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We consider the response of the Hodgkin-Huxley (HH) spatial system in the weak noise regime
near the bifurcation to repetitive spiking. The signal is restricted to a small segment and noise
occurs over a region which may overlap or not the signal region. As in the point model, weak noise
can inhibit or terminate the spiking activity with a minimum in spike count as noise level increases,
but only if signal and noise overlap in space. If signal and noise are applied on disjoint intervals,
then weak noise has no effect on the spiking activity, no matter how large its region of application.

PACS numbers: 87.19.Lc, 05.40.-a

Recent studies of the HH-system of ordinary differ-
ential equations (ODE’s) with stochastic input have re-
vealed new and interesting phenomena [1, 2]. In par-
ticular, at mean input current densities near the critical
value for repetitive firing, it was found that weak noise
could strongly inhibit spiking with a minimum in the fir-
ing rate as the noise level increased from zero [1, 2]. It
is of interest to see if these phenomena extend to the
spatial HH-system where in addition there exist many
possibilities for the spatial distributions of the mean in-
put (signal) and of the noise. It will be shown that the
spatial HH system exhibits quite similar but more com-
plex behavior than the ODE system.
The spatial Hodgkin-Huxley system [3] consists of the ca-
ble partial differential equation for nerve membrane volt-
age

CmVt =
a

2Ri
Vxx + gKn4(VK − V )

+gNam3h(VNa − V ) + gl(Vl − V ) + I(x, t)

and differential equations for m,h, n describing the
sodium and potassium conductances. (Subscripts are
used to denote partial differentiation.) Thus mt =
αm(V )(1 − m) − βm(V )m with similar equations for n
and h. Initial and boundary conditions must of course be
specified. The quantities Cm, gK , gNa, gl, and I(x, t) are
respectively the membrane capacitance, maximal potas-
sium conductance, maximal sodium conductance, leak
conductance and applied current density for unit area
(1sq cm). Ri is the intracellular resistivity, a is the fiber
radius, all times are in ms, all voltages are in mV, all
conductances per unit area are in mS/cm2, Ri is in Ωcm,
Cm is in µF/cm2, distances are in cm, and current den-
sity is in µA cm−2. n(x, t), m(x, t) and h(x, t) are the
potassium activation, sodium activation and sodium in-
activation variables. Their evolution is determined by the
voltage-dependent coefficients αn(V ) = 10−V

100[e(10−V )/10
−1]

,

βn(V ) = 1
8e−V/80, αm(V ) = 25−V

10[e(25−V )/10
−1]

, βm(V ) =

4e−V/18, αh(V ) = 7
100e−V/20, βh(V ) = 1

e(30−V )/10+1
. The

following standard parameter values are used through-
out: a = 0.0238, Ri = 34.5, gK = 36, Cm = 1, gK = 36,
gNa = 120, gl = 0.3, VK = −12, VNa = 115 and Vl = 10.
For the initial values, V (x, 0) = 0, the resting level, and
for the auxiliary variables the equilibrium resting values
are used, for example n(x, 0) = αn(0)/(αn(0) + βn(0)).
The boundary conditions were set as zero-derivative at
both end points.
The corresponding system of ordinary differential equa-
tions (ODE’s) has been the subject of a very large num-
ber of studies and analyses, as for example in refer-
ences [4–11] but there have been relatively few articles
on the spatial or partial differential equation (PDE) sys-
tem [12, 13]. In this article we focus on the HH system in
one space dimension, which is most accurate for a nerve
cylinder, usually of uniform diameter. This simple ge-
ometry can nevertheless be used to gain some insight
into the properties of neurons with complex anatomy by
appealing to such methods as [9] mapping from a neu-
ronal branching structure to a cylinder, thus reducing the
multi-segment problem to solving a cable equation in one
space dimension.
We first consider the spatial HH-system with a deter-
ministic input I(x, t) = µ(x, t) where µ(x, t) = µ > 0,
0 < x < x1 < L, t > 0, and µ(x, t) = 0, otherwise.
That is, a constant current is applied indefinitely over
a (small) region near the origin, heuristically represent-
ing a soma-dendritic region which is attached to an axon
which extends from x = x1 to x = L. In the calculations
the length was set at L = 6. With the stimulus extending
to x1 = 0.2 the result for µ = 4 is a solitary spike; with
µ = 6, a doublet of spikes propagates along the nerve
cylinder. For µ greater than some critical value, there
ensues a train of regularly spaced spikes, as for exam-
ple when µ = 7.5, corresponding to repetitive (periodic)
firing in the HH-system of ODE’s. In order to quantify
the spiking activity, the maximum number N of spikes
on (0, 6) is employed. There is a sudden increase in the
value of N as µ increases through a critical value, which
depends on x1, paralleling the appearance of a limit cycle
solution in the ODE system. Such dependence of N on
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FIG. 1: Showing examples of the ihibitory effects of noise on
regular spiking in the spatial HH system for a mean current
density near the bifurcation to repetitive spiking. Here V is
plotted against x at t = 160 ms. In the top record there is
no noise (σ = 0), in the second and third records, relatively
small noise of amplitude σ = 0.1, and in the bottom record, a
larger noise of amplitude σ = 0.3. For parameter values, see
text.

