
Max-Plan
k-Institut
für Mathematik

in den Naturwissenschaften

Leipzig

Hierarchical Singular Value Decomposition of

Tensors

(revised version: March 2010)

by

Lars Grasedyck

Preprint no.: 27 2009

HIERARCHICAL SINGULAR VALUE DECOMPOSITION OF

TENSORS

LARS GRASEDYCK†

Abstract. We define the hierarchical singular value decomposition (SVD) for tensors of order
d ≥ 2. This hierarchical SVD has properties like the matrix SVD (and collapses to the SVD in
d = 2), and we prove these. In particular, one can find low rank (almost) best approximations
in a hierarchical format (H-Tucker) which requires only O((d − 1)k3 + dnk) parameters, where d

is the order of the tensor, n the size of the modes and k the (hierarchical) rank. The H-Tucker
format is a specialization of the Tucker format and it contains as a special case all (canonical) rank
k tensors. Based on this new concept of a hierarchical SVD we present algorithms for hierarchical
tensor calculations allowing for a rigorous error analysis. The complexity of the truncation (finding
lower rank approximations to hierarchical rank k tensors) is in O((d−1)k4 +dnk2) and the attainable
accuracy is just 2–3 digits less than machine precision.

Key words. Tensor, Tucker, hierarchical Tucker, high-dimensional, low rank, SVD

AMS subject classifications. 15A69, 90C06, 65K10

1. Introduction. Several problems of practical interest in physical, chemical,
biological or mathematical applications naturally lead to high-dimensional (multi-
variate) approximation problems and thus are essentially not tractable in a naive way
when the dimension d grows beyond d = 10. Examples are partial differential equa-
tions with many stochastic parameters, computational chemistry computations, the
multiparticle electronic Schrödinger equation etc. This is due to the fact that the
computational complexity or error bounds must depend exponentially on the dimen-
sion parameter d, which is coined by Bellman the curse of dimensionality. In order
to make the setting more concrete we consider a multivariate function

f : [0, 1]d → R

discretized by tensor basis functions

φ(i1,...,id)(x1, . . . , xd) :=

d∏

µ=1

φiµ
(xµ), φiµ

: [0, 1] → R, 1 ≤ iµ ≤ nµ, 1 ≤ µ ≤ d :

f(x1, . . . , xd) =

n1∑

i1=1

· · ·
nd∑

id=1

ci1,...,id
φ(i1,...,id)(x1, . . . , xd).

The one-dimensional basis functions φiµ
(xµ) could for example be higher order La-

grange polynomials, characteristic functions, higher order wavelets or any other set
of basis functions for an nµ-dimensional subspace of R

[0,1].

The total number N of basis functions scales exponentially in d as N =
∏d

µ=1 nµ.
One strategy to overcome this curse (in complexity) is to assume some sort of smooth-
ness of the function or object to be approximated so that one can choose a subspace
Ṽ of

V = span{φ(i1,...,id) | (i1, . . . , id) ∈ {1, . . . , n1} × · · · × {1, . . . , nd}}.

†Max Planck Institute for Mathematics in the Sciences, Inselstr. 22-26, D-04103 Leipzig, Ger-
many. Phone: ++49(0)3419959827, ++49(0)3419959752. FAX: ++49(0)3419959999. Email:
lgr@mis.mpg.de

1

2 L. GRASEDYCK

This leads to the sparse grids method [19, 8] which chooses (adaptively [9] or non-
adaptively) combinations of basis functions. An alternative way to approximate the
multivariate function f is to separate the variables, i.e. to seek for an approximation
of the form

f(x1, . . . , xd) ≈ f̃(x1, . . . , xd) =

k∑

i=1

d∏

µ=1

fµ,i(xµ)

where each of the univariate functions fµ,i(x) : [0, 1] → R is discretized by the full
one-dimensional set of basis functions φjµ

(x), jµ = 1, . . . , nµ. If the separation rank k
is small compared to N , then this is an efficient data-sparse representation. However,
whereas sparse grids define a linear space, the set of functions representable with
separation rank k is not a linear space. In particular it is not closed with respect
to addition (the rank increases) and thus a necessary basic operation is to truncate
representations from larger to smaller rank:

For given f ∈ V find f̃ ∈ V of rank k s.t. ‖f − f̃‖ ≈ inf
v∈V,rank(v)=k

‖f − v‖.

This approximation problem suffers from the following difficulties:
1. A minimizer f̃ does not necessarily exist (problem is ill-posed), cf. [5]. The

corresponding minimizing sequence consists of factors with increasing norm
(and leads to severe cancellation effects). This can easily be overcome by
Lagrange multipliers or penalty terms involving the norm of the factors.

2. There are no known algorithms allowing for an a priori estimate of the trunca-
tion error, see e.g. [12] for an overview on tensor algorithms. This is a severe
bottleneck, because even for model problems one cannot be sure to find ap-
proximations of almost optimal rank — despite the fact that one might be
able to prove that such a low rank approximation exists.

3. The approximation problem is rather difficult to solve if one wants to obtain
an accuracy suitable for standard numerical applications, see e.g. [2, 7, 15]
for the state of the art of efficient algorithms.

Thus, for some cases it is known how to construct a low separation rank approximation
with high accuracy and stable representation but in order to use this low rank format
as a basic format in numerical algorithms one needs a reliable truncation procedure
that can be used universally without tuning parameters.

A new kind of separation scheme was introduced by Hackbusch and Kühn [10]
and is coined hierarchical low rank tensor format. This new format allows the repre-
sentation of order d tensors with (d− 1)k3 + k

∑d
µ=1 nµ data, where k is the involved

— implicitly defined — representation rank. A similar format has been presented by
other groups: the tree Tucker and tensor train format [14, 13] as well as the sequential
unfolding SVD [16]. To our best knowledge the first successful approach to a hierar-
chical format has been developed by Beck & Jäckle & Worth & Meyer [1] and Wang
& Thoss[18] (these references were kindly pointed out to us by Christian Lubich and
Michael Griebel). We refer to Section 5 for a more detailed comparison.

In this article we will define the hierarchical rank of a tensor by singular value
decompositions (SVD). The hierarchical format is then characterized by a nestedness
of subspaces that stem from the SVDs. We present a corresponding hierarchical SVD
which has a similar property as the higher order SVD (HOSVD) by De Lathauwer et
al. [4], namely that the best approximation up to a factor of

√
2d− 3 is obtained via

cutting off the hierarchical singular values. We then derive a truncation procedure

Hierarchical SVD of Tensors 3

for (1.) dense or unstructured tensors as well as (2.) those already given in hierar-
chical format. In both cases almost linear (optimal) complexity with respect to the
number of input data is achieved, in the latter case the truncation is of complexity
O((d − 1)k4 + k2

∑d
µ=1 nµ). Finally, we present numerical examples that underline

the attainable accuracy which is close to machine precision (roughly 10−13 in dou-
ble precision arithmetic) and apply the truncation for hierarchical tensors of order
d = 1, 000, 000.

2. Tucker Format. Notation 2.1 (Index set). Let d ∈ N and n1, . . . , nd ∈ N.
We consider tensors as vectors over product index sets. For this purpose we introduce
the d-fold product index set

I := I1 × · · · × Id, Iµ := {1, . . . , nµ}, (µ ∈ {1, . . . , d}).

The order of the index sets can be important, but since it will always be clear
which index belongs to which index set we will treat them without specifying the
order. If the ordering becomes important it will be mentioned.

Definition 2.2 (Mode, matricization, fibre). Let A ∈ R
I. The dimension

directions µ = 1, . . . , d are called the modes. Let µ ∈ {1, . . . , d}. We define the index
set

I(µ) := I1 × · · · × Iµ−1 × Iµ+1 × · · · × Id

and the corresponding µ-mode matricization by

Mµ : R
I → R

Iµ×I(µ)

, (Mµ(A))iµ,(i1,...,iµ−1,iµ+1,...,id) := A(i1,...,id).

We use the short notation

A(µ) := Mµ(A)

and call this the µ-mode matricization of A. The columns of A(µ) define the µ-mode
fibres of A.

The µ-mode matricization A(µ) is in one-to-one correspondence with the tensor A.
The vector 2-norm ‖A‖2 corresponds to the matrix Frobenius norm: ‖A(µ)‖F = ‖A‖2.

Definition 2.3 (Multilinear multiplication ◦). Let A ∈ R
I, µ ∈ {1, . . . , d} and

Uµ ∈ R
Jµ×Iµ . Then the µ-mode multiplication Uµ ◦µA is defined by the matricization

(Uµ ◦µ A)(µ) := UµA
(µ) ∈ R

Jµ×I(µ)

,

with entries

(Uµ ◦µ A)(i1,...,iµ−1,j,iµ+1,...,id) :=

nµ∑

iµ=1

(Uµ)j,iµ
A(i1,...,id).

The multilinear multiplication with matrices Uν ∈ R
Jν×Iν , ν = 1, . . . , d, is defined by

(U1, . . . , Ud) ◦A := U1 ◦1 · · ·Ud ◦d A ∈ R
J1×···×Jd .

The order of the mode multiplications is irrelevant for the multilinear multiplica-
tion.

