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MULTISTEP AND MULTISTAGE CONVOLUTION QUADRATURE

FOR THE WAVE EQUATION: ALGORITHMS AND EXPERIMENTS

LEHEL BANJAI∗

Abstract. We describe how time-discretized wave equation in a homogeneous medium can be
solved by boundary integral methods. The time discretization can be a multistep, Runge-Kutta, or a
more general multistep-multistage method. The resulting convolutional system of boundary integral
equations belongs to the family of convolution quadratures of Ch. Lubich.

The aim of this work is two-fold. It describes an efficient, robust, and easily parallelizable
method for solving the semi-discretized system. The resulting algorithm has the main advantages
of time-stepping methods and of Fourier synthesis: at each time-step a system of linear equations
with the same system matrix needs to be solved, yet computations can easily be done in parallel,
the computational cost is almost linear in the number of time-steps, and only the Laplace transform
of the time-domain fundamental solution is needed. The new aspect of the algorithm is that all
this is possible without ever explicitly constructing the weights of the convolution quadrature. This
approach also readily allows the use of modern data-sparse techniques to perform computation in
space efficiently. We investigate theoretically and numerically to which extent hierarchical matrix (
H-matrix) techniques can be used to speed up the space computation.

The second aim of the article is to perform series of large scale 3D experiments with a range
of multistep and multistage time discretization methods: backward difference formula of order 2
(BDF2), Trapezoid rule, and the 3-stage Radau IIA methods are investigated in detail. One of the
conclusions of the experiments is that the Radau IIA method often performs overwhelmingly better
than the linear multistep methods, especially for problems with many reflections, yet, in connection
with hyperbolic problems backward difference formulas have so far been predominant in the literature
on convolution quadrature.

Key words. wave equation, boundary integral equations, convolution quadrature, multistep
methods, Runge-Kutta methods, hierarchical matrices

AMS subject classifications. 35L05, 65M38

1. Introduction. The use of boundary integral methods in the numerical so-
lution of elliptic equations has a long and successful history; see for example the
books [21, 27, 34, 37, 39]. Although time domain boundary integral representations
of hyperbolic problems, e.g., the wave equation, have been known for a long time,
the scientific community has been slower in accepting the corresponding numerical
methods. Main reasons are difficulties with dealing with distributional fundamental
solutions, expensive computation, and above all, stability problems for longer time
computations. Nevertheless, many good methods do exist and are being used, see for
example [15, 19], and the review [11].

In 1994 Ch. Lubich [32] has introduced the so-called convolution quadrature for
discretizing time-convolutions arising from the boundary integral representation of
the wave equation. This method inherits the unconditional stability properties of
the underlying A-stable time discretization method and requires only the Laplace
transform of the time-domain fundamental solution, this being a much simpler func-
tion to compute with. These favourable properties of the convolution quadrature
have sparked a recent theoretical interest [31] and interest in efficiently implementing
and experimentally investigating these methods for the wave equation [7, 23, 24, 28],
viscoelasticity and poroelasticity [38], and Maxwell equations [41]. So far, however,
large scale, long time computations have not been reported on and only the backwards
difference formulas (BDF) have been used for the time discretization.

∗Max-Planck Institute for Mathematics in the Sciences, Inselstrasse 22, 04103 Leipzig, Germany
(banjai@mis.mpg.de).
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2 L. BANJAI

In this paper we describe an efficient, almost linear time algorithm O(N log2N),
in number of time-steps N , that is easily parallelizable. It has most of the favourable
properties of time-stepping methods:

• the solution is obtained in a time-stepping manner,
• at each time-step, a linear system, or a small group of linear systems, with

the same system matrix, respectively small group of system matrices, needs
to be solved

and of Fourier synthesis:

• the algorithm is easily parallelizable in time,
• only the Laplace transform of the fundamental solution is needed.

The algorithm is obtained by combining in a new way the recursive idea in [25] and
the use of scaled Fast Fourier Transform (FFT). The most important aspect which
differentiates the new algorithm from the original one in [25] is that the intermediate
step of constructing the convolution weights is completely avoided. The advantage of
the recursive algorithm compared to the pure decoupling approach taken in [7], which
also makes use of scaled FFTs, are the time-stepping aspects listed above.

This algorithm allows easy implementation of A-stable linear multistep, Runge-
Kutta, and more general multistep-multistage methods for the time discretization.
This made the second important contribution of this work possible: a systematic
and extensive numerical experiments. We perform 3D computations with the BDF2,
Trapezoid, and Radau IIA methods. The numerical experiments show great stability
properties for long time computations. As to the relative merits of the different time
discretization methods, the 3-stage Radau IIA method, in our experiments, performed
overwhelmingly better than the multistep methods even at moderate accuracies for
complicated scattering problems with many reflections. For scattering by unit sphere,
i.e. a convex scatterer, the linear multistep methods performed as well as the Runge-
Kutta method at moderate accuracies. Note, however, that for the multistep method
it was essential to use a direct integral formulation of the problem.

We also discuss the fast computation of spatially discretized operators that need to
be inverted. We show that the discretization of these operators can efficiently be rep-
resented by an H-matrix [18] and further that the (approximate) LU -decomposition of
the matrix can also be efficiently computed in this format. In the recursive algorithm,
matrix-vector products with discretizations of high-frequency Helmholtz integral op-
erators need also be computed. These can be performed efficiently using fast multipole
methods with diagonal multipole expansions [36]. Some modifications to the standard
fast multipole algorithms is however needed, description of which falls out of the scope
of the present work.

Questions of convergence and stability of the time and space discretization have
been fully answered for linear multistep methods in [32] and for Runge-Kutta meth-
ods in [5]; in the latter reference spatial discretization has not been considered, but
techniques from [32] are directly applicable. The general results on linear multistep
methods in [32] do not cover the case of Trapezoid rule for our application. Therefore,
in the appendix, we close this gap in the theory.

The paper is organised as follows. In the first section after this introduction
we describe the boundary integral formulation of a time-discretized wave equation.
The description holds for a large family of multistep-multistage time discretization
methods. In Section 3 we show how A-stable linear multistep and A-stable Runge-
Kutta methods fit in this description. Section 4 describes the efficient algorithm for the
solution of the resulting discrete convolution system of integral operators. Section 5
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briefly discusses the Galerkin discretization in space, gives an analysis of the use of
H-matrices for Helmholtz operators with complex frequencies, and mentions the use
of fast multipole methods for high frequency problems. In Section 6 details of the
numerical experiments are given.

An extended abstract of the work described here has been published in the pro-
ceedings of the 2009 ICNAAM conference [3].

2. Time discretization and the boundary integral formulation. Let us
consider the problem of finding u which solves the wave equation

∂2
t u(x, t) − ∆u(x, t) = 0, (x, t) ∈ Ωc × [0, T ],

u(x, 0) = ∂tu(x, 0) = 0, x ∈ Ωc,

u(x, t) = g(x, t), (x, t) ∈ Γ × [0, T ],

(2.1)

where Ω ⊂ R3 is a bounded domain, Ωc = R3 \ Ω, Γ = ∂Ω, and g is the given
boundary data. For smooth, compatible data g(·, t) ∈ H1/2(Γ), a unique solution
u(·, t) ∈ H1(Ω) exists.

Let a time discretization at equally spaced points tj = j∆t, j = 0, 1, . . . , N , of
the ordinary differential equation (ODE) y′ = µy be given by:

1

∆t

∑

j≤n

δn−jYj − µYn = 0, (2.2)

Here δj ∈ Rm×m are matrices and the vector Yj ∈ Rm is an approximation of the
solution at m-stages at time tj ; namely it is an approximation to y(tj + cℓ∆t), for
some c1, c2, . . . , cm ∈ R. The approximation to y(tn) is given as a combination of the
entries of the Yjs:

yn+1 =
∑

j≤n

γn−jYj , γj ∈ R
1×m. (2.3)

Linear multistep, Runge-Kutta, and multistage-multistep methods all fit this descrip-
tion.

For later use, let us also define the generating functions of the time discretization:

δ(ζ) =

∞∑

j=0

δjζ
j , γ(ζ) =

∞∑

j=0

γjζ
j .

We apply above described time discretization to (2.1), where we extend u(·) by
zero to negative times, thereby obtaining a semi-discretized system:

1

∆t2

n∑

j=0

δ
(2)
n−jUj(x) − ∆Un(x) = 0, x ∈ Ωc,

Un(x) = Gn(x), x ∈ Γ,

n = 0, 1, . . . , N, (2.4)

where (Gn)ℓ is g(·, tn + cℓ∆t) or an approximation of it and the coefficients δ
(2)
j are

given by

(δ(ζ))
2

=

∞∑

j=0

δ
(2)
j ζj ,
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reflecting the need to discretize the second derivative. At each time step, the resulting
PDE is uniquely solvable if (Gn)ℓ ∈ H1/2(Γ) and the spectrum of δ0 = δ(0) ∈ Rm×m

is strictly in the right-half complex plane; note for m = 1, the condition reads δ0 > 0.
Making use of generating functions for both Uj and Gj , we can rewrite (2.4) as

(
δ(ζ)

∆t

)2

U(ζ) − ∆U(ζ) = 0, x ∈ Ωc,

U(ζ) = G(ζ), x ∈ Γ,

(2.5)

where to avoid questions of convergence, we can assume that Gj ≡ 0 for large enough
j.

