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Abstract

The solution of elliptic boundary value problems often leads to singularities due to non-

smoothness of the domains on which the problem is posed. Thispaper studies the performance

of the nonconforminghp/spectral element method for elliptic problems on non smooth do-

mains. This paper deals with monotone singularities of typerα andrα logδ r as well as the

oscillating singularities of typerα sin(ε log r).

Key Words: Geometric mesh, least-squares solution, preconditioner,auxiliary mapping,

exponential accuracy.

Mathematics Subject Classification:Primary 65M70, 65N35, 65Y05, 74B05

1 Introduction

In [1, 2] Babuska and Guo proposed an exponentially accuratemethod in the frame work of

hp finite element method to deal the singularities in the solution. They were able to resolve the

singularities which arise at the corners by using a geometric mesh. In [3] Babuska and H. S. Oh

have introduced the method of auxiliary mapping (MAM). Withthis method exponential rates

of convergence was recovered for Laplace equation with corner singularities, in the context of

p version of finite element method. In [13] Lucas and Oh extended this method for Helmholtz

equations.

The method of auxiliary mapping (MAM) introduced by Babuskaand Oh in [3] was proven to

be successful in dealing withrα singularities. However, the effectiveness of MAM is reduced in

handlingrα sin(ǫ log r) type singularities. In [15] H. S. Oh et al., introduced the power auxiliary

mapping (PAM) and the exponential auxiliary mapping (EAM) and shown that the method is highly

accurate in dealing the singularities of typerα, rα logδ r and rα sin(ǫ log r), where0 < α <

1. They presented numerical results for various test problemsand compared the results with the

results obtained by thehp finite element method.

In the latest book by Pavel and Gunzburger [4] the least-squares finite element method (LS-

FEM) for elliptic problems have been summarized. The standard techniques used to convert the

second order elliptic equations into first order system, forexample like div/curl systems shows

poor rates of convergence in the presence of singularities in the solution. A weighted norm first

order system least-squares (FOSLS) for problems with corner singularities have been proposed

in [5, 11]. The method recovers optimal order accuracy in theweightedL2 andH1 norms and

retains optimalL2 convergence near the singularities. The error estimates shows only an algebraic

convergence.

The elliptic problem on non-smooth domains have been examined by Pathria and Karniadakis

in [16] and Karniadakis and Spencer in [8], in the framework of spectral/hp element methods. In
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[19, 20]hp version of the mortar finite element method (nonconforming)have been studied. The

method is optimal for bothh andp version and exponential accuracy is obtained withhp version.

Mathematical frame work for different discontinuous Galerkin methods for elliptic problems have

been discussed in [8]. In [22] spectral/hp element methods for solving elliptic boundary value prob-

lems on polygonal domains using parallel computers were proposed. For problems with Dirichlet

boundary conditions the spectral element functions were nonconforming. For problems with Neu-

mann and mixed boundary conditions the spectral element functions have to be continuous at the

vertices of the elements only and nonconforming otherwise.

In [7] P. Dutt et al. proposed an exponentially accurate nonconforminghp/spectral element

method to solve general elliptic boundary value problems with mixed Neumann and Dirichlet

boundary conditions on non-smooth domains. The stability and error estimates have been proved.

In this paper we briefly describe the method and present the energy norm performance of elliptic

boundary value problems containing the singularities of the typerα, rα logδ r andrα sin(ǫ log r).

A geometric mesh is used in the neighbourhood of the corners and the auxiliary map of the

form z = ln ξ is introduced to remove the singularities at the corners, which was first introduced

by Kondratiev in [10]. In the remaining part of the domain usual Cartesian coordinate system is

used.

The spectral element functions are nonconforming. The method is essentially a least-squares

method and the solution can be obtained by solving the normalequations using the preconditioned

conjugate gradient method (PCGM) without computing the mass and stiffness matrices [7, 9, 22].

A novel preconditioner is proposed for the method which is a block diagonal matrix, where each

diagonal block corresponds to an element [6]. The conditionnumber of the preconditioner is

O (lnW )2 , whereW is the degree of the approximating polynomial. LetN denote the number

of layers in the geometric mesh such thatW is proportional toN . Then the method requires

O(W lnW ) iterations of the PCGM to obtain the solution to exponentialaccuracy.

The contents of this paper are organized as follows: In Section 2 the problem is stated and the

numerical scheme is described briefly. In Section 3 computational results are provided for various

test problems. The Appendix contains details of discretization of the domain and the numerical

formulation in brief.

2 Numerical Scheme

The numerical method is briefly described in this Section. The complete details of the stabil-

ity estimate, error estimates and numerical scheme were given in [7]. The stability estimate has

been proved for strongly elliptic operator which satisfy the Babuska-Brezzi inf-sup condition on

curvilinear polygons whose sides are piecewise analytic.
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(i) Elliptic equation on a polygonal domain

Let Ω be a polygonal domain inR2 with boundary∂Ω = Γ as shown in Fig.1. Let the ver-

tices ofΩ be given byE1, E2, . . . , Ep and the corresponding sides by the segmentsΓ1,Γ2, . . . ,Γp,

whereΓi joins the pointsEi−1 andEi. Let the angle subtended atEj be ωj. Further, letΓ =

Γ[0]
⋃

Γ[1], Γ[0] =
⋃

i∈D Γi, Γ[1] =
⋃

i∈N Γi whereD is a subset of the set{i | i = 1, . . . , p} and

N = {i | i = 1, . . . , p} \ D.
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Figure 1: Polygonal Domain

Denote byHm(Ω) the Sobolev space of functions with square integrable derivatives of integer

order≤ m onΩ furnished with the norm

‖ u ‖2
Hm(Ω)=

∑

|α|≤m

‖ Dαu ‖2
L2(Ω) .