4 L. GRASEDYCK

Definition 2.4 (Tucker rank, Tucker format, mode frames). The Tucker rank of
a tensor A ∈ R

I is the tuple (k1, . . . , kd) with (element-wise) minimal entries kµ ∈ N0

such that there exist (column-wise) orthonormal matrices Uµ ∈ R
nµ×kµ and a so-called

core tensor C ∈ R
k1×···×kd with

A = (U1, . . . , Ud) ◦ C. (2.1)

The representation of the form (2.1) is called the orthogonal Tucker format, or in short
we say A = (U1, . . . , Ud)◦C is an orthogonal Tucker tensor. We call a representation

of the form (2.1) with arbitrary Uµ ∈ R
nµ×k̃µ the Tucker format. The set of tensors

of Tucker rank at most (k1, . . . , kd) is denoted by Tucker(k1, . . . , kd). The matrices
Uµ are called mode frames for the Tucker tensor representation.

For fixed orthonormal mode frames Uµ ∈ R
nµ×kµ the unique core tensor C mini-

mizing ‖A− (U1, . . . , Ud) ◦ C‖ is

C = (UT
1 , . . . , U

T
d) ◦A.

The following definition is due to De Lathauwer et al. [4].
Definition 2.5 (Tucker truncation). Let A ∈ R

I . Let

A(µ) = UµΣµV
T
µ , Uµ ∈ R

nµ×nµ ,

be a singular value decomposition with diagonal matrix Σµ = diag(σµ,1, . . . , σµ,nµ
).

Then the truncation of A to Tucker rank (k1, . . . , kd) is defined by

T(k1,...,kd)(A) := (Ũ1Ũ
T
1 , . . . , ŨdŨ

T
d) ◦A = (Ũ1, . . . , Ũd) ◦

(
(ŨT

1 , . . . , Ũ
T
d) ◦A

)
,

where Ũµ is the matrix of the first kµ columns of Uµ.

The truncation T(k1,...,kd)(A) yields an orthogonal Tucker tensor (Ũµ is orthogo-

nal). The exact representation A = (Ũ1, . . . , Ũd) ◦ C is called the higher order SVD
(HOSVD). Since the core tensor is uniquely defined by the orthonormal mode frames
Uµ, the approximation of a tensor A in Tucker(k1, . . . , kd) is a minimization problem
on a (product) Grassmann manifold. A best approximation Abest always exists. The
geometry of the Grassmann manifold can be exploited to develop efficient Newton
and quasi-Newton methods for a local optimization [6, 17]. As an initial guess one
can use the Tucker truncation which allows for an explicit a priori error bound given
next.

Lemma 2.6 (Tucker approximation). Let A ∈ R
I. We denote the best approx-

imation of A in Tucker(k1, . . . , kd) by Abest. The error of the truncation is bounded
by

‖A− T(k1,...,kd)(A)‖ ≤

√√√√
d∑

µ=1

nµ∑

i=kµ+1

σ2
µ,i ≤

√
d‖A−Abest‖,

where the σµ,i are the µ-mode singular values from Definition 2.5.
Proof. Property 10 in [4].
The error bound stated in Lemma 2.6 is an a priori upper bound for the truncation

error in terms of the best approximation error. The truncation is in general not a best
approximation (but it may serve as an initial guess for a subsequent optimization).
In the following section we will provide an elegant proof for this Lemma.

Hierarchical SVD of Tensors 5

0 3210321Level:

{1,...,5}

{3,4,5}
{4,5}

{4}

{5}

{3}

{1,2}

{2}

{1}

Fig. 3.1. Left: A dimension tree for d = 5. Right: The interior nodes I(TI) are colored dark
(brown), the leaves L(TI) are light (green) and the root is white.

3. Hierarchical Tucker Format. The hierarchical Tucker format is a multi-
level variant of the Tucker format — multilevel in terms of the order of the tensor.
In order to define the format we have to introduce a hierarchy among the modes
{1, . . . , d}.

Definition 3.1 (Dimension tree). A dimension tree or mode cluster tree TI for
dimension d ∈ N is a tree with root Root(TI) = {1, . . . , d} and depth p = ⌈log2(d)⌉ :=
min{i ∈ N0 | i ≥ log2(d)} such that each node t ∈ Td is either

1. a leaf and singleton t = {µ} on level ℓ ∈ {p− 1, p} or
2. the union of two disjoint successors S(t) = {s1, s2}:

t = s1 ∪̇ s2. (3.1)

The level ℓ of the tree is defined as the set of all nodes having a distance of exactly ℓ
to the root, cf. Figure 3.1. We denote the level ℓ of the tree by

T ℓ
I := {t ∈ TI | level(t) = ℓ}.

The set of leaves of the tree is denoted by L(TI) and the set of interior (non-leaf)
nodes is denoted by I(TI). A node of the tree is a so-called mode cluster (a union of
modes).

The dimension tree is almost a complete binary tree, except that on the last but
one level there may appear leaves. In principle one could base the following consid-
erations on arbitrary non-binary dimension trees, but for the ease of presentation we
have restricted this. The canonical dimension tree is of the form presented in
Figure 3.1 where each node t = {µ1, . . . , µq}, q > 1, has two successors

t1 := {µ1, . . . , µr}, r := ⌊q/2⌋ := max{i ∈ N0 | i ≤ q/2}, t2 := {µr+1, . . . , µq}.

Lemma 3.2. On each level ℓ of the dimension tree TI of depth p the nodes are
disjoint subsets of {1, . . . , d}. The number of nodes on level ℓ is

#T ℓ
I =

{
2ℓ for ℓ < p and
2d− 2p (≤ d) for ℓ = p.

For a complete binary tree 2d−2p = 2p+1−2p = 2p holds. The total number of nodes
is 2d− 1, the number of leaves is d and the number of interior nodes is d− 1.

Proof. The disjointness follows by (3.1). For levels ℓ = 0, . . . , p − 1 the tree is
binary and thus the number of nodes doubles for each level. On the last but one level

6 L. GRASEDYCK

there are 2p−1 (disjoint) nodes, these can be either singletons (s) or two-element sets
(t), thus #s + #t = 2p−1. The total number of modes is d, thus #s + 2#t = d.
Together we have #t = d − 2p−1, i.e. 2#t = 2d − 2p nodes (singletons) on level p.
The total number of nodes is

p−1∑

ℓ=0

2ℓ + 2d− 2p = 2p − 1 + 2d− 2p = 2d− 1.

Definition 3.3 (Matricization). For a mode cluster t in a dimension tree TI we
define the complementary cluster t′ := {1, . . . , d} \ t,

It := ×
µ∈t

Iµ, It′ := ×
µ∈t′

Iµ,

and the corresponding t-matricization

Mt : R
I → R

It×It′ , (Mt(A))(iµ)µ∈t,(iµ)µ∈t′
:= A(i1,...,id),

where the special case is M∅(A) := M{1,...,d}(A) := A. We use the short notation

A(t) := Mt(A).
We provide a simple example: let the tensor A be of the form

A = a⊗ b⊗ q ⊗ r ∈ R
I1×I2×I3×I4 ,

where ⊗ denotes the usual outer product or tensor product

(x1 ⊗ · · · ⊗ xd)(i1,··· ,id) = (x1)i1 · · · · · (xd)id
=

d∏

µ=1

(xµ)iµ
.

Then the matricizations with respect to {1, 2} and {2, 3} are

A({1,2}) = (a⊗ b)(q ⊗ r)T ∈ R
(I1×I2)×(I3×I4),

A({2,3}) = (b ⊗ q)(a⊗ r)T ∈ R
(I2×I3)×(I1×I4).

Definition 3.4 (Hierarchical rank). Let TI be a dimension tree. The hierarchi-
cal rank (kt)t∈TI

of a tensor A ∈ R
I is defined by

∀t ∈ TI : kt := rank(A(t)).

The set of all tensors of hierarchical rank (node-wise) at most (kt)t∈TI
is denoted by

H-Tucker((kt)t∈TI
) := {A ∈ R

I | ∀t ∈ TI : rank(A(t)) ≤ kt}.

According to the definition of the hierarchical rank one can define the hierarchi-
cal SVD by the node-wise SVDs of the matrices A(t), cf. Figure 3.2. However, it
is not obvious why and how this should lead to an efficient representation and cor-
respondingly efficient algorithms. Instead, we will introduce a nested representation
and reveal the connection to the node-wise SVDs afterwards.

Definition 3.5 (Frame tree, t-frame, transfer tensor). Let t ∈ TI be a mode
cluster and (kt)t∈TI

a family of non-negative integers. We call a matrix Ut ∈ R
It×kt

Hierarchical SVD of Tensors 7

3210Level:

22(625)

22(25)

22(25)

22(15625)

22(25)

22(625)
22(25)

22(25)

Fig. 3.2. For each non-root node t ∈ TI of the dimension tree (left, cf. Figure 3.1) a SVD of
A(t) is computed. In each box for the right tree the largest 24 singular values of A(t) are plotted in
logarithmic scale ranging from 1 down to 10−16 (on the abscissa the number of the singular value
and on the ordinate the logarithm of the singular value). The first number printed in the box is the
number of singular values larger than 10−14 and the number in brackets is the cardinality of It.

a t-frame and a tuple (Us)s∈TI
of frames a frame tree. A frame is called orthogonal

if the columns are orthonormal and a frame tree is called orthogonal if each frame
except the root frame is orthogonal. A frame tree is nested if for each interior
mode cluster t with successors S(t) = {t1, t2} the following relation holds:

span{(Ut)i | 1 ≤ i ≤ kt} ⊂ span{(Ut1)i ⊗ (Ut2)j | 1 ≤ i ≤ kt1 , 1 ≤ j ≤ kt2}.

