Max-Planck-Institut
fiir Mathematik
in den Naturwissenschaften
Leipzig

Least-squares hp/spectral element method for
elliptic problems

(revised version: August 2009)
by

Kishore Kumar Naraparaju, and G. Naga Raju

Preprint no.: 35 2009







Least-squaresp/spectral element method for elliptic
problems

N. Kishore Kumar, G. Naga Raju

*Max Planck Institute for Mathematics in the Sciences,

Leipzig, Germany.

"Department of Mathematics and Statistics,
Indian Institute of Technology, Kanpur

India.



Abstract

The solution of elliptic boundary value problems often kol singularities due to non-
smoothness of the domains on which the problem is posed p@pisr studies the performance
of the nonconforminghp/spectral element method for elliptic problems on non simaiu-
mains. This paper deals with monotone singularities of typandr*log® » as well as the
oscillating singularities of type® sin(e log ).
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1 Introduction

In [1, 2] Babuska and Guo proposed an exponentially accumatiod in the frame work of
hp finite element method to deal the singularities in the sotutiThey were able to resolve the
singularities which arise at the corners by using a geomatash. In [3] Babuska and H. S. Oh
have introduced the method of auxiliary mapping (MAM). Withs method exponential rates
of convergence was recovered for Laplace equation withezasmgularities, in the context of
p version of finite element method. In [13] Lucas and Oh extenties method for Helmholtz
equations.

The method of auxiliary mapping (MAM) introduced by Babuskal Oh in [3] was proven to
be successful in dealing witk?* singularities. However, the effectiveness of MAM is rediioe
handlingr® sin(elog r) type singularities. In [15] H. S. Oh et al., introduced thevpo auxiliary
mapping (PAM) and the exponential auxiliary mapping (EAMyi@hown that the method is highly
accurate in dealing the singularities of typ® r*log’ » and r*sin(e logr), where0 < o <
1. They presented numerical results for various test probkemaiscompared the results with the
results obtained by thigp finite element method.

In the latest book by Pavel and Gunzburger [4] the leastreguinite element method (LS-
FEM) for elliptic problems have been summarized. The stathtiechniques used to convert the
second order elliptic equations into first order system,eic@ample like div/curl systems shows
poor rates of convergence in the presence of singularitiéisa solution. A weighted norm first
order system least-squares (FOSLS) for problems with cawimgularities have been proposed
in [5, 11]. The method recovers optimal order accuracy inweghted? and 4! norms and
retains optimalL? convergence near the singularities. The error estimatgssbnly an algebraic
convergence.

The elliptic problem on non-smooth domains have been exadrtay Pathria and Karniadakis
in [16] and Karniadakis and Spencer in [8], in the framewdrkmectralip element methods. In



[19, 20] hp version of the mortar finite element method (nonconformim)e been studied. The
method is optimal for botth andp version and exponential accuracy is obtained wjthversion.
Mathematical frame work for different discontinuous Griemethods for elliptic problems have
been discussed in [8]. In [22] spectrgl/lelement methods for solving elliptic boundary value prob-
lems on polygonal domains using parallel computers werpgsed. For problems with Dirichlet
boundary conditions the spectral element functions wenemaforming. For problems with Neu-
mann and mixed boundary conditions the spectral elemewtiins have to be continuous at the
vertices of the elements only and nonconforming otherwise.

In [7] P. Dutt et al. proposed an exponentially accurate nafarming hp/spectral element
method to solve general elliptic boundary value problemit wiiixed Neumann and Dirichlet
boundary conditions on non-smooth domains. The stabifityexror estimates have been proved.
In this paper we briefly describe the method and present teygmorm performance of elliptic
boundary value problems containing the singularities eftyiper®, r*log’  andr® sin(e log 7).

A geometric mesh is used in the neighbourhood of the corrmedgtee auxiliary map of the
form z = In ¢ is introduced to remove the singularities at the cornerschvivas first introduced
by Kondratiev in [10]. In the remaining part of the domain alsGartesian coordinate system is
used.

The spectral element functions are nonconforming. The ateih essentially a least-squares
method and the solution can be obtained by solving the ncgmadtions using the preconditioned
conjugate gradient method (PCGM) without computing thegwel stiffness matrices [7, 9, 22].
A novel preconditioner is proposed for the method which isoglbdiagonal matrix, where each
diagonal block corresponds to an element [6]. The conditiomber of the preconditioner is
O (In W)2 , wherelV is the degree of the approximating polynomial. Létdenote the number
of layers in the geometric mesh such thétis proportional toN. Then the method requires
O(W InW) iterations of the PCGM to obtain the solution to exponeraaduracy.