Further, let

‖u‖2
s,I =

∫

I

u2(x)dx+

∫

I

∫

I

|u(x) − u(x′)|2

|x− x′|1+2s dxdx′

denote the fractional Sobolev norm of orders, where0 < s < 1. Here I denotes an interval

contained inR.

Consider a two dimensional elliptic boundary value problem

Lu = f in Ω,

u = g[0] on Γ[0],(
∂u

∂N

)

A

= g[1] on Γ[1]. (2.1)

HereL = −
2∑

i,j=1

∂

∂xi

(
aij(x)

∂

∂xj

)
+

2∑

i=1

bi(x)
∂

∂xi
+ c(x) is a strongly elliptic operator which

satisfy the Babuska-Brezzi inf-sup condition onΩ and the coefficientsai,j(x) = aj,i(x), bi(x), c(x)
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are analytic onΩ, and
(

∂u
∂N

)
A

denotes the usual conormal derivative which is defined as follows.

LetN = (N1, N2) denote the outward normal to the curveΓi for i ∈ N . Then
(
∂u

∂N

)

A

(x) =
2∑

r,s=1

Nrar,s
∂u

∂xs

. (2.2)

Assume that the given dataf is analytic onΩ andg[l], l = 0, 1 is analytic on every closed arcΓi

andg[0] is continuous onΓ[0].

(ii) Discretization and Local Transformation

Discretize the polygonal domainΩ intop non-overlapping polygonal subdomainsS1, S2, . . . , Sp,

whereSk denotes a subdomain which contains the vertexEk only. LetSk =
{
Ωk

i,j : j = 1, 2, . . . Jk,

i = 1, 2, . . . , Ik} be a partition ofSk, whereJk andIk are integers (Fig. 1).Ik is bounded for all

k. Let (rk, θk) denote polar coordinates with center atEk. Chooseρ so that the sectorΩk with sides

Γk andΓk+1 bounded by the circular arcBk
ρ centered atEk with radiusρ, is such thatΩk ⊆ Sk.

ThenΩk can be represented as

Ωk = {(x1, x2) ∈ Ω : 0 < rk < ρ} .

Let
{
ψk

i

}
i=1,...,Ik+1

be an increasing sequence of points such thatψk
1 = ψk

l andψk
Ik+1 = ψk

u.

Let ∆ψk
i = ψk

i+1 − ψk
i . Choose these points so that

max
k

(
max

i
∆ψk

i

)
≤ λmin

k

(
min

i
∆ψk

i

)

for some constantλ.

Now choose a geometric mesh withN layers inΩk with a geometric ratioqk (0 < qk < 1) . Let

σk
j = ρ (qk)

N+1−j for 2 ≤ j ≤ N + 1 andσk
1 = 0.

Let

Ωk
i,j =

{
(x1, x2) : σk

j < rk < σk
j+1, ψ

k
i < θk < ψk

i+1

}
,

for 1 ≤ i ≤ Ik, 1 ≤ j ≤ N.

In the remaining part ofSk, for 1 ≤ k ≤ p, we retain the Cartesian coordinate system(x1, x2)

i.e., inΩk
i,j for 1 ≤ i ≤ Ik, N < j ≤ Jk.

Let

Ωp+1 =
{
Ωk

i,j : 1 ≤ i ≤ Ik, N < j ≤ Jk, 1 ≤ k ≤ p
}
.

Relabel the elements ofΩp+1 and write

Ωp+1 =
{
Ωp+1

l , 1 ≤ l ≤ L
}
,

whereL denotes the cardinality ofΩp+1.

5



Now let τk = ln rk in the sectorΩk for 1 ≤ k ≤ p. Defineζk
j = ln σk

j for 1 ≤ j ≤ N + 1.

Hereζk
1 = −∞. Define

Ω̃k
i,j =

{
(τk, θk) : ζk

j < τk < ζk
j+1, ψ

k
i < θk < ψk

i+1

}
,

for 1 ≤ i ≤ Ik, 1 ≤ j ≤ N. Hence the geometric meshΩk
i,j, 2 ≤ j ≤ N becomes a quasi-uniform

mesh in modified polar coordinates (Fig. 2). However,Ω̃k
i,1 is a semi-infinite strip.
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Figure 2: Quasi uniform mesh inτk andθk coordinates

(iii) Approximation

The nonconforming spectral element functions are sum of tensor products of polynomials of

degreeWj, 1 ≤ Wj ≤ W in their respective modified polar coordinates (A.1) inΩ̃k
i,j for 1 ≤

k ≤ p, 1 ≤ i ≤ Ik, 2 ≤ j ≤ N. In the infinite sector i.e., iñΩk
i,1, the solution is approximated

by a constant which is the value of the functionu at the corresponding vertexEk. The constant

value is computed by treating it as a common boundary value during the numerical computation.