The corresponding tensor Bt ∈ R
kt×kt1×kt2 of coefficients for the representation of

the columns (Ut)i of Ut by the columns of Ut1 , Ut2 ,

(Ut)i =

kt1∑

j=1

kt2∑

l=1

(Bt)i,j,l (Ut1)j ⊗ (Ut2)l, (3.2)

is called the transfer tensor.
For a nested frame tree it is sufficient to provide the transfer tensors Bt for all

interior mode clusters t ∈ I(TI) and the t-frames Ut only for the leaves t ∈ L(TI).
Note that we have not yet imposed an orthogonality condition on the t-frames.

Definition 3.6 (Hierarchical Tucker format). Let TI be a dimension tree,
(kt)t∈TI

a family of non-negative integers and A ∈ H-Tucker((kt)t∈TI
). Let (Ut)t∈TI

be a nested frame tree with transfer tensors (Bt)t∈I(TI) and

∀t ∈ TI : image(A(t)) = image(Ut), A = U{1,...,d}.

Then the representation ((Bt)t∈I(TI), (Ut)t∈L(TI)) is a hierarchical Tucker represen-
tation of A. The family (kt)t∈TI

is the hierarchical representation rank. Note that
the columns of Ut need not be linear independent.

The representation of a tensor A ∈ H-Tucker((kt)t∈TI
) in the hierarchical Tucker

format with orthogonal frame tree and minimal kt is unique up to orthogonal trans-
formation of the t-frames.

Lemma 3.7 (Storage complexity). Let TI be a dimension tree
and A ∈ H-Tucker((kt)t∈TI

) given in hierarchical Tucker representation

8 L. GRASEDYCK

((Bt)t∈I(TI), (Ut)t∈L(TI)) and Bt ∈ R
kt×kt1×kt2 for S(t) = {t1, t2}, i.e. Bt of

minimal size. Then the total storage for all transfer tensors (Bt)t∈I(TI) and
leaf-frames (Ut)t∈L(TI) in terms of number of entries is bounded by

Storage((Bt)t∈I(TI), (Ut)t∈L(TI)) ≤ (d− 1)k3 + k

d∑

µ=1

nµ, k := max
t∈TI

kt, (3.3)

i.e. linearly in the dimension d (provided the representation parameter k is uniformly
bounded).

Proof. For each leaf t = {µ} of the dimension tree we have to store the t-frame
Ut ∈ R

nµ×kt which yields the second term in (3.3). For all d−1 interior mode clusters
(Lemma 3.2) we have to store the transfer tensors Bt ∈ R

kt×kt1×kt2 , each has at most
k3 entries.

Lemma 3.8 (Successive truncation). Let A ∈ R
I and πt, πs orthogonal projec-

tions. Then

‖A− πtπsA‖2 ≤ ‖A− πtA‖2 + ‖A− πsA‖2.

Proof. We have

‖A− πtπsA‖ = ‖(I − πt)A+ πt(A− πsA)‖.

Due to the orthogonality of (I − πt), πt we conclude

‖A− πtπsA‖2 = ‖(I − πt)A‖2 + ‖πt(A− πsA)‖2 ≤ ‖(I − πt)A‖2 + ‖A− πsA‖2.

Definition 3.9 (Orthogonal frame projection). Let TI be a dimension tree,
t ∈ TI and Ut an orthogonal t-frame. Then we define the orthogonal frame projection
πt : R

I → R
I in matricized form by

(πtA)(t) := UtU
T
t A

(t) (t 6= {1, . . . , d}), π{1,...,d}A := A.

In particular Lemma 3.8 proves Lemma 2.6: let Ut, t = {µ}, denote the matrix
of the kt singular vectors of A(t) corresponding to the largest singular values. Then
‖A− πtA‖2 =

∑nµ

i=kµ+1 σ
2
µ,i. Since πtA is the best approximation of A with µ-mode

rank kt, we also have ‖A− πtA‖2 ≤ ‖A−Abest‖2 for the best Tucker approximation
Abest and thus

‖A− T(k1,...,kd)(A)‖ ≤
√
d‖A−Abest‖.

The order of the projections in a product of the form (
∏

t∈TI
πt) is relevant (the

πt do not necessarily commute). One has to be careful with the ordering, because the
result of the product of the projections differs structurally.

Lemma 3.10. Let TI be a dimension tree and A ∈ R
I. For all t ∈ TI let

Ut ∈ R
It×kt be orthogonal t-frames. Then for any order of the projections πt holds

‖A−
∏

t∈TI

πtA‖2 ≤
∑

t∈TI

‖A− πtA‖2.

Hierarchical SVD of Tensors 9

Proof. Apply Lemma 3.8 successively for all nodes of the dimension tree.
Theorem 3.11 (Hierarchical truncation error). Let TI be a dimension tree and

A ∈ R
I. Let Abest denote the best approximation of A in H-Tucker((kt)t∈I) and let πt

be the orthogonal frame projection for the t-frame Ut that consists of the left singular
vectors of A(t) corresponding to the kt largest singular values σt,i of A(t). Then for
any order of the projections πt, t ∈ TI, holds

‖A−
∏

t∈TI

πtA‖ ≤
√∑

t∈TI

∑

i>kt

σ2
t,i ≤

√
2d− 2‖A−Abest‖.

Proof. For any of the projections holds ‖A − πtA‖2 =
∑

i>kt
σ2

t,i ≤ ‖A− Abest‖
and for the root ‖A− π{1,...,d}A‖ = 0 (w.l.o.g. k{1,...,d} = 1). Applying Lemma 3.10
and Lemma 3.2 yields

‖A−
∏

t∈TI

πtA‖2 ≤
∑

t∈TI

∑

i>kt

σ2
t,i ≤ (2d− 2)‖A−Abest‖2.

Remark 3.12. The estimate given in the previous theorem is not optimal and
it can be improved as follows: for the root t of the dimension tree and its successors
t1, t2 one can combine both projections πt1 .πt2 into a single projection via the SVD.
This combined projection (with the pairs of the singular vectors) then has the same
error as any of the two projections πt1 or πt2 . Thereby, the error of the truncation
can be estimated by

‖A−
∏

t∈TI

πtA‖ ≤
√

2d− 3‖A−Abest‖.

In dimension d = 2 this coincides with the SVD estimate and in d = 3 this coincides
with the original one-level Tucker estimate by De Lathauwer et al.

Definition 3.13 (Kronecker product). The Kronecker product A ⊗K B of two
matrices A ∈ R

I×J , B ∈ R
K×L is defined by

(A⊗K B)(i,k),(j,ℓ) := Ai,jBk,ℓ, A⊗K B ∈ R
(I×K)×(J×L).

Example 3.14 (Increasing the rank by projection). We consider the tensor
A ∈ R

3×3×3 in matricized form

A({1,2}) :=
[
u1 ⊗ q1 u2 ⊗ q2 u1 ⊗ q2

]
, A

({1,2})
(i,j),ℓ =






(u1 ⊗ q1)i,j if ℓ = 1
(u2 ⊗ q2)i,j if ℓ = 2
(u1 ⊗ q2)i,j if ℓ = 3

with vectors

u1 =




1
0
0



 , u2 =




0
1
0



 , q1 =




1/

√
2

0

1/
√

2



 , q2 =




0
1
0



 .

The mode cluster t = {1, 2} has the two successors t1 = {1}, t2 = {2} and we consider
the orthogonal mode frames

Ut :=
[
u1 ⊗ q1 u2 ⊗ q2 q1 ⊗ q2

]
, Ut1 :=

[
u1 u2

]
, Ut2 :=

[
q1 q2

]
.

10 L. GRASEDYCK

Clearly, πt1 will project to t1-rank rank((πt1A)(1)) = 2. We will now show that the
rank is at least 3 if we apply all three projectors. The matrix Q for the projection
πt1πt2 is given by the Kronecker product

Q = Ut1U
T
t1 ⊗K Ut2U

T
t2 = (u1u

T
1 + u2u

T
2) ⊗K (q1q

T
1 + q2q

T
2).

We thus obtain

QUt =
[
u1 ⊗ q1 u2 ⊗ q2

1√
2
u1 ⊗ q2

]
.

The combined projection reads

(πtπt1πt2A)({1,2}) = UtU
T
t QA

({1,2}) = Ut(QUt)
TA({1,2})

= Ut

[
u1 ⊗ q1 u2 ⊗ q2

1√
2
u1 ⊗ q2

]T
A({1,2})

= Ut




1 0 0
0 1 0
0 0 1√

2



 =
[
u1 ⊗ q1 u2 ⊗ q2

1√
2
q1 ⊗ q2

]
.

The matricization with respect to t1 = {1} is of rank three,

(πtπt1πt2A)(1) =
[
u1q

T
1 u2q

T
2 q1(

1√
2
q2)

T
]
,

because u1, u2, q1 are linearly independent. We conclude: the first projection πt1πt2

maps A into Tucker(2, 2, 3), but after the coarser projection πt the 1-mode rank is
three and thus πtπt1πt2A 6∈ Tucker(2, 2, 3). This is because πt mixes the t1-frame and
the t2-frame.

Lemma 3.15 (Structure of the hierarchical truncation). Let TI be a dimen-
sion tree of depth p, A ∈ R

I and (kt)t∈I a family of non-negative integers. Let
(Ut)t∈TI

, Ut ∈ R
It×kt , be an orthogonal frame tree (not necessarily nested). Then the

tensor

AH :=
∏

t∈T p

I

πt · · ·
∏

t∈T 1
I

πtA

belongs to H-Tucker((kt)t∈I).
Proof. We define the tensors

AH,ℓ :=
∏

t∈T ℓ
I

πt · · ·
∏

t∈T 1
I

πtA.

