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Abstract

We consider the decision problem between a finite number of states of a finite quantum
system, when an arbitrary large number of copies of the system is available for measure-
ments. We provide an upper bound on the asymptotic exponential decay of the averaged
probability of rejecting the true state. It represents a generalized quantum Chernoff dis-
tance of a finite set of states. As our main result we prove that the bound is sharp in the
case of pure states.

1 Introduction

In different branches of quantum theory such as quantum information processing, quantum
communication theory or quantum statistics one of the basic problems is to determine the state
of a given quantum system. In the simplest case there is a finite set of states specifying the
possible preparation of the quantum system. In the Bayesian approach of quantum statistics
the occurence of the distinct states is determined by an a priori probability distribution. One
makes a decision in favor of one of the states according to a specified rule based on the outcomes
of a generalized measurement -called quantum test. In the binary case optimal tests, i.e. tests
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minimizing the averaged probability of rejecting the true state, are known to be given by
Holevo-Helstrom projections, [5], [4]. They generalize the classical likelihood ratio tests. Here
we want to consider the scenario where there is an arbitrary large finite number n of copies of
the quantum system available for performing a measurement. Then the corresponding state
is described by an n-fold tensor product of one of the associated density operators. There
are two main goals. Firstly, to construct a sequence of quantum tests in n which maximize
the asymptotic (exponential) decay of the averaged probability of rejecting the true state.
Secondly, to determine the corresponding optimal error exponent. It has been shown that in
the binary case asymptotically optimal quantum tests, thus in particular the Holevo-Helstrom
tests, achieve an exponential decay, which is equal to the quantum Chernoff bound, cf. [8],
[1] and [2]. Surprisingly, the corresponding questions in the case of r > 2 states have not yet
received a final answer, although many efforts has been made and numerous strong results
has been obtained related to multiple quantum state discrimination, see [11], [7], [3], [10] and
references therein.

We define a generalized quantum Chernoff distance of a finite set of states as the minimum
of binary quantum Chernoff distances over all possible pairs of different states. The binary
quantum Chernoff distance has been introduced in the context of binary quantum hypothesis
testing in [8]. Relying on [8] we prove that the generalized quantum Chernoff distance specifies
a bound on the achievable asymptotic error exponents in multiple quantum state discrimi-
nation. This is in line with results obtained in the context of classical multiple hypothesis
testing, cf. [9]. As our main result we prove that in the special case of pure quantum states
this bound, indeed, is achievable and hence specifies the optimal asymptotic error exponent.
The corresponding asymptotically optimal quantum tests rely on a Gram-Schmidt orthonor-
malization procedure of the associated state vectors. Similar quantum tests has been already
considered by Holevo in [6] in the context of quantum minimal error decision problems. How-
ever, the question of the corresponding asymptotic error exponent has not been addressed
therein.

2 Notations and the main results.

Let S be a finite quantum system and H be the associated complex Hilbert space with
dimH = d < ∞. Further denote by A the algebra of observables of S, i.e. A is the algebra
of linear operators on H. For each n ∈ N denote by A(n) the algebra of linear operators on
the n-fold tensor product Hilbert space H⊗n. It represents the algebra of observables of a
compound quantum system Sn with its n unit systems being of the same type S.

For each n ∈ N the set of density operators in A(n) corresponds one-to-one to the state
space S(A(n)) of A(n). Recall that a density operator is defined to be a self-adjoint, positive
linear operator of trace 1.

Let r ∈ N and Σ be a set of density operators ρi ∈ S(A), i = 1, . . . , r, representing the
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possible states of the quantum system S. Assume that for each n ∈ N there is a compound
quantum system Sn being an n-fold copy of S. This means, in particular, that the corre-
sponding quantum state is in Σ⊗n := {ρ⊗n

i }r
i=1, i.e. it is uniquely determined by the index

i ∈ {1, . . . , r}.

Further, let E(n) = {E
(n)
i }r

i=1 be a positive operator valued measure (POVM) in A(n), i.e.

each E
(n)
i , i = 1, . . . , r, is a self-adjoint element of A(n) with E

(n)
i ≥ 0 and

∑r
i=1 E

(n)
i = 1.