The contents of this paper are organized as follows: In 8e&ithe problem is stated and the
numerical scheme is described briefly. In Section 3 comjmutakresults are provided for various
test problems. The Appendix contains details of discrétmeof the domain and the numerical
formulation in brief.

2 Numerical Scheme

The numerical method is briefly described in this Sectione ¢bmplete details of the stabil-
ity estimate, error estimates and numerical scheme wesngiv[7]. The stability estimate has
been proved for strongly elliptic operator which satisfg Babuska-Brezzi inf-sup condition on
curvilinear polygons whose sides are piecewise analytic.



(i) Elliptic equation on a polygonal domain

Let Q be a polygonal domain iik? with boundarydQ)? = T" as shown in Fig.1. Let the ver-
tices of() be given byE', Es, ..., E, and the corresponding sides by the segmEnt§,, ..., T,
wherel’; joins the pointsE;_; and £;. Let the angle subtended &t be w;. Further, letl' =
royril, 10 = J,.p Ty, T = (U, i whereD is a subset of the sgt | i = 1,...,p} and
N={i|li=1,...,p}\D.

r
k+1

Figure 1. Polygonal Domain

Denote byH™(2) the Sobolev space of functions with square integrable dévizs of integer
order< m on{2 furnished with the norm

L lzm@= D I D |lfa -

|oo| <m

fuz) — u()?
ul?, = / P (x)de + / / i

v —z

Further, let

denote the fractional Sobolev norm of orderwhere0) < s < 1. Here I denotes an interval
contained inR.
Consider a two dimensional elliptic boundary value problem

Lu = fin Q,
0
(6%) = ¢Y on MY, (2.1)
A

2

2
Here L = —Z o (%‘(@%) + Zbi(x) 0 + ¢(z) is a strongly elliptic operator which
! 7 i=1

i,7=1

satisfy the Babuska-Brezzi inf-sup condition@mnd the coefficients; ;(z) = a; (), b;(z), c(z)
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are analytic orf2, and (%)A denotes the usual conormal derivative which is defined &a/sl
Let N = (Ny, N;) denote the outward normal to the cuivgefor i € . Then

ou 2 ou
- = E N, _— 2.2
<8N) A (z) — rrs Oz, (2:2)

Assume that the given daffais analytic onQ2 andg!, I = 0, 1 is analytic on every closed afg
andg[”! is continuous oi™"!,

(ii) Discretization and Local Transformation

Discretize the polygonal doma$hinto p non-overlapping polygonal subdomaisis S2, . . ., SP,
whereS* denotes a subdomain which contains the vefigrnly. LetS* = {QF : j =1,2,...J,,
i=1,2,..., 1} be a partition ofS*, where.J,, and I, are integers (Fig. 1)} is bounded for alll

k. Let (ry, 0,) denote polar coordinates with centerrat Choosep so that the sectd?” with sides
I, andl';., bounded by the circular aB} centered af, with radiusp, is such that)* C S*.
ThenQ* can be represented as

QF = {(21,12) €Q:0 <7 < p}.

-----

Let AyF = oF | — ¢F. Choose these points so that
max (max A¢f) <A Irgn (m_in Az/zf)
for some constant.
Now choose a geometric mesh withlayers inQ* with a geometric ratig, (0 < ¢, < 1) . Let
of = p(q)" ™ for2 < j < N +1andot = 0.
Let
Qf] = {(:cl,a:g) : af <r, < aﬁrl,z/}f <0, < wf+1},

forl<i<I;,1<j<N.

In the remaining part of*, for 1 < k£ < p, we retain the Cartesian coordinate system z,)
ie.,inQf forl <i<I,,N<j<J.

Let

P ={QF 1 <i<I,N<j<J,1<k<p}.
Relabel the elements 6! and write
ot = {1 <1< L},

whereL denotes the cardinality ¢#*+!.



Now let 7, = In 7 in the secto?” for 1 < k < p. Define¢j = In o} forl < j < N + 1.
Here(} = —oco. Define

OF = {(m,00) : & <mo <y, WF <0 < b ),

forl1 <i < 1I;,1<j < N.Hence the geometric meﬂjfj, 2 < 7 < N becomes a quasi-uniform
mesh in modified polar coordinates (Fig. 2). Howeﬁlﬁfr1 is a semi-infinite strip.
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Figure 2: Quasi uniform mesh in andé, coordinates

(iif) Approximation

The nonconforming spectral element functions are sum afoleproducts of polynomials of
degreelV;, 1 < W; < W in their respective modified polar coordinates (A.l)ﬁﬁlj for1 <
E<p1l<i<I,2<j < N.lInthe infinite sector i.e., imﬁl, the solution is approximated
by a constant which is the value of the functiorat the corresponding verteé¥%,. The constant
value is computed by treating it as a common boundary valueglithe numerical computation.
The quadrilateral elements 6! are mapped onto the squase= (—1,1) x (—1,1) and the
element function is represented as a sum of tensor prodpctiyiomials of degre®” in ¢ andn,
the transformed variables (A.2).