We prove rank(A
(t)
H,ℓ) ≤ kt for all t ∈ TI with level(t) ≤ ℓ by induction over the level

ℓ = 1, . . . , p. Level ℓ = 1 is the Tucker truncation and thus the statement is true for
ℓ = 1. Now let ℓ > 1 and assume that

∀t ∈ TI , level(t) ≤ ℓ− 1 : rank(A
(t)
H,ℓ−1) ≤ kt.

By construction

AH,ℓ =
∏

t∈T ℓ
I

πtAH,ℓ−1.

Hierarchical SVD of Tensors 11

This is the Tucker truncation on level ℓ applied to AH,ℓ−1 and thus for all t ∈ T ℓ
I on

level ℓ the rank bound is fulfilled. It remains to show that for all levels 0, . . . , ℓ−1 the
rank bound is (still) fulfilled, i.e., that the rank is not increased by the projections on

level ℓ. Now let t ∈ T j
I , j < ℓ. Let s ∈ T ℓ

I . We will show that the rank of A
(t)
H,ℓ−1 is

not increased by the projection πs. Due to the tree structure s is either a subset of t
or they are disjoint.
Case s ⊂ t: Let ŝ := t \ s. Then the projection πs is of the matricized form

(πsA)(t) =
(
UsU

T
s ⊗K I

)
A(t)

with I being the Iŝ × Iŝ identity. The rank is not increased by the multiplication.
Case s∩t = ∅: Let ŝ := {1, . . . , d}\(t∪s). Then the projection πs is of the matricized
form

(πsA)(t) = A(t)
(
UsU

T
s ⊗K I

)

with I being the Iŝ × Iŝ identity. The rank is not increased by the multiplication.
Notation 3.16. By

ψt,k(A) ∈ R
It×k

we denote the It × k matrix whose columns are the left singular vectors of A(t) corre-
sponding to the k largest singular values of A(t).

Definition 3.17 (Hierarchical root-to-leaves truncation). Let TI be a dimension
tree of depth p, (kt)t∈I a family of non-negative integers and A ∈ R

I . We define the
hierarchical root-to-leaves truncation AH ∈ H-Tucker((kt)t∈I) by

AH :=
∏

t∈T p

I

πt · · ·
∏

t∈T 1
I

πtA,

where πt are the projections based on Ut := ψt,kt
(A) ∈ R

It×kt .
The hierarchical Tucker representation of AH from the previous definition is ob-

tained by projection of the t-frames into the span of the sons Ut1⊗KUt2 . The procedure
for the construction is given in Algorithm 1. We want to remark that the algorithm
is formulated for arbitrary tensors and the specialization to H-Tucker tensors is the
topic of the next section.

Theorem 3.18 (Characterization of hierarchical approximability). Let TI be a
dimension tree, A ∈ R

I , (kt)t∈TI
a family of non-negative integers and ε > 0. If

there exists a tensor Abest of hierarchical rank (kt)t∈I and ‖A−Abest‖ ≤ ε, then the
singular values of A(t) for each node t can be estimated by

√∑

i>kt

σ2
i ≤ ε.

On the other hand, if the singular values fulfill the bound
√∑

i>kt
σ2

i ≤ ε/
√

2d− 3,

then the truncation yields an H-Tucker tensor AH :=
∏

t∈TI
πtA such that

‖A−AH‖ ≤ ε.

12 L. GRASEDYCK

Proof. The second part is proven by Theorem 3.11. The first part follows from the
fact that (Abest)(t) is a rank kt approximation of A(t) with ‖A(t) − (Abest)(t)‖F ≤ ε.

In Algorithm 1 we provide a method for the truncation of an arbitrary tensor to
hierarchical rank (kt)t∈TI

, of course one can as well prescribe node-wise tolerances εt

for the truncation of singular values: according to Theorem 3.18 one can prescribe
node-wise tolerance ε/

√
2d− 2 in order to obtain a guaranteed error bound of ‖A−

AH‖ ≤ ε. The complexity of Algorithm 1 is estimated in Lemma 3.19.

Algorithm 1 Root-to-leaves truncation of arbitrary tensors to H-Tucker format

Require: Input tensor A ∈ R
I , dimension tree TI (depth p > 0), target representa-

tion rank (kt)t∈TI
.

for each singleton t ∈ L(TI) do

Compute an SVD of A(t) and store the dominant kt left singular vectors in the
columns of the t-frame Ut.

end for

for ℓ = p− 1, . . . , 0 do

for each mode cluster t ∈ I(TI) on level ℓ do

Compute an SVD of A(t) and store the dominant kt left singular vectors in the
columns of the t-frame Ut.
Let Ut1 and Ut2 denote the frames for the successors of t on level ℓ+1. Compute
the entries of the transfer tensor:

(Bt)i,j,ν := 〈(Ut)i, (Ut1)j ⊗ (Ut2)ν〉

end for

end for

Compute the entries of the root (with sons t1, t2) transfer tensor:

(B{1,...,d})1,j,ν := 〈(A, (Ut1)j ⊗ (Ut2)ν〉

return H-Tucker representation ((Ut)t∈L(TI), (Bt)t∈I(TI)) for AH ∈
H-Tucker((kt)t∈TI

)).

Lemma 3.19 (Complexity of Algorithm 1). The complexity of Algorithm 1 for a

tensor A ∈ R
I and dimension tree TI of depth p > 0 is in O

((∏d
µ=1 nµ

)3/2
)

.

Proof. We have to compute singular value decompositions for all A(t), and those
decompositions have a complexity of O(min(#It,#It′)

2 max(#It,#It′)), where t′ is
the complementary mode cluster t′ := {1, . . .} \ t. Without loss of generality we can
assume nµ ≥ 2 for all modes µ. Then the complexity of the SVD for the root is zero,
that for the two successors t, t′ of the root is

CSV D(min(#It,#It′)
2 max(#It,#It′)) ≤ CSV D

(
d∏

µ=1

nµ

)3/2

,

where CSV D is a universal constant for the SVD. For each further level there are at
most two times more nodes, but the cardinality of It, It′ is reduced by at least a factor
of two (nµ ≥ 2) so that the complexity for the SVDs is quartered. Therefore the total

Hierarchical SVD of Tensors 13

complexity is bounded by

p∑

ℓ=0

2−ℓCSV D

(
d∏

µ=1

nµ

)3/2

≤ 2CSV D

(
d∏

µ=1

nµ

)3/2

.

The truncation presented in Algorithm 1 requires the computation of all (full)

SVDs. We want to avoid the superlinear complexity O(
∏d

µ=1 nµ)3/2 and instead work
with a core tensor that becomes smaller as we come closer to the root of the tree.
This means that we compute the SVDs not for the original tensor but for an already
truncated one. The algorithm for this is given in Algorithm 2 and the complexity is
estimated in Lemma 3.21.

Definition 3.20 (Hierarchical leaves-to-root truncation). Let TI be a dimension
tree of depth p, (kt)t∈I a family of non-negative integers and A ∈ R

I . We denote
A eH,p+1 := A. For all levels ℓ = p, . . . , 1 and t ∈ (T ℓ

I) let πt denote the frame projection

for Ut := ψt,kt
(A eH,ℓ+1) ∈ R

It×kt and

A eH,ℓ :=
∏

t∈T ℓ
I

πtA eH,ℓ+1.

Then we define the hierarchical leaves-to-root truncation by AH := A eH,1.

Algorithm 2 Leaves-to-root truncation of arbitrary tensors to H-Tucker format

Require: Input tensor A ∈ R
I , dimension tree TI (depth p > 0), target representa-

tion rank (kt)t∈TI
.

for each singleton t ∈ L(TI) do

Compute an SVD of A(t) and store the dominant kt left singular vectors in the
columns of the t-frame Ut.

end for

Compute the core tensor Cp := (UT
1 , . . . , U

T
d) ◦A.

for ℓ = p− 1, . . . , 0 do

Initialize Cℓ := Cℓ+1.
for each mode cluster t ∈ I(TI) on level ℓ do

Compute an SVD of (Cℓ+1)
(t) and store the dominant kt left singular vectors

in the columns of the t-frame Ut ∈ R
kt1kt2×kt . Let Ut1 and Ut2 denote the

corresponding frames for the successors t1, t2 of t on level ℓ+ 1. Compute the
entries of the transfer tensor

(Bt)i,j,ν := 〈(Ut)i, (Ut1)j ⊗ (Ut2)ν〉.

Update the core tensor Cℓ := UT
t ◦t Cℓ.

end for

end for

return H-Tucker representation ((Ut)t∈L(TI), (Bt)t∈I(TI)) for AH ∈
H-Tucker((kt)t∈TI

)).

Lemma 3.21 (Complexity of leaves-to-root truncation). The complexity of Al-
gorithm 2 for a tensor A ∈ R

I and dimension tree TI of depth p > 0 is bounded

14 L. GRASEDYCK

by

O
(

d∑

µ=1

nµ

d∏

ν=1

nν + dk2
d∏

ν=1

nν

)
, k := max

t∈TI

kt.

Proof. For all leaves t = {µ} we have to compute the singular value decomposi-
tions of A(µ) which is of complexity (CSV D being again the generic constant for the
SVD)

d∑

µ=1

CSV D n2
µ

∏

ν 6=µ

nν = CSV D

d∑

µ=1

nµ

d∏

ν=1

nν .