We recognise in (2.5) a family of Helmholtz problems. Since the forcing term is
zero, we can apply the indirect boundary integral method and write the solution U(ζ)
as a single layer potential:

U(ζ)(x) = (S (δ(ζ)/∆t) Φ(ζ)) (x), x ∈ Ωc.

The single layer potential S(s) being defined by

(S(s)ϕ)(x) :=

∫

Γ

e−s|x−y|

4π|x− y|ϕ(y)dΓy, x ∈ R
3 \ Γ.

Its restriction to the boundary we denote by V(s):

(V(s)ϕ)(x) :=

∫

Γ

e−s|x−y|

4π|x− y|ϕ(y)dΓy , x ∈ Γ.

As a function of Re s ≥ σ0 > 0, V(s) is an analytic function, with, see [2, 31],

‖V(s)‖H−1/2(Γ)→H1/2(Γ) ≤ C(σ0)
|s|

Re s
(2.6)

and

‖V(s)−1‖H1/2(Γ)→H−1/2(Γ) ≤ C(σ0)
|s|2
Re s

. (2.7)

Thus, V(δ(ζ)/∆t) is well defined if the spectrum of δ(ζ) is strictly in the right-half
plane. As we will see later, the time discretization methods we use will satisfy this
condition for all |ζ| < 1.

Therefore, we need to find the boundary density Φ(ζ) such that the boundary
condition is satisfied:

G(ζ)(x) = V (δ(ζ)/∆t) Φ(ζ)(x), x ∈ Γ. (2.8)

Let W∆t
j (V) be the convolution weights defined by the generating function

V (δ(ζ)/∆t) =

∞∑

j=0

W∆t
j (V)ζj . (2.9)

Matching coefficients in (2.8) we obtain a discrete convolution that needs to be satis-
fied by the unknown densities Φj :

n∑

j=0

W∆t
n−j(V)Φj = Gn, on Γ, n = 0, 1, . . . , N. (2.10)
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Since W∆t
0 (V) = V(δ(0)/∆t), the spectrum of δ(0) is in the right-half plane, and (2.7)

holds, W∆t
0 (V) : (H−1/2(Γ))m → (H1/2(Γ))m is invertible and the above semi-discrete

system has a unique solution for sufficiently smooth boundary data; (Gn)ℓ ∈ H1/2(Γ)
suffices.

Let us note that the above semi-discrete system is the convolution quadrature
based on time discretization (2.2) for the time-domain boundary integral equation

∫ t

0

∫

Γ

δ(t− τ − |x− y|)
4π|x− y| ϕ(y, τ)dΓydτ = g(x, t), t ∈ [0, T ], x ∈ Γ, (2.11)

where δ(·) is the Delta distribution; see [32]. Convolution quadrature is usually pre-
sented as a method for discretizing convolutional integral operators, but the above
connection with a time discretization of the underlying partial differential equation is
well known; see, e.g., Theorem 5.2 in [32].

Finally, it is important to note that we could equally well have applied the direct
boundary integral method to obtain an integral formulation of the semi-discretized
system. In this case the unknown densities Φj would be approximations of the Neu-
mann data ∂νu(·, tj)|Γ and would have to solve

n∑

j=0

W∆t
n−j(V)Φj = −1

2
Gn +

n∑

j=0

W∆t
n−j(D)Gj , on Γ, n = 0, 1, . . . , N, (2.12)

where D(s) is the double layer potential defined by

D(s)ϕ(x) :=

∫

Γ

∂

∂νy

e−s|x−y|

4π|x− y|ϕ(y)dΓy, x ∈ Γ.

3. Examples of time discretizations.

3.1. Linear multistep methods. Multistep time discretization of time domain
boundary integral operators of the wave equation have been investigated in detail in
[32]. There, under the condition of A-stability of the underlying multistep method, it
is shown that under some smoothness and compatibility conditions on the Dirichlet
data g optimal stability and convergence properties can be proved. In this article we
will make use of two multistep methods, both of second order and both A-stable:

Backwards difference formula of order 2 (BDF2): δ(ζ) =
3

2
− 2ζ +

1

2
ζ2,

Trapezoid rule: δ(ζ) =
2(1 − ζ)

1 + ζ
.

Note that A-stability of multistep methods, i.e., Re δ(ζ) > 0 for |ζ| < 1, implies that
(2.8) is solvable for all |ζ| < 1.

In [32] the stability and second order convergence of BDF2 scheme has been
proved. The general theory in [32] can however not be applied to the Trapezoid
discretization of the time domain boundary integral operators of the wave equation.
For completeness, we give in the appendix a proof of the convergence specific to the
Trapezoid rule which can be applied to our case.



6 L. BANJAI

0
5

10
15

20
25

0

10

20

30
−0.5

0

0.5

1

dj

ω̃
j
(d

)

0
5

10
15

20
25

0

10

20

30
−0.5

0

0.5

1

dj

ω̃
j
(d

)

Fig. 3.1. Kernel functions eωj(d) for the BDF2 (left) and the Trapezoid rule (right).

Let us look more closely at the boundary integral operators ω∆t
j (V) : H−1/2(Γ) →

H1/2(Γ) and their dependence on the multistep method. These operators have the
form

ω∆t
j (V)ϕ =

∫

Γ

ω̃j(|x− y|/∆t)
4π|x− y| ϕ(y)dΓy,

where ω̃j : R≥0 → R are given by the following generating function

e−δ(ζ)d =

∞∑

j=0

ω̃j(d)ζ
j . (3.1)

Kernel functions ω̃j are depicted in Figure 3.1.
Various interesting properties of the multistep methods can be read from Fig-

ure 3.1. For both methods ω̃j(d) goes to zero quickly when d > j. This reflects the
finite speed of propagation of waves: at time j∆t the wave has not yet traveled the
distance d∆t = |x−y|. For the BDF2 method we also see that if j is sufficiently larger
than d, ω̃j(d) is again close to zero: this reflects Huygens’ principle present in three
dimensions; note that in two dimensions or if some dissipation is present this would
not be the case. Interestingly this property is lost with the Trapezoid rule. This can
be traced back to the Trapezoid rule, unlike BDF2, having a generating function δ(ζ)
with an infinite number of terms. It is, however, more illuminating to think of the
oscillating tail of ω̃j(d) as the consequence of the lack of L-stability of the Trapezoid
rule. This both suggests that the Trapezoid rule may be more susceptible to stability
problems, e.g., spurious oscillations, and that in this case we seem not to be able to
make use of the Huygens’ principle to reduce the computational costs.

The above comments are only of descriptive nature and we do not attempt to
prove them here. For the BDF2 method, the statements have been proved in [23] and
estimates are given for regions of discrete time-space where ω̃j(d) can be approximated
by 0 without affecting the accuracy of the overall computation. In [23] it is shown that
by doing this sparsification, matrices obtained by Galerkin space discretization are
sparse; by sparse, we mean here that gain can be made from using sparse techniques
to store and solve the resulting linear systems and not that there are O(1) entries
in each row of the M × M matrix, for more details see [23]. In [9] the fact that
for BDF2 ω̃j(d) converges exponentially to zero once j > d is used to investigate a
convolution quadrature method with reduced costs where all the convolution weights
ωj with j∆t > C diam(Ω), for some constant C, are replaced by 0.
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3.2. Runge-Kutta methods. Let us consider a Runge-Kutta method which
applied to the initial value problem

y′ = µy, y(0) = y0,

with a step size ∆t > 0 gives an approximation yn at time tn = n∆t,

Yn = yn1+ ∆tµAYn,

yn+1 = yn + ∆tµbTYn,
(3.2)

with A ∈ Rm×m, b ∈ Rm×1, and 1 = (1, . . . , 1)T . The method is said to have classical
order p if y1 − y(t1) = O(∆tp+1) and stage order q if Y0i − y(ci∆t) = O(∆tq),
i = 1, 2, . . . ,m. A standard reference for Runge-Kutta methods as presented in this
section is [26].

