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Abstract

In this paper we prove a posteriori L2(L2) and L∞(H−1) residual based
error estimates for a finite element method for the one-dimensional time de-
pendent coupling equations of two scalar conservation laws. The underlying
discretization scheme is Characteristic Galerkin method which is the partic-
ular variant of the Streamline diffusion finite element method for δ = 0. Our
estimate contains certain strong stability factors related to the solution of an
associated linearized dual problem combined with the Galerkin orthogonal-
ity of the finite element method. The stability factor measures the stability
properties of the linearized dual problem. We compute the stability factors
for some examples by solving the dual problem numerically.
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1 Introduction

This paper is the second part in a series of two papers concerning approximate
solutions for the coupling equations. In the first part [13], we derived, for smooth
solutions in the Sobolev space Hk+1 of functions with their partial derivatives up to
order k+1 in L2, optimal a priori error estimates for the Streamline diffusion finite
element methods (for short, the Sd-method below) of order O(hk+1/2). In this part
we extend our studies to a posteriori estimates (see [1], [2], [6]-[9]) dealing with the
following basic problem: To construct an algorithm for the numerical solution of
the coupling equations such that the error between the exact and approximate solu-
tions, measured in some appropriate norms such as weighted L2(L2) and L∞(H−1)
norms, is guaranteed to be below a given tolerance and such that the computational
cost is almost minimal. These two properties are referred to as the reliability and
efficiency of the algorithm, respectively. The a posteriori error analyses are required
for the reliability in the sense that the error is controlled by certain norms of the
residual (which is obtained by inserting the computed finite element solution into
the differential equation) term, whereas the a priori error estimates are based on
controlling the size of the error by some norm of the unknown solution itself. As for
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the efficiency the adaptivity may be invoked to avoid unnecessary mesh-refinements
on the regions where the contribution to the error is already small.
The main objective in this study is to derive a posteriori error estimates and prove
strong stability estimates of the dual problem for the solution of the interface prob-
lem in a system of two different partial differential equations describing, e.g., mul-
tifluids with different state equations and moving contact discontinuities. More
specifically we consider the following coupling of two conservation laws in one di-
mension: Find u : (x, t) ∈ R × R+ −→ u(x, t) ∈ R such that







ut + fR(u)x − (ǫu)xx = 0, x > 0, t > 0,
ut + fL(u)x − (ǫu)xx = 0, x < 0, t > 0,
u(x, 0) = u0, x ∈ R,

(1.1)

and also a suitable “continuity” condition

u(x, t) = ub(t) t ≥ 0,

at the interface x = 0, to be compatible with initial condition u0 (for more details
see [11, 13]), where ǫ = ǫ(x, t) is a positive small viscosity, u0 : R −→ R is a given
function and fα : R −→ R, α = L,R, denote two “smooth” functions.

This is a system of nonlinear conservation laws arising in the study of fluid
problems with two different equations on each side of the interface which may be
fixed or are moving with the flow. For instance, on one side of the interface, we
assume that the flow obeys the rules of the isentropic system of gas dynamics while
on the other side flow is arbitrary. A more complex problem in the case of having
to couple the Navier-Stokes system with the Euler system of gas dynamics [3], as
well as modelling certain plasma physical problems cf [11].

This paper is organized as follows: In section 2, we construct a space-time
discretization and formulate the Streamline diffusion method for the approximation
solution of the coupled problem. Section 3 is devoted to the proof of a posteriori
error estimates for the corresponding Characteristic Galerkin for the perturbed
coupled problem in two different norms. In section 4, we state and prove the
analytical strong stability estimates for dual solution of our problem and Finally,
in our concluding section 5 we present some computational results, with emphasis
on computation of the stability factors by solving associated dual problem.

2 Finite Element Discretization

We formulate a finite element method for the first equation involving fR in (1.1). We
use the Galerkin method with piecewise linear basis functions which are continuous
in space and discontinuous in time, i.e. the Sd-method. To do this we first introduce
some basic notation.

Let {0 = t0 < t1 < ... < tN = T } be a partition of the interval I = (0, T ) into
the subintervals In = (tn, tn+1), with time steps kn = tn+1 − tn, n = 0, 1, . . . , N − 1
and introduce the corresponding space-time “slabs” Sn = R+ × In. On each slab
for h > 0, we define a space-time mesh T nh = {K} with space-time element K, as an
quasi-uniform subdivision (see e.g., Ciarlet [5]) of the slab Sn, i.e., for each K ∈ T nh
there is an inscribed circle in K such that the ratio of the diameter of this circle
and the diameter of K is bounded below, independently of K and h.

Let now q be a positive integer and introduce the finite element space

Unh = {u ∈ H1(Sn) : u
∣

∣

K
∈ Pq(K), K ∈ T nh },

where Pq(K) denotes the set of polynomials on K of degree less than or equal to q.
Then we define the trial and test function spaces as the subspaces of Unh by

Vnh = {v ∈ Unh : v
∣

∣

Γ
= ubh}, and Wn

h = {w ∈ Unh : w
∣

∣

Γ
= 0},
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respectively. Here ubh is the trace of a function in Unh approximating ub on Γ which
is the boundary of Ω = R+ × (0, T ). Note that we may assume that the functions
v(x, t) ∈ Vnh and w(x, t) ∈ Wn

h are vanishing for sufficiently large |x|.
Summing over n, taking all the slabs together we get the function spaces

Vh =

N−1
∏

n=0

Vnh , Wh =

N−1
∏

n=0

Wn
h ,

i.e., we seek an approximate solution uh ∈ Vh such that for n = 0, 1, ..., N − 1 we
have that uh |Sn= unh. We emphasize that the functions in Vh are continuous in
x and possibly discontinuous in t at discrete time levels tn. Similar properties are
valid for wh ∈ Wh.
In order to write the Sd-method in a compact form suitable for analysis, and because
the functions in Vh may be discontinuous in time, we introduce the jump terms [v]
across each time level by defining, for x > 0 and n = 0, 1, . . . , N − 1,

[v](x, tn) =

{

v+ if n = 0
v+ − v− if n 6= 0,

where
v+ = lim

s−→0+
v(x, t+ s), v− = lim

s−→0−
v(x, t+ s),

and also we use the following notation

〈u, v〉n =

∫

R+

u(x, tn)v(x, tn)dx, |v|n = 〈v, v〉1/2n .