µ was found for two values of x1, viz 0.1 and 0.2, with
critical values of µ at about 6 and 6.5, respectively. In
consideration of the behavior of the HH system of ODE’s
with noise, it was then of interest to examine the effects
of noise on the spike counts near the bifurcation points
for the PDE case.

The HH-system of PDE’s was therefore considered
with applied currents (consisting of “signal” plus noise)
of the following form I(x, t) = µ(x, t) + σ(x, t)w(x, t)
on subsets of a cylindrical nerve cell extending from
x = 0 to x = L. Here {w(x, t), x ∈ [0, L], t ≥ 0} is
a two-parameter white noise with covariance function
Cov[w(x, s), w(y, t)] = δ(x − y)δ(t − s). The functions
µ(x, t) (as above) and σ(x, t) are deterministic and spec-
ify the spatial (and temporal) distributions of the mean
and variance of the noisy input. For the random com-
ponent σ(x, t) = σ > 0, 0 < x2 < x < x3 ≤ L, t > 0
and σ(x, t) = 0, otherwise. The numerical integration of
the stochastic system is performed by discretization using
an explicit method, shown to be accurate by comparison
with analytical results in similar systems [14].

In Figure 1 are shown examples of the effects of noise
with the following parameters: µ = 6.7, x1 = 0.1, x2 = 0,
and x3 = L = 6. That is, the noise component is σ on the
whole interval (0, L). In the top record there is no noise
and there are 9 spikes. In the midde two records, with a
noise level of σ = 0.1 there is a significant diminution of
the spiking activity, with only 1 spike in one case and 3 in
the other. With the noise turned up to σ = 0.3 (bottom
record) the number of spikes is greater, but still less than
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FIG. 2: Showing the effects of increasing noise on mean num-
bers of spikes as a function of noise level for various values of
the mean level of excitation µ on (0, 0.1). Noise of amplitude
σ is applied on (0, L). The bottom curve is for a value of µ

well below the critical value at which repetitive firing occurs,
whereas the upper two curves, where minima occur, are for µ

near the bifurcation point. 95% confidence limits are shown
for the mean (50 trials).

in the noise-free case, there being 6 in the example shown.

Mean spike counts were obtained with x1 = 0.1, at var-
ious σ for µ = 5, 6.7 and 7. The first of these values is less
than the critical value for repetitive firing and the other
two values are close to and just above the critical value.
The number of trials for each point in the following is
50, which is sufficient to show the main effects. Figure 2
shows plots of the mean spike counts, E[N ], as explained
above, versus noise level. This figure may be compared
with Figure 5 in [2]. For µ = 5, E[N ] increases mono-
tonically as σ increases from 0 to 0.3. When µ = 6.7,
which is very close to the critical value for repetitive fir-
ing, a small amount of noise causes a substantial decrease
in firing with the appearance of a pronounced minimum
near σ = 0.075. For µ = 7, where indefinite repetitive
firing occurs without noise, a similar reduction in firing
activity occurs for small values of σ, with a minimum near
σ = 0.15, after which spiking activity increases monoton-
ically for values of σ up to the largest value employed,
σ = 0.3. The occurrence of minima with increasing noise
level has been referred to as inverse stochastic resonance

[1] as it has a character opposite to stochastic resonance
[15]. In some trials, with large σ, secondary phenomena

were observed [13? , 14], in which noise-induced pairs
of spikes emerged outside the signal region and intefered
with the emitted train.