The quadrilateral elements ofΩp+1 are mapped onto the squareS = (−1, 1) × (−1, 1) and the

element function is represented as a sum of tensor product ofpolynomials of degreeW in ξ andη,

the transformed variables (A.2).

(iv) The Numerical Formulation

We seek a solution which minimizes the sum of the squares of a weighted squared norm of

the residuals in the partial differential equation and the sum of the squares of the residuals in the

boundary conditions in fractional Sobolev norms and enforce continuity by adding a term which

measures the sum of the squares of the jump in the function andits derivatives in fractional Sobolev

norms (see A.5).
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The method is essentially a least-squares method and the normal equations can be solved using

the preconditioned conjugate gradient method (PCGM). Let the normal equations be

AU = h. (2.3)

The vectorU composed of the values of the spectral element functions at Gauss-Legendre-Lobatto

points is divided into two sub vectors one consisting of the values of the spectral element functions

at the vertices of the domain constitute the set of common boundary valuesUB (corresponding

to the constant approximation in the semi-infinite strip) and the other consisting of the remaining

values which we denote byUI . Now corresponding to the decomposition ofU =

[
UI

UB

]
, A and

h has the forms

A =

[
AII AIB

ABI ABB

]
andh =

[
hI

hB

]
. (2.4)

To solve the matrix equation (2.3) we use the block L-U factorization ofA, viz.

A =

[
I 0

AT
IBA

−1
II I

] [
AII 0

0 S

] [
I A−1

II AIB

0 I

]
, (2.5)

where the Schur ComplementS is defined as

S = ABB −AT
IBA

−1
II AIB.

To solve the equation (2.3) based on the L-U factorization ofA as given in (2.5) reduces to first

solving the system of equations

S UB = h̃B, (2.6)

where

h̃B = hB −AT
IBA

−1
II hI . (2.7)

Once solved forUB using (2.6),UI can be obtained by solving

AIIUI = hI −AIBUB.

The feasibility of such a process depends on the ability to computeAIBUB,AIIUI andABBUB

for anyUI , UB efficiently and this can always be done ifAV can be computed inexpensively for

any vectorV. It has been shown in [22] thatAV can be computed inexpensively without computing

the mass and stiffness matrices.

However in addition to this it is imperative that we should beable to construct effective precon-

ditioner for the matrixA so that the condition number of the preconditioned system isas small as

possible. If this can be done then it will be possible to computeA−1V efficiently using the PCGM

for any vectorV.
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It has been shown in [6] that a block diagonal matrix can be constructed as a preconditioner

matrix for the matrix in the normal equations, where each diagonal block corresponds to a partic-

ular element which is mapped onto the master squareS. The condition number of the precondi-

tioned system isO((lnW )2). Hence to computeA−1V to an accuracy ofO(e−bW ) would require

O(W lnW ) iterations of the PCGM. The solution vectorU is obtained to an accuracy ofO(e−bW )

usingO(W lnW ) iterations of the PCGM.

After obtaining the nonconforming solution at the Gauss-Legendre-Lobatto points, a set of cor-

rections are performed so that the solution is conforming and belongs toH1(Ω). These corrections

are similar to Lemma 4.57 of [18].

Then forW large enough the error estimate

‖uex − z‖1,Ω ≤ C e−bW (2.8)

holds, whereC andb are constants andz is the corrected solution.

The proof for this estimate follows similar to the proof of Theorem 3.1 of [23].

3 Numerical Results

To show the effectiveness of the method we considered the Laplace and the Poisson equations

for which the exact solution is in one of the singular formrα, rα logδ r andrα sin(ǫ log r). Further

to check the performance of the method we have presented the results for homogeneous Helmholtz

equation and for the Motz problem. Elasticity equations arealso considered as an another example

for showing the applicability of the method for system of equations. TakenWj = W for all j (A.1)

and the number of layersN in the geometric mesh to be equal toW. The computations are carried

out on a single processor. As explained in the previous Section, after obtaining the nonconforming

solution a set of correction are performed so that the solution belongs toH1. In this section we

mean by Iters the total number of iterations required to compute the Schur complement matrix,

solve for the common boundary value problems and finally to obtain the solution.

The relative error‖e‖ER is defined as‖e‖ER =
‖e‖E

‖u‖E

, where‖.‖E denotes energy norm (H1-

norm). Since the total number of degrees of freedom (DOF)M is proportional toW 3 the relative

error‖e‖ER in the energy norm satisfies the estimate

‖e‖ER ≤ Ce−bM1/3

. (3.1)

Example 1: Consider the Laplace equation on a circular domain of radius1 as shown in Fig. 3(a)

with Dirichlet boundary conditions on crack panelsOA,OC and on the boundary of the circular

regionOAC. Let (r, θ) denote the polar coordinates with origin at the vertexO = (0, 0). Let
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us choose the data so that the solutionu has the form of the leading singularityr
1
2 sin(1

2
θ) at the

origin. Considering the symmetry in the domain, the problemis solved on semi-circular disk as

shown in Fig. 3(b). A geometric mesh is used in the neighbourhood ofO, with a geometric ratio

q = 0.15. Chooseλ = 1/5 (see A.3).

