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We propose a possible generalization of Gaussian-type orbital (GTO) bases by means of
canonical tensor products. The present work focus on the application of tensor product
as an alternative to conventional GTO based density fitting schemes. Tensor product ap-
proximation leads to highly nonlinear optimization problems which require sophisticated
algorithms. We give a brief description of the optimization problem and algorithm. The
present work extends our previous paper [S. R. Chinnamsetty, M. Espig, B. N. Khorom-
skij, W. Hackbusch and H.-J. Flad, J. Chem. Phys. 127 (2007), 084110], where we
discussed tensor product approximations of the electron density and the Hartree poten-
tial, to orbital products which are required for the exchange part of Hartree-Fock and in
post Hartree-Fock methods. We provide a detailed error analysis for the Coulomb and
exchange terms in Hartree-Fock calculations. Furthermore, a comparison is given between
all-electron and pseudopotential calculations.

1. Introduction

In quantum chemistry, single-electron wavefunctions, the so-called orbitals, appear as
solutions of various mean-field Schrödinger equations, e.g., Kohn-Sham or Hartree-Fock
equations. Furthermore, these orbitals provide a natural starting point for the construc-
tion of Slater determinants which serve as a basis to represent many-electron wavefunc-
tions which incorporate electron correlations. Since the early days of quantum chemistry,
the optimal choice of basis functions for the approximation of orbitals has been a con-
troversial issue which was finally decided by the majority of quantum chemists in favour
of atomic centered Gaussian-type orbital (GTO) bases. Originally suggested by Boys [1],
GTOs were first applied by Boys et al. [2] and Preuss [3] as basis sets for electronic struc-
ture calculations. From a physical point of view, GTOs seem to be only the second-best
choice because they do not satisfy the required asymptotic properties close to a nucleus
and at infinity. Compared with Slater-type orbital (STO) basis functions, which have the
right asymptotic behaviour, GTOs, however, have the invaluable advantage of computa-
tional simplicity. This means that all the required integrals can be calculated analytically,
cf., the monograph [4]. Furthermore it has been proven by Kutzelnigg and Braess [5,6]
that the ground state of the hydrogen atom can be approximated with almost exponential,
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i.e., O(e−c
√

n), convergence rate, by n GTO basis functions. Whether this result remains
valid in the case of Hartree-Fock calculations for general molecules seems to be an open
issue, although there exists some numerical evidence in favour of it, cf., Ref. [7].

Several well-known mathematical objections can be raised against GTO basis sets.
These basis sets suffer from linear dependencies which means that they represent essen-
tially over-complete bases so-called frames. As a consequence they are not stable in the
sense of a Riesz basis [8] in our envisaged Hilbert spaces L2 and H1. These spaces consist
of square integrable functions which in addition, in the case of the Sobolev space H1,
have square integrable first derivatives. However, everybody who tries to compete with
GTOs using even the most sophisticated systematic basis functions, like wavelets 1, get
puzzled from the almost unbelievable efficiency of GTOs at least for moderate accuracies.
Although GTO bases are not a subject of standard approximation theory, their proper-
ties have been studied within approximate approximation theory [10]. Therein one has
to give up the goal to turn GTOs into a systematic basis which can in principle achieve
arbitrary accuracies. Instead it is advisable to content oneself with a certain residual
error that enters in a controlled way into the construction of the basis set. This enables
e.g., the construction of approximate multiscale bases similar to wavelets which provide a
systematic error convergence rate up to a certain predetermined accuracy. Any attempt
to turn GTOs into “systematic bases” is at the expense of loosing some flexibility which
is actually a prominent feature of GTO bases. Therefore, the present work goes into a
different direction. Instead of restricting flexibility, we seek to generalize GTOs by means
of tensor product approximations of greatest possible generality.

GTOs are not only used for the expansion of orbitals but also for products of orbitals and
electron densities. This requires the so-called auxiliary GTO basis sets which attracted
considerable attention within density fitting schemes, also known as resolution of the

identity, in order to reduce the computational complexity for Hartree-Fock and Kohn-
Sham methods in particular for the Hartree potential [11–16] and also for two-electron
integrals [17–22] in general. These techniques have been further applied to various post
Hartree-Fock methods [23–28]. Related approaches are the Cholesky decomposition of
two-electron integrals [29–31] and the pseudo-spectral method [32,33].

