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Abstract

The Witten Laplacian in one dimension is studied further by methods of resurgent analysis in
order to approach Fukaya’s conjectures relating WKB asymptotics and disc instantons. In this
paper more precise connection formulae are presented, which allows the calculation of a subdomi-
nant exponential term in the hyperasymptotic expansion of a low-lying eigenvalue. Calculation of
eigenfunctions corresponding to low-lying eigenvalues is presented in two examples.

1 Introduction

We are continuing the project started in [G08], where we proposed to study the Witten Laplacian
by methods of resurgent analysis in order to prove conjectures by Fukaya [F05, §5.2] relating WKB
asymptotics and disc instantons. The reader is referred to the introductory section of [G08] for
philosophy and motivation, as well as for a brief review of resurgent analysis.

In [G08] we have shown, modulo standard black boxes in resurgent analysis, that for a generic
enough real trigonometric polynomial f(q) ∈ R[sin 2πq, cos 2πq] with n real local minima and n real
local maxima on [0, 1), the Witten Laplacian

−h2∂2
q + (f ′)2 − hf ′′, h→ 0+ (1)

has n exponentially small resurgent eigenvalues Ek(h) and that the corresponding eigenfunctions
φk(q, h) are resurgent with respect to h for q 6∈ (f ′)−1(0). We have also presented a method of setting
up a quantization condition and solving it by means of an iterative procedure involving a Newton
polygon.

In this paper we perform calculations more explicitly. Firstly, we obtain asymptotic expansion
of the connection coefficients and of various formal monodromies to one more order in h, which allows
calculation of the first subdominant exponential in the hyperasymptotic expansion of eigenvalues, see
formula (27) in section 5.
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Secondly, we show how our methods allow us to calculate (hyper)asymptotic expansions of
an eigenfunction of the Witten Laplacian (1) corresponding to a nonzero low-lying eigenvalue. If
q1, q2..., q2n, q2n+1 = q1 + 1, ... denote consecutive real zeros of f ′(q), note that for one and the same
eigenfunction these expansions will change discontinuously from one of the intervals (qj , qj+1) to the
next, due to the Stokes phenomenon. We calculate these hyperasymptotic expansions for two examples
of a function f(q) (sections 5 and 6). In remarks 5.2, 6.1 we put our finger on the specific algebraic
reason why methods of resurgent analysis are essential for such a calculation. This information about
asymptotic expansions of eigenfunctions is much more specific than the information about quasimodes
available through C∞ methods (see, e.g., [HKN04]).

The ability to perform explicit calculations developed in this paper will be needed in our future
work towards Fukaya’s conjecture. Remarks 5.2, 6.1 and computations leading to them may be of
independent pedagogical interest.

The structure of this paper, that is a continuation of [G08] and uses its material freely, is
as follows. In the section 2 we recall the notation and calculate various monodromies of formal
solution of the Wittle Laplacian (2). In the section 3 we perform a more precise calculation of the
connection coefficients and of the tunneling cycle monodromies τj than we did in [G08]. A general
procedure of calculationg asymptotic expansions of eigenfunctions is recalled in section 4 and applied
to two examples in sections 5 and 6. In addition, for the example of 5, we have calculated the first
subdominant exponential in the hyperasymptotic expansion of the nonzero low-lying eigenvalue. The
paper concludes with an appendix containing a list of elementary formulae used in this text.

2 Formal WKB solutions and formal monodromies

2.1 Notation, cuts, signs, and branches.

Let us recall the notation of [G08]. Let f(q) be a real polynomial in sin 2πq and cos 2πq, with n real
local minima q1, ..., q2n−1 and n real local maxima q2, .., q2n on the period, where 0 < q1 < q2 < ... <
q2n−1 < q2n < 1. We require f ′′(qj) 6= 0.

In this section we will discuss formal WKB solutions of

Pψ :=
[
−h2∂2

q + (f ′)2 − hf ′′
]
ψ = Eψ, (2)

where E is a complex number.

For E 6= 0 and |E| sufficiently small, the classical momentum p(q) =
√

E − (f ′(q))2 is defined
on a two sheeted cover of the complex plane of q. For E = 0, the two determinations of p(q) are
±f ′(q), and one can think of the Riemann surface of p(q) as of two separate sheets having contact at
points qj where f ′(qj) = 0.

The formulas related to formal solutions of the equation (2) can be established, for definiteness,
for E > 0, and then analytically continued to other values of E, whenever appropriate.

In the standard terminology of the WKB method points q satisfying [f ′(q)]2 = E are called
turning points of the equation (2).

When E > 0 and |E| is sufficiently small, the double turning points qj on the real axis for E = 0
split into pairs q−j < qj < q+j (< q−j+1) of simple turning points still on the real axis. The Riemann
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surface of
√

E − (f ′)2 will be described as the plane with cut connecting q−j to q+j and going a little

below the real axis. To specify the determination of p(q, E) on the first sheet, we define Arg (E−(f ′)2)
for real values of q on figure 1. As E → 0, on the first sheet ip(q, E) → f ′(q).
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Figure 1: Choice of Arg E − (f ′)2

A monodromy of an elementary formal WKB solution along some path ρ(t) on a universal cover
C̃ of C\{turning pts} is defined as ψ(ρ(1))/ψ(ρ(0)) and will be denoted exp[2πisρ].

2.2 Formal solutions.

In order to find a formal WKB solution of (2), we will be looking for a series

y(h, q) = y0(q) + hy1(q) + h2y2(q) + ...

solving

(P − E)

{

exp

{∫ q i

h

√

E − (f ′)2 + y(q′)dq′
}}

= 0.

One can calculate yj ’s recursively:

y0(q) =
f ′f ′′

2(E − (f ′)2)
− f ′′

2i
√

E − (f ′)2
,

y1(q) = − 5(f ′)2(f ′′)2

8i(E − (f ′)2)5/2
− f ′(f ′′)2

2(E − (f ′)2)2
− (f ′′)2

8i(E − (f ′)2)3/2
− f ′f (3)

4i(E − (f ′)2)3/2
− f (3)

4(E − (f ′)2)
,

etc.

Let φ+, φ− be the formal resurgent solutons of

(−h2∂2
x + [f ′]2 − hf ′′)φ = hErφ (3)

corresponding to the first and second sheet of the Riemann surface, normalized in such a way that
ψ+(q0) = ψ−(q0) = 1 and defined on the domains (complex plane with vertical cuts starting at qj )
shown on fig.2. The point q0 can be an arbitrary point such that f ′(q0) 6= 0, e.g. q0 = 0,

In terms of φ+, φ− the transfer matrix and the quantization condition will be written, in the
same way as in [G08, section VIII].
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Figure 2: Domains of φ+ and φ−

2.3 Assorted Taylor series

Let qℓ ∈ R and f ′(qℓ) = 0. We will need to calculate various integrals along paths passing around or
near the point qℓ, and in this subsection we will set up the appropriate notation. For q near qℓ the
substitution u = −f ′(q) is one-to-one, and thus u can be taken as a local coordinate near qℓ.

Let us introduce the numbers aj(qℓ) (sometimes written as aj if the index ℓ is clear) by

−(q − qℓ) = a0(qℓ)f
′(q) +

1

2
a1(qℓ)(f

′)2 +
1

3
a2(qℓ)(f

′)3 + ....

In particular,

a0 = − 1

f ′′(qℓ)
, a1 =

f (3)(qℓ)

[f ′′(qℓ)]3
, a2 =

f (4)(qℓ)

2[f ′′(qℓ)]4
− 3[f (3)(qℓ)]

2

2[f ′′(qℓ)]5
, ...