2.1 The Sd-Method

We start with the first equation of system (1.1) and reformulate it as the following
initial boundary value problem: Find u such that

Lǫu ≡ ut + f ′
R(u)ux − (ǫu)xx = 0 in Ω,

u(0, t) = ub t ∈ (0, T ),

u(x, 0) = u0 x ∈ R+,

(2.1)

where ǫ is a positive viscosity coefficient, which we typically assume to be a ‘small’
constant specified below. Our main goal is to derive a posteriori error estimates for
the above problem based on the Sd-method. In the formulation of the Sd-method
below, if the mesh size is not small enough, the given viscosity ǫ will be replaced
by an artificial viscosity ǫ̂ depending on the computed solution uh and the mesh
size h. Therefore in the a posteriori error analysis of (2.1) it is convenient to split
the total error e = u − uh into two parts e = ρ + θ where ρ = u − û with û the
solution of a perturbed continuous problem obtained by replacing ǫ by ǫ̂ in (2.1),
and ê := θ = û − uh is the discretization error related to applying the Sd-method
(now without modifying the viscosity coefficient) to the perturbed problem. In this
case, the a posteriori error estimates (also underlying adaptive algorithm) is, in the
case of space discretization only, basically as follows:

‖ê‖A ≤ SCi‖
h2

ǫ̂
R(uh)‖B, (2.2)

where ‖.‖A and ‖.‖B are some norms, e.g., an Lp(Lq) in time-space or L∞(H−1)
norm, h is the mesh size, and R(uh) = Lǫ̂uh is the residual obtained inserting the
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computed finite element solution into the perturbed differential equation. Further
Ci is an interpolation constant which depend on the shape of the elements, the
local order of polynomial approximation and the choice of norms, but not on the
particular solution being approximated or the mesh size, and S is a stability factor
which measures certain stability properties of an associated continuous linearized
dual problem.

The Sd-method for (2.1) can now be formulated as follows: Find unh ∈ Vnh , such
that for n = 0, 1, . . . , N − 1

(

unh,t + f ′
R(unh)u

n
h,x, v

n
h + δ(vnh,t + f ′

R(unh)v
n
h,x)

)

n
+

(

ǫ̂unh,x, v
n
h,x

)

n

+〈[uh], vnh,+〉n +

∫

Γn

unh,+v
n
h,+dt =

∫

Γn

ubvnh,+dt ∀vnh ∈ Wn
h ,

(2.3)

where u0
h,− = u0, [uh] = unh,+ − unh,−,

ǫ̂ = max(ǫ, C1h|R(uh)|/|∇uh|, C2h
3/2),

R(uh) = |uh,t + f(uh)x| +
|[uh]|
kn

on Sn,

δ = C̄h,

with h denoting the mesh size, C̄ and Ci’s are positive constants and Γn := {0}×In.
The artificial viscosity ǫ̂ acts in an implicit way to provide additional stability near
to shocks (ǫ̂ ∼ C1h), and less in smooth regions (ǫ̂ ∼ C2h

3/2).
In order to estimate the error e = u−uh, we also need to estimate ρ = u− û. To

control the u − û, we may adaptively refine the mesh until ǫ̂ = ǫ, giving u = û, or
alternatively approximate ê in terms of ǫ− ǫ̂. In the a posteriori error estimates for
the Sd-method (2.3), below for simplicity we assume that ub ≡ 0, ǫ̂ = ǫ is constant
and that the function h(x, t) = h is constant, for all x, t. Further we consider the
following simplified version of the Sd-method with ǫ̂ = C̄h and δ = 0 (an error
analysis for the Sd-method in the case δ 6= 0 is given in [15, 20]): Find uh ∈ Vnh ,
such that for n = 0, 1, . . . , N − 1

(

uh,t + fR(uh)x, v
)

n
+

(

ǫ̂uh,x, vx
)

n
+ 〈[uh], v+〉n = 0, ∀v ∈ Wn

h . (2.4)

3 A Posteriori Error Analysis

3.1 Introduction

The a posteriori approach tries to estimate the error of approximating a particular
solution by using the information from computation. The foundation is a rigorous
a posteriori error estimate which bound the error by computable quantities that
depend on the “known computed” numerical solution rather than the unknown
exact solution.

