of CH3OH molecule and Figure
4.3 (right) shows that the absolute error of tensor-structured computations for this molecule
using the Richardson extrapolation on grids with n = 512,1024 yield the accuracy ~ 1075.
Figure 4.4 shows the absolute error of the tensor-structured computations for the exchange
matrices in the pseudopotential case of the CH3OH molecule (left) and CoHsOH (right),
correspondingly. For CH3OH the Richardson extrapolation on two consequent grids with
n = 512,1024 yields the accuracy ~ 107°, while for CoH5OH we obtain 7 - 10~* already on

15



the grids n = 256, 512.

Table 4.2 shows linear scaling of relative computation times with respect to the one-
dimension grid size n, in respective units of the coarsest grid calculations (n = 64) for one
orbital.

These calculations show that the tensor-structured methods on 3D Cartesian grids
give promising results for their application in computation of the multivariate integrals
in quantum chemistry. These can include perspectives of computations either for large
molecules applying discretization on fine Cartesian grids, or in the framework of the
post-Hartree-Fock models.
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