It follows then that

− 1

f ′′(q)
= a0(qℓ) + a1(qℓ)(f

′) + a2(qℓ)(f
′)2 + ... =

∞∑

j=0

aj(−1)juj .

and

f ′′(q) − f ′′(qℓ) = f ′′(qℓ)
∞∑

j=1

aj(f
′)jf ′′ = f ′′(qℓ)

∞∑

j=1

aj(−1)jujf ′′.

Introduce similarly the numbers bj = bj(qℓ) by the requirement that

−f ′′ = b0(qℓ) + b1(qℓ)u+ b2(qℓ)u
2 + ....

should hold near qℓ. In particular,

b0 = −f ′′(qℓ); b1 =
f (3)(qℓ)

f ′′(qℓ)
; b2 =

[f (3)(qℓ)]
2 − f ′′(qℓ)f

(4)(qℓ)

2[f ′′(qℓ)]3
.

We obtain by differentiation

−f (3) =

∞∑

j=0

jbj(−f ′)j−1(−f ′′).

We will also use that for ε small enough and A = −f ′(qℓ − ε),

f(qℓ) − f(qℓ − ε) =

∫ qℓ

qℓ−ε
f ′(q)dq =

∫ A

0
u[

∞∑

j=0

(−1)jaju
j ]du =

∞∑

j=0

(−1)jaj
Aj+2

j + 2
. (4)
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2.4 Calculation of
∫

σj
y0(q)dq.

The path σj is defined for E > 0 as starting at qj − ε on the first sheet, going under the cut between
q−j and q+j , and ending at qj − ε on the second sheet; the path σ′j is obtained from σj by interchanging
the sheets, figure 3. It was shown in [G08] that

e−2πisσ1 = −e2πisσ′
1

�
�
�ε σ

1

�
�

�

�
�

�

�
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�ε σ�

1

�
�

�
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Figure 3: Paths σ1 and σ′1.

Recall that

y0(q) =
f ′f ′′

2(E − (f ′)2)
− f ′′

2i
√

E − (f ′)2

Lemma 2.1 We have
∫

σj

y0(q)dq = arccosh
(−f ′(qj − ε))√

E
− πi

2
, j odd;

∫

σ′
j

y0(q)dq = −arccosh
f ′(qj − ε)√

E
− πi

2
, j even,

where the branch of arccosh is chosen so as to coincide with the principal real value of of arccosh for

E > 0 and qj − ε on the real axis immediately to the left of q−j .

Proof. Let us do the case of j odd. Integrating the first summand in y0, we have

∫

σ1

f ′f ′′

2(E − (f ′)2)
dq = −1

4
Ln (E − (f ′)2)

∣
∣
∣
∣
∂σ1

= −1

4
· 2πi = −πi

2
.

To integrate the second summand, use a substitution u = −f ′(q) and A = −f ′(q):
∫

σ1

f ′′(q)

2i
√

E − (f ′)2
= −

∫

σ1

f ′′(q)

2
√

(f ′)2 − E
dq = −

∫ √
E

A

(−du)√
u2 − E

= −arccosh
A√
E
.

(In the second term of this line the arithmetic square root is meant when E > 0 and when q is real
immediately to the left of q−j .) Subtracting the latter value from the former, obtain the statement.
The case of even j is treated similarly. 2

5



���

����

σ

Figure 4:

2.5 Calculation of
∫

σj
y1(q)dq

We begin by calculation
∫

σ1
y1(q)dq.

Recall that

y1(q) = − 5(f ′)2(f ′′)2

8i(E − (f ′)2)5/2
− f ′(f ′′)2

2(E − (f ′)2)2
− (f ′′)2

8i(E − (f ′)2)3/2
− f ′f (3)

4i(E − (f ′)2)3/2
− f (3)

4(E − (f ′)2)
. (5)

In the integral
∫

σj
y1(q)dq let us make a substitution u = −f ′, write −f ′′ = b0 + b1u+ b2u

2 + ...,

and put A = −f ′(q1 − ε). Then

∫

σ1

y1(q)dq =

∫

σ

{

−
5u2

∑
∞

j=0 bju
j

8i(E − u2)5/2
+
u
∑

∞

j=0 bju
j

2(E − u2)2
−

∑
∞

j=0 bju
j

8i(E − u2)3/2

−
u
∑

∞

j=0(j + 1)bj+1u
j

4i(E − u2)3/2
+

∑
∞

j=0(j + 1)bj+1u
j

4(E − u2)

}

du.

Since
u

P∞
j=0 bju

j

2(E−u2)2
+

P∞
j=0(j+1)bj+1u

j

4(E−u2)
is a full differential of a function univalued in u, this part of

the integrand can be dropped, and so

∫

σ1

y1(q)dq =

∫

σ

{

−
5u2

∑
∞

j=0 bju
j

8i(E − u2)5/2
−

∑
∞

j=0 bju
j

8i(E − u2)3/2
−

∑
∞

j=1 jbju
j

4i(E − u2)3/2

}

du.

We prefer to rewrite the denominator in terms of (u2 −E)1/2 which is positive for u real, u >
√
E and

close to the beginning of the path σ, and negative close for u close to the end of σ:

∫

σ1

y1(q)dq =

∫

σ

{

5u2
∑∞

j=0 bju
j

8(u2 − E)5/2
−
∑∞

j=0(1 + 2j)bju
j

8(u2 − E)3/2

}

.

Integrating by parts twice using formulae (39)-(42), obtain

∫

σ1

y1(q)dq = −
∑∞

j=0 5bju
j+1

24(u2 − E)3/2

∣
∣
∣
∣
∣
∂σ

− b0
12E

u√
u2 − E

∣
∣
∣
∣
∂σ

−

−
∞∑

j=1

(2 − j)bj
24

bju
j−1

(u2 − E)1/2

∣
∣
∣
∣
∣
∣
∂σ

+

∫

σ

∑∞
j=2(2 − j)(j − 1)bju

j−2

24(u2 − E)1/2
du.
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The first three summands give

5
∑∞

j=0 bjA
j+1

12(A2 − E)3/2
+

b0
6E

A

(A2 − E)1/2
+

∑∞
j=1(2 − j)bjA

j−1

12(A2 − E)1/2
.

Performing the change of variables in the fourth summand, u =
√
E cosh t and using (37),

∫

σ

∑∞
j=0(j + 1)[−jbj+2]u

j

24
√
u2 − E

dq =
1

12

∞∑

j=1

(j + 1)bj+2A
j + o(E0)

Thus,

∫

σ1

y1(q)dq =
5
∑∞

j=0 bjA
j+1

12(A2 − E)3/2
+
b0
6E

A

(A2 − E)1/2
+

∑∞
j=1(2 − j)bjA

j−1

12(A2 − E)1/2
+

1

12

∞∑

j=1

(j+1)bj+2A
j + o(E0)

= − 1

12
b2 +

b0
6E

+
1

2

∞∑

j=0

bjA
j−2 + o(E0).

Note that the error term o(E0) in the previous formula cannot be simply replaced by O(E1), as terms
of order E lnE can also be present.

Analogously,

∫

σ′
2

y1(q)dq =
1

12
b2(q2) −

b0(q2)

6E
− 1

2

∞∑

j=0

bj(q2)A
j−2 + o(E0).

2.6 Monodromy around the turning point

Let γk (resp., γ′k) be a counterclockwise loop enclosing both points q−k and q+k on the first (resp.,

second) sheet of the Riemann surface of the momentum (figure 5), and denote e2πisγk and e
2πisγ′

k the
corresponding monodromies of formal WKB solutions along these loops. From [G08, Lemma V.2] we
know that

sγk
+ sγ′

k
= −1. (6)

Proposition 2.2 We have

sγk
=

1

2πh

[

− πE

f ′′(qk)
+
πa2(qk)E

2

4
+ o(E2)

]

− 1 +O(h),

where

a2(qk) =
f (4)(qk)

2[f ′′(qk)]4
− 3

2

[f (3)(qk)]
2

[f ′′(qk)]5
.