O

θ

O A r

A

C

r

θ

(a) (b)

Figure 3: The scheme of cracked domain

Mesh 1 Mesh 2 Mesh 3

Figure 4: Geometric mesh with different mesh refinements inθ direction

In Fig. 4 the sequence of meshes for the domain Fig. 3(b) are shown, with geometric mesh

refinement.

W Mesh 1 Mesh 2 Mesh 3
2 10.0939 10.100974 10.113946
3 4.00533 4.005878 4.0100051
4 1.55574 1.556295 1.5560239
5 0.60104 0.600855 0.6000372
6 0.23338 0.233532 0.2333148
7 0.09020 0.090178 0.0900233
8 0.03500 0.034998 0.0349554
9 0.01353 0.013532 0.0135070

Table 1: Relative error in percent againstW for different meshes

The values of relative error‖e‖ER (in percentage) are reported for different values ofW in

Table 1. The relative error is almost same for all the three different meshes. It is noted that the

DOF is less for the discretization shown in Mesh 3 in comparison with Mesh 2 and Mesh 1. The

DOF can be further reduced by using variable degree of polynomial approximation (here a uniform

degree of polynomial approximation is used for computational simplicity).

9



W Iters M ‖e‖ER % b C
2 22 31 10.113946 0.741966 1.090843
3 40 89 4.0100051 0.745101 1.130016
4 49 191 1.5560239 0.747182 1.157822
5 66 349 0.6000372 0.747927 1.168322
6 76 575 0.2333148 0.748825 1.181549
7 87 881 0.0900233 0.749115 1.186005
8 101 1279 0.0349554 0.749944 1.199242
9 115 1781 0.0135070 0.749972 1.199703

Table 2: Values of Iterations,M1/3, relative error (%),b andC againstW

Table 2 contains the iteration count, number of degrees of freedom, the relative error in per-

centage and the constantsb, C in (3.1) for the Mesh 3, for different values of the polynomial order

W .

In Fig.5 a graph is plotted forlog ‖e‖ER againstM1/3, for Mesh 3. The graph is shown to be a

straight line which shows the exponential rate of convergence as it obeys exactly the error estimate

(3.1).
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Figure 5: Log of relative error againstM1/3

Example 2: Consider the Laplace equation on a domainOAB, as shown in Fig. 6. Neumann

boundary conditions are taken on sidesOA, OB and Dirichlet boundary condition on the rest of

the boundary. Letr andθ denote the polar coordinates with origin at the vertexO. Chosen the data

such that the exact solutionu has the formr2/3 cos(2
3
θ) + r4/3 cos(4

3
θ).
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Mesh 1 Mesh 2Domain−OAB

r=1

Figure 6: Sectoral domain

Mesh 1 and Mesh 2 in Fig. 6 are two different discretization ofthe domain with a geometric

ratio q = 0.15. Let us chooseλ = 1/4. In Table 3 the values of degrees of freedom(M) , relative

error in percentage and constant valuesb, C for Mesh 1 and Mesh 2 are tabulated againstW.

Mesh 1 Mesh 2
W M ‖e‖ER % M ‖e‖ER % b C Iters
2 46 22.7853 31 55.4689 1.19044 10.994 20
3 133 3.1268 89 3.5228 1.14055 6.2712 38
4 286 0.5927 191 2.1518 1.14816 6.8545 52
5 523 0.1055 349 0.1151 1.05222 2.1441 71
6 862 0.0265 575 0.0494 1.07138 2.7263 87
7 1321 0.0073 881 0.0073 1.00165 1.1041 110
8 1918 0.0020 1279 0.0021 1.00501 1.1548 127
9 2671 0.0005 1781 0.0005 1.00027 1.0816 145

Table 3: Computational values for Mesh 1 and Mesh 2

Since the size of the elements is large in Mesh 2, the difference in the relative errors can be

noted for smaller values ofW, compared to the relative error for Mesh 1. But asW increases the

error is same for both Mesh 1 and Mesh 2. The number of degrees of freedom is less for Mesh 2

and it can be further reduced by considering variable polynomial approximation.

Fig. 7 shows the graph inM1/3×log ‖e‖ER scale. The graph is a straight line for Mesh1 and

for Mesh 2 it has some jumps initially and asW increases it becomes a straight line.
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Figure 7: Log of relative error againstM1/3

Example 3: Consider a homogeneous Helmholtz equation on a domainΩ as shown in Fig. 8(a).

−∆u+ u = 0 in Ω,

∂u

∂n
= 0 on Γ1,

u =

{
sinh(r)√

r
cos(θ/2) on Γ2

0 on Γ3

.

OB AΓΓ

Γ

O

1r=

13
(a) (b)

 2

Figure 8: (a) The domain (b) Discretization

Discretization of the domain, with a geometric ratioq = 0.15 is shown in Fig. 8(b). The

problem has a singularity atO = (0, 0) and the exact solution of the problem issinh(r)√
r

cos(θ/2).