In the present work we want to consider possible generalizations of (auxiliary) GTO
basis sets via tensor product approximations with “optimal” separation rank. Our ap-
proach does not restrict to orbitals, orbital products, and electron densities but can be
also applied to their convolutions with the Coulomb potential, like for the Hartree poten-
tial. This means that we are looking for the best possible approximation of some function
f in R

3 in the canonical format

f(x) ≈
κ

∑

k=1

h
(1)
k (x1) h

(2)
k (x2) h

(3)
k (x3), (1)

with x := (x1, x2, x3), for fixed separation rank κ where the univariate functions h
(i)
k (xi),

k = 1, . . . , κ for i = 1, 2, 3, so-called Kronecker factors, have to be chosen in an “opti-
mal” manner. In particular, there are no orthogonality constraints imposed. Within the

1The approximation of orbitals in wavelet bases has been studied in Ref. [9].
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mathematical literature, such an approximation by a tensor product of a certain rank be-
came known as canonical decomposition (CANDECOMP) or parallel factors (PARAFAC)
model, cf., Ref. [34]. In the following we refer to κ as the Kronecker rank, a notion that
has been borrowed from linear algebra [35] where it denotes the least possible decompo-
sition rank of a tensor. We apply the more general notion of a separation rank to tensor
product decompositions (1) for which the rank is supposed to be suboptimal, at least in
some approximate manner.

Any function represented in a GTO basis can be considered as a tensor product in
the format (1) where the possibly not optimal separation rank simply corresponds to
the size of the basis set. In this sense, we consider tensor products as a generalization
of GTO bases. It is the topic of the present work to study “optimal” tensor product
approximations of such a function with fixed Kronecker rank κ which is much smaller
than the size of the corresponding GTO basis set. Together with an appropriate tensor
product approximation for the Coulomb potential this also enables fast convolutions in
the tensor format which are required e.g., for the Hartree and exchange potentials. The
tensor product format does not only provide separable representations for convolutions,
moreover it offers the possibility to consider their further approximation with “optimal”
separation rank. In this sense our approach goes beyond conventional GTO based density-
fitting schemes.

The present work provides a general introduction into the subject where we present
new results extending our previous work [36], hereafter denoted Paper I, which mainly
focused on the Hartree potential. This paper is organized as follows: in Section 1.1 we
give a concise overview on tensor product formats and related optimization problems. For
illustrative purposes we first discuss some simple single-electron systems in Section 1.2
which is followed in Section 2 by tensor product approximations for individual orbitals.
Next, we proceed in Section 2 to products of orbitals and the electron density. The latter,
already discussed in Paper I, is positive everywhere and therefore easier to approximate
than products between different orbitals which are required e.g., by the exchange poten-
tial and might have a rather complicated oscillatory behaviour near nuclei. In Section
2.1 we discuss our results using tensor product approximations to compute Hartree and
exchange potentials for some small molecules. Although our focus is on the Hartree-Fock
model, we want to mention that this approach can be easily extended to post Hartree-Fock
methods similar to conventional GTO density-fitting schemes where already many suc-
cessful applications have been reported in the literature. Finally we provide in Section 3
a comparison between all-electron and pseudo densities from calculations with pseudopo-
tentials. This provides some insight how sensible tensor product approximations respond
to electron-nuclear cusps.

1.1. Tensor product approximation

In the field of linear algebra, tensor products attracted considerable interest within the
last few years [37,34]. A problem of general interest is to obtain an analogue for the
singular value decomposition (SVD) of matrices for tensors of order > 2, cf., Ref. [38].
Here and in the following order denotes the number of Kronecker factors in each term of
the tensor product. Within the present work we restrict to order three tensors. According
to the Eckart-Young theorem, a SVD provides the best rank κ approximation of a matrix
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by restriction to the largest κ singular values. There exits no canonical definition of a
SVD analogue for tensors with order > 2 and various formats have been discussed in the
literature [39–41]. The ultimate goal is to obtain best possible separable approximations
of general tensors for a given separation rank. Furthermore, this task must be achieved
with moderate computational effort and controlled accuracy. Most of the work has been
done in a discrete setting which is equivalent to choosing a certain discretization for the
Kronecker factors. In the following we give all of our expressions for functions. The
reader should, however, keep in mind that for the actual computations these functions
are represented on discrete grids, cf., Paper I for further details.