The standard a posteriori error estimates for time-dependent problem as pre-
sented in [12], [19] and [6] typically rely on Galerkin orthogonality, interpolation
estimates and strong stability estimates for a suitable dual problem running back-
ward in time with a desired error functional as initial data on the right hand side as
key ingredient. In our approach to a posteriori error analysis, in addition to these
ingrediences, we rely also on the concept of stability factor. Below we, especially,
consider these issues in more details.
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3.2 The Dual Problem

In order to obtain a representation of the error (see Sect. 3.4), we consider the
following auxiliary problem, referred to as the linearized dual problem: Find ϕ such
that

L∗
ǫ̂ϕ ≡ −ϕt −ATϕx − ǫ̂ϕxx = ψ1 in Ω, (3.1a)

ϕ(0, t) = 0 t ∈ (0, T ), (3.1b)

ϕ(x, T ) = ψ2 x ∈ R+, (3.1c)

where

A =

∫ 1

0

f ′
R(su+ (1 − s)uh)ds.

and L∗
ǫ̂ denotes the adjoint of the operator L is defined in (2.1). Note that this

problem is computed “backward”, i.e. from tN , where the initial data is given, to
0. Depending on the choice of ψ1 or ψ2, we get estimates of different norms or
functionals of the error.

3.3 Notations

We use the following notation

(u, v)n =

∫

Sn

uvdxdt, (u, v)Q =

N−1
∑

n=0

(u, v)n,

‖.‖ = ‖.‖L2(Q) = (u, v)
1
2

Q, ‖.‖Lp = ‖u(., t)‖Lp(R),

‖.‖L∞(Lp) = sup
t∈[0,T ]

‖u(., t)‖Lp, ‖u‖L1(L2) =

∫ T

0

‖u(., t)‖L2
dt,

‖u‖H−1 = ‖vx‖L2
, where −vxx = u, v(xL) = v(xR) = 0, ‖g‖Lψ

2

= ‖ψ 1
2 g‖L2

,

where the computational domain is restricted to the interval (xL, xR) and ψ is
positive weight function.

By D1uh and D2uh we denote “discrete second derivative” of u defined by

D1uh(x, t) = max
j=i,i−1

∣

∣

∣

[uh,x(x
n
j , t)]

hnj

∣

∣

∣
x ∈ (xni−1, x

n
i ), t ∈ In, (3.2)

where [v(xnj )] = limζ−→0+(v(xnj + ζ) − v(xnj − ζ)),

(D2w, v)n = −(wx, vx)n ∀v ∈ Wn
h , (3.3a)

(Dǫ̂
2w, v)n = −(ǫ̂wx, vx)n ∀v ∈ Wn

h , (3.3b)

where Dǫ̂
2, D2 : Wn

h −→ Wn
h .

The a posteriori error estimates contain residual of the computed solution defined
by

R0 = uh,t + fR(uh)x, R1 = D1uh, R2 = −Dǫ̂
2uh,

R3 =
(Pn − I)unh,−

kn
on Sn, R4 = (unh,+ − unh,−)/kn) on Sn,

where I is identity operator and Pn : Sn −→ Wn
h denote the L2-projection defined

by
(Pnu, v)n = (u, v)n, ∀v ∈ Wn

h .
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We defined P and π by

(Pϕ)|Sn = Pn(ϕ|Sn), and (πϕ)|Sn = πn(ϕ|Sn),

respectively, where πn : L2(Sn) −→ Π0,n = {v ∈ L2(Sn) : v(x, ·) is constant on In, x ∈
R+} is defined by

πnv|Sn =
1

kn

∫

In

v(·, t)dt ∀v ∈ Π0,n.

We note that Pπ = πP since Pnπn = πnPn for n = 0, 1, ..., N − 1.

3.4 An a Posteriori Error Estimates in L2(L2)

Let us now prove a basic a posteriori error estimate in a weighted L2-norm. We
start by representing the error ‖ê‖2

Lψ
−1

2
(Ω)

in terms of the dual solution ϕ of (3.1)

choosing ψ1 = ψ−1ê and ψ2 = 0. Multiplying (3.1a) by ê and integrating over
each Sn, integrating by parts, and summing over n, we obtain the following error
representation formula:

‖ê‖2

Lψ
−1

2
(Ω)

= (ê, ψ−1ê)Ω = (ê,L∗
ǫ̂ϕ)Ω

=

N−1
∑

n=0

{(êt + (Aê)x, ϕ)n + (ǫ̂êx, ϕx)n} −
N−1
∑

n=0

〈[uh], ϕ+〉n

= −
N−1
∑

n=0

{(uh,t + fR(uh)x, ϕ)n + (ǫ̂uh,x, ϕx)n} −
N−1
∑

n=0

〈[uh], ϕ+〉n.

So that using the Galerkin orthogonality with Ψ = πPϕ ∈ Vh as an suitable inter-
polant of ϕ,

‖ê‖2

Lψ
−1

2
(Ω)

=
N−1
∑

n=0

(uh,t + fR(uh)x,Ψ − ϕ)n +
N−1
∑

n=0

(ǫ̂uh,x, (Ψ − ϕ)x)n

+

N−1
∑

n=0

〈[uh], (Ψ − ϕ)+〉n.
(3.4)

To proceed we use the following interpolation estimates, proofs of which can be
found in [14] and [18]:

Lemma 3.1 There is a constant Ci such that for R ∈ L2(Ω)

|(R, ϕ− Pϕ)Ω| ≤ Ci‖
h2

ǫ̂
(I − P)R)‖

Lψ
−1

2
(Ω)

‖ǫ̂ϕxx‖Lψ
2
(Ω) (3.5a)

|(ǫ̂uh,x, (ϕ− Pϕ)x)Ω| ≤ Ci‖h2R1‖Lψ−1

2
(Ω)

‖ǫ̂ϕxx‖Lψ
2
(Ω). (3.5b)

Similarly we have also the following Lemma, proof of which can be found in [12]

Lemma 3.2 There is a constant Ci such that for R ∈ Lψ
−1

2 (Ω)

|(R,P(πϕ − ϕ))Ω| ≤ Ci‖knR‖
Lψ

−1

2
(Ω)

‖ϕt‖Lψ
2
(Ω). (3.6)

We introduce the stability factors Stê and Sxê associated with discretization in time
and space, defined by

Stê =
‖ϕt‖Lψ

2
(Ω)

‖ê‖
Lψ

−1

2
(Ω)

, Sxê =
‖ǫ̂ϕxx‖Lψ

2
(Ω)

‖ê‖
Lψ

−1

2
(Ω)

, (3.7)
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respectively. Using Cauchy-Schwarz inequality in (3.4) coupled with the interpo-
lation estimates (3.5a), (3.5b) and (3.6) and the strong stability factors (3.7), to
derive the L2(L2) a posteriori error estimates for the scheme (2.4).