The POVMs E(n) describe quantum tests for discrimination between the r states from Σ⊗n,
or simply quantum tests for Σ⊗n, by identifying the measurement outcome corresponding to

E
(n)
i , i = 1, . . . , r, with the density operator ρ⊗n

i , respectively. If ρi occurs to describe the true
state of S, and correspondingly ρ⊗n

i determines the state of Sn, then the associated individual
succes probability is given by

Succi(E
(n)) := tr [ρ⊗n

i E
(n)
i ]. (1)

The indidvidual error probability refers to the situation when the density operator ρi is dis-
carded as possible preparation of S and is given by the formula

Erri(E
(n)) := tr [ρ⊗n

i (1 − E
(n)
i )]. (2)

Assuming 0 < pi ≤ 1, i = 1, . . . , r, with
∑r

i=1 pi = 1 to be the a priori distribution of the r
quantum states from Σ the averaged error probability is defined by

Err(E(n)) =
r

∑

i=1

pitr [ρ⊗n
i (1 − E

(n)
i )]. (3)

If the limit limn→∞− 1
n log Err(E(n)) exists, we refer to it as the asymptotic error exponent.

Otherwise we have to consider the corresponding lim sup and lim inf expressions.

For two density operators ρ1 and ρ2 the quantum Chernoff distance is defined by

ξQCB(ρ1, ρ2) := − log inf
0≤s≤1

tr [ρ1−s
1 ρs

2]. (4)

It specifies the optimal achievable asymptotic error exponent in discriminating between ρ1

and ρ2, compare [8], [1], [2]. Quantum tests with minimal averaged error probability for a
pair of different density operators ρ1 and ρ2 on the same Hilbert space H are well-known to
be given by the respective Holevo-Helstrom projectors

Π1 := supp (ρ1 − ρ2)+, Π2 := supp (ρ2 − ρ1)+ = 1 − Π1.

Here supp a denotes the support projector of a self-adjoint operator a, while a+ means its
positive part, i.e. a+ = (|a|−a)/2 for |a| := (a∗a)1/2, see [5], [4]. As mentioned in the introduc-
tion, the Holevo-Helstrom projectors generalize the likelihood ratio tests for two probability
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distributions. This can be verified by setting for ρ1 and ρ2 two commuting density matrices,
cf. [8].

For a set Σ = {ρi}
r
i=1 of density operators on H, where r > 2, we introduce the generalized

quantum Chernoff distance

ξQCB(Σ) := min{ξQCB(ρi, ρj) : 1 ≤ i < j ≤ r}. (5)

This is in full analogy to the definition of generalized Chernoff distance in classical multiple
hypothesis testing, where the density operators are replaced by probability distributions on a
finite sample space, cf. [9].

Our first theorem is an implication of Theorem 2.2 in [8].

Theorem 1 Let r ∈ N and Σ = {ρi}
r
i=1 be a set of pairwise different density operators on H

with corresponding a priori probability distribution {pi}
r
i=1. For any sequence E(n), n ∈ N , of

quantum tests for Σ⊗n, respectively, it holds

lim sup
n→∞

−
1

n
log Err(E(n)) ≤ ξQCB(Σ), (6)

where ξQCB(Σ) is the generalized quantum Chernoff distance defined by (5).

It turns out that the generalized quantum Chernoff distance is achievable as an asymptotic
error exponent in the case of pure states. This is the statement of our main theorem below.

Theorem 2 Let r ∈ N and Σ = {ρi}
r
i=1 be a set of pairwise different pure states of a quantum

system S. Then there exists a sequence {E(n)}n∈N of quantum tests for Σ⊗n, respectively, with

lim
n→∞

−
1

n
log Err(E(n)) = ξQCB(Σ),

i.e. the generalized quantum Chernoff distance is an achievable asymptotic error exponent in
multiple pure state discrimination.

3 Generalized quantum Chernoff bound in multiple quantum

state discrimination.

In this section we give a proof of Theorem 1 stating that the generalized quantum Cher-
noff distance specifies a bound on the asymptotically achievable error exponents in multiple
quantum state discrimination. It relies on its binary version presented in Theorem 2.2 in [8].

Proof. [Theorem 1] Fix any two indicies 1 ≤ i < j ≤ r. For n ∈ N let A(n), B(n) ∈ A(n) be

two positive operators such that A(n) + B(n) = 1 − E
(n)
i − E

(n)
j . Then the positive operators

Ẽi
(n)

:= E
(n)
i + A(n) and Ẽj

(n)
:= E

(n)
j + B(n) represent a POVM Ẽ(n) in A(n), which we
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consider as a quantum test for the pair {ρ⊗n
i , ρ⊗n

j }. For the individual error probabilities of

the modified quantum test Ẽ(n) we obtain the upper bounds

Erri(Ẽ
(n)) = tr [ρ⊗n

i (1 − Ẽi
(n)