For all other levels ℓ = 0, . . . , p − 1 we have to compute SVDs of matrices of size at
most kt1kt2 ×

∏
ν 6∈t nν . The complexity for this is at most

CSV Dk
2
t1k

2
t2

∏

ν 6∈t

nν ≤ CSV Dkt1kt2

d∏

ν=1

nν ≤ CSV Dk
2

d∏

ν=1

nν .

Summing this up over all nodes of the tree yields the estimate.
Theorem 3.22 (Leaves-to-root truncation). Let TI be a complete binary di-

mension tree and A ∈ R
I. Let Abest denote the best approximation of A in

H-Tucker((kt)t∈I). Then the error of the Leaves-to-Root truncation A eH (Algorithm
2) is bounded by

‖A−A eH‖ ≤ (2 +
√

2)
√
d‖A−Abest‖.

Proof. The first truncation step on level ℓ = p is the Tucker truncation which
yields t-frames Ut for all nodes t ∈ T ℓ

I and an error bound of the form

‖A−A eH,p‖ = ‖A−
∏

t∈T p
I

πtA‖ ≤
√

2p‖A−Abest‖,

where Abest is the best approximation (possibly worse than the one-level best approx-
imation) in H-Tucker((kt)t∈I). On any level ℓ = p−1, . . . , 0 we construct the t-frames
Ut for all nodes t ∈ T ℓ

I that yield a Tucker truncation of A eH,ℓ+1 the error of which is

bounded in terms of the best possible approximation Abest
ℓ of A eH,ℓ+1 using frames on

level ℓ:

‖A eH,ℓ+1 −A eH,ℓ‖ ≤
√

2ℓ‖A eH,ℓ+1 −Abest
ℓ ‖.

Now let π∗
t , t ∈ T ℓ

I be projections that yield the best approximation of A in the
Tucker format defined by the nodes t and ranks kt on level ℓ of the dimension tree.
Then

∏
t∈T ℓ

I

π∗
tA fulfills the rank bound on level ℓ and due to Lemma 3.15 also the

additional projection to the finer nodes
∏p

i=ℓ+1

∏
t∈T i

I

πt

∏
t∈T ℓ

I

π∗
tA fulfills the rank

bound. This constructed approximation is not better than the best approximation on
level ℓ:

‖A eH,ℓ+1 −Abest
ℓ ‖ ≤ ‖

p∏

i=ℓ+1

∏

t∈T i
I

πtA−
p∏

i=ℓ+1

∏

t∈T i
I

πt

∏

t∈T ℓ
I

π∗
tA‖

≤ ‖A−
∏

t∈T ℓ
I

π∗
tA‖ ≤ ‖A−Abest‖.

Hierarchical SVD of Tensors 15

Thus we can estimate

‖A−A eH‖ ≤ ‖A−A eH,p‖ +

p−1∑

ℓ=1

‖A eH,ℓ+1 −A eH,ℓ‖

≤ (
√

2p +

p−1∑

ℓ=1

√
2ℓ)‖A−Abest‖ ≤ (2 +

√
2)
√
d‖A−Abest‖.

4. Truncation of Hierarchical Tucker Tensors. In this Section we want to
derive an efficient realization of the truncation procedures from the previous section
for the special case that the input tensor is already given in a data-sparse format,
namely the hierarchical Tucker format.

Definition 4.1 (Brother of a mode cluster). Let TI be a dimension tree and
t ∈ TI a non-root mode cluster with father f . Then we define the unique mode cluster
t̄ ∈ TI such that f = t ∪̇ t̄ as the brother of t.

Lemma 4.2. Let TI be a dimension tree and t ∈ I(TI) an interior node with two
successors t = t1∪̇t2. Further, let

A(t) =

k∑

ν=1

uνv
T
ν

be a matricization of A. Let

uν =

k1∑

j=1

k2∑

l=1

cν,j,lxj ⊗ yl, xj ∈ R
It1 , yl ∈ R

It2 , ν = 1, . . . , k

be a representation of the uν . Then the matricization of A with respect to t1 is given
by

A(t1) =

k1∑

j=1

xj

(
k∑

ν=1

k2∑

l=1

cν,j,lyl ⊗ vν

)T

.

Proof. For the first matricization holds

A(i1,...,id) = A
(t)
(iµ)µ∈t,(iµ)µ∈t′

=

k∑

ν=1

k1∑

j=1

k2∑

l=1

cν,j,l(xj)(iµ)µ∈t1
(yl)(iµ)µ∈t2

(vν)(iµ)µ∈t′

=

k1∑

j=1

(xj)(iµ)µ∈t1

(
k∑

ν=1

k2∑

l=1

cν,j,l(yl)(iµ)µ∈t2
(vν)(iµ)µ∈t′

)

=

k1∑

j=1

(xj)(iµ)µ∈t1

(
k∑

ν=1

k2∑

l=1

cν,j,lyl ⊗ vν

)

(iµ)µ∈t′1

.

Lemma 4.3 (Matricization of tensors in hierarchical Tucker format). Let TI
be a dimension tree, A ∈ H-Tucker((kt)t∈I) with nested orthogonal frame tree

16 L. GRASEDYCK

(Ut)t∈TI
and corresponding transfer tensors (Bt)t∈TI

. Let t ∈ T
(p)
I , p ≥ 1, and

Root(TI) = t0, t1, . . . , tp−1, tp = t a path of length p. Let Ū1, . . . , Ūp denote the
frames of the corresponding brothers, B0, . . . , Bp−1 the corresponding transfer tensors
and k0, . . . , kp the corresponding representation ranks. For convenience of notation
we assume that the brother t̄ℓ is always the first and tℓ the second successor, i.e.

(Utℓ
)ν =

∑

i

∑

j

Bℓ
ν,i,jŪ

ℓ+1
i ⊗ (Utℓ+1

)j .

Then the t-matricization has the form

A(t) =

kt∑

ν=1

(Ut)ν(Vt)
T
ν = UtV

T
t ,

where the complementary frame Vt is defined by its columns (Vt)1, . . . , (Vt)kt
:

(Vt)jp
=




k̄1∑

i1=1

k1∑

j1=1

· · ·
k̄p−1∑

ip−1=1

kp−1∑

jp−1=1

k̄p∑

ip=1

B0
1,i1,j1 · · ·B

p−1
jp−1,ip,jp



 Ū1
i1 ⊗ · · · ⊗ Ūp

ip

Proof. We prove the statement by induction over the level p of the mode cluster
t. The start p = 1 is trivial: the tensor A has the representation (Lemma 4.2)

A =

kt̄∑

i1=1

kt∑

j1=1

B0
1,i1,j1 Ū

1
i1 ⊗ (Ut)j1 , A(t) =

kt∑

j1=1

(Ut)j1

(
kt̄∑

i1=1

B0
1,i1,j1 Ū

1
i1

)T

.

For the node tp−1 holds by induction

A(tp−1) =

kp−1∑

ν=1

(Utp−1)ν(Vtp−1)
T
ν , (Utp−1)ν =

k̄p∑

ip=1

kp∑

jp=1

Bp−1
ν,ip,jp

Ūp
ip
⊗ (Ut)jp

.

Together we obtain by Lemma 4.2

A(tp−1) =

kp∑

jp=1

(Ut)jp




kp−1∑

ν=1

k̄p∑

ip=1

Bp−1
ν,ip,jp

Ūp
ip
⊗ (Vtp−1)ν




T

=

kp∑

jp=1

(Ut)jp
(Vt)

T
jp
.

Definition 4.4 (Accumulated transfer tensors). Let TI be a dimension tree,
(kt)t∈I a family of non-negative integers, (Bt)t∈TI

transfer tensors of corresponding

size. Let t ∈ T
(p)
I , p ≥ 1, and Root(TI) = t0, t1, . . . , tp−1, tp = t a path of length p. Let

B0, . . . , Bp−1 denote the corresponding transfer tensors (assuming that the brother t̄ℓ
is always the first and tℓ the second successor). Let kν := ktν

and k̄ν := kt̄ν
. Then

we define the accumulated transfer tensor B̂t by

(B̂1)j1,s1 :=

k̄1∑

i1=1

B0
1,i1,j1B

0
1,i1,s1

,

(B̂ℓ)jℓ,sℓ
:=

kℓ−1∑

sℓ−1=1

k̄ℓ∑

iℓ=1




kℓ−1∑

jℓ−1=1

(B̂ℓ−1)jℓ−1,sℓ−1
Bℓ−1

jℓ−1,iℓ,jℓ



Bℓ−1
sℓ−1,iℓ,sℓ

, ℓ = 2, . . . , p,

B̂t := B̂p.

Hierarchical SVD of Tensors 17

Remark 4.5. The first accumulated tensors B̂t1 , B̂t2 for the two sons of the root
t can be computed in O(kt1k

2
t2 + k2

t1kt2). For each further node the second formula in
Definition 4.4 has to be applied and it involves inside the bracket a matrix multiplica-
tion of complexity O(k2

t kt1kt2) for each son and the outer multiplication of complexity
O(ktkt1k

2
t2 + ktk

2
t1kt2). For all nodes of the tree this sums up to

O




∑

t∈I(TI)

ktkt1k
2
t2 + ktk

2
t1kt2



 = O
(
dmax

t∈TI

k4
t

)
.

Lemma 4.6 (Gram matrices of complementary frames). Let TI be a dimension
tree, A ∈ H-Tucker((kt)t∈I) with nested orthogonal frame tree (Ut)t∈TI

and corre-
sponding transfer tensors (Bt)t∈TI

. For each t ∈ TI let Vt be the complementary

frame from Lemma 4.3. Then B̂t is the Gram matrix for Vt:

V T
t Vt = B̂t, 〈(Vt)ν , (Vt)µ〉 = (B̂t)ν,µ.