(iv) The Numerical Formulation

We seek a solution which minimizes the sum of the squares afighted squared norm of
the residuals in the partial differential equation and v ®f the squares of the residuals in the
boundary conditions in fractional Sobolev norms and em@untinuity by adding a term which
measures the sum of the squares of the jump in the functioitsaderivatives in fractional Sobolev
norms (see A.5).



The method is essentially a least-squares method and thehequations can be solved using
the preconditioned conjugate gradient method (PCGM). heenbormal equations be

AU = h. (2.3)

The vectoiU composed of the values of the spectral element functionaas&Legendre-Lobatto

points is divided into two sub vectors one consisting of thkeigs of the spectral element functions

at the vertices of the domain constitute the set of commomdany valued/p (corresponding

to the constant approximation in the semi-infinite stripdl #me other consisting of the remaining
. : . U

values which we denote ly;. Now corresponding to the decomposition(6f= [ ! , A and

B
h has the forms

A A h
A= " P bandh=| " . (2.4)
Apr App hp
To solve the matrix equation (2.3) we use the block L-U faetiron of A, viz.
I 0 A 0 I A}A
= . " ] s (2.5)
AigA; T 0 S 0 I

where the Schur Complemesis defined as
S= App — Al A} Asp.

To solve the equation (2.3) based on the L-U factorizatioA a6 given in (2.5) reduces to first
solving the system of equations

S Ug = hg, (2.6)
where
hg = hg — AT AT b, (2.7)

Once solved fot/ using (2.6),U/; can be obtained by solving
AHUI = hl - AIBUB-

The feasibility of such a process depends on the ability toprdeA;zUg, A;;Ur andAgpUsg
for any U;, Ug efficiently and this can always be doned#” can be computed inexpensively for
any vectotV. It has been shown in [22] thatl” can be computed inexpensively without computing
the mass and stiffness matrices.

However in addition to this it is imperative that we shoulddisée to construct effective precon-
ditioner for the matrixA so that the condition number of the preconditioned systeas small as
possible. If this can be done then it will be possible to cotapir!V efficiently using the PCGM
for any vectorV.



It has been shown in [6] that a block diagonal matrix can bestanted as a preconditioner
matrix for the matrix in the normal equations, where eaclgainl block corresponds to a partic-
ular element which is mapped onto the master sqarehe condition number of the precondi-
tioned system i€)((In 17/)?). Hence to computel~*V to an accuracy ob(e¢~*"') would require
O(W In W) iterations of the PCGM. The solution vectdris obtained to an accuracy 6f(e ")
usingO (W In W) iterations of the PCGM.

After obtaining the nonconforming solution at the Gausgérare-Lobatto points, a set of cor-
rections are performed so that the solution is conformirthlaongs ta7!(Q2). These corrections
are similar to Lemma 4.57 of [18].

Then forWW large enough the error estimate

[ter — 21,0 < Ce™™™W (2.8)

holds, where” andb are constants andis the corrected solution.
The proof for this estimate follows similar to the proof oféldrem 3.1 of [23].

3 Numerical Results

To show the effectiveness of the method we considered thiat@ajand the Poisson equations
for which the exact solution is in one of the singular forfn r* log® r andr® sin(e log ). Further
to check the performance of the method we have presentedshks for homogeneous Helmholtz
equation and for the Motz problem. Elasticity equationsadge considered as an another example
for showing the applicability of the method for system of ations. TakelV; = W for all j (A.1)
and the number of layer¥ in the geometric mesh to be equallid The computations are carried
out on a single processor. As explained in the previous @gdtifter obtaining the nonconforming
solution a set of correction are performed so that the soiutielongs tai/!. In this section we
mean by lters the total number of iterations required to astiephe Schur complement matrix,

solve for the common boundary value problems and finally taiolihe solution.