Theorem 3.3 The error ê = û−uh, where û is the solution of the perturbed problem
and uh that of (2.4) satisfies

‖û− uh‖Lψ−1

2
(Ω)

≤ CiS
x
ê ‖
h2

ǫ̂
(I − P)R0)‖Lψ−1

2
(Ω)

+ CiS
t
ê‖knR0‖Lψ−1

2
(Ω)

+ CiS
x
ê ‖h2R1‖Lψ−1

2
(Ω)

+ CiS
t
ê‖knR2‖Lψ−1

2
(Ω)

+ CiS
x
ê ‖
h2

ǫ̂
R3‖Lψ−1

2
(Ω)

+ CiS
t
ê‖knR3‖Lψ−1

2
(Ω)

+ CiS
t
ê‖knR4‖Lψ−1

2
(Ω)
.

(3.8)

Proof. Using the notation introduced above, we may write (3.4) as

‖ê‖2

Lψ
−1

2
(Ω)

=
N−1
∑

n=0

(R0,Ψ − ϕ)n +
N−1
∑

n=0

(ǫ̂uh,x, (Ψ − ϕ)x)n

+

N−1
∑

n=0

〈[uh], (Ψ − ϕ)+〉n ≡ I + II + III.

(3.9)

Writing Ψ − ϕ = Ψ − Pϕ+ Pϕ− ϕ we obtain

I =

N−1
∑

n=0

(R0,Ψ − Pϕ+ Pϕ− ϕ)n =

N−1
∑

n=0

(R0,Pϕ− φ)n +

N−1
∑

n=0

(R0,P(πϕ− ϕ))n

≤ Ci‖
h2

ǫ̂
(I − P)R0)‖Lψ−1

2
(Ω)

‖ǫ̂ϕxx‖Lψ
2
(Ω) + ‖knR0‖Lψ−1

2
(Ω)

‖ϕt‖Lψ
2
(Ω),

where we have used (3.5a) in the first integral and (3.6) in the second integral.
For the term II, we get the following bound, using (3.5b) and the fact that Dǫ̂

2 is
constant on In,

II =

N−1
∑

n=0

(ǫ̂uh,x, (Ψ − Pϕ+ Pϕ− ϕ)x)n

=
N−1
∑

n=0

(ǫ̂uh,x, (Pϕ− ϕ)x)n +
N−1
∑

n=0

(ǫ̂uh,x, (Ψ − Pϕ)x)n

=

N−1
∑

n=0

(ǫ̂uh,x, (Pϕ− ϕ)x)n +

N−1
∑

n=0

(−Dǫ
2uh,P(πϕ− ϕ))n

≤ Ci

(

‖h2R1‖Lψ−1

2
(Ω)

‖ǫ̂ϕxx‖Lψ
2
(Ω) + ‖knR2‖Lψ−1

2
(Ω)

‖ϕt‖Lψ
2
(Ω)

)

.

Finally, for the third term III in the error representation we have

III =

N−1
∑

n=0

〈[uh], (Ψ − ϕ)+〉n

=

N−1
∑

n=0

〈[uh], (Pϕ− ϕ)+〉n +

N−1
∑

n=0

〈[uh], (πPϕ− Pϕ)+〉n

≡ III1 + III2.

7



Considering first III1, we have with the L2-projection Pn defined above

III1 =

N−1
∑

n=0

〈uh,+ − uh,−, (Pn − I)ϕ+〉n

=
N−1
∑

n=0

〈Pnuh,− − uh,−, (I − Pn)(Pn − I)ϕ+〉n

=

N−1
∑

n=0

〈R3, kn(Pn − I)ϕ+〉n

(3.10)

Now to estimate (I − Pn)ϕn+ we note that

knϕ
n
+(x) =

∫

In

ϕ(x, t) −
∫

In

∫ t

tn

ϕτ (x, τ)dτdt. (3.11)

Inserting this representation into the right hand side of (3.10), using an estimate
for (Pn − I) we get

III1 =
N−1
∑

n=0

〈R3, (Pn − I)(

∫

In

ϕ(x, t)dt−
∫

In

∫ t

tn

ϕτ (x, τ)dτdt)〉n

=

N−1
∑

n=0

∫

In

{〈R3, (Pn − I)ϕ〉n −
∫ t

tn

〈R3, (Pn − I)ϕτ (·, τ)〉ndτ}dt

≤ C(‖h
2

ǫ̂
R3‖Lψ−1

2
(Ω)

‖ǫ̂ϕxx‖Lψ
2
(Ω) + ‖knR3‖Lψ−1

2
(Ω)

‖ϕt‖Lψ
2
(Ω)),

where in the last inequality we have used that

‖Pnϕt‖Lψ
2
(Ω) ≤ ‖ϕt‖Lψ

2
(Ω).