Proof. For concreteness, we will prove the statement for k = 1. With the notation for the
formal solution introduced in section 2.2,

2πisγ1 =

∫

γ1

[
i

h

√

E − (f ′)2 + y0(q
′) + hy1(q

′)

]

dq′ +O(h2).
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Figure 5: Paths γk and γ′k.

We will now separately compute the integrals of the three terms involved.

Step 1: ωγ1 :=
∫

γ1

√

E − (f ′)2dq = − π
f ′′(q1) · E +O(E2).

Write f ′(q) = f ′′(q1)(q − q1) + r(q − q1), where r(q − q1) = O
(
(q − q1)

2
)
.

So, using the formula

∮

uk
√

E − u2du =

{

0, k odd

−2 (k−1)!!
(k+2)!!E

k
2
+1π, k even

,

obtain (under the usual substitution u = −f ′, − 1
f ′′ =

∑∞
k=0 ak(−1)kuk and using that f ′(q+1 ) =

√
E,

so q = q+1 ↔ u = −
√
E, q = q−1 ↔ u =

√
E.)

∮

γ1

√

E − (f ′)2dq = 2

∫ √
E

−
√
E

√

E − u2(a0 − a1u+ a2u
2 − ...)du =

=
∑

k even

2
(k − 1)!!

(k + 2)!!
E

k
2
+1πak = 2

1

2
Eπa0+2

1

2 · 4E
2πa2 + o(E2) = − πE

f ′′(q1)
+
πa2E

2

4
+ o(E2). (7)

Step 2: A calculation showing that

∮

γ1

y0dq =

∮

γ1

dq

{

f ′f ′′

2(E − (f ′)2)
− f ′′

2i
√

E − (f ′)2

}

= −2πi

is completely elementary after the substitution u = −f ′(q) in the integral.

Step 3. Let us calculate the integral of y1 around γ1. Make a change of variables u = −f ′ and
proceed analogously to section 2.5.

∫

γ1

y1(q)dq =

∫

σ

{

5u2
∑∞

j=0 bju
j

8(u2 − E)5/2
−
∑∞

j=0(1 + 2j)bju
j

8(u2 − E)3/2

}

=

=

∫

γ

∑∞
j=2(2 − j)(j − 1)bju

j−2

3 · 8(u2 − E)1/2
du =

= 2π
∑

2k=j>2

bjE
j−2
2

(j − 2)(j − 1)

3 · 8
(j − 3)!!

(j − 2)!!
= =

π

12

∞∑

k≥2

b2kE
k−1 (2k − 1)!!

(2k − 4)!!
= o(E0)

Here use the formula that
∮

γ
uk

√
E−u2

du = −2πEk/2 (k−1)!!
k!! for even k.

Adding up the three integrals concludes the proof. 2
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In the sequel we will also need the following microfunctions µj that will be by abuse of language
identified with their asymptotic expansions with respect to h:

µj = 1 − e2πisγj , j odd; µj = 1 + e−2πisγj , j even.

Using Proposition 2.2 and performing routine simplifications, we obtain that for odd j,

µj |E=hEr =
Erπi

f ′′(qj)
(1 − a2(qj)f

′′(qj)

4
hEr −

πi

2f ′′(qj)
Er)(1 +O(E2

r ) +O(h2)), (8)

and for even j

µj |E=hEr =
Erπi

|f ′′(qj)|
(1 +

a2(qj)|f ′′(qj)|
4

hEr −
πi

2|f ′′(qj)|
Er)(1 +O(E2

r ) +O(h2)). (9)

2.7 An application of the Stirling formula

The calculation in this subsection is done for fixed E > 0.

We have calculated earlier that sγ1 =
ωγ1
2πh − 1 + β1h, where β1 = β1,1 + O(h) and β1,1 = O(E).

Since −sγ1 has a positive real part which goes to infinity as h→ 0+, we can apply the Stirling formula
to Γ(−sγ1) to get

√
2πhsγ1+ 1

2

Γ(−sγ1)
=

√
2πhsγ1+ 1

2

(−sγ1)−sγ1−
1
2 · esγ1 ·

√
2π · (1 − 1

12s
−1
γ1 +O(h2))

.

A few routine steps of simplification bring us to
√

2πhsγ1+ 1
2

Γ(−sγ1)
=

exp{−ωγ1
2πh}

(
−ωγ1

2π

)−ωγ1
2πh

+ 1
2
−β1h (1 − πh

6ωγ1
)
(1 +O(h2)), (10)

where β1 is O(E) and therefore
√

2πhsγ1+ 1
2

Γ(−sγ1)
=

exp{−ωγ1
2πh}

(
−ωγ1

2π

)−ωγ1
2πh

+ 1
2 (1 − πh

6ωγ1
)
(1 +OE=fix(h

2) +O(h)O(Eln E)). (11)

2.8 Monodromies from qj − ε to qj+1 − ε.

Define Mj , M
′
j to be the monodromies of the formal WKB solutions along the paths shown on figures

6 and 7, where Mj are taken on the first sheet of the Riemann surface of the classical momentum and
M ′
j on the second. Note that in [G08] we denoted Mj ,M

′
j by Aj , A

′
j .

Lemma 2.3 We have:

Mj = − exp

{

[f(qj+1 − ε) − f(qj − ε)]

h
− E

2h

∫ (qj+1−ε)I

(qj−ε)I

dq

f ′(q)

}√

|f ′(qj − ε)|
|f ′(qj+1 − ε)|

4

√

[f ′(qj − ε)]2 − E

[f ′(qj+1 − ε)]2 − E
×

× exp

[
E

8[f ′(qj+1 − ε)]2
− E

8[f ′(qj − ε)]2
+ h(

f ′′(qj+1 − ε)

2(f ′(qj+1 − ε))2
− f ′′(qj − ε)

2(f ′(qj − ε))2
)

]

(1+O(E2/h)+O(E2)+O(Eh)+O(h2)),

where
∫ (qj+1−ε)I

(qj−ε)I
means that the integration path lies on the first sheet.

9
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Figure 6: Integration contours defining Mj and M ′
j , j odd
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Figure 7: Integration contours defining Mj and M ′

j , j even

Proof. We will present the argument for M1, it will be the same for all odd j and very
analogous for even j.

We have

M1 = exp

{
∫ (q2−ε)I

(q1−ε)I

[
i

h

√

E − (f ′)2 + y0(q) + hy1(q)

]

dq +O(h2)

}

,

where
∫ (q2−ε)I

(q1−ε)I
means that the path of integration is chosen within the domain of definition of φ+ and

determinations of the square root are taken as on the first sheet of the Riemann surface of the classical
momentum. We have:

i

h

∫ (q2−ε)I

(q1−ε)I

√

E − (f ′)2dq =
i

h

∫ q2−ε

q1−ε
f ′(q)(1 − 1

2

E

(f ′(q))2
)dq +O(E2)

=
i

h

(

f(q2 − ε) − f(q1 − ε) − E

2

∫ q2−ε

q1−ε

dq

f ′(q)
+O(E2)

)

.

In the integral

∫ (q2−ε)I

(q1−ε)I

y0(q)dq =

∫ (q2−ε)I

(q1−ε)I

[

f ′f ′′

2(E − (f ′)2)
− f ′′

2i
√

E − (f ′)2

]

dq

the first summand yields

∫ (q2−ε)I

(q1−ε)I

f ′f ′′

2(E − (f ′)2)
dq = −1

4
Ln

E − [f ′(q2 − ε)]2

E − [f ′(q1 − ε)]2

and the Ln is analytically continued in the domain with a cut located as on the first sheet.