Let us chooseλ = 1/5. In Table 4 the values of iteration count, degrees of freedom,relative

error (in percentage) and constantsb, C for different values ofW are tabulated.
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W Iters M ‖e‖ER % b C
2 18 31 16.923085 0.793474 1.9648
3 43 89 6.76869 0.790778 1.9061
4 55 191 2.037648 0.774419 1.5744
5 74 349 0.661117 0.761727 1.3500
6 89 575 0.235673 0.754788 1.2375
7 102 881 0.088490 0.751745 1.1896
8 114 1279 0.033923 0.750621 1.1719
9 127 1781 0.013098 0.750326 1.1671

Table 4: Values of Iteration count , DOF(M), the relative error (%),b and C againstW

Fig. 9 shows the graph inM1/3 × log ‖e‖ER scale. The graph is a straight line and this shows

the exponential rate of convergence.
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Figure 9: Log of relative error againstM1/3

Example 4: ( Motz problem ) Consider the Laplace’s equation−∆u = 0 in a rectangular

domainΩ1 = {(x, y)| − 1 < x < 1, 0 < y < 1} as shown in Fig. 10, satisfying the following

boundary conditions

u|x<0,y=0 = 0, u|x=1 = 500,

uy|y=1 = uy|y=0,x>0 = ux|x=−1 = 0.

This problem has been widely studied by many researchers. Rosser and Papamichael in 1975

[17] succeeded in finding the closed form solution for this problem and represented it in the fol-
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lowing form

u =
P∑

l=0

blr
l+1/2cos(l +

1

2
)θ (3.2)

for P = 19. Here(r, θ) denotes the polar coordinates.

(−1,0)

(1,1)(−1,1)

 yu   = 0

u   = 0 y

u   = 0 x

u = 0

u = 500

 (1,0)(0,0)

r = 1
Ω

Figure 10: The domainΩ1

For the convenience of the readers the coefficientsbl, l = 0, 2.., 19 are provided in the Appendix

A3. More accurate solution for this problem has also been given in [12], that is forP = 33.

Here we have considered the Motz problem on a domainΩ which is a semi circle of radius1

as shown in the Fig. 8(a). Chosen (3.2) as the exact solution and restricted the expansion ofu on

Γ2 i.e., applied Dirichlet boundary condition on semicircular arc. Further, chosen the following

conditions on the other part of the boundaries

u|Γ3 = 0,
∂u

∂n
|Γ1 = 0.

The discretization of the domain, with a geometric ratioq = 0.15 is as shown in Fig. 8(b).

Chooseλ = 1/5. In Table 5 the values of iteration count, relative error (in percentage) for different

values ofW are tabulated.

W Iters M ‖e‖ER %
2 29 31 17.4791
3 41 89 4.7940
4 60 191 1.8151
5 76 349 0.6587
6 92 575 0.2618
7 107 881 0.0969
8 119 1279 0.0375
9 135 1781 0.0145

Table 5: Values of Iteration count, relative error (%) againstW.

Fig. 11 shows the graph inM1/3 × log ‖e‖ER scale which is a straight line and this indicates

the exponential rate of convergence of the method.
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Figure 11: Log of relative error againstM1/3

Example 5: Consider the Poisson equation

−△u = f in Ω = {(r, θ) : r ≤ r0, 0 ≤ θ ≤ π} .

In Fig. 12, the discretization of the domainΩ is shown. Chosen the data such that exact solution

u is of the formr0.5 log2 r cos θ. Dirichlet boundary condition is imposed onr = r0 and Neumann

boundary condition is imposed on the remaining part of the boundary.

(0,0)

0rrq

r q2

3 r q

Figure 12: Discretization of the domain

As mentioned in [15], for the geometric mesh refinement the ratio q = e−1.5π gives the better

results (but not optimal), here too a geometric ratioq = e−1.5π is taken for the geometric mesh

andr0 =2. Auxiliary map is used over the whole domain for simplicity. Chooseλ = 1/5. Table 6

contains the values of the iterations, degrees of freedom and the relative error in percentage against

the degree of polynomial approximationW .
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W Iters M ‖e‖ER %
2 25 31 37.566
3 44 89 10.212
4 64 191 3.726
5 78 349 0.765
6 94 575 0.106
7 103 881 0.012
8 115 1279 0.001
9 123 1781 0.0001

Table 6: Values of Iterations, DOF and relative error (%) againstW
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Figure 13: Log of relative error againstM1/3

Fig. 13 shows the log of relative error against degrees of freedom. Results shows that our

approach gives a better results than thehp finite element method and yields the same rates of

convergence as EAM comparing with the values given in [15].

Example 6: Consider the Poisson equation on the domain as shown in Fig. 12 with r0 = 2.

Choosingf such that the exact solution has the oscillatory singularity of the formrα sin(ǫ log r) cos θ

with respect to various sizes of oscillating factorǫ. As the oscillating factor becomes smaller, the

singular function is less oscillating. Here we consider theweak singular function withǫ = 0.1 and

next the highly oscillating function withǫ = 3.0.

Consider the case withǫ = 0.1 and a geometric mesh with a geometric ratioq = e−1.5π.

Auxiliary map is used over the whole domain for simplicity. Chooseλ = 1/5.
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W Iters M ‖e‖ER %
2 17 31 23.1583
3 38 89 4.59133
4 47 191 1.25379
5 62 349 0.19646
6 70 575 0.02104
7 86 881 0.00183
8 103 1279 0.00013
9 111 1781 0.00001

Table 7: Values of Iterations, DOF and relative error (%) againstW

The computational values such as iterations, degrees of freedom and relative error in percentage

are provided in Table 7 for different values ofW . In Fig. 14 the log of relative error against degrees

of freedom is drawn.
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Figure 14: Log of relative error againstM1/3

Letu = r0.5 sin(ǫ log r) cos θ with ǫ = 3.0, it is a highly oscillatory singular function. Consider

r0 = 2 and geometric mesh with geometric ratioq = 0.15. Chooseλ = 1/5. The geometric ratio

q = 0.15 gives better results among the four ratiosq = 0.15, q = e−π, q = e−1.5π andq = e−2π.