With a larger region of excitation (signal) so that
x1 = 0.2, mean spike counts were similarly obtained with
various noise amplitudes for values of µ = 5, 6.2 and 6.5.
Again, the first of these values is less than the critical
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value for repetitive firing (see Figure 2) and the other
two close to or just above the critical value. The system
responses were similar to those for x1 = 0.1. These find-
ings parallel those found for the HH system of ODE’s and
although there is no standard bifurcation analysis for the
PDE system, it is probable that most of the arguments
which apply to the system of ODE’s apply, in some sense,
to the PDE’s.

In order to explore the mode of spike failure, we exam-
ined the early behavior of the voltage near the source of
action potential. The voltage paths in cases of failure are
close to those for the repetitive spike train until just be-
fore the 2nd or 3rd etc spike is about to form, whereupon
the trajectory wanders on a path away from threshold.
Consequently, the spike train terminates prematurely as
the system thereafter stays at low levels of depolariza-
tion, destroying the possibility of further spikes.

It is of interest to see how varying the extent of the
noise around the signal region affects the propagation of
action potentials. It was at first surprising to find that,
with x1 = 0.1, x2 = 0.1 and x3 = 0.2, when there was
weak noise just to the right of the excitatory stimulus,
no reduction in spike count occurred. Thus, it seemed
that weak noise at the source of the spiking could cause
a significant reduction in spike count, but noise with the
same magnitude and extent over a region disjoint from
the region of excitation, tended to have little or no effect
on spike propagation. In a systematic investigation, with
the mean excitation fixed at µ = 6.2 for 0 < x < 0.2,
noise of strength σ = 0.1 was applied for x2 < x < x3

where x3 −x2 was fixed at 0.2 and x2 varied from 0, cor-
responding to complete overlap, to 0.2, corresponding to
zero overlap. The results, which are shown in Figure 3,
provide a clear demonstration of the significance of the
degree of overlap of (weak) noise and signal. Histograms
of spike counts on 50 trials enabled the determination
of the fraction of trials on which there was interference
of the spike train by noise. For example, with complete
overlap (x2 = 0, x3 = 0.2) there were 11 of 50 trials with
a full complement of 9 spikes as in the noise-free case, rep-
resenting interference, mainly in the form of inhibition,
by noise in 78% of trials. In contrast, with x2 = 0.12
and x3 = 0.32, giving 40% overlap, there were 9 spikes
in all 50 trials, indicating zero interference. The proba-
bility of interference (as a %) versus degree of overlap is
plotted in the left panel of Figure 3. This probability is
seen to remain at zero until the overlap is 40% and then
increases monotonically to achieve the value near 80%
when the overlap is complete. In the right panel of Fig-
ure 3 are plotted the mean spike counts versus amount of
overlap along with 95% confidence intervals. The mean
spike count remains at 9 until the overlap is greater than
40%. The results of Figure 3 illustrate dramatically the
importance of overlap of signal and weak noise for the
latter to have an inhibitory effect on spiking. That is, a
spike may traverse a region of weak noise, but if the same
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FIG. 3: Left panel. The fraction of trials during which weak
noise interfered with the spike train is plotted against the %
overlap of the regions where the signal µ > 0 and the noise
amplitude σ > 0. Parameter values are x1 = 0.2, µ = 6.2 and
σ = 0.1. Right panel. The corresponding expected number of
spikes E[N ] is plotted against % overlap of signal and noise.
95% confidence limits are shown based on 50 trials.

noise is applied at the source of the spike, there is a con-
siderable chance of a reduction or cessation of spiking.