= −1

4

(

ln

{
E − [f ′(q2 − ε)]2

E − [f ′(q1 − ε)]2

}

− 2πi

)

=
πi

2
− 1

4
ln

{
E − [f ′(q2 − ε)]2

E − [f ′(q1 − ε)]2

}

,

10



and the second summand
∫ q2−ε

q1−ε

f ′′

2i
√

E − (f ′)2
dq =

∫ q2−ε

q1−ε

f ′′

2f ′

(

1 +
1

2

E

(f ′)2

)

dq + O(E2) =

=
1

2
Ln

(
f ′(q2 − ε)

f ′(q1 − ε)

)

− E

8[f ′(q)]2

∣
∣
∣
∣

q=q2−ε

q=q1−ε
+ O(E2)

=
1

2
ln

f ′(q2 − ε)

[−f ′(q1 − ε)]
− πi

2
− E

8[f ′(q2 − ε)]2
+

E

8[f ′(q1 − ε)]2
+O(E2).

Using (5) and replacing each summand by its limit for E → 0,

∫ (q=q2−ε)I

(q=q1−ε)I

y1(q)dq =

∫ q=q2−ε

q=q1−ε

{

−5(f ′)2(f ′′)2

8(f ′)5
− f ′(f ′′)2

2(f ′)4
− (f ′′)2

8(−(f ′)3)
− f ′f (3)

4(−(f ′)3)
− f (3)

4(−(f ′)2)

}

dq+O(E) =

=

∫ q=q2−ε

q=q1−ε

{

−(f ′′)2

(f ′)3
+

f (3)

2(f ′)2

}

dq +O(E) =
f ′′

2(f ′)2

∣
∣
∣
∣

q=q2−ε

q=q1−ε
+O(E).

Hence

M1 = −e
[f(q2−ε)−f(q1−ε)]

h
− E

2h

R q2−ε

q1−ε
dq

f ′(q)

√

[−f ′(q1 − ε)]

f ′(q2 − ε)
4

√

[f ′(q1 − ε)]2 − E

[f ′(q2 − ε)]2 − E
×

× exp

[
E

8[f ′(q2 − ε)]2
− E

8[f ′(q1 − ε)]2
+ h(

f ′′(q2 − ε)

2(f ′(q2 − ε))2
− f ′′(q1 − ε)

2(f ′(q1 − ε))2
)

]

(1+O(E2/h)+O(E2)+O(Eh)+O(h2)),

which completes the proof for j = 1. 2

Lemma 2.4 We have:

M ′

j = exp

{

− [f(qj+1 − ε) − f(qj − ε)]

h
+
E

2h

∫ (qj+1−ε)II

(qj−ε)II

dq

f ′(q)

}√

|f ′(qj+1 − ε)|
|f ′(qj − ε)|

4

√

[f ′(qj − ε)]2 − E

[f ′(qj+1 − ε)]2 − E
×

× exp

[
E

8[f ′(qj − ε)]2
− E

8[f ′(qj+1 − ε)]2

]

(1 +O(E2/h) +O(E2) +O(Eh) +O(h2)).

where
∫ (qj+1−ε)II

(qj−ε)II
means that the integration path lies within the domain of definition of φ−, fig.2,

right.

Two neat formulae easily follow from the above calculation:

Corollary 2.5 We have

M ′
1M

′
2...M

′
2n = exp

(
E

2h

∮

2nd sheet

dq

f ′(q)

)

(1 +O(E2/h) +O(E2) +O(Eh) +O(h2)),

or

M ′
1M

′
2...M

′
2n|E=hEr = exp

(
Er
2

∮

2nd sheet

dq

f ′(q)

)

(1 +O(E2
rh) +O(h2)),

where
∮

2nd sheet
means that the integral is taken along a loop from some q0 to q0 + 1 along a loop lying

within the domain of definition of φ−.
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Corollary 2.6 We have

2n∏

j=1

M−1
j M ′

j

∣
∣
∣
∣
∣
∣
E=hEr

= exp







2n∑

j=1

πiEr
|f ′′(qj)|

+ Er

∮

1st sheet

dq

f ′(q)






(1 +O(E2

rh) +O(h2)),

where
∮

1st sheet
means that the integral is taken along a loop from some q0 to q0 + 1 along a loop lying

within the domain of definition of φ+.

3 Connection coefficient across the double turning point.

We will repeat here the formal calculation of the connection coefficients across the double turning
points by the exact matching method done in [G08], while pushing it further to one more order in h.

We will keep the notation the same as in [G08, section VII], except that the connection coeffi-
cient called c1 in [G08, section VII] will now be denoted c′1, consistently with the notation of [G08,
sectin VIII]. With this minor difference, we refer to [G08] for notation, terminology, explanations,
and literature references relevant to this calculation. We will solve the connection problem in two
representative cases – for the double turning point q1 where f(q) has a local minimum, and for the
double turning point q2 where f(q) has a local maximum; similar results will hold for other real local
extrema of f(q).

3.1 Exact matching method around q1.

Let us consider two formal solutions ψ+(q, h) and ψ−(q, h) of (2) corresponding to the first and to the
second sheets of the Riemann surface of the classical momentum and normalized in such a way that
ψ+(q1 − ε) = ψ−(q1 − ε) = 1, where ε is a small positive number.

σ
�

�
�
�ε

�
�

� �
�

�

�

���

�ψ
�

�ψ
�
���

�
ψ
�

Figure 8: Notation in the exact matching method around q1

For E a positive real number, the actual solution of (2) represented by ψ+ in R is represented
by ψ+ + c′1ψ− in R′′. We know that c′1ψ− corresponds to the analytic continuation of ψ+ along a loop
σ1 with base point q1−ε around the simple turning point q−1 (E), figure 8, i.e. the Stokes phenomenon
transforms ψ+ into

ψ+(q, E) + c′1(E)ψ−(q, E) =

= ψ+(q, E) +
√

2π
hsγ1+ 1

2

Γ(−sγ1)
(c′1)

red(E)ψ−(q, E),

12



where c′1 is the monodromy of the formal solution along σ1:

c′1 = exp

[∫

σ1

dq

{
i

h
S(q, E) + y0(q) + hy1(q) + h2y2(q) + ...

}]

.

and where we have denoted

(c′1)
red =

√
2πhsγ1+ 1

2

Γ(−sγ1)
c′1.

For E = hEr we will obtain

ψ+(q, hEr) +
√

2π
hsγ1+ 1

2

Γ(−sγ1)

∣
∣
∣
∣
∣
E=hEr

(c′1)
red(hEr)ψ−(q, hEr).

Remark 3.1 This passage to the limit and replacing E > 0 by hEr has been used in two pa-
pers [DDP97] and [DP99], but ideally it would need a more solid mathematical justification. The
first issue is purely algebraic: one has to show that the coefficients in the asymptotic expansion of
(c′1)

red with respect to h are analytic functions of E near the origin, or, equivalently, that all infinitely
many coefficients Θj , j ∈ Z, j ≥ −1, from (12) are analytic in E near the origin. This problem is
known in the literature as the Sato’s conjecture. For the Schrödinger equation with the harmonic
oscillator potential the similar result has been shown in [SS06], and the case of a general potential
may perhaps be proven using reduction of an arbitrary potential well to a harmonic oscillator using
methods of [AKT09] and references therein. 1 The other issue is analytical: we are not dealing here
simply with analytic continuation as h is not a number but a formal parameter, and the functions are
not honest analytic functions of h but equivalence classes of those modulo adding a function of h of
subexponential decay for h→ 0. We hope that these technicalities will be resolved in due time.