The relative errofje|| ;, is defined adle|| ,, = m, where||.|| , denotes energy norni( -

[ull
norm). Since the total number of degrees of freedom (D@F} proportional tdll’? the relative

error ||el , 5 In the energy norm satisfies the estimate

le]l g < Ce P (3.1)

Example 1: Consider the Laplace equation on a circular domain of radassshown in Fig. 3(a)
with Dirichlet boundary conditions on crack panélst, OC and on the boundary of the circular
region OAC. Let (r,0) denote the polar coordinates with origin at the vertex= (0,0). Let



us choose the data so that the solutiolnas the form of the leading singular'rtyi' sin(%ﬁ) at the
origin. Considering the symmetry in the domain, the probiemsolved on semi-circular disk as
shown in Fig. 3(b). A geometric mesh is used in the neighbmedlof O, with a geometric ratio

g = 0.15. Choose\ = 1/5 (see A.3).

r

@)

(b)

Figure 3: The scheme of cracked domain

(RN (S (AN

Mesh 1

Mesh 2

Mesh 3

Figure 4: Geometric mesh with different mesh refinementsdirection

In Fig. 4 the sequence of meshes for the domain Fig. 3(b) aershwith geometric mesh

refinement.

W  Mesh1 Mesh 2 Mesh 3

2 10.0939 10.100974 10.113946
3 4.00533 4.005878 4.0100051
4 155574 1.556295 1.5560239
5 0.60104 0.600855 0.6000372
6 0.23338 0.233532 0.2333148
7 0.09020 0.090178 0.0900233
8 0.03500 0.034998 0.0349554
9 0.01353 0.013532 0.0135070

Table 1: Relative error in percent agaifitfor different meshes

The values of relative errdfe|| ,, (in percentage) are reported for different valuediofin
Table 1. The relative error is almost same for all the thrékemdint meshes. It is noted that the
DOF is less for the discretization shown in Mesh 3 in compariwith Mesh 2 and Mesh 1. The
DOF can be further reduced by using variable degree of polyalapproximation (here a uniform
degree of polynomial approximation is used for computaiamplicity).
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W Iters M |le|lzgr % b C

2 22 31 10.113946 0.741966 1.090843
3 40 89 4.0100051 0.745101 1.130016
4 49 191 1.5560239 0.747182 1.157822
5 66 349 0.6000372 0.747927 1.168322
6 76 575 0.2333148 0.748825 1.181549
7 87 881 0.0900233 0.749115 1.186005
8 101 1279 0.0349554 0.749944 1.199242
9 115 1781 0.0135070 0.749972 1.199703

Table 2: Values of Iterationsy/'/3, relative error (%)) and C againstV’

Table 2 contains the iteration count, number of degreeseeidiom, the relative error in per-
centage and the constants”' in (3.1) for the Mesh 3, for different values of the polynohueder

w.

In Fig.5 a graph is plotted fdpg ||¢| ,, against)V//?, for Mesh 3. The graph is shown to be a
straight line which shows the exponential rate of convergess it obeys exactly the error estimate

(3.1).

LOG OF RELATIVE ERROR

L L
7 8

DOF POWER 1/3

L L
9 10

L
12 13

Figure 5: Log of relative error againaf'/?

Example 2: Consider the Laplace equation on a doma@iAB, as shown in Fig. 6. Neumann
boundary conditions are taken on sided, OB and Dirichlet boundary condition on the rest of
the boundary. Let andf denote the polar coordinates with origin at the vertexChosen the data

such that the exact solutianhas the form-2/3 cos(26) + r*/3 cos(36).

10



r=1

N
/

o A o A o A
B B B
Domain-OAB Mesh 1 Mesh 2

Figure 6: Sectoral domain

Mesh 1 and Mesh 2 in Fig. 6 are two different discretizatiothef domain with a geometric
ratiog = 0.15. Let us choose\ = 1/4. In Table 3 the values of degrees of freedoh) , relative
error in percentage and constant valugs for Mesh 1 and Mesh 2 are tabulated agalist

Mesh 1 Mesh 2
WM ey % | M Jelpn% b C___iers
46  22.7853] 31 55.4689 1.19044 10.994 20
133 3.1268| 89 3.5228 1.14055 6.2712 38
286 0.5927| 191 2.1518 1.14816 6.8545 52
523 0.1055| 349 0.1151 1.05222 2.1441 71
862 0.0265| 575 0.0494 1.07138 2.7263 87
1321 0.0073| 881 0.0073 1.00165 1.1041 110
1918 0.0020| 1279 0.0021 1.00501 1.1548 127
2671 0.0005| 1781 0.0005 1.00027 1.0816 145

O©CoO~NOOUTEWN

Table 3: Computational values for Mesh 1 and Mesh 2

Since the size of the elements is large in Mesh 2, the difterem the relative errors can be
noted for smaller values d¥/, compared to the relative error for Mesh 1. Butlésincreases the
error is same for both Mesh 1 and Mesh 2. The number of degfédemedom is less for Mesh 2
and it can be further reduced by considering variable patyiabapproximation.