Proof. We use the definitions and notations from Lemma 4.3. According to
Lemma 4.3 and due to the orthogonality of each of the t̄ℓ-frames Ū ℓ we obtain

〈(Vt)ν , (Vt)µ〉 =

k̄1∑

i1=1

k1∑

j1=1

k1∑

s1=1

· · ·
k̄p−1∑

ip−1=1

kp−1∑

jp−1=1

kp−1∑

sp−1=1

k̄p∑

ip=1

B0
1,i1,j1 · · ·B

p−2
jp−2,ip−1,jp−1

Bp−1
jp−1,ip,νB

0
1,i1,s1

· · ·Bp−2
sp−2,ip−1,sp−1

Bp−1
sp−1,ip,µ

=

k̄1∑

i1=1

k1∑

j1=1

k1∑

s1=1

k̄2∑

i2=1

· · ·
kp−1∑

jp−1=1

kp−1∑

sp−1=1

k̄p∑

ip=1

B0
1,i1,j1B

0
1,i1,s1

· · ·Bp−2
jp−2,ip−1,jp−1

Bp−2
sp−2,ip−1,sp−1

Bp−1
jp−1,ip,νB

p−1
sp−1,ip,µ

= (B̂t)ν,µ.

According to the previous Lemma we can easily compute the left singular vectors
of V T

t which are the eigenvectors of the kt × kt matrix B̂t. The matrix Qt of singular
vectors is the transformation matrix such that UtQt is the matrix of the left singular
vectors of A(t) the singular values of which are the square roots of the eigenvalues
of B̂t. Thus, one can truncate either to fixed rank or one can determine the rank
adaptively in order to guarantee a truncation accuracy of ε.

The nested mode frames were required to be orthogonal. If this is not yet the
case, one has to orthogonalize the frame tree. The procedure for this is explained
next and the complexity is estimated afterwards.

Lemma 4.7 (Frame transformation). Let t ∈ TI be a mode cluster with t-frame
Ut, transfer tensor Bt and two sons t1, t2 with frames Ut1 , Ut2 , such that the columns
fulfill

(Ut)i =

k1∑

j=1

k2∑

l=1

(Bt)i,j,l(Ut1)j ⊗ (Ut2)l, i = 1, . . . , k.

18 L. GRASEDYCK

Let X ∈ R
k×k, Y ∈ R

k1×k1 , Z ∈ R
k2×k2 and Y, Z invertible. Then we can rewrite the

transformed frames as

(UtX)i =

k′

1∑

j=1

k′

2∑

l=1

(B′
t)i,j,l(Ut1Y)j ⊗ (Ut2Z)l, B′

t := (XT , Y −1, Z−1) ◦Bt.

Proof. The formula follows from elementary matrix multiplications.

Algorithm 3 Orthogonalization of hierarchical Tucker tensors

Require: Input tensor AH ∈ H-Tucker((kt)t∈TI
) represented by

((Ut)t∈L(TI), (Bt)t∈I(TI)).
for each singleton t ∈ L(TI) do

Compute a QR-decomposition of the t-frame Ut and define

Ut := Q, Bf :=

{
(I, I, R) ◦Bf if t is the second successor,
(I, R, I) ◦Bf if t is the first successor

for the father f of t.
end for

for each mode cluster t ∈ I(TI) \ {root(TI)} do

Compute a QR-decomposition of (Bt)
({1,2}),

(Bt)
({1,2}) = (Qt)

({1,2})R,

and set

Bt := Qt, Bf :=

{
(I, I, R) ◦Bf if t is the second successor,
(I, R, I) ◦Bf if t is the first successor

of the father f of t.
end for

return nested orthogonal frames (Ut)t∈L(TI) and transfer tensors (Bt)t∈I(TI).

Lemma 4.8 (Complexity for the orthogonalization of nested frame trees). The
complexity of Algorithm 3 for a tensor AH ∈ H-Tucker((kt)t∈TI

) with nested frames
(Ut)t∈L(TI) and transfer tensors (Bt)t∈I(TI) is bounded by

O




d∑

µ=1

nµk
2
µ +

∑

t∈I(TI),Sons(t)={t1,t2}
k2

t kt1kt2 + ktk
2
t1kt2 + ktkt1k

2
t2



 .

Proof. For each interior node we have to compute QR decompositions which
are of complexity O(k2

t kt1kt2) and perform two mode multiplications X ◦µ Bf , µ =
2, 3, which is of complexity O(ktk

2
t1kt2 + ktkt1k

2
t2). For the leaves t = {µ} a QR-

factorization is of complexity O(nµk
2
µ). The sum over all nodes of the tree yields the

desired bound.

Lemma 4.9 (Complexity for the H-Tucker truncation). The complexity for
the truncation of an H-Tucker((kt)t∈TI

)-Tensor A (not necessarily with orthogonal

Hierarchical SVD of Tensors 19

frames) to lower rank is

O(dmax
t∈TI

k4
t +

d∑

µ=1

nµk
2
µ).

Definition 4.10 (CANDECOMP, PARAFAC, Elementary Tensor Sum). Let
A ∈ R

I. The minimal number k ≥ 0 such that

A =
k∑

i=1

Ai, Ai = ai,1 ⊗ · · · ⊗ ai,d, ai,µ ∈ R
Iµ, (4.1)

is the tensor rank or canonical rank of A. The rank one tensors Ai are called elemen-
tary tensors. A sum of the form (4.1) with arbitrary k ≥ 0 is called an elementary
tensor sum with representation rank k. In the literature the alternative names CAN-
DECOMP [3] or PARAFAC [11] or CP are commonly used.

Remark 4.11 (Conversion of elementary tensor sums to H-Tucker format). Let
A ∈ R

I be a tensor represented by an elementary tensor sum

A =
k∑

i=1

d⊗

µ=1

ai,µ, ai,µ ∈ R
Iµ .

Then A can immediately be represented in the hierarchical Tucker format by the t-
frames

∀t = {µ} ∈ L(TI) : (Ut)i := ai,µ, i = 1, . . . , k, kµ := k,

and the transfer tensors

∀t ∈ I(TI) \ Root(TI) : (Bt)i,j,l :=

{
1 if i = j = l
0 otherwise,

, Bt ∈ R
k×k×k, kt := k.

The root transfer tensor is

(B{1,...,d})1,j,l :=

{
1 if j = l
0 otherwise,

, B{1,...,d} ∈ R
1×k×k, k{1,...,d} := 1.

The frames are not yet orthogonal, so a subsequent orthogonalization and truncation
is advisable to find a reduced representation. If we store the transfer tensors in sparse
format, then the amount of storage is k(d− 1) + k

∑d
µ=1 nµ, i.e. almost the same as

for a tensor represented as an elementary tensor sum.
The opposite conversion from H-Tucker to elementary tensor sums with (almost)

minimal representation rank k is highly non-trivial.

5. Comparison with other Formats. As mentioned in the introduction the
hierarchical Tucker format is identical or similar to several other tensor formats.

5.1. Sequential Unfolding SVD, PARATREE. The sequential unfolding
SVD or PARATREE from [16] is defined quite similarly as the H-Tucker format. The
first separation is via the SVD of the familiar form

A =

r∑

i1=1

U1,i1 ⊗ U2,i1

20 L. GRASEDYCK

Each of the Uν,i1 (ν = 1, 2) on level 1 is then again split via the SVD into

Uν,i1 =

r∑

i2=1

Uν,i1,1,i2 ⊗ Uν,i1,2,i2 ,

i.e., for each i1 a different set of vectors Uν,i1,1,i2 , Uν,i1,2,i2 is used. Each of the vectors
is then split on level ℓ = 2, . . . separately. On level ℓ the frames are indexed by

Uν1,i1,...,νℓ,iℓ
.

Thus, the complexity is no longer linear in the dimension d but scales exponentially
in the depth of the tree.

5.2. Hierarchical MCTDH and Φ-System. The hierarchical or multilayer
format from [1, 18] is exactly of the H-Tucker form. This format is used in the Multi-
Configuration Time-Dependent Hartree method (MCTDH) and to the best of our
knowledge this is the first occurrence of a hierarchical tensor format.

The Φ-system representation from [10] is identical to the H-Tucker-representation.
In fact, it has been the starting point for our work and for writing this article.

The here presented analysis and hierarchical SVD, as well as the (almost best)
truncation with a priori error estimate is thus a framework to perform arithmetics in
the hierarchical MCTDH formulation and for Φ-system representations.

5.3. Tree Tensor and Tensor Train. The tree tensor (TT) format from [14]
uses the same tree concept as in this article (without approximation on the leaf-level).
However, in that article the truncation is not developed (and thus not analyzed). In
[13] the truncation algorithm based on the SVD is provided and partially analyzed,
namely for the case of degenerate trees (cf. Figures 5.1,5.2) which is then coined Ten-
sor Train or TT∗ format or again TT format (developed in parallel to our truncation
framework).

{1,...,5}

{2,...,5}

{1}

{3,4,5}

{2}

{4,5}

{3}

{5}

{4}

43210Level:

Fig. 5.1. A degenerate tree for the TT format.