Denote

∆S(E) = i

∫

σ1

√

E − (f ′)2dq′, ∆yk(E) =

∫

σ1

yk(q)dq,

thus

c′1(E) = exp

{
1

h
∆S(E) + ∆y0(E) + h∆y1(E) +O(h2)

}

.

Denote further

(c′1)
red(E) = exp{

∞∑

j=−1

hjΘj(E)} = exp{1

h
Θ−1 + Θ0 + hΘ1 +O(h2)}. (12)

Recall that the Stirling formula (10) gives:

√
2πhsγ1+ 1

2

Γ(−sγ1)
∼ exp

{
1

h

[

−ωγ1
2π

+
ωγ1
2π

Ln
(

−ωγ1
2π

)]

− 1

2
Ln

(

−ωγ1
2π

)

+ h
π

6ωγ1
+OE=fix(h

2) +O(Eln E)h

}

,

where the notation OE=fix means that the estimate is valid for every fixed E > 0. In the above
formula the LHS is a true function, and the RHS its hyperasymptotic expansion valid for E > 0 and
for h in a small sectorial neighborhood of zero in the positive real direction.

1We thank Shingo Kamimoto for pointing out to us both of these articles. We thank professors Aoki, Kawai, and
Takei for explaining the result of [AKT09] and its significance.
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Let us now calculate Θ−1, Θ0, and Θ1. Begin with Θ−1.

Θ−1 = ∆S +
ωγ1
2π

− ωγ1
2π

Ln
[

−ωγ1
2π

]

.

We have

∆S =

∫

σ1

i
√

E − (f ′)2dq = 2

∫ q−1

q1−ε
[−
√

(f ′)2 − E]dq =

(change of variables u = −f ′, u =
√
E cosh t, A = −f ′(q1 − ε); aj = aj(q1) were defined in section 2.3

)

= −2

∞∑

j=0

(−1)jaj

∫ √
E

A
uj
√

u2 − Edu = −2

∞∑

j=0

(−1)jaj

∫ 0

arccosh (A/
√
E)
E

j
2
+1 coshj t sinh2 tdt =

(use (38), (4) and (36) )

= 2[f(q1) − f(q1 − ε)] + a0(−
E

2
− E2

8A2
− E(Ln

2A√
E

− E

4A2
)) + a2(

A2E

2
− E2

16
+
E2

4
Ln (

2A√
E

))+

+
∑

j = 1 or ≥ 3

(−1)jaj

(

−A
jE

j
− Aj−2E2

4(j − 2)

)

+ o(E2, )

and hence

Θ−1 = 2[f(q1)−f(q1−ε)]−a0ELn (2A)+a0
E2

8A2
− a2

A2

2
E −

∑

j=1 or j≥3

aj(−1)j
{

1

j
AjE +

1

4(j − 2)
E2Aj−2

}

+

− E

2f ′′(q1)
Ln (2f ′′(q1)) +

a2E
2

16
+

a2E
2

8
Ln (2f ′′(q1)) − a2

E2

4
Ln 2A+ o(E2).

The expressions for Θ0 and Θ1 are easier using formulas from sections 2.4 and 2.5, we obtain:

Θ0 = arccosh
A√
E

− πi

2
+

1

2
Ln

(

−ωγ1
2π

)

=

= Ln 2A− E

4A2
− πi

2
+

1

2

[

Ln (
1

2f ′′(q1)
) − a2f

′′(q1)E

4

]

+ o(E),

and

Θ1 =

∫

σ1

y1(q)dq −
π

6ωγ1
+ o(E0) = − 1

12
b2 −

1

2

f ′′(q1 − ε)

(f ′(q1 − ε))2
+

a2[f
′′(q1)]2

24
+ o(E0).

By lemma 3.6, this o(E0) is actually O(E).

As we pointed out in Remark 3.1, there must be a conceptual way of proving analyticity of
Θj(E) near E = 0 for all j ≥ −1; for now we will prove analyticity of Θ−1,Θ0,Θ1 directly in section
3.3.
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Note that the infinite sums appearing in the expression for Θ−1 for specific f(q) can be evaluated
by integration:

∞∑

j=1

aj(−1)j
1

j
Aj =

∫ q1−ε

q1

(− 1

f ′(q)
− a0

f ′′(q)

f ′(q)
)dq, (13)

∞∑

j=3

aj(−1)j
1

j − 2
Aj−2 =

∫ q1−ε

q1

[

− 1

[f ′(q)]3
− a0f

′′(q)

[f ′(q)]3
− a1f

′′(q)

[f ′(q)]2
− a2f

′′(q)

f ′(q)

]

dq. (14)

Substituting Erh for E in the results that we have just obtained and using

sγ1 |E=Erh +
1

2
= − Er

2f ′′(q1)
− 1

2
+O(h2) +O(Erh),

we get:

c′1|E=hEr =

√
2πh

− Er
2f ′′(q1)

− 1
2
+O(Erh)+O(h2)

Γ( Er

2f ′′(q) + 1 +O(hEr) +O(h2))
exp

(
1

h
Θ−1 + Θ0 + hΘ1 +O(h2)

)

E=hEr

=

=

√
2πh

− Er
2f ′′(q1)

− 1
2

Γ( Er

2f ′′(q) + 1)
exp

(
1

h
Θ−1 + Θ0 + hΘ1

)

E=hEr

(1 +O(h2) +O(Erhln h) +O(E2
rh) +O(E2

r ))

Finally, we will use the well known formula

1

Γ(1 + t)
=

1

tΓ(t)
=

1

t
(t+ γt2 +O(t3)) = 1 + γt+ o(t), as t→ 0,

where γ = 0.5772... is the Euler-Mascheroni constant, and obtain

Proposition 3.2 For the differential equation (2) with E = hEr the connection coefficient c′1 equals

c′1 = −i
√

2πh
−

Er
2f′′(q1)

−
1
2 (1 + γ

Er

2f ′′(q1)
)×

× exp




2[f(q1) − f(q1 − ε)]

h
+ (1 +

Er

f ′′(q1)
)Ln

2[−f ′(q1 − ε)]
√

2f ′′(q1)
−

∞∑

j=1

aj
1

j
[f ′(q1 − ε)]jEr+

+h

(

− b2
12

− 1

2

f ′′(q1 − ε)

(f ′(q1 − ε))2
+
a2(f

′′(q1))
2

24

)]

×(1 +O(h2) +O(Erhln h) +O(E2
rh) +O(E2

r )),

where aj = aj(q1), b2 = b2(q1) were defined in section 2.3.
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Figure 9: Notation in the exact matching method around q2

3.2 Exact matching method around q2.

In this subsection, two formal solutions ψ+(q, h) and ψ−(q, h) of (2) correspond to the first and to the
second sheets of the Riemann surface of the classical momentum and are normalized in such a way
that ψ+(q2 − ε) = ψ−(q2 − ε) = 1, where ε is a small positive number.

For E a positive real number, the actual solution represented by ψ− in R is represented by
ψ− + c2ψ+ in R′′, where c2ψ+ corresponds to the analytic continuation of ψ− along a contour σ′2 with
base point q2 − ε around the simple turning point q−2 (E), figure 9. Thus for E = hEr the connection
coefficient c2 is the limit of the formal monodromy along the path σ′2. In other words, the Stokes
phenomenon transforms ψ−(q, E) into

c2(E)ψ+(q, E) + ψ−(q, E) =
√

2π
h
sγ′

2
+ 1

2

Γ(−sγ′2)
cred2 (E)ψ+(q, E) + ψ−(q, E),

where

c2 = exp

[
∫

σ′
2

dq

{
1

h
S(q, E) + y0(q) + hy1(q) +O(h2)

}]

and where cred2 analytically and regularly depends on E. With the same caveat as in the previous
subsection, we will substitute Erh for E and obtain

c2(hEr)ψ+(q, hEr) + ψ−(q, hEr) =
√

2π
h
sγ′

2
+ 1

2

Γ(−sγ′2)

∣
∣
∣
∣
∣
∣
E=hEr

cred2 (hEr)ψ+(q, hEr) + ψ−(q, hEr).