The mathematical theory of stochastic nonlinear
stochastic PDE’s of the type we are concerned with is ab-
stract [16, 17] and there is a paucity of results concerning
traveling wave solutions in the presence of noise [18]. In
order to obtain some mathematical insight into the phe-
nomena just described, we should distinguish two differ-
ent regimes in the model equations. We have the small
region 0 < x < x1 where an external current is applied
and where consequently the spikes are generated, and the
large region x1 < x < L where no such current is applied
and where the spike is propagated. The first region was
found to be much more sensitive to perturbations than
the second. The spatial Hodgkin-Huxley equations be-
long to the class of reaction-diffusion systems, and some
general theory can be applied, see e.g. [19], [20]. The
typical nonlinear effects are generated from the nonlin-
ear reaction term and the linear diffusion term. In the
first regime, where the spike is generated, the reaction
dominates the behavior. Therefore, the effects of pertur-
bations are similar to those in the non-spatial Hodgkin-
Huxley equations which constitute a system of nonlinear
ordinary differential equations. In particular, noise when
applied at a particular part of the periodic trajectory
that corresponds to the regular spiking can destroy an
incipient spike, see [2]. The second regime is modelled as
a travelling wave solution of the Hodgkin-Huxley equa-
tions, see [21]. Here, a travelling wave is a solution of the
above PDE system that depends only ξ = x − θt. With



4

W (ξ) = V (x, t) and ′ denoting a derivative w.r.t. ξ, on
introducing the auxiliary function Z = W ′, we obtain
the first order system W ′ = Z and

a

2Ri
Z ′ = −(θCmZ + gKn4(VK − W )

+gNam3h(VNa − W ) + gl(Vl − W )).

The changes for the remaining equations are obvious.
The existence of travelling waves for such systems has
been investigated in [22]. The difference with the or-
dinary Hodgkin-Huxley equation consists in the term
θZ on the right hand side. According to the analy-
sis of [23], this has the consequence that the fast re-
action dynamics corresponding to the propagated spike
branches off from the vicinity of the equilibrium set
gKn4(VK − W ) + gNam3h(VNa − W ) + gl(Vl − W )) = 0
at positions that are different from the original rest state
V = 0. Therefore, the region at the incipient spike
where the solution slowly traverses a narrow region of
its basin of attraction, as analyzed in [10], is avoided.
Consequently, the travelling wave is much less sensitive
to perturbations than the spike generation. This yields
a qualitative explanation of our numerical findings.

The inhibitory effect of noise on spiking has been ex-
perimentally demonstrated in the squid axon [24]. Such
an inhibitory effect has been explained in transitions from
one attractor, a limit cycle, to another, being a stable rest
point [2, 10]. In the present article we have found that
similar but more complex phenomena occur in the HH
PDE (cable) system. There are two new effects in the
spatial HH system that cannot arise in the ODE system
and which clearly demonstrate the utility of spatial mod-
els as providing more realistic insights into the behavior
of real neurons. Firstly, with regard to the spatial dis-
tributions of the signal and the noise, our results suggest
that in the HH system the inhibition of spiking by noise
of small amplitudes (here for σ < 0.3) is significant if the
region of signal generation and the region of occurrence
of noise overlap, possibly only to a minor degree. How-
ever, if signal and noise were on disjoint intervals, then
weak noise had no effect. This was the case even when
the noise extended along the major part of the cable.
Thus, weak noise can prevent the generation of action
potentials (at their source), but not their propagation.
It will be of much interest to explore the mathematical
reasons for this behavior in more detail. Secondly, in spa-
tial models (or real neurons), secondary effects may be
induced by noise if it is sufficiently strong. For example,
noise may itself lead to the generation of (usually pairs

of) action potentials at locations which are possibly re-
mote from the regions of application of a signal. This
was seen previously [12] and in the Fitzhugh-Nagumo
system [14]. Noise induced action potentials can some-
times just be spurious or they can annihilate previously
generated spikes which they encounter. Future work on
these complex phenomena involving noise is needed for
the elucidation of their role, not just in the relatively
simple HH model, but in more realistic models of central
nervous system neurons such as [25].
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