We assume that the method is A-stable, i.e., that the stability function

R(z) = 1 + zbT (I − zA)−11 (3.3)

is bounded by

|R(z)| ≤ 1, for Re z ≤ 0 and I − zA is non-singular for all Re z ≤ 0. (3.4)

From (3.2) it follows that

yn+1 = (1 − bTA−11)yn + bTA−1Yn = R(∞)yn + bTA−1Yn =
n∑

j=0

R(∞)n−jbTA−1Yj ,

hence γ(ζ) =
∑∞

j=0 R(∞)jbTA−1ζj . Rearranging the two equations in (3.2) gives the
discrete convolutional equation for the Yn:

1

∆t
(Yn − Yn−1) − µ

(
AYn − (A− 1bT )Yn−1

)
= 0, n = 0, . . . , N. (3.5)

Proceeding by using generating functions, we see that Runge-Kutta discretization also
fits the general description (2.2), with

δ(ζ) =

(
A+

ζ

1 − ζ
1bT )−1

. (3.6)

Using the Sherman-Morrison-Woodbury formula we obtain

δ(ζ) = A−1 − ζ

1 − ζ

A−11bTA−1

1 + ζ
1−ζ b

TA−11 ,
and hence δ(ζ) is well defined unless ζ

1−ζ b
TA−11 = −1. For |ζ| < 1 this can only

happen if bTA−11 ∈ (−∞, 0) ∪ (2,+∞). On the other hand, A-stability implies that
|R(∞)| ≤ 1, and hence bTA−11 = 1 − R(∞) must be contained in [0, 2]. Therefore,
δ(ζ) is well defined for all |ζ| < 1.

We would like to have that δ(ζ) ∈ Rm×m has all eigenvalues µj(ζ) satisfying
Reµj(ζ) > 0 for |ζ| < 1. It is not immediately obvious, as in the multistep methods,
that A-stability implies this property so we prove this next.
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Lemma 3.1. Let (3.4) hold, |ζ| 6= 1, and µ be an eigenvalue of δ(ζ), but not of
A−1. Then R(µ) = ζ−1.

Proof. Let δ(ζ)v = µv, v 6= 0. Let us first assume that bT v 6= 0. Then, from the
definition of δ(ζ), see (3.6), we have that

v = µAv + µ
ζ

1 − ζ
1bT v,

1 − ζ

ζ
v = bT vµ(I − µA)−11,

1 − ζ

ζ
bT v = bT v(R(µ) − 1).

Dividing by bT v and rearranging gives the result.
If bT v = 0 then

δ(ζ)Av = v =
δ(ζ)

µ
v.

Since δ(ζ) is invertible we obtain that µ is an eigenvalue of A−1 contradicting the
assumption of the lemma.

Corollary 3.2. If (3.4) holds, then for |ζ| < 1, ζ ∈ C, eigenvalues of δ(ζ) have
positive real part.

Proof. The corollary follows directly from the previous lemma and the A-stability
(3.4) condition.

Remark 3.3. For a pth-order Runge-Kutta method the approximation property
R(z) = ez + O(zp+1), for z → 0, holds. Though not strict, in practice a useful lower
bound for Reµ is given by log 1

|ζ| .

For convenience, i.e., to be able to easily compute analytic functions of δ(ζ), we
would also like δ(ζ) to be diagonalizable. In the next proposition we discuss the
diagonalizability of δ(ζ) for the 2-stage Radau IIA method.

Proposition 3.4. For the 2-stage Radua IIA method, δ(ζ) is diagonalizable for
all |ζ| < 1 except for ζ = 3

√
3 − 5.

Proof. The statement can be checked by computing the eigenvalues of A+ ζ
1−ζ1bT .

If there are 2 distinct eigenvalues, then δ(ζ) is diagonalizable. The 2-stage Radau IIA
method is defined by

A =

(
5/12 −1/12
3/4 1/4

)
, b =

(
3/4
1/4

)
.

Linearly independent vectors (1 1)T and (1 − 3)T are eigenvectors of 1bT with
eigenvalues 1 and 0 respectively. Computing the eigenvalues of A + ζ

1−ζ1bT is then
equivalent to computing the eigenvalues of

(
1/2 1/2
−1/6 1/6

)
+

ζ

1 − ζ

(
1 0
0 0

)

An easy computation shows that the above matrix has distinct eigenvalues for all
|ζ| < 1 except for ζ = 3

√
3− 5. A further computation shows that for this value of ζ,

δ(ζ) happens not to be diagonalizable.
Remark 3.5. A similar, but more tedious calculation, can be done for the 3-stage

Radau IIA method. As for the 2-stage case we first perform a simplifying change of
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Fig. 3.2. Kernel functions (fWj(d))11 and (fWj(d))22 for the 2-stage Radau IIA method. The
off-diagonal entries have a similar shape.

basis. Subsequent calculation is easier if here we use the W -transformation as defined
in Section IV.5 of [26]. This shows that the eigenvalues of δ(ζ)−1 are roots of

z3 − z2

(
3

5
+

ζ

1 − ζ

)
+ z

(
3

20
+

1

10

ζ

1 − ζ

)
− 1

60

ζ

1 − ζ
− 1

60
= 0.

Further calculation, gives that for ζ = 0.004598175 · · ·+ i 0.069213506 . . . , δ(ζ) and
δ(ζ̄) are not diagonalizable so that |ζ| = 0.069366077 . . . should be avoided. Other
values of ζ for which δ(ζ) is not diagonalizable are outside of the unit circle. Let us
also note here that in [3] it was mistakenly stated that δ(ζ) is diagonalizable for all
|ζ| < 1; what should have been stated was that for |ζ| < 1 but close enough to 1, δ(ζ)
is diagonalizable.

In practice, and for a general Runge-Kutta method, it is not essential to perform
such calculations since it is is highly unlikely that during the computation a value of ζ
for which δ(ζ) is not diagonalizable will be required. Still, it is advisable to investigate
the condition number of arising matrices δ(ζ).

In Figure 3.2 we visualize two entries of the matrix function W̃j(d) for the 2-stage

Radau IIA method. Here, as in the multistep case, W̃j : R≥0 → Rm×m is defined by

e−δ(ζ)d =

∞∑

j=0

W̃j(d)ζ
j .

Properties similar to the BDF2 method can be seen, except that the functions are
more concentrated along the diagonal d ≈ j.

Let us note here that the expression for δ(ζ) and γ(ζ) can be simplified if we as-
sume the Runge-Kutta method to be L-stable; Radau IIA methods being an example.
For these methods R(∞) = 0, implying

δ(ζ) = A−1 − ζA−11bTA−1, γ(ζ) = bTA−1.

Although we will not use such methods in this paper, let us just remark that a
multistep-multistage method is also an option. For example for the two-step Runge-
Kutta method of [12] the generating function is given by

δ(ζ) =

(
ζ

1 − ζ
1vT +

ζ

1 − ζ
1wT +A+ ζB

)−1

.
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and

γ(ζ) =
(
1 − ζ + ζ(vT + ζwT )(A +Bζ)−11)−1

(vT + ζwT )(A+Bζ)−1.

We have implemented the 2-step, 3-stage, A-stable method described in [12] and tested
it on the example described in Section 6.1. At useful accuracies it did not perform
as well as the 3-stage Radau IIA method, though eventually at very high accuracies,
due to its higher stage order, it did outperform the Radau IIA. In view of the results
of this experiment, we have decided not to investigate the method further.

4. Efficient solution of lower Triangular Toeplitz systems. To obtain the
solution of (2.10) one could solve the lower triangular system by forward substitution:

Φn = (W∆t
0 (V))−1


Gn −

n−1∑

j=0

W∆t
n−j(V)Φj


 , n = 0, 1, . . . , N.

The total cost in terms ofN would be O(N2) and at each time step n, a linear equation

W∆t
0 Φn = G̃n would have to be solved. We wish to reduce the computational cost to

O(N), up to powers of logN , but still keep the favourable property of needing for each
time-step to solve a linear equation with the same operator but different right-hand
side.

Solving the semi-discrete system (2.10) can be thought of as solving a lower tri-
angular Toeplitz system with the jth lower diagonal of the Toeplitz matrix given
by W∆t

j (V). Therefore in this section we will consider the fast solution of systems
TL(a)x = b, where TL(a) is the lower triangular Toeplitz matrix whose first column
is given by the vector a. Similarly we define the upper triangular Toeplitz matrix
TU (a), circulant matrix C(a), a being the first column in both, and Toeplitz matrix
T (a1,a2) with first column a1 and first row a2. Further,

a(ζ) =

∞∑

j=0

ajζ
j

denotes the generating function, generating the coefficients of the vector a ∈ RJ+1 for
any J ≥ 0.

First we show how to approximate the lower triangular Toeplitz matrix by a, up
to a change of basis, diagonal matrix. This method has already been used in the
present context in [7], though presented differently; see also [6].

Lemma 4.1. Let 0 < λ < 1 and aj be such that
∑∞

j=0 |λaj | < ∞. Define

Λ = diag(1, λ, . . . , λJ ) and F ∈ CJ+1×J+1 to be the Fourier matrix given by

(Fx)j =
J∑

ℓ=0

xℓζ
−jℓ
J+1, with ζJ+1 = e

2πi

J+1 , 0 ≤ j ≤ J.