Fig. 7 shows the graph in//3 x log ||e|| ., SCale. The graph is a straight line for Mesh 1 and
for Mesh 2 it has some jumps initially and HS increases it becomes a straight line.

11



LOG OF RELATIVE ERROR
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Figure 7: Log of relative error againaf'/3

Example 3: Consider a homogeneous Helmholtz equation on a dofais shown in Fig. 8(a).

—Au+u = 0 in¢,

ou

— =0 on T
an 1
sinh(r)
y - 7 cos(f/2) on I’y .
0 onI';

0]
(b)

Figure 8: (a) The domain (b) Discretization

Discretization of the domain, with a geometric ratio= 0.15 is shown in Fig. 8(b). The
problem has a singularity & = (0, 0) and the exact solution of the problems—"i%“# cos(0/2).

Let us choose. = 1/5. In Table 4 the values of iteration count, degrees of freedesfative
error (in percentage) and constat§’ for different values ofl are tabulated.

12



W Iters M |e|lggr % b C

2 18 31 16.923085 0.793474 1.9648
3 43 89 6.76869 0.790778 1.9061
4 55 191 2.037648 0.774419 1.5744
5 74 349 0.661117 0.761727 1.3500
6 89 575 0.235673 0.754788 1.2375
7 102 881 0.088490 0.751745 1.1896
8 114 1279 0.033923 0.750621 1.1719
9 127 1781 0.013098 0.750326 1.1671

Table 4: Values of Iteration count , DQR/), the relative error (%)) and C againsti?’

Fig. 9 shows the graph in/'/? x log ||e|| , Scale. The graph is a straight line and this shows
the exponential rate of convergence.

-1

2K

LOG OF RELATIVE ERROR
&
T

DOF POWER 1/3

Figure 9: Log of relative error againsf'/?

Example 4: ( Motz problem ) Consider the Laplace’s equatiecnAu

13

= 0 in a rectangular

domain; = {(z,y)| — 1 <z < 1,0 < y < 1} as shown in Fig. 10, satisfying the following

boundary conditions

u\x<0,y:0 = 0,U|m:1 = 500,

uy|y:1 = uy|y:0,x>0 = u$|x:—1 =0.

This problem has been widely studied by many researcherssdRand Papamichael in 1975
[17] succeeded in finding the closed form solution for thislgpem and represented it in the fol

13



lowing form

P
1
u = ; bt 2cos(1 + 5)9 (3.2)
for P = 19. Here(r, 0) denotes the polar coordinates.

(-1.1) Uy=° (1.1)

U =0 Q u =50

(-10) u=0 (00 uy=0 (1,0)

Figure 10: The domaif,

For the convenience of the readers the coefficignis= 0, 2.., 19 are provided in the Appendix
A3. More accurate solution for this problem has also beeargin [12], that is forP = 33.

Here we have considered the Motz problem on a dofaivhich is a semi circle of radius
as shown in the Fig. 8(a). Chosen (3.2) as the exact solutidmestricted the expansion ofon
I'; i.e., applied Dirichlet boundary condition on semicirgudaic. Further, chosen the following
conditions on the other part of the boundaries
ou
on

The discretization of the domain, with a geometric ratie= 0.15 is as shown in Fig. 8(b).
Choose\ = 1/5. In Table 5 the values of iteration count, relative error @ngentage) for different
values oflV are tabulated.

u|r3 == O, |F1 =0.

Iters M le|lgg %
29 31 17.4791
41 89 4.7940
60 191 1.8151
76 349  0.6587
92 575 0.2618
107 881  0.0969
119 1279 0.0375
135 1781 0.0145

©O~NOUAWNE

Table 5: Values of Iteration count, relative error (%) agali.

Fig. 11 shows the graph it/'/3 x log|e|| , SCale which is a straight line and this indicates
the exponential rate of convergence of the method.

14



LOG OF RELATIVE ERROR

13

DOF POWER 1/3

Figure 11: Log of relative error againdf'/?

Example 5: Consider the Poisson equation
—Au=fin Q={(r0):r<r;,0<0<7}.

In Fig. 12, the discretization of the domdins shown. Chosen the data such that exact solution
w is of the formr*? log? r cos 6. Dirichlet boundary condition is imposed on= r, and Neumann
boundary condition is imposed on the remaining part of thendary.