Finally, for III2 we have

III2 =
N−1
∑

n=0

〈kn
[uh]

kn
, (πPϕ− Pϕ)+〉n =

N−1
∑

n=0

〈knR4, (πPϕ− Pϕ)+〉n

=

N−1
∑

n=0

〈R4, (πP − P)(

∫

In

ϕ(x, t) −
∫

In

∫ t

tn

ϕτ (x, τ)dτdt)〉n

≤ C‖knR4‖Lψ−1

2
(Ω)

‖ϕt‖Lψ
2
(Ω).

The a posteriori error estimate now follows immediately after collecting the terms
and using the definition of the stability factors (3.7).

�

3.5 An a Posteriori Error Estimates in L∞(H−1)

In principle, we may seek to control the error in any given norm by comparing the
corresponding stability factors by solving a dual problem with suitable data. The
norm L∞(H−1) offers certain advantages from analysis point of view, and connects
to the following data for a dual linearized equation

L∗
ǫ̂ϕ = 0 in Ω,

ϕ(0, t) = 0 t ∈ (0, T ),

ϕ(x, T ) = E x ∈ R+,

(3.12)
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where
−Exx = ê x ∈ R+, |E| −→ 0 as |x| −→ ∞. (3.13)

We define the norm ‖ê‖H−1 by

‖ê‖H−1 = (Ex(T ), Ex(T ))R+
,

and note the following error representation based on (3.13)

‖ê‖2
H−1 = ‖Ex‖2

L2
= 〈ê−, ϕ〉N −

N−1
∑

n=0

(ê,L∗
ǫ̂ϕ)n

= 〈ê−, ϕ〉N − 〈ê−, ϕ〉N + 〈ê, ϕ〉0 +

N−1
∑

n=0

(Lǫ̂u, ϕ)n

−
N−1
∑

n=0

{(uh,t + fR(uh)x, ϕ)n − (ǫ̂uh,x, ϕx)n} −
N−1
∑

n=0

〈[uh], ϕ+〉n

= 〈ê, ϕ〉0 −
N−1
∑

n=0

{(uh,t + fR(uh)x, ϕ)n − (ǫ̂uh,x, ϕx)n} −
N−1
∑

n=0

〈[uh], ϕ+〉n.

Using Galerkin orthogonality for Ψ ∈ Vh and with 〈ê, ϕ〉0 = 0 we have

‖ê‖2
H−1 =

N−1
∑

n=0

(uh,t + fR(uh)x,Ψ − ϕ)n −
N−1
∑

n=0

(ǫ̂uh,x,Ψx − ϕx)n

+

N−1
∑

n=0

〈[uh], (Ψ − ϕ)+〉n.
(3.14)

We introduce the following stability factors associated with discretization in time
and space respectively,

StE =
‖ϕt‖L1(L2(R+))

‖ê‖H−1

, SxE =
‖
√
ǫ̂ϕxx‖L1(L2(R+))

‖ê‖H−1

. (3.15)

Using interpolation estimates of the same type as those in the previous section we
obtain the following a posteriori error estimate.

Theorem 3.4 The error ê = û−uh, where û is the solution of the perturbed problem
and uh that of (2.4) satisfies

‖ê‖H−1 ≤ CiS
x
E‖

h2

√
ǫ̂
(I − P)R0)‖L∞(L2(R+)) + CiS

t
E‖knR0‖L∞(L2(R+))

+ CiS
x
E‖h2R1‖L∞(L2(R+)) + CiS

t
E‖knR2‖L∞(L2(R+))

+ CiS
x
E‖

h2

√
ǫ̂
R3‖L∞(L2(R+)) + CiS

t
E‖knR3‖L∞(L2(R+))

+ CiS
t
E‖knR4‖L∞(L2(R+)).

(3.16)

The proof is essentially the same as the proof of the L2(Ω) case and is therefore
omitted. We notice a gain of a factor

√
ǫ̂ as compared to (3.8) due to the asymmetry

of norms in (3.16), with the weaker H−1(R+)-norm on the left hand side.
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4 Analytical Strong stability Estimates

To give the above a posteriori estimate a quantitative meaning we need to estimate
the strong stability factors. We present some stability estimates for the model
problem indicating that the corresponding stability factor is bounded by a moderate
constant. More specifically, to get a quantitative estimate of the computational error
‖u − uh‖ in terms of Stê, S

t
E , Sxê and SxE , it is necessary that these two quantities

are bounded by some moderate constants.

4.1 Strong stability in L2(Ω)

In this section we consider the a posteriori error estimate of the type (3.8) derived
in the previous section based on the following dual problem

L∗
ǫ̂ϕ ≡ −ϕt −ATϕx − ǫ̂ϕxx = ψ−1ê in Ω, (4.1a)

ϕ(0, t) = 0 t ∈ (0, T ), (4.1b)

ϕ(x, T ) = 0 x ∈ R+, (4.1c)

where we assume that ϕ(x, t) −→ 0 as x −→ ∞, for all t. We now prove the
following strong stability estimate for the dual problem (4.1).