Definition 5.1 (TT format). The TT format of a tensor A ∈ R
I is given by a

family of integers (kq)
d−1
q=1 , matrices G1, Gd and tensors G2, . . . , Gd−1 such that

Ai1,...,id
=

k1∑

j1=1

· · ·
kd−1∑

jd−1=1

G1
i1,j1G

2
i2,j1,j2 · · ·Gd−1

id−1,jd−2,jd−1
Gd

id,jd−1
(5.1)

Lemma 5.2. Let A ∈ H-Tucker(TI) for a degenerate tree TI with root t0 and
successors t1, . . . , td−1 (these are always the first successors) that are leaves and

Hierarchical SVD of Tensors 21

t0

t1

t1 t2

t2

td−1

td−1

0Level:

...

1 2 d−1
Fig. 5.2. A degenerate tree for the TT format.

t̄1, . . . , t̄d−1 their respective brothers (these are always the second successors; t̄d−1

is a leaf, too). Then A is of the form (5.1) with

G1
i,j :=

kt1∑

ℓ=1

(Bt0)1,ℓ,j(Ut1)i,ℓ, Gd
i,j := (Ut̄d−1

)i,j ,

Gq
i,j,m :=

kt̄q∑

ℓ=1

(Bt̄q−1
)j,ℓ,m(Utq

)i,ℓ for q = 2, . . . , d− 1.

Proof.

Ai1,...,id
=

kt̄1∑

j1=1

kt1∑

ℓ1=1

(Bt0)1,ℓ1,j1(Ut1)i1,ℓ1

︸ ︷︷ ︸
G1

i1,j1

(Ut̄1)(i2,...,id),j1 ,

(Ut̄1)(i2,...,id),j1 =

kt̄2∑

j2=1

kt2∑

ℓ2=1

(Bt̄1)j1,ℓ2,j2(Ut2)i2,ℓ2

︸ ︷︷ ︸
G2

i2,j1,j2

(Ut̄2)(i3,...,id),j2 ,

· · ·

(Ut̄d−2
)(id−1,id),jd−2

=

kt̄d−1∑

jd−1=1

ktd−1∑

ℓd−1=1

(Bt̄d−1
)jd−2,ℓd−1,jd−1

(Utd−1
)id−1,ℓd−1

︸ ︷︷ ︸
Gd−1

id−1,jd−2,jd−1

(Ut̄d−1
)id,jd−1

.
︸ ︷︷ ︸

Gd
id,jd−1

Indeed, the truncation in the TT∗ format is a special case of the H-Tucker-truncation
(no truncation in the leaves). One can regard our analysis (the quasi-best approxima-
tion result) as an extension of the results from [13]. The main advantage of the TT∗

format is that it is easier to describe and program, because the SVD of the interior
nodes in the H-Tucker format is more involved. The essential question is: Does it pay
off to use general trees or is it sufficient to work with degenerate ones ?

22 L. GRASEDYCK

5.3.1. Parallelization. The tree structure for (almost) balanced trees, i.e.,
those having a depth proportional to log(d), is perfectly suited for parallelization.
On each level all operations can be performed in parallel for all nodes on that level.
Up to the logarithm for the depth of the tree one can obtain a perfect speedup. Using
d processors one obtains a scaling of log(d) for the overall truncation complexity. This
will be treated in more detail in a followup article.

The same kind of parallelization is not possible for the TT∗ format because the
depth of the degenerate tree is proportional to d and the truncation is inherently
sequential going from the root to the leaves.

5.3.2. Complexity. Let TI be an arbitrary dimension tree and A ∈ R
I . We

denote by

kq := rank(A({1,...,q}))

the rank of the matricizations appearing in the TT∗ format, i.e. the representation
rank for a degenerate tree. Then the H-Tucker-rank kt = rank(A(t)) for a node
t = {p, . . . , ℓ} can be bounded by

kt ≤ kp−1kℓ,

i.e. the largest necessary representation rank for the exact representation of A in
H-Tucker((kt)t∈TI

) is bounded by the product of two TT∗-ranks: By assumption
there exists U, V with kp−1, kq columns such that

A({1,...,p−1}) = UUTA({1,...,p−1}), A({1,...,q}) = V V TA({1,...,q}).

Then

A(t) = A(t)(UUT ⊗K V V
T)

and the matrix on the right is of rank at most

rank(UUT ⊗K V V
T) ≤ rank(UUT)rank(V V T) ≤ kp−1kq.

The opposite is not true: Let kt = rank(A(t)) for all t ∈ TI be uniformly bounded
by k. Then the TT∗-rank kq can only be bounded by

kq . klog2(d)/2

for a balanced tree TI and

kq . kd/2

for an arbitrary tree TI (proof not provided since the bound is worthless). In order
to illustrate that this bound is sharp we give a numerical example. Let the tree TI be
of the form depicted in Figure 5.3. The tree has a depth of 10 in dimension d = 10.
We construct a random tensor A ∈ H-Tucker((kt)t∈TI

), kt := 2, nµ := 2 for all
modes µ ∈ {1, . . . , d}. Then we compute the TT∗-ranks kq reported in Table 5.1. In
particular k5 = 32 = 25 = kd/2.

By reordering the dimension indices one can obtain a degenerate tree as required
by the TT∗ format, but that is not of interest here. Even if one allows an arbitrary

Hierarchical SVD of Tensors 23

{1,...,10}

{2,...,10}

{1}

{2,...,9}

{10}

{3,...,9}

{3,...,8}

{4,...,8}

{4,...,7}

{5,...,7}

{5,6}

{2} {3} {4} {5}

{6}

{9} {8} {7}

9876543210Level:

Fig. 5.3. A special dimension tree TI of depth 10.

q = 1 2 3 4 5 6 7 8 9
kq = 2 4 8 16 32 16 8 4 2

Table 5.1
TT∗-ranks for the special dimension tree TI from Figure 5.3.

reordering of the dimension indices for the TT∗ format, then a complete binary tree
TI will still provide an example where maxq kq = klog2(d)/2.

For any tensor that allows an approximation by an elementary tensor sum with
representation rank k, both hierarchical formats have their ranks bounded by kt ≤
k, kq ≤ k.

In practice it is of course a critical point to construct the dimension tree adaptively
such that the ranks stay small, and this will be presented in a followup article.

6. Numerical Examples. The numerical examples in this section are focused
on three questions:

1. How close to the measurements are the theoretical estimates of the trunca-
tion error, i.e. the ratio between node-wise errors and the total error ? In
particular we are interested in the question whether or not the factor

√
d

appears.
2. What is the maximal attainable truncation accuracy, i.e. how close can we

get to the machine precision ?
3. What are problem sizes that can realistically be tackled by the H-Tucker

format in terms of the dimension d and the maximal rank k ?
All computations are performed on an intel CPU with peak frequency 1.83 GHz and
available main memory 1 GB.

6.1. Truncation from dense to H-Tucker format. Our first numerical ex-
ample is in d = 5 with mode size nµ = 25. The tensor A is a dense tensor with
entries

A(i1,...,id) :=

(
d∑

µ=1

i2µ

)−1/2

which corresponds to the discretization of the function 1/‖x‖ on [1, 25]5. The time for
the conversion (Algorithm 1) of the dense tensor to H-Tucker format AH, the amount
of storage needed for the frames Ut and transfer tensors Bt and the obtained relative
approximation accuracy ‖A − AH‖ are presented in Table 6.1. The node-wise SVD
is shown in Figure 3.2. From the truncation we lose roughly 2–3 digits of precision
compared to the maximal attainable machine precision EPS ≈ 10−16. It seems that

24 L. GRASEDYCK

ε ‖A−AH‖/‖A‖ Storage (KB) times (Sec)
1×10

−2 6.0×10
−3 3.6 105.8

1×10
−4 1.2×10

−4 11.2 104.1
1×10

−6 1.1×10
−6 29.3 103.5

1×10
−8 7.8×10

−9 58.1 104.8
1×10

−10 1.7×10
−10 92.7 108.0

1×10
−12 7.2×10

−13 153.2 104.8
1×10

−14 3.2×10
−13 298.0 104.0

1×10
−16 2.7×10

−14 615.1 106.9
Table 6.1

Converting a dense tensor to H-Tucker format.

the node-wise rank is uniformly bounded (there is almost no variation between the
ranks kt) by k ∼ log(1/ε).

6.2. Truncation of elementary tensor sums in H-Tucker format. The sec-
ond example is in higher dimension d with mode size nµ = 1000. The entries of the
tensor AH are approximations of

A(i1,...,id) :=

(
d∑

µ=1

i2µ

)−1/2

, iµ = 1, . . . , 1000,

by exponential sums,

AE :=

35∑

j=1

ωj

d⊗

µ=1

aj,µ, (aj,µ)iµ
= exp(−i2µαj/d)

such that each entry is accurate up to εE = 10−10,

|A(i1,...,id) − (AE)(i1,...,id)| ≤ 7.315×10
−10.

The weights ωj and exponents αj were obtained from W. Hackbusch and are available
via the web page (k = 35, R = 1000000)

http://www.mis.mpg.de/scicomp/EXP_SUM

The tensor AE (represented as an elementary tensor sum) is then converted to
H-Tucker format (error zero), which we denote by AH. The hierarchical rank is
kt = 35 for every mode cluster t ∈ TI . From this input tensor we compute trunca-
tions AH,ε to lower hierarchical rank by prescribing the (relative) truncation accuracy
ε. In Tables 6.2 and 6.3 we report the accuracy ‖AH − AH,ε‖/‖AH‖, the storage re-
quirements for AH,ε in MB as well as the time in seconds used for the truncation. We
observe that the accuracy is

‖AH −AH,ε‖/‖AH‖ ≈ 3ε

independent of the dimension d. The maximal attainable accuracy seems to be roughly
εmin ≈ 10−13.