Then

TL(a) = Λ−1F−1 diag(aλ)FΛ + λJ+1TU (a′) − λJ+1




∞∑

j=0

λjaj+J+1Λ
−1EjΛ


 ,

where a = (a0, a1, . . . , aJ)T , aλ =
(
a(λ), a(λζ−1

J+1), . . . , a(λζ
−J
J+1)

)T
, a′ = (0, aJ , aJ−1, . . . , a1)

T ,

and E = C(e2) where e2 ∈ RJ+1 is the unit vector with e2 = (0, 1, 0, . . . , 0)T . Note
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that EJ+1 = I and

‖Λ−1EjΛ‖∞ = ‖Λ−1EjΛ‖1 = λ−j(mod J+1), j = 0, 1, . . . ,∞,

where ‖ · ‖∞ and ‖ · ‖1 are the infinity norm (largest row sum) and the one norm
(largest column sum).

Proof. First, from the identity
n∑

j=0

an−jxj = λ−n
n∑

j=0

λn−jan−jλ
jxj and further

easy calculation we see that

TL(a) = Λ−1TL(Λa)Λ = Λ−1C(Λa)Λ + λJ+1TU (a′).

The circulant matrix C(Λa) is diagonalized by the Fourier transform

C(Λa) = F−1 diag(FΛa)F.

Finally

(FΛa)ℓ =

J∑

j=0

λjajζ
−ℓj
J+1 = a(λζ−ℓ

J+1) −
∞∑

j=J+1

λjajζ
−ℓj
J+1.

Hence

C(Λa) = F−1 diag(aλ)F −
∞∑

j=J+1

λjaj

(
F−1 diag(1, ζ−1

J+1, . . . , ζ
−J
J+1)F

)j

= F−1 diag(aλ)F −
∞∑

j=J+1

λjajC(e2)j .

Finally we notice that since EJ+1 = I, where E = C(e2), we have that

∞∑

j=J+1

λjajΛ
−1EjΛ = λJ+1

∞∑

j=0

λjaj+J+1Λ
−1EjΛ.

Hence, we see that to solve (2.10) for n = 0, 1, . . . , J , up to an accuracy O(λJ+1),
it is sufficient to solve J + 1 decoupled systems

V
(
δ(λζ−ℓ

J+1)/∆t
)
Φ̂ℓ = Ĝℓ, ℓ = 0, 1, . . . , J + 1,

where

Ĝℓ =

J∑

j=0

λjGjζ
−jℓ
J+1.

The overall computational complexity scales as O(Jm log J); in the multistage case
each operator would first be diagonalized, see Proposition 3.4 and Remark 3.4, but
since in practice, m is small, the cost of diagonalization is negligible. Since these
problems can be solved in parallel this can be a very effective way to solve the con-
volutional system (2.10). However, what is not immediately obvious is that some of
these problems will be difficult to solve, yet to solve (2.10) by forward substitution it
suffices to invert J times the same operator W0. Next we combine the two ideas.
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4.1. A recursive procedure. Let us assume that

TL(a(1))x(1) = b(1) (4.1)

with

a(1) = (a0, a1, . . . , aN1
) and b(1) = (b0, b1, . . . , bN1

)

has already been solved for N1 < N . Then it remains to solve

TL(a(2))x(2) = b(2) − T (P II
N1

a, P I
N1

a)x(1) (4.2)

with

a(2) = (a0, a1, . . . , aN−N1
), b(1) = (bN1+1, bN1+2, . . . , bN ),

and

P I
N1

a = (aN1+1, aN1
, . . . , a1)

T , P II
N1

a = (aN1+1, aN1+2, . . . , aN )T .

Once the right-hand side in (4.2) is computed, the system is assumed to be solved
recursively. The main difficulty now becomes the computation of the matrix-vector
product T (P II

N1
a, P I

N1
a)x(1). Toeplitz matrix-vector products can efficiently be com-

puted by using the FFT. This completes the description of the recursive method of
solving the triangular system introduced in [25]. As the algorithm stands it seems
necessary to know the coefficients aj explicitly, i.e. in our case the convolution weights
W∆t

j , in order to compute their discrete Fourier transform. We next show how the
computation of the discrete Fourier transformation of the coefficients (weights) can
be entirely avoided, at the same time removing the need to compute the coefficients
explicitly. This will constitute our modification of the algorithm of [25].

We first notice that

T (P II
N1

a, P I
N1

a) = λ−N1−1Λ−1
2 T (P II

N1
Λa, P I

N1
Λa)Λ1, (4.3)

where Λ1 = diag(1, λ, . . . , λN1), Λ2 = diag(1, λ, . . . , λN−N1), and Λ = diag(1, λ, . . . , λN ).
As usual, to compute the matrix-vector product with T (P II

N1
Λa, P I

N1
Λa) we extend

the Toeplitz matrix to a circulant matrix which can then be diagonalized by discrete
Fourier transforms. Next lemma gives the details.

Lemma 4.2. Let

cλ :=
(
λN1+1aN1+1, . . . , λ

NaN , a0, . . . , λ
N1aN1

)T
,

aλ :=
(
a(λ), ζN1+1

N+1 a(λζ
−1
N+1), . . . , ζ

N(N1+1)
N+1 a(λζ−N

N+1

)T

.

Then, under the conditions of Lemma 4.1,

C(cλ) = F−1 diag(aλ)F − E−N1−1λN+1




∞∑

j=0

λjaN+1+jE
j


 ,

where E = C(e2).
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Proof. The proof is similar to the proof of Lemma 4.1. One only needs to take
care of the technical difficulty that the entries in the vector cλ are not in the usual
order. The discrete Fourier transform of the permuted vector is given by

(Fcλ)ℓ =

N−N1−1∑

j=0

λj+N1+1ωj+N1+1ζ
−jℓ
N+1 +

N∑

j=N−N1

λj−N+N1ωj−N+N1
ζ−jℓ
N+1

= ζ
ℓ(N1+1)
N+1

N∑

j=0

λjajζ
−ℓj
N+1 = ζ

ℓ(N1+1)
N+1 (FΛa)ℓ .

Above procedure can be continued recursively, where the lower triangular matrices
TL(a1) and TL(a2) are again split in half; see [25]. The procedure is graphically de-
picted in Figure 4.1. The overall complexity of the recursive solution is O(Nm log2N).
While this is a larger number of operations than is required using only the decoupling
procedure of Lemma 4.1, the operations involved are cheaper; see Section 5.2.

T

T
T

T

T

T

T

TL

TL

TL

TL

TL

TL

TL

TL

0

0

0

0

1

1

2

Fig. 4.1. Depiction of a recursive procedure for solving lower triangular Toeplitz systems.
Lower triangular Toeplitz matrices are denoted by TL and general Toeplitz matrices by Tj .

4.2. Influence of finite precision arithmetic and the choice of λ. The
results in previous lemmas suggest that by taking λ→ 0 we can obtain any accuracy.
This in practice cannot be true as due to finite precision arithmetic the computation
of Λ−1F−1DFΛx for a diagonal matrix D, vector x, and Λ = diag(1, λ, . . . , λJ ),
cannot be computed accurately if λ is too small. In fact if eps denotes the machine
precision, we cannot hope for better accuracy than epsλ−J + λJ+1. In conclusion
if the FFT and the values aj are computed to an accuracy eps then the optimal
choice of λ in both the decoupling procedure Lemma 4.1 and the recursive algorithm
is λ = eps

1
2J . The highest precision obtainable in double precision is around 10−16,

hence λ should be chosen larger than 10−8/J giving the that the highest achievable
accuracy is

√
eps ≈ 10−8.

5. Space discretization. For the space discretization, we use a standard Galerkin
boundary element method. Let X ⊂ H−1/2(Γ) be a finite-dimensional space with ba-
sis {b1, b2, . . . , bM}. For the single-stage case the resulting discrete operators are clear:
operators V(s), ω∆t

j and functions ϕj , gj are replaced by matrices V(s), Aj and vec-
tors xj , gj given by

(V(s))lk := (V(s)bl, bk)L2(Γ), (Aj)lk := (ω∆t
j bl, bk)L2(Γ),
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and

(xj)l = (ϕj , bl)L2(Γ), (gj)l = (gj, bl)L2(Γ).

Then the discrete system we need to solve has the form:




A0 0 · · · 0

A1 A0
. . .

...
... A1

. . .
. . .

. . .
. . . 0

AN · · · A1 A0







x0

x1

...

...
xN




=




g0

g1

...

...
gN



. (5.1)

A few explanatory words should be said about the multistage case. For anm-stage
method, let Σ ∈ Cm×m be such that ΣU = U diag(s1, s2, . . . , sm) with Re sj > 0 and
U invertible; see Proposition 3.4 and Remark 3.4. Since V(s) is an analytic function
for Re s > 0 we can define

V(Σ) = U diag(V(s1),V(s2), . . . ,V(sm))U−1.