Theorem 4.1 Let ǫ̂ > 0, α ≥ 0 and β ≥ 0 be constants. Suppose further that
ψ(x, t) is a positive weight function satisfying

ψt +ATψx −ATxψ − 2ǫ̂ψ2
xψ

−1 ≥ α|ATx |ψ + βψ in Ω, (4.2)

then the solution ϕ of (4.1) satisfies

‖ϕt +ATϕx‖2
Lψ

2
(Ω)

+ ‖ǫ̂ϕxx‖2
Lψ

2
(Ω)

+ ‖ǫ̂ 1
2ϕx‖2

L∞(Lψ
2
(Ω))

+2‖ǫ̂ 1
2 (α|ATx | + β)

1
2ϕx‖2

Lψ
2
(Ω)

≤ 6‖ê‖2

Lψ
−1

2
(Ω)
,

(4.3)

and

‖ϕt‖2
Lψ

2
(Ω)

≤ 4(3 + T sup
Ω

‖A
TA

ǫ̂
‖)‖ê‖2

Lψ
−1

2
(Ω)
. (4.4)

Proof. We multiply equation (4.1a) by −ψ(ϕt + ATϕx) and integrate over Ωτ =
R+ × (τ, T ) to get

‖ψ 1
2 (ϕt +ATϕx)‖2

Ωτ +

∫

Ωτ

ψ(ϕt +ATϕx)ǫ̂ϕxxdxdt = −
∫

Ωτ

ê(ϕt +ATϕx)dxdt

≤
∫

Ωτ

ψ−1ê2dxdt+
1

4
‖ψ1/2(ϕt +ATϕx)‖2

Ωτ .

Integrating by parts in both space and time variables in the second term on the
left-hand side yields

∫

Ωτ

ψ(ϕt +ATϕx)ǫ̂ϕxxdxdt =

∫

Ωτ

ψϕtǫ̂ϕxx +

∫

Ωτ

ψATϕxǫ̂ϕxxdxdt

= −
∫

Ωτ

ǫ̂ψxϕxϕtdxdt−
∫

Ωτ

ǫ̂ψϕxϕtxdxdt

− 1

2

∫

Ωτ

ǫ̂ψATxϕ
2
xdxdt−

1

2

∫

Ωτ

ǫ̂ψxA
Tϕ2

xdxdt

= −
∫

Ωτ

ǫ̂ψx(ϕt +ATϕx)ϕxdxdt −
1

2

∫

Ωτ

(ǫ̂ψϕ2
x)tdxdt

+
1

2

∫

Ωτ

ǫ̂ψtϕ
2
xdxdt +

1

2

∫

Ωτ

ǫ̂ϕ2
x(A

Tψx −ATxψ)dxdt.

(4.5)
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By substituting into above inequality we have

3

4
‖ψ 1

2 (ϕt +ATϕx)‖2
Ωτ +

1

2

∫

R+

(ǫ̂ψϕ2
x)(x, τ)dx +

1

2

∫

Ωτ

ǫ̂ϕ2
x(ψt +ATψx −ATxψ)dxdt

≤ ‖ψ− 1
2 ê‖2

Ωτ +

∫

Ωτ

ǫ̂ψxϕx(ϕt +ATϕx)dxdt

≤ ‖ψ− 1
2 ê‖2

Ωτ +

∫

Ωτ

ǫ̂2ψ2
xϕ

2
xψ

−1dxdt+
1

4
‖ψ 1

2 (ϕt +ATϕx)‖2
Ωτ .

Collecting terms, we obtain that

‖ψ 1
2 (ϕt +ATϕx)‖2

Ωτ +

∫

R+

(ǫ̂ψϕ2
x)(x, τ)dx

∫

Ωτ

ǫ̂ϕ2
x(ψt +ATψx −ATxψ − 2ǫ̂ψ2

xψ
−1)dxdt ≤ 2‖ψ− 1

2 ê‖2
Ωτ .

We may now choose τ such that
∫

R+

(ǫ̂ψϕ2
x)(x, τ)dx = sup

t∈[0,T ]

∫

R+

(ǫ̂ψϕ2
x)(·, t)dx = ‖ǫ̂ 1

2ϕx‖2
L∞(Lψ

2
(Ωτ ))

,

and use (4.2) to obtain

‖ǫ̂ 1
2ϕx‖2

L∞(Lψ
2
(Ωτ ))

+ ‖ǫ̂ 1
2 (α|ATx | + β)

1
2ϕx‖2

Ωτ

≤ 2‖ψ− 1
2 ê‖2

Ωτ ≤ 2‖ψ− 1
2 ê‖2

Ω.
(4.6)

Choosing τ = 0 yields the following inequality

‖ψ 1
2 (ϕt + ATϕx)‖2

Ω + ‖ǫ̂ 1
2 (α|ATx | + β)

1
2ϕxψ

1
2 ‖2

Ω ≤ 2‖ψ− 1
2 ê‖2

Ω. (4.7)

Similarly, to obtain a bound for ‖ǫ̂ψ 1
2ϕxx‖Ω, multiply equation (4.1a) by −ǫ̂ψϕxx

and integrating over Ωτ to get

‖ǫ̂ψ 1
2ϕxx‖2

Ωτ +

∫

Ωτ

ǫ̂ψϕxx(ϕt +ATϕx)dxdt

= −
∫

Ωτ

ǫ̂ϕxxê ≤ ‖ψ− 1
2 ê‖2

Ωτ +
1

4
‖ǫ̂ψ 1

2ϕxx‖2
Ωτ .

Using the integration by part for the second term in the left-hand side as in (4.5)
and also using (4.2) we obtain

‖ǫ̂ψ 1
2ϕxx‖2

Ω + ‖ǫ̂ 1
2ψ

1
2 (α|ATx | + β)

1
2ϕx‖2

Ω ≤ 2‖ψ− 1
2 ê‖2

Ω. (4.8)

Adding estimates (4.6), (4.7), (4.8) we have proved (4.3).
To prove (4.4) we writing (4.1a) in the form

−ϕt −ATϕx = ψ−1ê+ ǫ̂ϕxx.