A popular alternative to the canonical format (1) is the Tucker format

f(x) ≈

̺
∑

k1,k2,k3=1

bk1,k2,k3u
(1)
k1

(x1) u
(2)
k2

(x2) u
(3)
k3

(x3), (2)

where we can assume, without loss of generality, orthogonal Kronecker factors in each
direction, i.e., 〈u

(i)
ki

, u
(i)
li
〉 = δki,li, k, l = 1, . . . , ̺ for i = 1, 2, 3. The Tucker rank ̺ specifies

the size of the core tensor b := {bk1,k2,k3}k1,k2,k3=1,...,̺ ∈ R
̺×̺×̺ with ̺3 entries. In the

representation (2), the separation rank of the Tucker tensor product is ̺3, however, by
a simple reordering we can obtain a canonical tensor product with separation rank ̺2.
For the approximation of orbitals, orbital products and electron densities, the canonical
and Tucker formats seem to be most appropriate [36,42,43]. Within the present work we
restrict ourselves to the canonical format and refer to Ref. [43] for applications of the
Tucker format to electronic structure calculations. Recently several new tensor formats
[44–47] have been proposed in the literature which are especially of interest for higher
order tensors. These formats might be of interest for post Hartree-Fock methods and
density matrix theory. The usefulness of a tensor product format depends not only on
its approximation properties but also on the possibility to apply differential or integral
operators in this format in an efficient manner, cf., Refs. [48–51]. Furthermore, it is crucial
to provide fast algorithms which compute the actual approximations (1) and (2) in the
canonical format [52,53] and Tucker format [54–57], respectively.

The error of a best separable rank κ approximation is defined via the least-squares
problem

σκ(f) := inf
h
(i)
k

∈L2(R)

∥

∥

∥

∥

∥

f −

κ
∑

k=1

h
(1)
k ⊗ h

(2)
k ⊗ h

(3)
k

∥

∥

∥

∥

∥

L2(R3)

, (3)

where the error is measured in the L2 norm, i.e., ‖f‖2
L2 :=

∫

|f(x)|2d3x.
Our present algorithm for the least-squares problem (3) is based on Newton’s method

[52,53] and requires that the function f is already given in a tensor product format, i.e.,

f(x) =
K

∑

k=1

g
(1)
k (x1) g

(2)
k (x2) g

(3)
k (x3), (4)

like a linear combination of GTOs with initial separation rank K. It can be shown, cf.,
[41,52], that the optimal Kronecker factors h

(i)
k , k = 1, . . . , κ, are contained in the subspace

Ui := span{g
(i)
k }k=1,...,K for i = 1, 2, 3 which reduces the optimization problem to finite
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dimension. The computational complexity of the various steps in the Newton algorithm
is

O
(

κ(κ + K) + κ3 + (κ + K)

3
∑

i=1

dimUi

)

, (5)

where κ << K has been assumed, cf., Ref. [52,53]. In the worst case we have dimUi =
K which results in O(K2) complexity for an orthogonalization step prior to the actual
Newton optimization. However in our applications it turned out that often dimUi << K
after almost linear dependent functions have been removed from the set {g

(i)
k }k=1,...,K .

The variational problem (3) is typically ill-posed, cf., Ref. [41], which means that a
minimizer does not always exist. Nevertheless, it is possible to specify a set of functions
h

(i)
k (xi) for which the error is arbitrarily close to σκ. However, it might happen that

this set is ill-conditioned in a sense discussed in Ref. [53]. Another problem arises from
a multitude of local minima into which a numerical algorithm for the solution of the
variational problem (3) might get stuck. Despite these shortcomings, one should bear
in mind that for our envisaged applications it is only of relevance to achieve a certain
accuracy with a reasonably small Kronecker rank κ and it is completely irrelevant whether
this representation actually corresponds to a global minimum.

The ultimate goal of the present work is to develop efficient schemes for the computa-
tion of two-electron integrals arising from localized occupied and virtual orbitals. This
comprises applications to local correlation methods [58,59] and linear-scaling Kohn-Sham
or Hartree-Fock methods [60] based on localized orbitals. In order to benefit from tensor
formats, separable approximations of the Coulomb potential are required. These can be
obtained from the familiar representation of the Coulomb potential via a Gaussian trans-
form, we refer to Ref. [61] for further details. In Paper I, we have discussed a wavelet based
approach for the canonical format which furthermore provides sparse approximations of
the Kronecker factors. An alternative approach based on the Tucker format has been
studied in Ref. [43]. Concerning our envisaged application, the L2 norm underlying the
least-squares problem (3) is not optimal. It is well known from various studies of density
fitting schemes that the Coulomb norm gives considerably better results. We have argued
in Paper I that the Coulomb norm is similar to the norm of the Sobolev space H−1. It is
work in progress to modify the Newton algorithm in order to allow for H−1 and various
other norms.