Table 8 contains the values of iteration count, degrees of freedomM and relative error in

percentage againstW .
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W Iters M ‖e‖ER %
2 22 31 78.166
3 36 89 54.840
4 52 191 12.04
5 64 349 6.464
6 77 575 0.68
7 85 881 0.31
8 94 1279 0.036
9 100 1781 0.010

Table 8: Values of Iterations, DOF and relative error (%) againstW
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Figure 15: Log of relative error againstM1/3

Fig. 15 shows graph of the log of relative error in percentageagainst degrees of freedom.

Results suggests that our approach gives a better results than thehp finite element method and

MAM by comparing the results shown in [15].

Example 7: Let u = (u1, u2)
T be a displacement vector. Consider the following plane strain

linear elasticity problem on the domain with a re-entrant crack as shown in Fig. 16 (a) when the

body forces are not present.

−
∂

∂x1

(
c11

∂u1

∂x1

+ c12
∂u2

∂x2

)
−

∂

∂x2

[
c66

(
∂u1

∂x2

+
∂u2

∂x1

)]
= 0,

−
∂

∂x1

[
c66

(
∂u1

∂x2
+
∂u2

∂x1

)]
−

∂

∂x2

(
c12

∂u1

∂x1
+ c22

∂u2

∂x2

)
= 0. (3.3)
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Let E denote the modulus of elasticity andν (0 < ν < 0.5) denote the Poisson’s ratio, then

coefficientsc11, c12, c22 andc66 are given byc11 = c22 = E(1−ν)
(1+ν)(1−2ν)

, c12 = Eν
(1+ν)(1−2ν)

, andc66 =
Eν

2(1+ν)
.

5Γ

Γ4

1Γ

Γ2

Γ3

Γ6

7Γ

3

(−2,−2)Ε  =5

Ε  =(−2,2) E

E  =(0,0)

4

1

Ε2
Ε7

=(2,2)

6
 E  = (2,−2)

(2,0)

(a) (b)

ρ

ρ

ρq

q
2

Figure 16: (a) Crack domain (b) Discretization

On the crack panelsi.e., on the boundaryΓ1 andΓ2 traction boundary conditionsTu =

(T1u, T2u)
T are taken and Dirichlet boundary conditions are taken on therest of the boundaries

Γi, i = 3...7.

Let n = (n1, n2) be the unit outward normal on the boundary, then the tractioncomponents

T1u andT2u are given by

T1u =

(
c11

∂u1

∂x1
+ c12

∂u2

∂x2

)
n1 + c66

(
∂u1

∂x2
+

∂u2

∂x1

)
n2 = g1,

T2u = c66

(
∂u1

∂x2
+

∂u2

∂x1

)
n1 +

(
c12

∂u1

∂x1
+ c22

∂u2

∂x2

)
n2 = g2.

Let (r, θ) denote the polar coordinates with origin atE1. The data chosen such that the so-

lution is of the form of the leading singularity atE1. Thus we choose the Mode 1 displacement

components [21]

u1 =
1

2c66
rα [(κ−Q(α + 1)) cosαθ − α cos((α− 2)θ)] ,

u2 =
1

2c66
rα [(κ+Q(α + 1)) sinαθ + α sin((α− 2)θ)] ,

whereκ = 3 − 4ν, α = 0.5 andQ = 0.333. Further, we chooseE = 1, ν = 0.3 and the geometric

ratio q = 0.15. Let us chooseλ = 1/7.

Table 9 shows the values of iteration count, relative error‖e‖ER in percentage againstW.
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W Iters M ‖e‖ER %
2 66 386 0.1331E+02
3 234 962 0.3720E+01
4 406 1922 0.1050E+01
5 577 3362 0.3916E+00
6 767 5378 0.1439E+00
7 1086 8066 0.5005E-01
8 1678 11522 0.1954E-01

Table 9: Values of Iterations and relative error (%) againstW

In Fig. 17 a graph is plotted forlog ‖e‖ER againstM1/3.
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Figure 17: Log of relative error againstM1/3

Note: In example 7 the geometric mesh is used in the neighbourhoodof the crack tip, shown in

Fig. 16(b) as circular rings. Modified polar coordinate system is used in this region for numerical

computation and away from this region usual Cartesian coordinate system is used. For all other

examples the numerical computations are done by only using modified polar coordinates as the

geometry of the domains in these examples supports polar coordinates easily.