Space discretization of the above operator results in a mM ×mM block matrix with
blocks Vln(Σ), l, n ∈ {1, 2, . . . ,m},

(Vln(Σ))ij = (V(Σ)lnbi, bj) =
(
U diag [(V(s1))ij , . . . , (V(sm))ij ]U

−1
)
ln
.

Hence, in tensor notation we can write

V(Σ) = (U ⊗ IM ) diag [V(s1),V(s2), . . . ,V(sm)] (U−1 ⊗ IM ),

with IM ∈ RM×M being the identity matrix.
An important fact to take from the above expression is that to compute V(Σ),

only m-integral operators need to be discretized and not m2. Note, however, that
the eigenvectors U do depend on Σ, therefore the total cost of construction of V (Σ)
is O(m3) for the eigenvalue decomposition and O(mM2) for the construction of ma-
trices V (sj). The latter cost can be reduced to O(mM logaM), a > 0, with modern
data-sparse techniques, but since m will always be a small number (m ≤ 3 in our
experiments), this will still be a much larger computation than the eigenvalue decom-
position.

5.1. Fast data sparse techniques. Here we give a very brief introduction to
hierarchical matrices as introduced by Wolfgang Hackbusch and co-authors, see the
recent book [22] and references therein. In the description we will be guided by the
problem of storage and matrix-vector computation of dense matrices V(s) described
in the previous section.

5.1.1. Hierarchical matrices. Recall that for space discretization we use a
finite dimensional basis of locally supported functions {b1, . . . , bM} ⊂ H−1/2(Γ). Fur-
ther, let the boundary Γ be subdivided into M ′ disjoint panels πj , j = 1, . . . ,M ′.
Define J := {1, . . . ,M}.

Definition 5.1. Given a constant Cleaf > 0, a labelled tree TJ , is said to be a
cluster tree for J if the following conditions hold:

• For each τ ∈ TJ , the label denoted by τ̂ is a subset of J . In particular, the
label of the root of the tree is the cluster J containing all the indices.
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• If τ ∈ TJ has sons, then the sons form a partition of τ , i.e., τ̂ =
⋃̇{τ̂ ′ : τ ′ ∈

sons(τ)}.
• For each leaf τ , #τ̂ ≤ Cleaf .

Let

Γτ := ∪j∈τ̂{πi : s.t. πi ⊂ supp bj} ⊂ Γ,

be the subset of Γ corresponding to a cluster τ ∈ TJ .
Introduce a restriction operator χτ : RM×M for each τ ∈ TJ by

(χτ )kj =

{
1, if k = j ∈ τ̂ ,

0, otherwise.
(5.2)

We call a pair of clusters (τ, σ) a block. The corresponding sub-block of the matrix
V is then χτVχσ. A hierarchical matrix approximation of V attempts to replace
such blocks with low-rank approximations. Blocks for which we expect this to be
possible are called admissible blocks. For matrices arising from Galerkin discretization
of boundary integral operators the following admissibility property, controlled by a
fixed parameter η ∈ (0, 1), has proved to be appropriate.

Definition 5.2. For each τ ∈ TJ let a centre cτ ∈ R3 and a radius ρτ > 0 be
given such that Γτ ⊆ D(cτ , ρτ ) = {y ∈ R3 | ‖y− cτ‖ < ρτ}. Then we say that a block
b = (τ, σ) ∈ TJ × TJ is admissible if

ρτ + ρσ ≤ η‖cτ − cσ‖. (5.3)

To easily access such blocks we assume the existence of a block cluster tree TJ×J .
Definition 5.3. A tree TJ×J is called a block cluster tree if the node J ×J

is its root and for each b = (τ, σ) ∈ TJ×J :
• b is either admissible
• or at least one of the clusters τ or σ are leaves of TJ .

We are now able to give a definition of H-matrices.
Definition 5.4. Let TJ×J be a block cluster tree and let kmax ∈ N. We define

the set of H-matrices with maximal rank kmax as

H (TJ×J , kmax) := {V : rank(χτVχσ) ≤ kmax for all admissible leaves b = (τ, σ)}.

The following result, proved in [18], gives the cost of storage and matrix-vector
multiplication of an H-matrix.

Lemma 5.5. Let V ∈ H(TJ×J , kmax) and let p be the depth of TJ×J . Then

Nst ≤ 2Csp(p+ 1)max{kmax, Cleaf}M and NH·v ≤ 2Nst,

where Nst is the storage requirement and NH·v the complexity of the matrix-vector
multiplication.

5.1.2. Dependence of ranks on the complex frequency s. In this section
we investigate the applicability of H-matrices for efficient data-sparse representation
of matrices V(s). In particular we wish to understand the dependence of the rank
kmax in Definition 5.4 and Lemma 5.5 on complex parameter s. Recall that

(V(s))jk :=

∫

Γ

∫

Γ

κs(x, y)bj(x)bk(y)dΓxdΓy, j, k ∈ {1, 2, . . . ,M}, (5.4)
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with the kernel function κs(·, ·) given by

κs(x, y) =
e−s|x−y|

4π|x− y|

and {b1, b2, . . . , bM} ⊂ H−1/2(Γ) a standard boundary element basis of functions with
local supports.

A kernel function κ(x, y) is said to be asymptotically smooth in X×Y , for X,Y ⊂
Rd, if

|∂α
x ∂

β
y κ(x, y)| ≤ cas(α+ β)|x− y|−|α|−|β|−σ

for x ∈ X, y ∈ Y, x 6= y, α, β ∈ N
d
0, α+ β 6= 0,

(5.5)

where σ ∈ R and

cas(ν) = Cν!|ν|r

with some constants C and r.
In [22], see in particular [22, Theorem 4.2.13], it is shown that if a kernel function

κ is asymptotically smooth and V is the Galerkin discretization (5.4), then for any
accuracy ε > 0 there exists an H-matrix Vε such that ‖Vε − V‖ ≤ ε and the rank
kmax = O(logd 1

ε ).
Lemma 5.6. For all s ∈ C with Re s ≥ 0 and |Im s|/Re s ≤ C0 for some constant

C0 > 0, the kernel function κs(x, y) is asymptotically smooth with constants in (5.5)
depending on C0 but not on s.

Proof. The νth derivative of the function f(t) = e−st is given by

f (ν)(t) = (−s)νe−st = c1(ν, st)ν!t
−ν

with c1(ν, st) = (−st)ν

ν! e−st. Using Stirling’s formula we can bound

|c1(ν, st)| ≤
1√
2πν

e−
Re s
|s| |st|

( |st|e
ν

)ν

≤ 1√
2πν

( |s|
Re s

)ν

≤ 1√
2πν

(1 + C2
0 )ν/2.

From this estimate and [22, Theorem E.2.1] we can conclude that F (x, y) := f(|x −
y|) is asymptotically smooth with implied constants independent of s. Finally, the
product of two asymptotically smooth functions is again asymptotically smooth, see
[22, Theorem E.3.6], and the proof is done.

Remark 5.7. We conclude that if |Im s|/Re s ≤ const then the maximal rank
kmax of the H-matrix approximation of V(s) is bounded by a constant that depends
only on the accuracy of the approximation ε. Since the depth of the cluster tree is of
size p = O(logM), it follows that for this range of frequencies the matrices V(s) can
be approximated by H-matrices with computational and storage costs of O(M logM).

Furthermore, as shown in [8, 17], an (approximate) LU -decomposition of such
matrices can be computed in O(M log2M) time. Though of higher complexity, this
computation is much cheaper then the construction of Vε(s) , especially as the LU -
decomposition is usually computed to a lower accuracy and then used as an effective
preconditioner; see Table 5.1.

We have performed an experiment documented in Table 5.1 to illustrate this
claim. H-matrix approximations Vε(s) of V(s) and approximate LU -decompositions
of Vε(s) have been computed, with various values of s satisfying |Im s|/Re s = 1.
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s Mem/dof (kB) time (s) MemLU/dof timeLU ‖I− (LU)−1Vε‖2

1 + i 8.5 132.62 6.0 12.1 1.0 × 10−4

2 + 2i 8.9 138.4 6.2 13.0 5.6 × 10−4

4 + 4i 9.3 146.1 6.6 13.8 4.4 × 10−4

8 + 8i 9.7 152.9 7.0 15.1 2.3 × 10−4

16 + 16i 8.0 124.38 7.1 18.3 9.4 × 10−5

Table 5.1

We show memory per degree of freedom for increasing Re s = Im s, both for the H-matrix
approximation Vε and its approximate LU-decomposition. Computational times and the error in
the LU-decomposition are also shown.

The computation was performed using HLIBpro, a C++ library for computation of
H-matrices written by Ronald Kriemann; see [29, 30]. The block-wise accuracy of
Vε(s) approximation was set to 10−6, and the accuracy of the LU -decomposition to
10−4. From the results in Table 5.1 we see a slow, logarithmic, increase of costs with
increasing |s|. The reason for this slight increase is not clear from the theory, but in
any case it is clear that increasing s, with s satisfying Re s = Im s, does not increase
the costs significantly.