Together with calculations of the monodromy of the formal solution along the contour σ′2, we
will use the following asymptotic expansion valid for a fixed E > 0 and derived from the Stirling
formula: The Stirling formula (10) together with (6) give:

√
2πh

sγ′
2
+ 1

2

Γ(−sγ′2)
∼ exp

{
1

h

[ωγ2
2π

− ωγ2
2π

Ln
(ωγ2

2π

)]

− 1

2
Ln

(ωγ2
2π

)

− h
π

6ωγ2
+OE=fix(h

2) +O(Eln E)h

}

.

Introduce Θj ’s for j ≥ −1 by formula

cred2 = exp{1

h
Θ−1 + Θ0 + hΘ1 + ...}
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and so, similarly to the previous subsection, with A = −f ′(q2 − ε), aj = aj(q2), bj = bj(q2), we have

Θ−1 = i

∫

σ′
2

p(q, E)dq − ωγ2
2π

+
ωγ2
2π

Ln
(ωγ2

2π

)

= 2Scrit(q2) + Ea0ln (−2A) − a0
E2

8A2
+

(
Ea0

2
+
E2a2

8

)

Ln
a0

2

+a2
A2E

2
− a2

E2

16
+ a2

E2

4
Ln (−2A) + E

∞∑

j≥1, j 6=2

aj(−1)j
(

1

j
Aj +

1

4(j − 2)
Aj−2E

)

+ o(E2);

Θ0 =

∫

σ′
2

y0(q, E)dq − 1

2
Ln

(ωγ2
2π

)

=

= −Ln i− Ln
(−2A)

√

2|f ′′(q2)|
+

E

4A2
+
a2|f ′′(q2)| · E

8
+ o(E);

Θ1 =

∫

σ′
2

y1(q, E)dq +
π

6ωγ2
+ o(E0),

Θ1 =
1

12
b2 −

1

2

∞∑

j=0

bjA
j−2 − a2[f

′′(q2)]2

24
+O(E0).

Now we are almost ready combine these formulae and calculate

c2(hEr) =
√

2π
h
sγ′

2
+ 1

2

Γ(−sγ′2)

∣
∣
∣
∣
∣
∣
E=hEr

cred2 (hEr).

Notice that when Er = 0, then e−f(q)/h is the formal solution of (2) corresponding to the second sheet
determination of the classical momentum, and also the actual solution of (2), and therefore for Er = 0
the connection coefficient c2 must vanish. This implies that 1/Γ(−sγ′2) is divisible by Er. Hence, using

sγ′2 +
1

2
=

Er
2f ′′(q2)

+
1

2
+O(E2

r ) +O(hEr),

we can write
1

Γ(−sγ′2)
= − Er

2f ′′(q2)
+ γ

E2
r

[2f ′′(q2)]2
+O(E3

r ) + h×O(Er).

Finally, we have obtained:

Proposition 3.3 For the differential equation (2) the connection coefficient c2 equals

c2 =
√

2πh
Er

2f′′(q2)
+ 1

2 (− Er

2f ′′(q2)
+ γ

E2
r

[2f ′′(q2)]2
+O(E3

r ) +O(h2)O(Er))×

× exp[2
−f(q2) + f(q2 − ε)

h
− (1 +

Er

f ′′(q2)
)ln

2f ′(q2 − ε)
√

−2f ′′(q2)
+ Er

∞∑

j=1

aj
1

j
[f ′(q2 − ε)]j − Ln i]×

× exp



h




1

12
b2 −

1

2

∞∑

j=0

bj [−f ′(q2 − ε)]j−2 − a2[f
′′(q2)]

2

24
+ o(E0)



+O(h2)



 ,

where aj = aj(q2), b2 = b2(q2) were defined in section 2.3.
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3.3 A partial proof of analyticity of (c′1)red

The purpose of this section is not to give a full justification of the methods, but rather to prove some
results confirming that our approach is consistent and makes sense.

Lemma 3.4 The quantity

Θ−1 = ∆S +
ωγ1
2π

− ωγ1
2π

ln [−ωγ1
2π

]

is analytic with respect to E in the neighborhood of zero.

Proof. We need to show that the term containing ln E in ∆S cancels
ωγ1
2π Ln E. Indeed, we

have seen that

∆S = −2

∞∑

k=0

(−1)kak

∫ √
E

A
uk
√

u2 − Edu = −2

∞∑

k=0

(−1)kak

∫ 0

arccosh A/
√
E
E

k
2
+1 coshk t sinh2 tdt

= −2

∞∑

k=0

(−1)kak

∫ 0

arccosh A/
√
E

2−k−2E
k
2
+1(et + e−t)k(et − e−t)2dt

Writing the integrand as the sum of exponents and integrating, we realize that only the summand
e0tdt will eventually give rise to a logarithmic singularity for E → 0. Writing reg(E) for an arbitrary
function that is analytic with respect to E near the origin, we have:

Θ−1 = reg(E) − 2

∞∑

k=2j=0

a2j

∫ 0

arccosh A/
√
E

2−2j−2Ej+1(Cj−1
2j − 2Cj2j + Cj+1

2j )dt

= reg(E) −
∞∑

k=2j=0

a2j2
−2jEj+1 (2j)!

j!j!
(1 − j

j + 1
)arccosh (

A√
E

) =

= reg(E) +

∞∑

k=2j=0

a2j
(2j − 1)!!

(2j + 2)!!
Ej+1Ln E.

The singularity that comes out of
ωγ1
2π Ln E is the same by formula (7). 2

Lemma 3.5 Θ0 is analytic for E around 0.

Proof is obvious from (36) and proposition 2.2 2

Lemma 3.6 Θ1 is analytic for E around 0

Proof. The fact that Θ1 has no pole (i.e. 1
E ) singularity has been demonstrated in section 3.1.

Now let us check that all logarithmic singularities EkLn E are absent in Θ1 as well. The question
reduced to identifying the logarithmic singularity in the integral along the contour σ, fig.4:

∫

σ

∑∞
j=0(j + 1)[−jbj+2]u

j

24
√
u2 − E

dq =

18



=
1

12

∞∑

j=0

E
j
2 (j + 1)[−jbj+2]

∫ 0

arccosh (A/
√
E)

coshj(t)dt =

reg(E) +
1

12

∑

j=2k≥0

E
j
2 (j + 1)[−jbj+2]2

−jC
(j/2
j (−arccosh (A/

√
E))

= reg(E) − 1

24

∑

k≥0

Ekb2k+2
(2k + 1)!!

(2k − 2)!!
Ln E.

The logarithmic singularity in the h1 term of Ln
√

2πhsγ+1
2

Γ(−sγ) comes from −βLn
(
−ωγ1

2π

)
, i.e. from

−βLn E, where

β =
1

2π

∫

γ1

y1dq =
1

24

∞∑

k≥2

b2kE
k−1 (2k − 1)!!

(2k − 4)!!
.

That means that EkLn E terms in Θ1 cancel for all k. 2

3.4 Calculations of τs

We define
for odd j : τj = c′jcj+1M

−1
j M ′

j ,

for even j : τj = cjc
′
j+1Mj(M

′
j)

−1.