Conclusions

The proposed method is exponentially accurate. The dimension of the Schur Complement

matrix is small, since the cardinality of the common boundary values is small. So it is easy to

construct a nearly exact approximation to the Schur Complement. The preconditioner is a block
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diagonal matrix where each diagonal block corresponds to anelement and it’s inverse is trivial

with almost optimal condition number. The algorithm for preconditioner is quite easy to imple-

ment with minimum extra effort. The residuals in the normal equation can be obtained efficiently

without computing the mass and stiffness matrices. The method can also be implement on parallel

computers more efficiently.
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A Appendix

A.1 Spectral element function

Let uk
i,1(τk, θk) = hk, a constant oñΩk

i,1 (In the semi-infinite strip). Define the spectral element

function

uk
i,j(τk, θk) =

Wj∑

r=0

Wj∑

s=0

gr,s τ
r
k θ

s
k, (A.1)

on Ω̃k
i,j for 1 ≤ i ≤ Ik, 2 ≤ j ≤ N, 1 ≤ k ≤ p. Here1 ≤Wj ≤W.

Moreover there is an analytic mappingMp+1
l from the master squareS = (−1, 1)2 to Ωp+1

l .

Define

up+1
l (Mp+1

l (ξ, η)) =

W∑

r=0

W∑

s=0

gr,s ξ
r ηs. (A.2)

A.2 Numerical Scheme

As described in Section 2,̃Ωk
i,j is the image ofΩk

i,j in (τk, θk) coordinates. LetLk be the

operator defined byLku = r2
k Lu. Let y1 = τk andy2 = θk then

L̃ku = −
2∑

i,j=1

∂

∂yi
(ãk

i,j

∂u

∂yj
) +

2∑

i=1

b̃ki
∂u

∂yi
+ c̃ku.

Let

Ok =

[
cos θk − sin θk

sin θk cos θk

]
and Ãk =

[
ãk

1,1 ãk
1,2

ãk
2,1 ãk

2,2

]
.

ThenÃk = (Ok)TAOk, whereA is the matrix(A)r,s = ar,s.

Next, let the vertexEk =
(
xk

1, x
k
2

)
and

F k
i,j (τk, θk) = e2τkf

(
xk

1 + eτk cos θk, x
k
2 + eτk sin θk

)

in Ω̃k
i,j for 1 ≤ k ≤ p, 2 ≤ j ≤ N, 1 ≤ i ≤ Ik (sinceLku = r2

k f ).

Let γs ⊆ Γ[1] ∩ ∂Ωk for 1 ≤ k ≤ p, andγ̃s denote the image ofγs in (τk, θk) coordinates. Now

the unit normaln at a pointP̃ on γ̃s can be written asn = (n1, n2). Then
(
∂uk

∂n

)

Ãk

=

2∑

i,j=1

ni ã
k
i,j

∂uk

∂yj
.

Consider the boundary conditionsu = gk onΓk∩∂Ωk for k ∈ D, and
(

∂u
∂N

)
A

= gk onΓk∩∂Ωk
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for k ∈ N . Let

lk1(τk) =





u = gk(x

k
1 + eτkcos(ψk

l ) , xk
2 + eτksin(ψk

l )), for k ∈ D,
(

∂u
∂n

)
Ãk = eτk gk(x

k
1 + eτkcos(ψk

l ) , xk
2 + eτksin(ψk

l )), for k ∈ N .

kΩ

Γk

(r ,

(r ,

   
k

l
θ  =  ψ

k−1

k

k−1

k

k   θ  )k

k−1

k−1

θ    )

θ   = ψ    k−1

u

Ω
k−1

E

E

Figure 18: EdgeΓk common toΩk−1 andΩk

Consider the boundary conditionu = gk for k ∈ D, and
(

∂u
∂N

)
A

= gk for k ∈ N onΓk∩∂Ω
k−1.

Define

lk2(τk−1) =





u = gk(x

k−1
1 + eτk−1cos(ψk−1

u ) , xk−1
2 + eτk−1sin(ψk−1

u )), for k ∈ D,
(

∂u
∂n

)
Ãk = eτk−1gk(x

k−1
1 + eτk−1cos(ψk−1

u ) , xk−1
2 + eτk−1sin(ψk−1

u )) for k ∈ N .

Now we consider the elements inΩp+1
l . In Ωp+1

l for 1 ≤ l ≤ L,
∫

Ωp+1
l

∣∣Lup+1
l

∣∣2 dx1dx2 =

∫

S

∣∣Lup+1
l

∣∣ Jp+1
l dξdη.

HereJp+1
l is the Jacobian of the mappingMp+1

l from S to Ωp+1
l . DefineLp+1

l =
√
Jp+1

l L.

Letf p+1
l (ξ, η) = f(Mp+1

l (ξ, η)) for 1 ≤ l ≤ L and defineF p+1
l (ξ, η)=f p+1

l (ξ, η)
√
Jp+1

l (ξ, η).

By γs we shall denote a side common to the elementsΩp+1
m andΩp+1

n . It may be assumed that

γs is the image ofη = −1 under the mappingMp+1
m which mapsS to Ωp+1

m and also the image of

η = 1 under the mappingMp+1
n which mapsS to Ωp+1

n . By the chain rule

(up+1
m )x1 = (up+1

m )ξ ξx1 + (up+1
m )η ηx1 , and

(up+1
m )x2 = (up+1

m )ξ ξx2 + (up+1
m )η ηx2 .

Then
∥∥[up+1]

∥∥2

0,γs
=
∥∥up+1

m (ξ,−1) − up+1
n (ξ, 1)

∥∥2

0,I
,

∥∥[(up+1
xi

)]
∥∥2

1/2,γs
=
∥∥(up+1

m )xi
(ξ,−1) − (up+1

n )xi
(ξ, 1)

∥∥2

1/2,I
, i = 1, 2.