Next, we investigate the position of frequencies arising in the algorithms of Sec-
tion 4.

5.2. Frequencies in the complex plane. We first investigate the frequen-
cies arising in application of Lemma 4.1 to the solution of small triangular Toeplitz
systems.

5.2.1. Solution of a small triangular Toeplitz system. Consider the linear
system

n∑

j=0

An−jxj = gj , n = 0, 1, . . . , J,

with J ∈ N a constant independent of ∆t and Aj the matrices from the beginning
of Section 5. In order to solve this system using Lemma 4.1, we need to solve J + 1
linear systems of the form

V(sℓ)x̂ℓ = b̂ℓ

and sℓ = δ(λζℓ)/∆t with |ζℓ| = 1 and λ = eps−
1
2J . In numerical experiments we have

used the choice λ = 10−6/J . For the multistep methods, BDF2 and Trapezoid, this
means that

Re δ(λζ)/∆t = δ(λ)/∆t ≥ 1 − λ

∆t
≈ 6

J∆t
.

For Runge-Kutta methods, for each particular method, the lower bound can be ob-
tained from Lemma 3.1 and an investigation of the rational function R(z). In gen-

eral,
log 1

λ

∆t is a good approximation of the lower bound; note that for λ close to 1,
log 1

λ ≈ 1 − λ.
For a constant λ ∈ (0, 1) it holds for all the A-stable linear multistep methods

and the Runge-Kutta methods that ‖δ(λζ)‖ ≤ const, for |ζ| = 1. Thus, in this
case, we conclude that frequencies lie in a sector of complex plane |Im s|/Re s ≤
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Fig. 5.1. Frequencies occurring for the various methods with ∆t = 0.08, N = 50, λ = 0.7. The
3-stage Radau IIA and the 4-stage Lobatto IIIC methods are shown.

const with the constant independent of ∆t. Hence, the Galerkin matrices and their
LU -decomposition can be cheaply represented in H-matrix format, see Lemma 5.6,
Remark 5.7, and Table 5.1.

5.2.2. Computation of the update. For blocks of size O(N) = O(1/∆t), e.g.,
block T2 in Figure 4.1, it is no longer true that the frequencies satisfy |Im s|/Re s ≤
const. In fact with the choice λ = eps

1
2N = eps

T
2∆t we see that this ratio is of O(∆t−1),

this means that the constants in (5.5) depend on ∆t−1 and that the maximum rank
of the H-matrix approximation will increase with powers of ∆t−1. The fact that
H-matrices perform poorly for highly-oscillatory kernels is a well-known problem [4].

Fortunately, the highly-oscillatory operators occur only in the update of the right-
hand side described in Lemma 4.2, which means that these operators need never be
inverted, but only a single matrix-vector product needs to be computed. This is an
ideal task for the so-called fast multipole methods [35, 36] or H2-matrices [4]. Here
the advantage of the recursive procedure from Section 4 can best be seen, since there
are no truly robust preconditioners that would allow a robust solution of systems
resulting from the discretization of highly-oscillatory integral operators.

Many fast-multipole like methods for high-frequency Helmholtz integral operators
have been developed since the early 1990s [1, 4, 13, 35, 36]. These have dealt only
with cases of purely real and purely imaginary wavenumbers and can be adapted to
our case of complex frequencies, still, to do this optimally more work is needed.

Since these modifications to the fast multipole method are still to be done, further
discussion of fast multipole methods is beyond the scope of this article.

6. Numerical experiments. In this section, to shorten the presentation, we
will make use of the operational notation

(K(∂t)g)(t) :=

∫ t

0

k(t− τ)g(τ)dτ, for K(s) = (L k)(s) =

∫ ∞

0

k(t)e−tsdt.

A motivation for this notation comes from identities such as ∂−1
t g =

∫ t

0
g(τ)dτ and

K2K1(∂t)g = K2(∂t)K1(∂t)g. With this notation the time-domain boundary integral
operator (2.11) can be written as

(V(∂t)ϕ)(x, t) =

∫ t

0

∫

Γ

δ(t− τ − |x− y|)
4π|x− y| ϕ(y, τ)dΓydτ, x ∈ Γ,
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where

(V(s)ψ)(x) :=

∫

Γ

e−s|x−y|

4π|x− y|ψ(y)dΓy, x ∈ Γ.

6.1. A simple model problem. Before we consider large scale three dimen-
sional problems, let us first concentrate on a simple model problem. We solve the
homogeneous wave equation in the exterior of the unit ball, with zero initial condi-
tions and separable Dirichlet boundary data given by

g(x, t) = h(t)Y m
ℓ ,

where Y m
ℓ are the spherical harmonics. We first consider using the indirect boundary

integral method and represent the solution as a single layer potential:

u(x, t) = S(∂t)ϕ, (S(s)ψ)(x) :=

∫

Γ

e−s|x−y|

4π|x− y|ψ(y)dΓy, x ∈ Ωc.

In order that u satisfies the boundary condition we need to find ϕ such that

g(x, t) = V(∂t)ϕ.

For the unit sphere Γ = S2, the Y m
ℓ are eigenfunctions of the operators V(s) and S(s):

V(s)Y m
n = λn(s)Y m

n , λn(s) = −shn(is)jn(is),

S(s)Y m
n (x) = λn(s, |x|)Y m

n , λn(s, r) = −shn(irs)jn(is),

where jn and hn are spherical Bessel functions. Thus, we see that ϕ(x, t) = ψ(t)Y m
n

where ψ solves

λn(∂t)ψ = h(t).

We have therefore reduced the problem on the sphere to a space independent convo-
lution equation. As a numerical example we take g(t, x) = h(t)Y m

2 on the interval
[0, 10], i.e., T = 10, with h(t) = exp(−0.4t) sin5(2t). It may be possible to obtain the
analytic solution of this problem by first computing the inverse Laplace transform of
1/λ2(s), but since it is such a simple problem, we can easily obtain a very accurate
numerical solution which can serve as the exact solution in the calculation of errors.

In the left plot of Figure 6.1, we show the convergence of

error =

√√√√∆t

N∑

j=0

(ψ(tj) − ψj)2

against the number of time-steps N in the interval [0, T ] for the BDF2, Trapezoid,
and 3-stage Radau IIA methods; note that in order to have a fairer comparison of
costs the error of the 3-stage Radau IIA method is plotted against 3N . The quadratic
convergence of the multistep methods and the cubic convergence of the Runge-Kutta
method can nicely be seen. A remark is needed here: 3-stage Radau IIA method
has classical order p = 5 and with stage order q = 3. In [5] it is proved that the
convergence order of the convolution quadrature is in general determined by the stage
order and the degree of the polynomial by which the operator is bounded in the
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Fig. 6.1. The convergence of the approximation error, using the indirect method, to the bound-
ary density on the left and to the solution in the exterior on the right.

Laplace domain. That is, reduction of order compared to the classical convergence
order is expected.

Due to its higher order, we expect the Runge-Kutta method to perform better at
high accuracy, but from these plots we see that the Runge-Kutta method performs
significantly better also for moderate errors. The convergence for the multistep meth-
ods starts much later. To investigate this behaviour further, let us consider the error
of the solution obtained by the multistep methods at a distance 1.2 from the origin,
i.e., the error is now given by

error =

√√√√∆t

N∑

j=0

(u(1.2x̂, tj) − uj(1.2x̂))2.

The results are now shown in the right-hand plot in Figure 6.1; we see that the
convergence starts much earlier and a much better error is achieved.
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Fig. 6.2. On the left we plot the solution in the interior (r < 1) and the exterior (r > 1). We
see that the solution in the exterior is much simpler. In the right plot we show the convergence to
the boundary density for the direct method which solves only the exterior problem.

The reason for this significant difference is that in the indirect method the un-
known density ϕ is the difference between the solution of the exterior and the solution
of the interior wave equation with the Dirichlet data. Since the interior solution is
much more difficult to compute due to the many reflections, see left plot of Figure 6.2,
computing an approximation of the unknown density in the indirect method is much
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more difficult than solving the exterior problem itself. Since, as seen in the intro-
duction, convolution quadrature is equivalent to the multistep discretization of the
exterior domain problem, the errors in the computation of ϕ due to the interior prob-
lem after the evaluation of the convolution quadrature of S(∂t)ϕ

∆t are eliminated.
If the normal derivative of the solution on the boundary of the scatterer is required

then it is reasonable to use the direct boundary integral method. In the right-hand
plot of Figure 6.2 we show the error convergence. Now all three methods start to
converge at around the same discretization refinement and the Runge-Kutta method
becomes more effective only at higher accuracies.

This exterior model problem is, however, very simple. In the case of a non-convex
domain, oscillations much as in the interior problem can occur and the convergence
may be more similar to the convergence of the density for the indirect method. In
the last experiment of the next section, this indeed does take place.