6.3. Truncation of H-Tucker tensors. The third test is not any more con-
cerned with the approximation accuracy, but purely with the computational com-
plexity. Here, we setup an H-Tucker tensor with node-wise ranks kt ≡ k and mode

Hierarchical SVD of Tensors 25

ε
‖AH−AH,ε‖

‖A‖ Storage time

10−4 1.4×10
−4 0.31 0.33

10−6 1.3×10
−6 0.59 0.34

10−8 2.1×10
−8 1.00 0.36

10−10 1.7×10
−10 1.60 0.39

10−12 1.3×10
−12 2.75 0.44

10−14 1.8×10
−14 3.54 0.47

10−16 2.0×10
−15 3.88 0.48

ε
‖AH−AH,ε‖

‖A‖ Storage time

10−4 1.3×10
−4 0.37 0.73

10−6 2.5×10
−6 0.50 0.80

10−8 1.7×10
−8 0.90 0.88

10−10 3.7×10
−10 1.22 0.83

10−12 2.2×10
−12 1.87 0.80

10−14 3.9×10
−14 2.76 0.91

10−16 2.6×10
−14 4.05 0.97

Table 6.2
Truncating an H-Tucker tensor of rank kt = 35 in d = 8 (left) and d = 16 (right).

ε
‖AH−AH,ε‖

‖A‖ Storage time

10−4 1.9×10
−4 0.49 1.65

10−6 2.2×10
−6 0.74 1.54

10−8 1.4×10
−8 1.00 1.55

10−10 2.4×10
−10 1.27 1.57

10−12 1.3×10
−12 1.83 1.65

10−14 3.3×10
−14 2.24 1.61

10−16 7.3×10
−15 3.49 1.74

ε
‖AH−AH,ε‖

‖A‖ Storage time

10−4 5.5×10
−5 0.98 3.19

10−6 9.2×10
−7 1.48 3.39

10−8 3.2×10
−8 1.49 3.23

10−10 1.5×10
−10 2.00 3.36

10−12 3.1×10
−12 2.52 3.50

10−14 1.1×10
−13 3.09 3.31

10−16 1.1×10
−13 4.53 3.52

Table 6.3
Truncating an H-Tucker tensor of rank kt = 35 in d = 32 (left) and d = 64 (right).

sizes nµ ≡ 20. Then, we vary the rank k and dimension parameter d and measure the
storage complexity as well as the complexity for the truncation (which is essentially
independent of the target rank or accuracy). The results are reported in Table 6.4
(dashes mean that for that problem size we ran out of memory (1GB)). We conclude

k d= 10 100 1,000 10,000 100,000 1,000,000
1 size 0.00 0.02 0.16 1.60 16.02 160.22 MB
1 time 0.00 0.00 0.01 0.08 0.86 7.88 Sec.
2 size 0.00 0.04 0.37 3.66 36.62 366.21 MB
2 time 0.00 0.00 0.03 0.22 1.63 15.43 Sec.
5 size 0.02 0.17 1.71 17.16 171.66 - MB
5 time 0.00 0.02 0.08 0.81 7.60 - Sec.
10 size 0.08 0.90 9.14 91.54 915.51 - MB
10 time 0.01 0.10 0.61 5.79 55.86 - Sec.
20 size 0.52 6.29 63.97 640.75 - - MB
20 time 0.20 1.23 7.36 72.12 - - Sec.

Table 6.4
Storage complexity (MB) and truncation time for the H-Tucker format with mode size nµ = 20.

that it is indeed possible to perform reliable numerical computations in dimension
d = 1, 000, 000, and also rather large ranks of k = 50 are not a problem for dimen-
sions d = 1000 on a simple notebook computer, cf. Table 6.5. On a larger desktop
machine one can use k = 100 in dimension d = 10, 000 (uses roughly 80 GB and takes
ca. 10 hours).

26 L. GRASEDYCK

k d= 10 100 1,000
25 size 1.15 13.59 138.05 MB
25 time 0.24 1.97 19.39 Sec.
50 size 8.03 97.29 989.93 MB
50 time 2.60 30.20 306.02 Sec.
100 size 68.74 755.39 - MB
100 time 57.05 685.98 - Sec.

Table 6.5
Storage complexity (MB) and truncation time for the H-Tucker format with mode size nµ = 100.

7. Conclusion. We have defined the hierarchical singular value decomposition
for tensors of order d ≥ 2 in the H-Tucker format (also known as the Φ-system
representation [10] or previously the multilayer MCTDH format [18]). It is based on
standard matrix SVDs for matricizations of the tensor. We are able to derive an almost
optimal complexity computational scheme for tensors either in dense or in H-Tucker
format with a priori or adaptive control of the accuracy. In particular, we have
obtained a quasi-best approximation (up to a factor of

√
2d− 3) result comparable to

the Eckart-Young bound for matrices (best approximation) or the HOSVD bound for
Tensors in Tucker format (best approximation up to a factor of

√
d). The complexity

to compute the hierarchical SVD for H-Tucker tensors of constant representation rank
k, mode size n and order d is O(dnk2 + dk4) using O(dnk + dk3) units of storage.

The H-Tucker format with constant representation rank k is a specialization of the
Tucker format with multilinear rank k and it contains all tensors of (border) rank k.
It remains to apply the new format in several areas in order to assess the usefulness
of the format in terms of the necessary rank (kt)t∈TI

. This requires the adaptive
construction of a suitable dimension tree TI , which is possibly different for different
application areas. For large-scale computations a parallel (distributed) scheme has to
be developed, and since the SVDs and QR decompositions in each node are hardly
parallelizable and of complexity O(k3) and O(k4), respectively, the parallelization has
to be done with respect to the order d of the tensor.

REFERENCES

[1] M.H. Beck, A. Jäckle, G.A. Worth, and H.-D. Meyer. The multiconfiguration time-dependent
Hartree (mctdh) method: A highly efficient algorithm for propagating wavepackets. Phys.
Reports, 324:1–105, 2000.

[2] G. Beylkin and M. J. Mohlenkamp. Numerical operator calculus in higher dimensions. Pro-
ceedings of the National Academy of Sciences, 99(16):10246–10251, 2002.

[3] J. D. Carroll and J. J.Chang. Analysis of individual differences in multidimensional scaling
via an N-way generalization of Eckart-Young decomposition. Psychometrika, 35:283–319,
1970.

[4] L. De Lathauwer, B. De Moor, and J. Vandewalle. A multilinear singular value decomposition.
SIAM Journal on Matrix Analysis and Applications, 21(4):1253–1278, 2000.

[5] V. de Silva and L.-H. Lim. Tensor rank and the ill-posedness of the best low-rank approximation
problem. SIAM Journal on Matrix Analysis and Applications, 30(3):1084–1127, 2008.

[6] L. Eldén and B. Savas. A Newton-Grassmann method for computing the best multi-linear rank-
(r1, r2, r3) approximation of a tensor. SIAM J. Matrix Anal. Appl., 31:248–271, 2009.

[7] M. Espig. Effiziente Bestapproximation mittels Summen von Elementartensoren in hohen
Dimensionen. PhD thesis, Universität Leipzig, 2008.

[8] M. Griebel. A parallelizable and vectorizable multi-level algorithm on sparse grids. In Parallel
algorithms for partial differential equations, 6th GAMM-Seminar Kiel, volume 31 of Notes
Numer. Fluid Mech., pages 94–100, 1991.

Hierarchical SVD of Tensors 27

[9] M. Griebel. Adaptive sparse grid multilevel methods for elliptic pdes based on finite differences.
Computing, 61:151–179, 1998.

[10] W. Hackbusch and S. Kühn. A new scheme for the tensor representation. J. Fourier Anal.
Appl., 15:706–722, 2009.

[11] R. A. Harshman. Foundations of the parafac procedure. UCLA Working Papers in Phonetics,
16:1–84, 1970.

[12] T. G. Kolda and B. W. Bader. Tensor decompositions and applications. SIAM Review,
51(3):455–500, 2009.

[13] I.V. Oseledets. Compact matrix form of the d-dimensional tensor decomposition. Preprint
09-01, Institute of Numerical Mathematics RAS, Moscow, Russia, 2009.

[14] I.V. Oseledets and E.E. Tyrtyshnikov. Breaking the curse of dimensionality, or how to use svd
in many dimensions. Preprint 09-03, HKBU, Kowloon Tong, Hong Kong, 2009.

[15] M. Rajih, P. Comon, and R. Harshman. Enhanced line search: a novel method to accelerate
PARAFAC. SIAM Journal on Matrix Analysis and Applications, 30(3):1148–1171, 2008.

[16] J. Salmi, A. Richter, and V. Koivunen. Sequential unfolding SVD for tensors with applications
in array signal processing. IEEE Trans. on Signal Processing, 2009. accepted.

[17] B. Savas and L.-H. Lim. Best multilinear rank approximation of tensors with quasi-Newton
methods on Grassmannians. Technical Report LITH-MAT-R-2008-01-SE, Department of
Mathematics, Linköpings Universitet, 2008.

[18] H. Wang and M. Thoss. Multilayer formulation of the multiconfiguration time-dependent
hartree theory. J. Chem. Phys., 119:1289–1299, 2003.

[19] C. Zenger. Sparse grids, parallel algorithms for partial differential equations. In Parallel
algorithms for partial differential equations, 6th GAMM-Seminar Kiel, volume 31 of Notes
Numer. Fluid Mech., pages 241–251, 1991.