Taking the square on both sides, multiplying by ψ and integrating over Ω yields

‖ϕt‖2
Lψ

2
(Ω)

+‖ATϕx‖2
Lψ

2
(Ω)

+

∫

Ω

2ATϕxϕtψdxdt = ‖ê‖2

Lψ
−1

2
(Ω)

+‖ǫ̂ϕxx‖2
Lψ

2
(Ω)

+

∫

Ω

2ǫ̂êϕxx.

Recalling (4.8) and using the arithmetic geometric mean value inequality in the
right hand side we have

‖ϕt‖2
Lψ

2
(Ω)

+ ‖ATϕx‖2
Lψ

2
(Ω)

≤ 6‖ê‖2

Lψ
−1

2
(Ω)

+ 2‖ATϕx‖2
Lψ

2
(Ω)

+
1

2
‖ϕt‖2

Lψ
2
(Ω)
.
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Noting that
‖ATϕx‖2

Lψ
2
(Ω)

= ‖(ATA)1/2ϕx‖2
Lψ

2
(Ω)
,

and using (4.6) we have

1

2
‖ϕt‖2

Lψ
2
(Ω)

≤ 6‖ê‖2

Lψ
−1

2
(Ω)

+ sup
Ω

‖A
TA

ǫ̂
‖‖ǫ̂1/2ϕx‖2

Lψ
2
(Ω)

≤ 2(3 + T sup
Ω

‖A
TA

ǫ̂
‖)‖ê‖2

Lψ
−1

2
(Ω)
,

which proves the desired result. �

Corollary 4.2 The assumption (4.2) of Theorem 4.1 is satisfied in the following
cases:

i) ψ ≡ 1 and ATx ≤ 0, β = 0, α = 1, corresponding to a shock,

ii) ψ(x, t) = ( tT )1+α, maxATx (·, t) ≤ 1
t , β = 0, α ≥ 0, corresponding to rarefac-

tion wave u(x, t) = x
t , and

iii) ψ = exp(3β(t − T )) and |ATx | ≤ β, α = 1, corresponding to regular solution,
see [14].

4.2 Strong stability in L∞(H−1)

We now prove a strong stability estimate for the L∞(H−1) norm a posteriori error
estimate (3.16) based on the following dual problem

−ϕt −ATϕx − ǫ̂ϕxx = 0 in Ω,

ϕ(0, t) = 0 t ∈ (0, T ),

ϕ(x, T ) = E x ∈ R+,

−Exx = ê(T ) x ∈ R+.

(4.9)

Theorem 4.3 The solution ϕ of (4.9) satisfies

‖
√
ǫ̂ϕxx‖L1(L2(R+)) ≤ SxE

√
T‖ê(T )‖H−1 (4.10a)

‖ϕt‖L1(L2(R+)) ≤ StET ‖ê(T )‖H−1 , (4.10b)

where SxE = 1√
2

and StE =
√

supΩ ‖AAT ‖ + ǫ̂.

Proof. We start by writing Equation (4.9) in the form

−ϕt − ǫ̂ϕxx = ATϕx.

Taking the square on both sides, multiplying by ψ and integrating over Ω yields

∫

Ω

ϕ2
tdxdt +

∫

Ω

ǫ̂2ϕ2
xxdxdt+

∫

Ω

2ǫ̂ϕxxϕtdxdt =

∫

Ω

(ATϕx)
2dxdt. (4.11)

Using partial integration we find that

‖ϕt‖2
Ω + ‖ǫ̂ϕxx‖2

Ω +

∫

R+

ǫ̂ϕ2
x(., 0)dx =

∫

Ω

(ATϕx)
2dxdt+ ‖

√
ǫ̂Ex‖2

L2(R+). (4.12)
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Nothing that
∫

Ω

(ATϕx)
2dxdt ≤ T sup

Ω
‖AAT ‖‖Ex‖2

L2(R+),

and using (4.12) we get

‖ϕt‖2
Ω + ‖ǫ̂ϕxx‖2

Ω ≤ (T sup
Ω

‖AAT ‖ + ǫ̂)‖Ex‖2
L2(R+). (4.13)

Similarly to prove (4.10a) multiply equation (4.9) by −ϕxx as in the L2-norm ex-
ample to get

sup
t∈[0,T ]

∫

R+

ǫ̂ϕ2
x(., t)dx+ ‖

√
ǫ̂ϕxx‖2

Ωτ ≤ 1

2
‖Ex‖2

L2(R+),

and with τ = 0

‖
√
ǫ̂ϕxx‖2

Ω ≤ 1

2
‖Ex‖2

L2(R+). (4.14)

The theorem follows from inequalities (4.13) and (4.14), noting that

(

∫

‖ϕ‖
)2 ≤ T

∫

‖ϕ‖2dt.

�

5 Numerical Implementations

In this section we discuss the computation of the solution of the linearized dual
problem and present some numerical results. By putting fα(u) = aαu (α = L,R)
in (1.1) we get the linear case of our model problem















ut + aRux − (ǫu)xx = 0, x > 0, t > 0,
ut + aLux − (ǫu)xx = 0, x < 0, t > 0,
u(0, t) = 0, t > 0,
u(x, 0) = u0(x), x ∈ R.