6.1.1. Non-smooth data. All the theoretical results for convergence of con-
volution quadrature require rather stringent smoothness requirements on the data,
meaning that the data is overall smooth in the time interval [0, T ] and that the first
few derivatives of the data are zero at t = 0. Here we repeat the previous experiment
but with data that breaks the second requirement:

h1(t) = exp(−0.4t) sin(t) and h2(t) = exp(−0.4t) sin2(t).

Note that breaking the requirement at t = 0 is equivalent to breaking the requirements
at some later time, e.g., consider the above examples, but starting the computation
at a negative time.
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Fig. 6.3. In the left plot we show the numerical approximation of K(∂t)h1 obtained by BDF2
and Radau IIA methods. On the right we show the convergence for BDF2, Trapezoid, and Radau
IIA methods for the computation of K(∂t)h2.

For data h2, for which at most the first derivative is 0 at t = 0, all examined
time-discretization methods converge, albeit at a slower rate. For h1 the Trapezoid
rule completely fails, whereas BDF2 and 3-stage Radau IIA seem to converge, but at
a rate lower than linear; in this case also oscillations occur in the BDF2 solution near
the singularities. For the numerical results see Figure 6.3.

6.2. Scattering by three dimensional bounded obstacles. We will consider
two examples of Dirichlet boundary data on two different geometries.
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A common example of the incident wave is a plane wave modulated by a Gaussian:

uinc(x, t) = − cos(ω(t− α.x))e−( t−α.x−A
σ )2

, (6.1)

where |α| = 1, ω, σ ∈ R. In the whole of Rn, uinc satisfies the homogeneous wave
equation with wave speed c = 1. If we assume that the total field is zero at the
boundary of the scatterer, then the scattered field usc = utot − uinc satisfies the
boundary condition

usc(x, t) = g(x, t) := −uinc(x, t).

Using the indirect method we can represent the scattered field as a single layer po-
tential

u := usc = S(∂t)ϕ, with ϕ satisfying V(∂t)ϕ = g.

Even though we have chosen the indirect method, the unknown density is in this case
a physical quantity: Since uinc satisfies the wave equation in the whole domain, from
jump properties of the single layer we can deduce that

ϕ = ∂+
ν u

tot,

where ∂+
ν is the exterior normal derivative restricted to Γ.

Another interesting right-hand side, is

g(x, t) =

{
0, if t− α.x − 1 < 0,

e−
1

t−α.x−1 sinω(t− α.x− 1), if t− α.x − 1 ≥ 0.
(6.2)

Due to the limit amplitude principle [14], for star-shaped domains we know that
the solution should exponentially quickly converge to a stationary wave; a similar
experiment has been performed in [20].

In the case of the incident wave given by (6.1) we will investigate both the bound-
ary density ϕ = ∂+

ν u
tot and the far-field pattern whereas for the second right-hand

side (6.2) we will only give the far field pattern.
For r = |x| → ∞ and x̂ = x/r in the Laplace domain, with U = L u, we have

that

U(x, s) =
1

r

{
U∞(x̂, s) + O

(
1

r

)}
,

see for example [10]. The function U∞ can be represented as a single layer potential

U∞(x, s) =
1

4π

∫

Γ

e−s(r−x̂.y)Φ(y, s)dΓy,

where Φ = Lϕ. Taking the inverse Laplace transform we obtain

u(x, t) ≈ 1

r
u∞(x̂, t) =

1

4πr

∫ t

0

∫

Γ

δ(t− τ − (r − x̂.y))ϕ(y, τ)dΓydτ, for r = |x| → ∞.

For r0 such that Ω is contained in the ball centred at 0 of radius r0, and r0 ≪ r, we
write

A(x̂, t) := u∞(x̂, t+ (r − r0)) =
1

4π

∫ t

0

∫

Γ

δ(t− τ − (r0 − x̂.y))ϕ(y, τ)dΓydτ.
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The function A is the far field amplitude which is the quantity that will be shown in
the numerical experiments.

To perform the experiments in this section, algorithms of Section 4 have been
implemented. For the Galerkin discretization of the single layer potentials, a piecewise
constant boundary element basis has been used. The computation of the resulting
dense matrices and their storage in H-matrix format were done using the HLIBpro
library written by Ronald Kriemann; see [29, 30] and the website www.hlibpro.org.
Further, the functions of HLIBpro for computing approximate LU -factorisations have
been used as preconditioners to speed up the iterative solution of linear systems.
All the computations were done on a parallel cluster with 34 Dual AMD Opteron
254 with 2800 MHz, 16 GB RAM nodes and 72 Dual AMD Opteron 250 with 2400
MHz, 4 GB RAM nodes at the Max-Planck Institute for Mathematics in the Sciences,
Leipzig. All the dense matrices needed for the algorithm of Section 4, including the
few preconditioners, were computed in parallel in H-matrix format and then used to
obtain the solution using the recursive algorithm.

6.2.1. Scattering by a unit sphere: Far field and the boundary density.

We investigate the scattering of the incident wave (6.1) by a unit sphere with the
choice of parameters

ω =
1

2
π, α = (1, 0, 0)T , A = 4, σ = 0.5, T = 10.

We compute the solution on a uniform triangulation of the unit sphere by 8192 tri-
angles. We have used the Trapezoid rule and BDF2 with N = 120 and the 3-stage
Radau IIA method with N = 40. As a control computation we have used the 3-stage
Radau IIA method with N = 80.
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Fig. 6.4. On the left the boundary density at the triangle centred around x = (.2, 0, .98)T for
the three discretization methods. On the right the far field in the direction x̂ = (−1, 0, 0)T for the
same problem.

In the left-hand side of Figure 6.4 we show the approximations of the boundary
density ϕ(x, t) = ∂+

ν u
tot and in the right-hand side we show the approximations of

the far field pattern A(x, t) for x = (−1, 0, 0). We can see a similar effect as in the
simplified example of the previous section. All methods perform well for the exterior
solution, whereas the Runge-Kutta method performs much better for the computation
of the boundary density.

6.2.2. Long time stability. We repeat the previous experiment, but on the
time interval [0, 80], i.e., T = 80. The number of time steps is N = 960 for BDF2 and
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N = 320 for the Radau IIA method. Note that in both cases this choice implies ∆t
is the same as in the previous experiment.

We do not perform the experiment for the Trapezoid rule as it would require the
computation of exceedingly many boundary integral operators. For the BDF2 and
the Runge-Kutta method, ωj ≈ 0 for j > J and large enough J ; see Figure 3.1 and
Figure 3.2. In the computation, we approximate ωj by 0 for j > J and J = 120 for
BDF2 and J = 21 for Radau IIA. This is easily implemented within the algorithm of
Section 4: looking at Figure 4.1, if the block T2 can be approximated by zero except
for the operators contained in the block T1, we simply replace T2 by appropriately
zero-padded block T1.

The far-field in direction (−1, 0, 0) is shown in Figure 6.5. We see that no spurious
oscillations occur and the difference between the reduced computation on interval
[0, 10] and the previous, full, computation is negligible.
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Fig. 6.5. A long time computation is shown on the left. Both the result of the Runge-Kutta
and BDF2 computations are shown, but at this scale no difference can be seen. On the right we
show the error due to the approximation of some of the ωjs by zero.

6.2.3. The limit amplitude principle. We now compute the solution for the
right-hand side (6.2). We use the BDF2 and the Radau IIA method with the same
∆t and T as in Section 6.2.2. The parameters in the right-hand side (6.2) are chosen
as

ω = π, α = (1, 0, 0).

In Figure 6.6 we plot the far field pattern and see that, as predicted by theory,
the solution quickly converges to a standing wave. The standing wave oscillates at
the frequency π which is the interior resonance frequency and which would usually
pose a problem for a single layer potential representation in the frequency domain.
Yet, here we do not see any adverse effect. In some time-domain boundary integral
discretization methods, interior resonances can pose problems and need to be dealt
with by the use of combined field integral equations where also a double layer potential
would have to be computed; see [40].

6.2.4. A more complicated, non-convex domain. We also consider scat-
tering by a more complicated non-convex scatter. The domain and the mesh were
constructed by the easy-to-use meshing tool Gmsh of Geuzaine and Remacle [16]. The
geometry was defined using Gmsh with the following code:
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Fig. 6.6. The far field is shown on the whole time interval [0, 80] on the left and on the right a
zoom to a later time is shown to demonstrate that the solution has become a time harmonic wave.
Again, both Runge-Kutta and BDF2 computations are shown, but at this scale no difference can be
seen.

refine = 0.05;

Point(1) = {-0.5,-1/2,0,refine}; Point(2) = {-0.5,-3/4,0,refine};

Point(3) = {-0.5,-1,0,refine}; Point(4) = {0.0,-1,0,refine};

Point(5) = {0.0,0,0,refine}; Point(6) = {0.0,-0.5,0,refine};

Point(7) = {1.0,0.0,0,refine}; Point(8) = {0.5,0.0,0,refine};

Point(9) = {-.75,-.75,0,refine}; Circle(1) = {1,2,9};

Circle(2) = {9,2,3}; Circle(3) = {8,5,6}; Circle(4) = {4,5,7};

Line(5) = {3,4}; Line(6) = {6,1};

Extrude {{1,0,0}, {0,0,0}, Pi} {

Line{3,6,1,2,5,4};}

Extrude {{1,0,0}, {0,0,0}, Pi/2} {

Line{26,22,18,14,10,7};}

Extrude {{1,0,0}, {0,0,0}, Pi/2} {

Line{36,32,40,44,48,29};}

The triangulation of the surface resulted in a mesh with 14440 triangles. The
domain can be seen in Figure 6.7. It was constructed so that waves can be trapped
inside its cavity.