1.2. Canonical tensor products versus GTOs

In order to judge the applicability of best separable rank κ approximations in quantum
chemistry, we have studied orbital compression rates for a few single-electron systems.
First we solved the Schrödinger equation using large uncontracted GTO basis sets. In
the second step we have generated best separable rank κ approximations of the wave-
functions by minimizing the least-squares functional (3) and calculated the corresponding
variational energy. The simplest single-electron system is the H atom. Errors in energy
for best separable rank κ approximations obtained with the Newton algorithm are shown
in Fig. 1 a). These have been compared with best radial Gaussian approximations of
the same rank. The latter were optimized with respect to a weighted L∞(R+) norm. It
can be seen that both approaches lead to similar approximation errors, where the best
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Figure 1. Error in total energy (hartree) versus Kronecker rank κ of best separable
approximations for one-electron wavefunctions. a) Best separable L2(R3) (2) and best
radial Gaussian L∞(R+) (∆) approximations for the H atom. b) Best separable rank
κ approximations for various positively charged dimers (2) H+

2 (K = 58), (3) HHe2+

(K = 58), and trimers (∆) H2+
3 (K = 126, triangle), (×) H2+

3 (K = 75, linear).

separable rank κ approximation performs only slightly better. Our results indicate that
GTOs already provide almost optimal separable approximations for the H atom. How-
ever, this does not seem to be the case for systems with several nuclei as can be seen from
Fig. 1 b) where significant compression rates have been achieved with respect to standard
GTO basis sets. The exponents of the uncontracted (8s4p3d) GTO basis were taken from
V5Z basis sets [62]. Once the Schrödinger equation has been solved in this basis set, we
compressed the wavefunctions for different Kronecker ranks 1 ≤ κ ≤ 15. Thereafter, the
set of rank-1 tensors {h

(1)
k (x1) h

(2)
k (x2) h

(3)
k (x3)} from the tensor product expansion (1) was

taken as a new basis in which the Schrödinger equation was solved again. It should be
mentioned that the approximation error of best separable rank κ approximations might
depend on the orientation of the molecule with respect to the coordinate axes. The dimers
H+

2 , HHe2+, and a linear trimer H2+
3 were therefore oriented along the diagonal in order

to avoid such kind of rank reductions due to symmetry. Furthermore, we have considered
a triangular structure for H2+

3 with each nucleus located on an axis. The resulting errors
in energy are shown in Fig. 1 b). It can be seen that the overall convergence for these sys-
tems is rather similar and an error in energy ≤ 10−4 hartree, which roughly corresponds
to the basis set error of the GTO bases, can be achieved at Kronecker rank κ ≤ 15. For
comparison, the initial separation ranks of the GTO bases, ranging from K = 58 for H+

2

up to K = 126 for H2+
3 (triangular structure), are considerably larger.

2. Orbitals and their products

The simple examples in the previous section illustrate that canonical tensor product
approximations might be beneficial for molecular orbitals. An interesting question is how
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Figure 2. Relative L2-error, i.e., σκ(f)/‖f‖L2 of tensor product approximations for orbitals
represented by various GTO basis sets, ranging from VDZ up to V5Z. Results are shown
for the core orbital (a) and the highest occupied orbital (b) of CH4.

does the error for a certain Kronecker rank depend on the size of the GTO basis set.
We have considered tensor product approximations for the orbitals of CH4 represented in
VDZ, VTZ, VQZ and V5Z basis sets. It can be seen from Fig. 2 that the approximation
error for core and valence orbitals is not sensitive to the quality of the GTO basis set.
However there is a marked difference between core and valence orbitals. The canonical
tensor product approximation actually converges much faster for the 1s core orbital than
for valence orbitals. It seems that the nuclear cusps do not restrain, at least in leading
order, the convergence of the approximation. This is not surprising in view of the almost
exponential convergence of GTO bases [5,6] mentioned before. Obviously, the spatially
more extended valence orbitals with their richer structure require considerably higher
Kronecker ranks in order to achieve a certain accuracy.