Calculation of τ1. Using lemmas 2.3, 2.4 and propositions 3.2, 3.3, and inserting E = hEr
into the corresponding formulas, obtain after routine simplification:

τ1 = e2
f(q1)−f(q2)

h
Erπ

√

|f ′′(q2)| · f ′′(q1)
h
− Er

2f ′′(q1)
+ Er

2f ′′(q2) (1 + γ
Er

2f ′′(q1)
+ γ

Er
2|f ′′(q2)|

)×

× exp




Er

f ′′(q1)
ln

2(−f ′(q1 − ε))
√

2f ′′(q1)
− Er

∞∑

j=1

aj(q1)
1

j
(f ′(q1 − ε))j + h

(

−b2(q1)
12

+
a2(q1)(f

′′(q1))2

24

)




× exp



− Er
f ′′(q2)

ln
2f ′(q2 − ε)
√

−2f ′′(q2)
+ Er

∞∑

j=1

aj(q2)
1

j
(f ′(q2 − ε))j + h

(
b2(q2)

12
− a2(q2)[f

′′(q2)]2

24

)


×

× exp

[

Er

∫ (q2−ε)I

(q1−ε)I

dq

f ′(q)
+

πiEr
f ′′(q1)

]

(1 +O(E2
r ) +O(Erhln h) +O(h2)).

Here
∫ (q2−ε)I

(q1−ε)I
denotes the integral along a path lying within the domain of definition of φ+, fig.2.

Formulae for other τj wih odd j are analogous.

Calculation of τ2. Analogously,

τ2 = e2
f(q3)−f(q2)

h
Erπ

√

|f ′′(q2)| · f ′′(q3)
h

Er
2f ′′(q2)

− Er
2f ′′(q3) (1 + γ

Er
2|f ′′(q2)|

+ γ
Er

2f ′′(q3)
)×
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× exp



− Er
f ′′(q2)

ln
2f ′(q2 − ε)
√

−2f ′′(q2)
+ Er

∞∑

j=1

aj(q2)
1

j
(f ′(q2 − ε))j + h

(
1

12
b2(q2) − a2(q2)[f

′′(q2)]2

24

)


×

exp




Er

f ′′(q3)
ln

−2f ′(q3 − ε)
√

2f ′′(q3)
− Er

∞∑

j=1

aj(q3)
1

j
(f ′(q3 − ε))j + h

(

−b2(q3)
12

+
a2(q3)(f

′′(q3))2

24

)




× exp

{

−Er
∫ (q3−ε)I

(q2−ε)I

dq

f ′(q)
− πiEr

f ′′(q2)

}

(1 +O(E2
r ) +O(Erhln h) +O(h2)),

and similarly for other τj wih even j.

In a calculation of these monodromies for a specific f(q) we can use formula (13).

4 A procedure for calculating eingenfunctions

In [G08], section VIII we have introduced a transfer matrix F (Er) and a related matrix G0 and we
wrote the quantization condition as

ker(G0 −
1

1 + Erk
Id) 6= {0}. (15)

In the case of f having two local minima and two local maxima on the period, the matrix G0 has the
following explicit form:

G0 =

„

τ4

1

«„

τ−1
3 + 1 µ3τ

−1
3 + 1

µ4τ
−1
3 + 1 µ3µ4τ

−1
3 + 1

«„

τ2

1

«„

τ−1
1 + 1 µ1τ

−1
1 + 1

µ2τ
−1
1 + 1 µ1µ2τ

−1
1 + 1

«

=

=

„

τ4(τ
−1
3 + 1)τ2(τ

−1
1 + 1) + τ4(µ3τ

−1
3 + 1)(µ2τ

−1
1 + 1) τ4(τ

−1
3 + 1)τ2(µ1τ

−1
1 + 1) + τ4(µ3τ

−1
3 + 1)(µ1µ2τ

−1
1 + 1)

(µ4τ
−1
3 + 1)τ2(τ

−1
1 + 1) + (µ3µ4τ

−1
3 + 1)(µ2τ

−1
1 + 1) (µ4τ

−1
3 + 1)τ2(µ1τ

−1
1 + 1) + (µ3µ4τ

−1
3 + 1)(µ1µ2τ

−1
1 + 1)

«

(16)

Assume hEr is a low-lying resurgent eigenvalue of our Witten Laplacian.

Suppose a vector of resurgent symbols (Z
(0)
+ , Z

(0)
− )T belongs to the kernel (15). Then the vector

(

D
(0)
+

D
(0)
−

)

=

(

B′
0B

−1
0 (c′1)

−1Z
(0)
+

Z
(0)
−

)

belongs to ker(F (Er) − Id) = 0 and thus the eigenfunction corresponding to the resurgent eigenvalue
hEr will be representable, for q ∈ (0, q1), by a hyperasymptotic expansion

D
(0)
+ φ+ +D

(0)
− φ−,

where φ+ and φ− are formal solutions of the Witten Laplacian normalized by φ+(q0) = φ−(q0) = 1
for some q0 ∈ C, f ′(q0) 6= 0.

Now we will write down the expressions for the coefficients D
(j)
+ , D

(j)
− , for j = 1, 2, 3, 4, such that

D
(j)
+ φ+ +D

(j)
− φ−
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represents the same eigenfunction on the interval (qj , qj+1). These coefficients will be written in terms

of auxiliary coefficients Z
(j)
+ , Z

(j)
− and the calculation will consist in successive application of connection

matrices across the turning points qj given in [G08], section VIII.

We have:

(

D
(1)
+

D
(1)
−

)

= B′
0

(

B−1
0 (c′1)

−1Z
(1)
+

(B′
0)

−1Z
(1)
−

)

;

(

Z
(1)
+

Z
(1)
−

)

=

(

Z
(0)
+ + µ1Z

(0)
−

Z
(0)
+ + Z

(0)
−

)

; (17)

(

D
(2)
+

D
(2)
−

)

; = B′
0M

′
1

(
B0M1 0

0 B′
0M

′
1

)−1
(

c2Z
(2)
+

Z
(2)
−

)

;

(

Z
(2)
+

Z
(2)
−

)

=

(

τ−1
1 Z

(1)
+ + Z

(1)
−

µ2τ
−1
1 Z

(1)
+ + Z

(1)
−

)

;

(18)
(

D
(3)
+

D
(3)
−

)

= B′
0M

′
1M

′
2

(
B0M1M2 0

0 B′
0M

′
1M

′
2

)−1
(

(c′3)
−1Z

(3)
+

Z
(3)
−

)

;

(

Z
(3)
+

Z
(3)
−

)

=

(

τ2Z
(2)
+ + µ3Z

(2)
−

τ2Z
(2)
+ + Z

(2)
−

)

;

(19)
(

D
(4)
+

D
(4)
−

)

= B′

0M
′

1M
′

2M
′

3

(
B0M1M2M3 0

0 B′

0M
′

1M
′

2M
′

3

)
−1
(

c4Z
(3)
+

Z
(3)
−

)

;

(

Z
(4)
+

Z
(4)
−

)

=

(

τ−1
3 Z

(3)
+ + Z

(3)
−

µ4τ
−1
3 Z

(3)
+ + Z

(3)
−

)

.

(20)

Remark also that if Er is an eigenvalue of the Witten Laplacian and if for j = 0, ..., 4 the

hyperasymptotic expansions D
(j)
+ φ+(q) + D

(j)
− φ−(q) define its eigenfunction ψ(q) satisfying ψ(q) =

ψ(q + 1), then we must have

[M1M2M3M4]
−1D

(0)
+ = D

(4)
+ ; [M ′

1M
′
2M

′
3M

′
4]
−1D

(0)
− = D

(4)
− .