The incident wave is the modulated Gaussian wave (6.1) with the parameters

ω =
1

2
π, α =

√
4

5

(
1,

1

2
, 0

)T

, A = 4, T = 10.

We have computed the boundary density, i.e., the normal derivative of the total field,
using the 3-stage Radau IIA method with N = 60 and N = 80 and with the BDF2
method with N = 180 and N = 240. The density is shown in Figure 6.7 at various
times, as computed with the Radau IIA method, N = 80. We can see that the wave
stays for a long time inside the cavity.

We have also computed the total field at the point x = (0, 0, 0)T which is at the
centre of the cavity. The results of the four computations are shown in Figure 6.8.
We can see a similar result as in the computations of the interior solution: as soon
as many reflections occur the BDF2 method requires exceedingly small time-steps to
converge, whereas convergence occurs much earlier with the Radau IIA method.

7. Conclusion. We have described an efficient, robust, and parallelizable method
for the numerical solution of time-domain boundary integral equations of acoustic scat-
tering. The method allows for a multitude of different time-discretizations to be used.
In this article we have investigated two multistep methods: BDF2 and Trapezoid rule,
and a Runge-Kutta method: the 3-stage Radau IIA method.
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Fig. 6.7. The normal derivative of the total field on the boundary of a non-convex scatterer.
Due to the non-convexity the wave is trapped for a long time after the incident wave has passed the
object. The view is chosen in the direction of the incident wave.

In most of the experiments Radau IIA performed overwhelmingly better than
the multistep methods, especially for more complicated problems. The Trapezoid
rule, though somewhat more accurate than the BDF2, has a number of disadvantages
if longer time simulations are needed: complicated, oscillatory kernel functions, see
Figure 3.1, that prevent the use of Huygens’ principle and an extreme distribution
of frequencies in the complex plane. The latter is due to Trapezoid rule having the
optimal stability region: exactly the left-half complex plane.

These experiments motivate the search for optimal A-stable methods for acoustic
scattering applications. There is a large literature on relative merits of different
time-discretization methods for wave propagation problems. However, as hyperbolic
problems are not particularly stiff, mostly explicit schemes have been investigated
[42], whereas we require optimal implicit schemes. Furthermore, since the triangular
Toeplitz system is anyway dense, unlike in PDE based methods, the boundary integral
approach does not immediately become more expensive if an k-step method is used
with a larger k; high order, low stage number, multistep-multistage methods may be
a class in which to seek optimal time discretization methods.

The implementation of the algorithms presented in this paper is not yet opti-
mal, in particular diagonal multipole expansions have not been used to speed up the
computation of high frequency operators. Nevertheless, we were able to perform com-
plicated, large scale computations. Here, the crucial thing was the ability to efficiently
use the capabilities of a large parallel cluster. In the future, we will report the com-
putational times and storage requirements in detail for an optimal implementation,
the bases of which has been given in this article.
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shown.
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Appendix A. Proof of convergence of Trapezoid convolution quadra-

ture.

Let us consider the convolution

u(t) = (K(∂t)g)(t),

with K(s) analytic for Re s > 0 and bounded as |K(s)| ≤ C(σ0)|s|µ for Re s ≥ σ0 and
some constant µ ∈ R. Let the convolution quadrature approximation be given by

un := (K(∂∆t
t )g)n =

n∑

j=0

ω∆t
n−j(K)gj

with

K

(
δ(ζ)

∆t

)
=

∞∑

j=0

ω∆t
j (K)ζj (A.1)

and δ(ζ) the generating function of the Trapezoid rule

δ(ζ) =
2(1 − ζ)

1 + ζ
.

In [32] it is shown that K(∂∆t
t )g converges to u at the optimal quadratic rate if

µ < 0. In our case, K(s) = V−1(s), and according to (2.7), µ = 2, therefore we cannot
use the results of [32] directly.

We show next how to extend the results of [32] for Trapezoid discretization to the
case µ > 0.
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Lemma A.1. Let K(s) be analytic for Re s > 0 and bounded |K(s)| ≤ C(σ0) for
Re s ≥ σ0 > 0. Then for and σ > σ0 there exist t̄ > 0 such that for the Trapezoid
based convolution quadrature

sup
|ζ|≤e−∆tσ

∣∣∣∣K
(
δ(ζ)

∆t

)∣∣∣∣ ≤ C(σ0), for all 0 < ∆t < t̄.

Proof. The proof follows easily from the estimate

Re
δ(ζ)

∆t
=

2(1 − |ζ|2)
∆t(1 + 2Re ζ + |ζ|2) ≥ 2(1 − |ζ|2)

∆t(3 + |ζ|2) = σ +O(∆t) > 0,

for |ζ| = e−σ∆t.
Theorem A.2. Let K(s) be analytic for Re s > 0 and bounded as |K(s)| ≤

C(σ0)|s|µ, µ > 0, for Re s ≥ σ0 > 0. Then, if g is r times continuously differentiable
with g(0) = g′(0) = . . . , g(r−1)(0) = 0 and r > 2⌈µ⌉ + 3, it holds for Trapezoid time
discretization that


∆t

N∑

j=0

|K(∂∆t
t )g(tj) −K(∂t)g(tj)|2




1/2

= O(∆t2).

Proof. First of all let us split the error as

e1 + e2 =
[
Kk(∂∆t

t )g(k) −Kk(∂t)g
(k)

]
+

[
Kk(∂∆t

t )(g(k) − (∂∆t
t )kg)

]
,

where Kk(s) = K(s) · s−k and k = ⌈µ⌉. Theory from [32] can be applied to the first
term in the error. Recalling (A.1), the second term can be estimated using Parseval’s
formula and Lemma A.1 as follows


∆t

N∑

j=0

|e2(tj)|2



1/2

≤ eσT sup
|ζ|≤e−∆tσ

∣∣∣∣Kk

(
δ(ζ)

∆t

)∣∣∣∣


∆t

N∑

j=0

|g(k)(tj) − (∂∆t
t )kg(tj)|2




1/2

≤ const


∆t

N∑

j=0

|g(k)(tj) − (∂∆t
t )kg(tj)|2




1/2

.

Therefore if we can show that g(k) − (∂∆t
t )kg = O(∆t2) the proof is done.

In order to prove this, we write the error as in [32, Theorem 3.1] with s = σ+ iω
and some constant 0 < c < π,

|g(k)(t) − (∂∆t
t )kg(t)| ≤ 1

|2π|

∫

σ+iR

∣∣∣∣∣s
k −

(
δ(e−s∆t)

∆t

)k
∣∣∣∣∣ |L g(s)| |ds|

.

∫

|s∆t|≤c

∣∣∣∣∣s
k −

(
δ(e−s∆t)

∆t

)k
∣∣∣∣∣ |L g(s)| |ds| (A.2)

+

∫

|s|≥c/∆t

∣∣sk
L g(s)

∣∣ |ds| +
∫

|s|≥c/∆t

∣∣∣∣∣

(
δ(e−s∆t)

s∆t

)k
∣∣∣∣∣
∣∣sk

L g(s)
∣∣ |ds|;
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the inequality sign . denotes that a multiplicative constant has been left out. The
first term in the sum (A.2) can be estimated by using the approximation property
δ(e−z) = z +O(zp+1)for |s∆t| < c < π, as

∫

|s∆t|≤c

∣∣∣∣∣1 −
(
δ(e−s∆t)

s∆t

)k
∣∣∣∣∣
∣∣sk

L g(s)
∣∣ |ds| ≤ C∆t2

∫

|s∆t|≤c

∣∣sk+2
L g(s)

∣∣ |ds|

= C∆t2
∫

|s∆t|≤c

∣∣∣L g(k+2)(s)
∣∣∣ |ds|,

smoothness assumptions on g insuring that the integral is bounded.

For the final integral in (A.2) we notice that
∣∣∣
(

δ(e−s∆t)
s∆t

)∣∣∣ ≤ C|∆t|−1 ≤ C
c |s| for

|s| ≥ c/∆t. Hence the final integral is bounded by

C∆t2
∫

|s|≥c/∆t

∣∣s2k+2
L g(s)

∣∣ |ds| = O(∆t2).

Similarly, the smoothness condition on g gives sufficient decay in the second integral
in (A.2).
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