2.1. Density fitting via canonical tensor products

For our envisaged applications, canonical tensor product approximations of orbitals
are of minor interest. Instead we are mainly interested in orbital products and the total
electron density which appear in general two-electron integrals and the Hartree potential,
respectively. Therefore our approach is closely related to conventional density fitting
schemes based on auxiliary GTO basis sets. The pivotal question we have to answer is
whether we can achieve a substantial reduction of the initial separation rank which might
be worth the additional effort caused by the compression step. Presently, it seems to be
premature to outline a detailed algorithm for a density fitting scheme based on canonical
tensor products. However we can already highlight certain specific features of such a
scheme.

(i) We expect our approach to be applicable to large molecules using localized orbitals.
This is in agreement with the prevalent view adapted in local correlation methods
[58,59] which are based on localized occupied and virtual orbitals. More recently,
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linear-scaling Kohn-Sham and Hartree-Fock methods based on localized orbitals [60]
have been studied.

(ii) Each tensor product approximation of a certain orbital product can be used many
times in order to compute all the corresponding two electron integrals.

(iii) Further significant reductions of the separation rank can be achieved at the expense
of the second compression step after the convolution of the orbital product with the
Coulomb potential. This might be especially interesting for those orbital products
which give contributions to a large number of two-electron integrals. We refer to
Paper I where the compression of the Hartree potential has been studied in detail.

In Fig. 3, we have shown the relative L2 errors of orbital products for the molecules
CH4, H2O, C2H2, C2H6 and CH3OH. The maximum errors for all molecules are of similar
magnitude except for C2H2 where the maximal errors are considerably larger. A closer
look reveals that the largest relative errors are from products between σ and π orbitals.
It can be easily visualized that these products have the most complicated structures,
however, their absolute values are comparatively small. Another significant difference can
be observed for products where core orbitals contribute which have much smaller relative
errors than the rest. This can be understood from our discussion of the compression of
individual orbitals where core orbitals were shown to have much smaller errors for a given
Kronecker rank than valence orbitals.

The canonical tensor product approximation for products of orbitals can be directly
applied to compute the corresponding Coulomb and exchange contributions. Some results
concerning the error of the Hartree-Fock energy for different Kronecker ranks are listed
in Table 1. It can be seen that the absolute errors for κ = 45 are well below 1 mhartree,
except for CH3OH where a slightly larger Kronecker rank, i.e., κ = 75, is required. A
more detailed analysis of the error has been shown in Fig. 4 for CH3OH, where we have
considered the Coulomb and exchange contributions of each orbital separately, i.e.,

Ja :=

N/2
∑

b=1

(aa|bb), Ka :=

N/2
∑

b=1

(ab|ab). (6)

Increasing the Kronecker rank from κ = 45 to κ = 75 reduces the error for most of the
orbitals by an order of magnitude. It can be seen that the errors are roughly the same
for all orbitals where the errors for the exchange part are smaller than for the Coulomb
contribution.

3. Pseudopotentials

For standard GTO basis sets, a relatively small number of contracted primitive GTOs
are sufficient for the representation of core orbitals. In our tensor terminology this means
that they can be efficiently approximated by low rank tensor products. An alternative
approach is to replace the core electrons by pseudopotentials. This has the further advan-
tage that it also allows for smaller valence basis sets because for pseudo valence orbitals
the orthogonality constraint with respect to the core orbitals must not be retained. We
have studied the effects of pseudopotentials on the tensor product approximation of the
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Figure 3. Relative L2 error, i.e., σκ(f)/‖f‖L2 of canonical tensor product approximations
of orbital products for the molecules CH4 (a), H2O (b), C2H2 (c), C2H6 (d) and CH3OH
(e,f). Results are shown for Kronecker rank κ = 45 (a-e) as well as κ = 75 (f) in the case
of CH3OH. All orbitals were originally represented in VDZ basis sets.
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Figure 4. Individual contributions of the canonical orbitals of CH3OH to the error of
Coulomb (a) and exchange (b) energy, cf. (6), in the canonical tensor product density
fitting scheme. Results are shown for Kronecker ranks κ = 45 and κ = 75.

Table 1
Error in the Hartree-Fock energy EGTO

HF − Eκ
HF (hartree) for different Kronecker ranks κ

of the canonical tensor product density fitting scheme.