The associated linearizaed dual problem take the form














ϕt + aRϕx + (ǫϕ)xx = 0, x > 0, t > 0,
ϕt + aLϕx + (ǫϕ)xx = 0, x < 0, t > 0,
ϕ(0, t) = 0, t > 0,
ϕ(x, T ) = E, x ∈ R,

where −Exx = e, corresponding to error control in the L∞(H−1) norm.
In [13], implementation of finite element method (Sd-method) for linear case are
considered. This methodology can be used to solve the dual problem as well (with
some minor modification). In all cases below we present computed approximation
of SxE and StE defined by (3.15) for a typical solution of coupling of two advection-
diffusion equations corresponding to a posteriori error estimate in L∞(H−1) norm,
together with plots of dual solutions.

5.1 Test case 1

We first consider the following problem

{

ut − 1
2ux − (ǫu)xx = 0, x ∈ (0, 1],

ut + 1
2ux − (ǫu)xx = 0, x ∈ [−1, 0),

13
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Figure 1: Plot of u by streamline diffusion method at t = 0 and t = 0.3T (top),
t = 0.6T and t = T (bottom) for ǫ = 10−6. The exact solution is given by solid
line.

where t ∈ [0, T ] with the following continuous initial data

u(x, 0) =







4x(1 + x), −1 ≤ x ≤ 0,
4x(1 − x), 0 ≤ x ≤ 1,
0, |x| ≥ 1,

where T = 0.3 is the final time and we have used fixed mesh size h = 10−3 in the
computation.

The approximate solution u on a uniform mesh with ǫ = 10−6, time step k/h =
0.5 and for different time levels t = 0, t = 0.3T, t = 0.6T , t = T are presented in
Fig. 1. The exact solutions are represented by the solid line. We next plot the
component of dual solution ϕ and the corresponding their second derivatives ϕxx
at the same time levels, but in reverse order t = T , t = 0.6T , t = 0.3T and t = 0 in
Fig. 2 that shows how the error eN− = −Exx = −ϕxx(T ) is distributed. Stability
factors SxE and StE for this ǫ are represented versus time in Fig. 3. Then we take
ǫ = 10−4 and plot the corresponding dual solution and stability factors in Figs. 4
and 5 respectively. Finally we plot the variation of stability factors as a function
of viscosity for 10−6 ≤ ǫ ≤ 10−4 in Fig. 6.

5.2 Test case 2

Finally we consider the above problem with the following initial condition with two
discontinuities

u(x, 0) =







1, −1 ≤ x ≤ −0.25,
−1, 0.25 ≤ x ≤ 1,
0, otherwise,

with the parameters aR = −0.01, aL = 0.01 and T = 0.3. Here we have used a
fixed value on the viscosity, ǫ = 10−3. Firstly we solve the problem with h = 10−2

on a uniform mesh with time step k/h = 0.5. We plot the computed solution u at
t = 0, t = 0.3T , t = 0.6T and t = T in Fig. 7 and the corresponding dual solution
ϕ, second their derivatives solutions ϕxx at t = T , t = 0.6T , t = 0.3T and t = 0 in
Fig. 8. We plot the stability factors corresponding to this h in Fig. 9. Secondly we
refine the mesh size to h = 10−3 and then plot the corresponding figures for dual
solutions and their stability factors at t = T , t = 0.6T , t = 0.3T and t = 0 in Figs.
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Figure 2: Plot of ϕ(t) (left) and ϕxx(t) (right) at t = T , t = 0.6T , t = 0.3T and
t = 0 for ǫ = 10−6.
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Figure 3: Plot of the stability factors SxE and StE versus time for ǫ = 10−6.
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Figure 4: Plot of the ϕ(t) at t = T , t = 0.6T (top), t = 0.3T and t = 0 (bottom)
for ǫ = 10−4.
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Figure 5: Plot of the stability factors SxE and StE versus time for ǫ = 10−4.
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Figure 6: Plot of the stability factors SxE and StE versus time for different values of
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Figure 7: Plot of u by streamline diffusion at t = 0 and t = 0.3T (top), t = 0.6T
and t = T (bottom). The exact solution is given by solid line for h = 10−2.

10 and 11 respectively. The behaviour of stability factors a function of mesh size
h are shown in Fig. 12.

Note that in our examples, in the first part the related stability factors are almost
constant over the whole time interval (Fig. 3 and 9) while in the second part the
stability factors tend to increase with increasing (decreasing) viscosity (mesh size)
(Fig. 5 and 11). This has confirmed that in a computational approach to stability
factors estimation the result can be influenced not only by the geometry and initial
data given by the problem in question but also by the computational mesh. This is
of course an anwanted effect since we would like to compute the stability factors on
a relatively coarse mesh to be able to concentrate the computational effort on the
actual problem solving.
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mesh size h = 10−2.
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Figure 9: Plot of the stability factors SxE and StE versus time for mesh size h = 10−2.
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Figure 10: Plot of ϕ(t) at t = T , t = 0.6T (top), t = 0.3T and t = 0 (bottom) for
mesh size h = 10−3.
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Figure 11: Plot of the stability factors SxE and StE versus time for mesh size h =
10−3.
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Figure 12: Plot of the stability factors SxE and StE against time for different values
of h.

6 conclusions

In this note we have focused on the approximation of stability factors for a posteriori
error estimation for coupling of two equations analytically and numerically. We
have studied the variation of stability factors with different parameters, such as
viscosity and mesh size. In example 2 It was noted that the stability factors tend
to increase with decreasing mesh size, in other words, the stability factors for H−1-
norm error control appear to be sensitive to mesh refinement. The result indicate
the impossibility of computing stability factors on a coarse mesh and then use them
on the finer mesh. In the examples 1 we got moderately sized stability factors for
small viscosity that these results indicate the possibility of quantitative error control
in the H−1-norm but are growing by increasing viscosity.
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