Figure 12: Discretization of the domain

As mentioned in [15], for the geometric mesh refinement thie ra= ¢~1-°" gives the better
results (but not optimal), here too a geometric ratie- e~ 15" is taken for the geometric mesh
andry=2. Auxiliary map is used over the whole domain for simplicityh@dseX\ = 1/5. Table 6
contains the values of the iterations, degrees of freedahtterelative error in percentage against
the degree of polynomial approximatidw.

15



W Iters M |le||gp%
2 25 31 37.566
3 44 89 10.212
4 64 191 3.726
5
6
7
8

78 349 0.765
94 575 0.106
103 881 0.012
115 1279 0.001
9 123 1781 0.0001

Table 6: Values of Iterations, DOF and relative error (%)iagidl’

LOG OF RELATIVE ERROR

-12 + -

-14 1 1 1 1 1 1 1 1 1

DOF POWER 1/3

Figure 13: Log of relative error againdf'/?

Fig. 13 shows the log of relative error against degrees @dioven. Results shows that our
approach gives a better results than thefinite element method and yields the same rates of
convergence as EAM comparing with the values given in [15].

Example 6: Consider the Poisson equation on the domain as shown in Eigith r, = 2.
Choosingf such that the exact solution has the oscillatory singylafithe formr* sin(e log ) cos 6
with respect to various sizes of oscillating factoAs the oscillating factor becomes smaller, the
singular function is less oscillating. Here we considentieak singular function witlh = 0.1 and
next the highly oscillating function with = 3.0.

Consider the case with = 0.1 and a geometric mesh with a geometric rafie= e¢=!-5".
Auxiliary map is used over the whole domain for simplicithddse\ = 1/5.

16



W Iters M |le]lzp%
2 17 31  23.1583
3 38 89 4.59133

4 47 191 1.25379

5

6

7

8

9

62 349 0.19646
70 575 0.02104
86 881 0.00183
103 1279 0.00013
111 1781 0.00001

Table 7: Values of Iterations, DOF and relative error (%)iasidl’

The computational values such as iterations, degreeseafdra and relative error in percentage
are provided in Table 7 for different valuesldf. In Fig. 14 the log of relative error against degrees
of freedom is drawn.

LOG OF RELATIVE ERROR

L L L L L L L L
3 4 5 6 7 8 9 10 11 12 13
DOF POWER 1/3

Figure 14: Log of relative error against'/?

Letu = r%3 sin(elogr) cos 6 with € = 3.0, it is a highly oscillatory singular function. Consider
ro = 2 and geometric mesh with geometric ragie= 0.15. Choose\ = 1/5. The geometric ratio
q = 0.15 gives better results among the four ratios 0.15, ¢ = e™™, ¢ = e~ " andq = e~ 2",

Table 8 contains the values of iteration count, degreeseddiom)\/ and relative error in
percentage againgy.
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Iters M le|lggr %
22 31 78.166
36 89 54.840
52 191 12.04
64 349 6.464
77 575 0.68
85 881 0.31
94 1279 0.036
100 1781 0.010

©O~NOUAWNE

Table 8: Values of Iterations, DOF and relative error (%)iagidl’

LOG OF RELATIVE ERROR

-10

DOF POWER 1/3

Figure 15: Log of relative error againdf'/?

Fig. 15 shows graph of the log of relative error in percentagainst degrees of freedom.
Results suggests that our approach gives a better resatishiehp finite element method and
MAM by comparing the results shown in [15].

Example 7: Letu = (u;,us)” be a displacement vector. Consider the following planérstra
linear elasticity problem on the domain with aegtrant crack as shown in Fig. 16 (a) when the
body forces are not present.

_ 9 [, 0um Oua) O | (0w Oup
8:1:1 1181’1 1281’2 8372 66 8372 8:1:1

_i c 8u1 +8u2 _ 0 c 8u1 L 8u2
8:1:1 66 8372 8:1:1 81’2 128371 228372

18
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Let £ denote the modulus of elasticity and0 < v < 0.5) denote the Poisson'’s ratio, then

. . BE(1—
coefficientsc 1, c12, coo @ndcgg are given byey; = coo = M’ Cl2 = Mﬁ, andcgs =
E
2(1:V) :
E 4:(—2,2) r4 E 3:(2|2)
M5
r " 2 2.0)
E=00) Bz DS B B
1 2 pq
r = 2 ———t - - >
7 P
el _F
- (-9 _ E =(2,-2
Es (-2-2) M 6 (2,-2)
(@) (b)

Figure 16: (a) Crack domain (b) Discretization

On the crack panels.c., on the boundary’; andIl'; traction boundary condition§u =
(T u, T2u)T are taken and Dirichlet boundary conditions are taken orrébeof the boundaries
Tii=3..1.