κ H2O CH4 C2H2 C2H6 CH3OH
45 2.92 × 10−4 7.26 × 10−4 1.20 × 10−3 1.05 × 10−3 3.13 × 10−3

55 1.64 × 10−4 5.34 × 10−4 6.45 × 10−4 2.54 × 10−4 1.18 × 10−3

75 - - - - 2.16 × 10−4

electron density for the simple molecules CH4 and SiH4. Semilocal energy-consistent
pseudopotentials [63] have been used for C and Si. These pseudopotentials still contain a
singular Coulomb potential with respect to the effective charge of the atomic core. For Si,
we have also tested a new type of smooth pseudopotential which has been developed es-
pecially for applications in quantum Monte Carlo calculations [64]. This pseudopotential
has no singular term anymore and results in a smoother behaviour of the pseudo orbitals
near nuclei.

In order to study the effect of pseudopotentials on canonical tensor product approxima-
tions, we considered only the total (pseudo) electron density instead of individual orbital
products. The tensor product approximation was then used to calculate the Hartree po-
tential according to the procedure described in Paper I. We have listed in Table 2 the
error in the Hartree-Fock energy due to the density fitted Hartree potential for different
Kronecker ranks. It can be seen that for CH4 the errors for the pseudopotential and the
all-electron calculation are almost the same. Going from CH4 to SiH4 increases the size
of the core region however absolute errors up to κ = 20 are similar. At higher ranks the
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Table 2
Error in the Hartree-Fock energy EGTO

HF − Eκ
HF (hartree) for different Kronecker ranks κ

of the tensor product approximation of the (pseudo) electron density. Results are shown
for all-electron (AE) and pseudopotential (PP) calculations.

CH4 SiH4

κ PPa AE PPa PPb

15 1.92 × 10−3 3.25 × 10−3 −1.30 × 10−3 -
20 6.64 × 10−4 5.67 × 10−4 5.17 × 10−4 −1.23 × 10−3

25 6.05 × 10−4 5.41 × 10−4 −9.23 × 10−5 1.75 × 10−4

30 1.38 × 10−4 5.15 × 10−4 1.98 × 10−5 1.33 × 10−4

35 1.00 × 10−4 9.40 × 10−5 2.37 × 10−5 5.77 × 10−5

40 8.70 × 10−5 8.44 × 10−5 1.55 × 10−5 5.14 × 10−5

45 3.89 × 10−5 5.50 × 10−5 1.39 × 10−5 4.35 × 10−5

50 4.62 × 10−5 5.31 × 10−5 5.91 × 10−6 4.34 × 10−5

a Energy consistent pseudopotentials from Ref. [63].
b Pseudopotential without singular term from Ref. [64].

errors for SiH4 are on the average by a factor of 6 smaller. For comparison, the smooth
pseudopotential has larger errors, varying between a factor of 2 to 7, than the standard
pseudopotential. Our results indicate that tensor product approximations are not very
sensitive with respect to nuclear cusps of the electron density.

4. Conclusions

We have studied an alternative to conventional GTO based density fitting schemes
using canonical tensor product approximations for orbitals, products of orbitals and the
electron density. It has been demonstrated that a considerable reduction of the initial
separation rank with respect to GTO bases has been achieved, despite the fact that
our optimization scheme uses the L2 norm which is considered not to be optimal. The
present work represents the first step into the largely unexplored landscape of tensor
product approximations in quantum chemistry. Nevertheless, the highly successful GTO
based density fitting schemes set high standards for all future work in this area. Taking
into account the substantial computational effort to determine canonical tensor product
approximations, it will require considerable efforts to develop a tensor product based
density fitting scheme which becomes competitive to GTO auxiliary bases. It is our
appraisement, however, that research in tensor product approximation is still at the very
beginning and significant progress can be expected in the near future.
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20. R. A. Kendall and A. Früchtl, Theor. Chem. Acc. 97 (1997) 158.
21. F. Weigend, Phys. Chem. Chem. Phys. 4 (2002) 4285.
22. R. Polly, H.-J. Werner, F. R. Manby and P. J. Knowles, Mol. Phys. 102 (2004) 2311.
23. M. Feyereisen, G. Fitzgerald and A. Komornicki, Chem. Phys. Lett. 208 (1993) 359.
24. D. E. Bernholdt and R. J. Harrison, Chem. Phys. Lett. 250 (1996) 477.
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