)] ≤ tr [ρ⊗n
i (1 − E

(n)
i )] = Erri(E

(n)),

and similarily Errj(Ẽ
(n)) ≤ Errj(E

(n)). It follows a lower bound on the average error proba-

bility with respect to the original tests {E
(n)
i }r

i=1:

Err(E(n)) =
r

∑

k=1

pkErrk(E
(n)) ≥

(

piErri(E
(n)) + pjErrj(E

(n))
)

≥
(

piErri(Ẽ
(n)) + pjErrj(Ẽ

(n))
)

≥ pmin

(

Erri(Ẽ
(n)) + Errj(Ẽ

(n))
)

,

where pmin := min{pi : 1 ≤ i ≤ r}. The above bound implies

lim sup
n→∞

−
1

n
log Err(E(n)) ≤ lim sup

n→∞
−

1

n
log pmin

+ lim sup
n→∞

−
1

n
log

(

Erri(Ẽ
(n)) + Errj(Ẽ

(n))
)

= lim sup
n→∞

−
1

n
log

1

2

(

Erri(Ẽ
(n)) + Errj(Ẽ

(n))
)

≤ ξQCB(ρi, ρj).

Here the last inequality is by Theorem 2.2 in [8], which represents the statement of our
Theorem 1 in its binary version corresponding to the special case r = 2. Since the pair of
indicies (i, j) was choosen arbitrary, the statement of the theorem follows.

4 Asymptotically optimal pure state discrimination.

In this section we provide a constructive proof for Theorem 2. Roughly speaking, our quantum
tests, which can be shown to achieve an asymptotic error exponent equal to the generalized
quantum Chernoff distance of Σ, are obtained in a Gram-Schmidt orthonormalization proce-
dure of the unit vectors associated to the pure states in Σ.

Proof. [Theorem 2] Observe that in view of Theorem 1 it is sufficient to construct quantum
tests for which we can verify

lim inf
n→∞

−
1

n
log Err(E(n)) ≥ ξQCB(Σ).
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For each 1 ≤ i ≤ r let vi be a unit vector in H such that |vi〉〈vi| = ρi.
1. We assume that the set V (Σ) := {vi}

r
i=1 is linearly independent and start with the

case n = 1, where no tensor products are included. We define for each k = 1, . . . , r, a (d × k)
matrix Ψk

Ψk := (v1, . . . , vk), (7)

i.e. the columns of Ψk are equal to the state vectors vi, 1 ≤ i ≤ k. We refer to the (k × k)-
matrix

Ψ∗
kΨk =: Γk (8)

as a Gram matrix of {v1, . . . , vk}. By the assumption of linear independence of the set V (Σ)
for each k ∈ {1, . . . , r} the operator

Pk := Ψk(Ψ
∗
kΨk)

−1Ψ∗
k = ΨkΓ

−1
k Ψ∗

k,

represents an orthogonal projector onto a k-dimensional subspace of H, which is spanned by
the k state vectors v1, . . . , vk. Further, we set P0 = 0 and define for 1 ≤ k ≤ r

Ek := Pk − Pk−1. (9)

The Ek represent one-dimensional orthogonal projectors, which are mutually orthogonal.
With ek := 1

‖Ekvk‖
Ekvk we can write Ek = |ek〉〈ek|, and the set {ek}

r
k=1 represents a

Gram-Schmidt orthonormalization of the linearly independent set V (Σ) of unit vectors vk,
k = 1, . . . , r.

Observe that by construction
∑r

i=1 Ei ≤ 1. If E0 := 1 −
∑r

i=1 Ei 6= 0, we redefine E1

to be E1 + E0, such that
∑r

i=1 Ei = 1 is satisfied. By identifying Ei, i = 1, . . . , r, with ρi,
respectively, we obtain a quantum test E(1) = {Ei}

r
i=1 for Σ.