Let n = (n1,n2) be the unit outward normal on the boundary, then the trac@nponents
Tiu andT;yu are given by

ou ou ou ou
Tiu = <cl1 ! + 012—2> n1+066< L + 2) ng = g1,

Oz, O3 Ory | 011
. 8u1 8u2 8U1 8’&2 .
Tou = cg6 (8:::2 + 8901) ni + <612 £ + c22 8x2> ng = ga.

Let (r,#) denote the polar coordinates with origin /&t. The data chosen such that the so
lution is of the form of the leading singularity &;. Thus we choose the Mode 1 displacement

components [21]

Uy = L7““ [(k — Qo+ 1)) cosal — acos((a —2)0)],

Uy = %TQ [(k+ Q(a+1))sinab + asin((a — 2)0)],

wherex = 3 — 4v, a = 0.5 and@ = 0.333. Further, we choos& = 1, = 0.3 and the geometric
ratiog = 0.15. Let us choose. = 1/7.
Table 9 shows the values of iteration count, relative gfedjr. ., in percentage against.
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Iters M el xr %0
66 386 0.1331E+02
234 962 0.3720E+01
406 1922 0.1050E+01
577 3362 0.3916E+00
767 5378 0.1439E+00
1086 8066 0.500581
1678 11522 0.1954E-01

RN NG I AN NI =

Table 9: Values of Iterations and relative error (%) agaliist

In Fig. 17 a graph is plotted fdbg ||e| ,, , against\/ /3.

-2

LOG OF RELATIVE ERROR

9 1 1 1 1 1 1 1 1
6 8 10 12 14 16 18 20 22 24

DOF POWER 1/3

Figure 17: Log of relative error againdf'/?

Note: In example 7 the geometric mesh is used in the neighbourbbtte crack tip, shown in
Fig. 16(b) as circular rings. Modified polar coordinate sysis used in this region for numerical
computation and away from this region usual Cartesian ¢oate system is used. For all other
examples the numerical computations are done by only usidjfrad polar coordinates as the
geometry of the domains in these examples supports poladicabes easily.

Conclusions

The proposed method is exponentially accurate. The diroensi the Schur Complement
matrix is small, since the cardinality of the common bougdalues is small. So it is easy to
construct a nearly exact approximation to the Schur Com@iemThe preconditioner is a block
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diagonal matrix where each diagonal block corresponds telement and it’s inverse is trivial
with almost optimal condition number. The algorithm for guaditioner is quite easy to imple
ment with minimum extra effort. The residuals in the norng&ion can be obtained efficiently
without computing the mass and stiffness matrices. The ogethn also be implement on parallel
computers more efficiently.
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A Appendix

A.1 Spectral element function

Letut, (74, 01) = hy, a constant o2, (In the semiinfinite strip). Define the spectral element
function

7 J
Tk,Qk ZZQWTK oy, (A.1)

r=0 s=0
onQF for1 <i < I;,2<j < N,1 <k <p. Herel <W; <W.
Moreover there is an analytic mappidg’*' from the master squarg = (—1,1) to QV*'.
Define

w W
p+1<Mp+1 g 77 Zzgr,s gr 773- (A2)

r=0 s=0

A.2 Numerical Scheme

As described in Section ﬁf] is the image of2}; in (7, 06)) coordinates. Lei* be the
operator defined by*u = r? Lu. Lety, = 7, andy, = 6, then

Zay fj@y +Zb —|—cu.

2,7=1 =1

Let
cosf, —sindy ~ ak, ak
o and Ak = | 1 T2 |
sinf  cos b ds; Gy

ThenA* = (OF)T AO*, whereA is the matrix(A),, = a,...
Next, let the vertexts, = (2%, %) and

sz] (71, Or) = €*™ f (:Ulf + €™ cos Oy, x5 + e™ sin Gk)

inQF forl <k<p,2<j<N,1<i<I(sincelu=r}f).
Lety, C TN o0k for 1 < k < p, and7, denote the image of; in (73, 6;) coordinates. Now
the unit normak at a pointP on+, can be written ag = (nl, n2). Then

ou® ke
(%)Ak’ an i 33/1

Consider the boundary conditions= g, on kaan fork € D,and(&) , = gr onT;,NONk
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fork e NV. Let
u = gp(ah + e™cos(Yf) , ok + e™sin(yF)), for k € D,

(%)Ak = e gp(ak + echos(@Z)f) , 25+ eTksm(z/Jf)), for k e .