HereI is the interval(−1, 1).
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Next, letγs ⊆ Γ[0] ∩ ∂Ωp+1 and letγs be the image ofη = −1 under the mappingMp+1
m which

mapsS to Ωp+1
m . Then

∥∥up+1
∥∥2

0,γs
+

∥∥∥∥
(
∂up+1

∂T

)∥∥∥∥
2

1/2,γs

=
∥∥up+1

m (ξ,−1)
∥∥2

0,I
+

∥∥∥∥
(
∂up+1

m

∂T

)
(ξ,−1)

∥∥∥∥
2

1/2,I

.

In the same way ifγs ⊆ Γ[1] ∩ ∂Ωp+1,
∥∥∥
(

∂up+1

∂N

)
A

∥∥∥
2

1/2,γs

can be defined.

Let Γk

⋂
∂Ωp+1

m = Ck
m be the image of the mappingMp+1

m of S ontoΩp+1
m corresponding to

the sideη = −1, andok
m (η) = gk (Mp+1

m (ξ,−1)) , where−1 ≤ ξ ≤ 1.

Let γs ⊆ Ω̄k andd(Ek, γs) = infx∈γs
{distance(Ek, x)} . Chooseλk < αk whereαk is defined

as in [7]. LetFu =
{{
uk

i,j(τk, θk)
}

i,j,k
,
{
u

p+1

l (ξ, η)
}

l

}
∈ ΠN,W , the space of spectral element

functions. Defineak = u(Ek).

Define the functional

r

N,W

vertices
(Fu) =

p∑

k=1

N∑

j=2

Ik∑

i=1

(ρµ
N+1−j
k )−2λk

∥∥∥(L̃k)uk
i,j(τk, θk) − F k

i,j (τk, θk)
∥∥∥

2

0,Ω̃k
i,j

+

p∑

k=1

∑

γs⊆Ωk∪Bk
ρ,

µ(γ̃s)<∞

d(Ek, γs)
−2λk

(∥∥∥[uk]
∥∥∥

2

0,γ̃s

+
∥∥∥[(uk

τk
)]
∥∥∥

2

1/2,γ̃s

+
∥∥∥[(uk

θk
)]
∥∥∥

2

1/2,γ̃s

)

+
∑

m∈D

m∑

k=m−1

∑

γs⊆∂Ωk∩Γm,
µ(γ̃s)<∞

d(Ek, γs)
−2λk

(∥∥∥(uk − hk) − (lmm−k+1 − ak)
∥∥∥

2

0,γ̃s

+
∥∥∥uk

τk
− (lmm−k+1)τk

∥∥∥
2

1/2,γ̃s

)
+
∑

m∈D

m∑

k=m−1

(hk − ak)
2

+
∑

m∈N

m∑

k=m−1

∑

γs⊆∂Ωk∩Γm,
µ(γ̃s)<∞

d(Ek, γs)
−2λk

∥∥∥∥
(

∂uk

∂n

)

Ãk

− lmm−k+1

∥∥∥∥
2

1/2,γ̃s

. (A.3)

In the aboveµ(γ̃s) denotes the measure ofγ̃s.

Define

r

N,W

interior
(Fu) =

L∑

l=1

∥∥∥(Lp+1
l )up+1

l (ξ, η) − F
p+1

l (ξ, η)
∥∥∥

2

0,S

+
∑

γs⊆Ω
p+1

(∥∥[up+1]
∥∥2

0,γs
+
∥∥[(up+1

x1
)]
∥∥2

1/2,γs
+
∥∥[(up+1

x2
)]
∥∥2

1/2,γs

)

+
∑

l∈D

∑

γs⊆∂Ω
p+1∩Γl

(∥∥∥up+1 − ol
∥∥∥

2

0,γs

+

∥∥∥∥
(

∂up+1

∂T

)
−

(
∂ol

∂T

)∥∥∥∥
2

1/2,γs

)

+
∑

l∈N

∑

γs⊆∂Ω
p+1∩Γl

∥∥∥∥
(

∂up+1

∂N

)

A

− ol

∥∥∥∥
2

1/2,γs

. (A.4)

25



Let

r

N,W

(Fu) = r

N,W

vertices
(Fu) + r

N,W

interior
(Fu). (A.5)

We choose as our approximate solution the uniqueFz ∈ ΠN,W , the space of spectral element

functions, which minimizes the functionalr
N,W

(Fu) over allFu.

The numerical scheme presented is based on the stability estimate, Theorem 3.2 of [7]. The sta-

bility estimate in addition with the trace theorems for Sobolev spaces ensures the norm equivalence

of residual norms and the solution norm.

A.3 The coefficients in the solution of the Motz problem

l bl l bl
0 401.1624537452 10 0.0073023017
1 87.6559201951 11 -0.0031841139
2 17.2379150794 12 0.0012206461
3 -8.0712152597 13 0.0005309655
4 1.4402727170 14 0.0002715122
5 0.3310548859 15 -0.0001200463
6 0.2754373445 16 0.0000505400
7 -0.0869329945 17 0.000023167
8 0.0336048784 18 0.000011535
9 0.0153843745 19 -0.000005295

Table 10: Coefficientsbl
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