For 1 ≤ i ≤ r the corresponding individual success probability reads

Succi(E
(1)) = tr [ρiEi] = tr [|vi〉〈vi|Ei] = 〈vi|Pi − Pi−1|vi〉. (10)

Since the Pi’s are constructed as orthogonal projectors onto span{v1, . . . , vi} it holds |vi〉〈vi| ≤
Pi and as a consequence 〈vi|Pi|vi〉 = 1. Then from the relation Erri(E

(1)) = 1 − Succi(E
(1))

we obtain

Erri(E
(1)) = 〈vi|Pi−1|vi〉 (11)

= 〈vi|Ψi(Γi−1)
−1Ψ∗

i−1|vi〉 (12)

≤
1

λmin(Γi−1)
〈vi|Ψi−1Ψ

∗
i−1|vi〉

=
1

λmin(Γi−1)
‖Ψ∗

i−1vi‖
2, (13)
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where λmin(·) denotes the minimal eigenvalue of a self-adjoint matrix. By definition (7) of Ψ∗
i

we have

‖Ψ∗
i−1vi‖

2 =
i−1
∑

j=1

|〈vj |vi〉|
2, i = 2, . . . , r. (14)

Inserting expression (14) into (13) we obtain the upper bound

Erri(E
(1)) ≤

i−1
∑

j=1

|〈vj |vi〉|
2

λmin(Γi−1)
. (15)

Recall that the density operators ρi, i = 1, . . . , r, are expected to appear with probability pi,
respectively. Let pmax := max{pi : 1 ≤ i ≤ r}. Then the averaged error probability can be
estimated from above as follows

Err(E(1)) =
r

∑

i=1

piErri(E
(1)) ≤ pmax

r
∑

i=1

Erri(E
(1))

≤ pmax

r
∑

i=2

i−1
∑

j=1

|〈vj |vi〉|
2

λmin(Γi−1)
, (16)

where in the second line we have applied (15).
2. Let n > 1. Notice that still assuming that V (Σ) is a set of r linearily independent

unit vectors, the same remains true for V (Σ⊗n) consisting of the n-fold tensor product state
vectors v⊗n

i , i = 1, . . . , r. Hence we can adopt the construction of the quantum test E(1) for Σ
as it stands for the tensor product case. In particular, we define Ψj,n, 1 ≤ j ≤ r, analogously
to (7) as the (dn × j)-matrix

Ψj,n :=
(

v⊗n
1 , . . . , v⊗n

j

)

,

respectively. Then the corresponding averaged error probability Err (E(n)) can be upper
bounded similarily to (16):

Err (E(n)) ≤ pmax

r
∑

i=2

i−1
∑

j=1

|〈v⊗n
j |v⊗n

i 〉|2

λmin(Γi−1,n)
= pmax

r
∑

i=2

i−1
∑

j=1

(

|〈vj |vi〉|
2
)n

λmin(Γi−1,n)
,

where Γi−1,n := Ψ∗
i−1,nΨi−1,n.

Observe that each Gram matrix Γj,n = Ψ∗
j,nΨj,n, j = 1, . . . , r, is a square matrix of fixed

dimension j, respectively. Further, note that the diagonal entries γ
(j,n)
kk , k = 1, . . . , j of Γj,n

are given by 〈v⊗n
k |v⊗n

k 〉, respectively, and hence are all equal to 1. Since for k 6= l it holds
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〈vk|vl〉 < 1, the off-diagonal entries γ
(j,n)
k,l = 〈v⊗n

k |v⊗n
l 〉 = 〈vk|vl〉

n tend to 0 as n goes to
infinity. It follows for every 1 ≤ j ≤ r

Γj,n → Ij as n → ∞,

where Ij denotes the identity matrix of dimension j. By continuity of the minimal eigenvalue
this implies

λmin(Γj,n) → 1 as n → ∞. (17)

We conclude

Err (E(n)) ≤ pmax

r
∑

i=2

i−1
∑

j=1

(

|〈vj |vi〉|
2
)n

(1 + o(n)). (18)

As n tends to infinity the largest term dominates. As a consequence we have

1

n
log Err (E(n)) ≤ max{log |〈vj |vi〉|

2 : 1 ≤ j < i ≤ r} + o(n)

= −min{ξQCB(ρi, ρj), 1 ≤ j < i ≤ r} + o(n)

= −ξQCB(Σ) + o(n), (19)

where in the second line we have used the fact that in the case of two different pure states
on H, say ρ = |v〉〈v| and σ = |w〉〈w|, the corresponding (binary) quantum Chernoff distance
ξQCB(ρ, σ) takes the simple form − log |〈v|w〉|2, cf. [8]. The last identity is by definition (5)
of generalized quantum Chernoff distance. The proof is completed under the assumption of
linear independence of the set of eigenvectors of Σ.

3. Finally, notice that even if V (Σ) is not linearly independent, the set V (Σ⊗N ) consisting
of N -fold tensor product vectors becomes linearly independent for N large enough. Then, for
every n ≥ N we can adopt the construction of quantum tests E(n) for Σ⊗n as presented in
parts 1 and 2 of the proof, and the asymptotic relation (19) remains valid.
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