(k) =

Figure 18: Edgé’;, common to2*~! and*

Consider the boundary conditian= g, for k € D, and(g—;)A = g, fork € N onT;,NOYF1,
Define
u=gr(x) 4+ emrcos(YhTY), ab T + emrsin(yhTh), for ke D,

15(Tm1) =
(94) 1 = €™ tgu(a ™ + e rcos(Pih) , b + enrsin(yf ) for ke V.

on

Now we consider the elements§f ™. In Q"™ for 1 <1 < I,

/ | Cut ™| dayds = / |cub | P dedn.
ortt s

Here J"" is the Jacobian of the mappidg! ™" from S to '™, Definec!™" = /J"*' L.

Let fF7H(&,n) = f(MPT (€, m) for 1 <1 < Landdefing? (¢, n)= (&, m)/JF (&, m).

By ~, we shall denote a side common to the elemé&nts' andQ? L. It may be assumed that
75 is the image of) = —1 under the mapping/?*! which mapsS to Q22! and also the image of
n = 1 under the mapping/?*! which mapsS to Q¢*!. By the chain rule
(ulr)nJrl)m = (ufnJrl){ oy T (ufnJrl)n Ny and
(ugLJrl)IQ = (uzr)nJrl)é 5:132 + (uzr)nJrl)n Ny -
Then
M 12 = [l 6 =1) =& D2
2 2 .
H[(ugjl)ml/z% = H(ugjl)l“z(gv _1) - (uz;;rl)xi(g’ 1)H1/2,1 y U= 17 2.

Here! is the interval—1, 1).
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Next, lety, C I'% N 9QP*+! and lety, be the image off = —1 under the mapping/?! which

mapsS to Q7L Then
2

2 +1
2+ |G ) = e 1)
1/2,7s 1/2,1
2
In the same way ify, C rin 8QP+17 ) (%)A can be defined.

1/2,7vs

Let T', (02 = C* be the image of the mappiny?! of S onto Q2! corresponding to
the siden = —1, ando®, (n) = g, (MPFL(€,—1)), where—1 < ¢ < 1.

Let v, C QF andd(Ey, ) = inf,_ {distancel;, z)} . Choose\, < o whereqy, is defined
asin [7]. LetF, = {{u” Tk,ek)}”k,{u”“ £, 77)}1} c VY the space of spectral element
functions. Definer, = u(Ey).

Define the functional

1

p N
NW _ j{:j{: N#J ] —2)p
tve'rtices (fu) -
k=

e

~ 2
(LF)uf (7, 0k) — FF; (7, 01)

2¥)
1j5=2 z:l O,Qf’j
p —2Xg k|| k 2 k 2
D DR Do e el U (1751 N (GO I ()
k=1 yscokuBk, 0,7s 1/2,7s 1/2,7s
H('Ys)<00

2

FY Y Y ame (H(zﬁ ) = (g — @)

meD k=m—1 ysCoQkNIm,
n(¥s)<oo

0,7s

D EE e

meD k=m—1

uTk - (lz—kﬁ-f—l)Tk

“ 13}
+ %Y B, (%ﬂ) — I (A3)
meN k=m—1 ~5CoQkNTy,, AR 1/2,75
(vs)<oo
In the above.(v;) denotes the measure @f.
Define
N,W L 1
> 1 1 p+
tintem'or (fu) = Z H(£€)+ )U;FF (5777) (6 77) 0.5
=1
+1 +1 +1y7]2
> g €% [ (%5 )
'YSQQ
2 Oupt! o\ |I”
CELE ()
leD ,ysg8QP+1 mr‘l 0,7vs aT aT 127
B an 2
+ > ) (azv) — 4 (A.4)
A

lEN ~ conPtnr, 1/2,7s
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Let

N,W

v (Fu) "

vertices (

F)+o " (F). (A.5)

We choose as our approximate solution the uniues 11", the space of spectral element
functions, which minimizes the functional ™ (¥, ) over all 7,

The numerical scheme presented is based on the stabilityagst Theorem 3.2 of [7]. The sta
bility estimate in addition with the trace theorems for Selv@paces ensures the norm equivalence

of residual norms and the solution norm.

A.3 The coefficients in the solution of the Motz problem

l by l by

0 401.1624537452 10 0.0073023017
1 87.6559201951 11 -0.0031841139
2 17.2379150794 12 0.0012206461
3 -8.0712152597 13 0.0005309655
4  1.4402727170 14 0.0002715122
5 0.3310548859 15 -0.0001200463
6 0.2754373445 16 0.0000505400
7 -0.0869329945 17 0.000023167
8 0.0336048784 18 0.000011535
9 0.0153843745 19 -0.000005295

Table 10: Coefficients;
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