Rewriting this condition in terms of Z
(j)
± , we arrive at

Z
(0)
+ = (1 + Erk)c

′
1c4(M

′
4)

−1M4Z
(4)
+ ; Z

(0)
− = (1 + Erk)Z

(4)
− . (21)

If Z
(j)
± are calculated without algebraic mistakes, they must satisfy the formulae (21).

5 Quantization condition with subdominant terms – Example 1.

Notation. For a resurgent symbol φ we will write φ∼̂eα
h if −α is the location of the left-most nonzero

microfunction in the decomposition of φ, or, informally, if e
α
h is the leading exponential in φ. We will

denote by Ea the set of resurgent symbols or corresponding resurgent functions of exponential type
≤ a in h, i.e. of those whose majors have no singularities left of the vertical line Re ξ = −a.

In order to solve the quantization condition

(
1

1 + Erk

)2

− TrG0
1

1 + Erk
+ detG0 = 0 (22)

for the rescaled energy Er, it is important to understand the determinant and the trace of the matrix
G0.
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Figure 10: Contours defining τs for E > 0.

Take as the superpotential

f =
1

2π

[

sin 2π(q +
1

8
) + cos 4π(q +

1

8
)

]

, (23)

f ′ = cos 2π(q +
1

8
) − 2 sin 4π(q +

1

8
).

The critical points of f are all real in this case:

q1 = 1
8 f(q1) = 0 f ′′(q1) = 6π,

q2 = 3
8 − 1

2π arcsin 1
4 f(q2) = 9

16π f ′′(q2) = −7.5π,
q3 = 5

8 f(q3) = − 1
π f ′′(q3) = 10π,

q4 = 7
8 + 1

2π arcsin 1
4 f(q4) = 9

16π f ′′(q4) = −7.5π.

Now we are going to exploit the symmetry of the superpotential (23).

Lemma 5.1 Suppose f has two local minima q1, q3 and two local maxima q2, q4 and satisfies f(q) =
f(2q3 − q). Then

τ1 = τ4, τ2 = τ3, µ2 = µ4.

Proof. Observe that for E real, the equation Pψ = Eψ has two real solutions, i.e. those
satisfying

ψ(q̄) = ψ(q), (24)

therefore the same equality must be satisfied by any solution of this equation. Observe, furher, that
reflecting a contour δ on the Riemann surface of the classical momentum with respect to the real line
while keeping it on the same sheet of the Riemann surface changes the monodromy of a formal solution

satisfying (24) by a complex conjugation. (the monodromy changes from ψ(δ(1))
ψ(δ(0)) to ψ(δ(1))

ψ(δ(0))
= ψ(δ(1))

ψ(δ(0))
,

where δ(0) and δ(1) are the endpoint of δ.

When f is a real trigonometric polynomial, E > 0, h > 0, then τj ’s are also real, and so flipping
the contours (see fig. 10) defining them with respect to the real axis will give rise to the same formal
mondromies.

Now if we reflect an integration contour δ with respect to the point q3, we obtain an integration
path that we will denote 2q3 − δ. Notice that if ψ(q) is a formal WKB solution of Pψ = Eψ, then so
is ψ(2q3 − q), and both solutions correspond to the same sheet of the Riemann surface of the classical
momentum (because both are either exponentially growing or exponentially decreasing in the direction
away from q3 along the real line). Therefore, if we reflect a contour δ with respect to q3 while keeping
it on the same sheet, the formal monodromies along that contour will remain the same.
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The lemma follows from the fact that the contour defining τ3 can be obtained from that defining
τ2 by reflecting it with respect to q3 and then reflecting it with respect to the real axis. Analogously
for τ1 and τ4.

Similarly, sγ2 = sγ4 and hence µ2 = µ4 if f(q) = f(2q3 − q). 2

Recall that

G0 =

(
τ4(τ

−1
3 + 1) τ4(µ3τ

−1
3 + 1)

µ4τ
−1
3 + 1 µ3µ4τ

−1
3

)(
τ2(τ

−1
1 + 1) τ2(µ1τ

−1
1 + 1)

µ2τ
−1
1 + 1 µ1µ2τ

−1
1

)

and
TrG0 = τ4τ

−1
3 τ2τ

−1
1 +τ4τ2τ

−1
3 +τ4τ2τ

−1
1 +τ2τ4

+µ2µ3τ4τ
−1
3 τ−1

1 +µ3τ4τ
−1
3 +µ2τ4τ

−1
1 +τ4

+µ1µ4τ2τ
−1
3 τ−1

1 +µ4τ2τ
−1
3 +µ1τ2τ

−1
1 +τ2

+µ1µ2µ3µ4τ
−1
1 τ−1

3 +µ1µ2τ
−1
1 +µ3µ4τ

−1
3 +1.

(25)

Using the formulae for τk,

τ1 = τ4∼̂e−
9

8πhEr, τ2 = τ3∼̂e−
25

8πhEr,

and therefore we can write, loosely,

TrG0 ∼̂ 1 +Ere
− 9

8πh +Ere
− 25

8πh +E2
r e

− 34
8πh

+Ere
25

8πh +Ere
16

8πh +Er +Ere
− 9

8πh

+Ere
9

8πh +Er +Ere
− 16

8πh +Ere
− 25

8πh

+E2
r e

34
8πh +Ere

9
8πh +Ere

25
8πh +1,

by which we mean that, e.g., the exponential type of the summand τ4τ2τ
−1
3 is the same as the expo-

nential type of Ere
− 9

8πh and that, therefore, this summand contributes to the points corresponding to
Ekr e

− 9
8πh , k ≥ 1, in the Newton polygon of the quantization conditon (26).

5.1 Solving the quantization condition with subdominant terms

Since f has only two local minima and two local maxima on its period, the Witten Laplacian will have
only two resurgent exponentially small eigenvalues, one of them 0 and the other one will be denoted
hEr,∗. In this subsection we are going to calculate the beginning of the hyperasymptotic expansion of
Er,∗ using methods of [G08].

Rewrite the quantization condition (22) as

− 1

1 + Erk
+ Tr G0 − (1 + Erk) detG0 = 0. (26)

Represent the l.h.s. of (26) as a sum of powers of Er and e
1
h , namely,

− 1

1 + Erk
+ Tr G0 − (1 + Erk) detG0 =

∑

j,ω

ajωE
j
re

ω
8πh ,
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Figure 11: Terms in the quantizaton condition (26) for the Example 1.

and draw the Newton polygon of (26) on figure 11 as explained in [G08]. For the calculation that
we are going to carry out, only terms of exponential order ≥ 8

9πh will be important; in particular
contributions from the first and the third term on the l.h.s. of (26) are of exponential order ≤ 0 and
therefore need not be considered in detail.

In [G08] we explained that the leading exponential summand of (the hyperasymptotic expansion
of) Er,∗ is obtained by looking the the north-west edges of the Newton polygon, in our case that means
– by solving

a1,25Ere
25

8πh + a2,34E
2
r e

34
8πh = 0.

Thus, up to subdominant exponentials, Er,∗ ≈ −a1,25

a2,34
e−

9
8πh . To find exponentially subdominant

corrections, make a substitution

Er =

(

−a1,25

a2,34
+ E1

)

e−
9

8πh

in the quantization condition and solve it for E1 under additional requirement that E1 should be
exponentially small.

We re-express the quantization condition in terms of E1,

∑

j,ω

bj,ωE
j
1e

ω
8πh = e−

16
8πh

∑

j,ω

aj,ωE
j
re

ω
8πh

and plot the summands on the figure 12, where:

b1,0 = −a1,25, b2,0 = a2,34,

b0,−9 = −a1,25a1,16

a2,34
+ a2,25(

a1,25

a2,34
)2 − a3,34(

a1,25

a2,34
)3.
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Figure 12: Newton polygon for E1.

From the Newton polygon on fig.12 we infer

E1 = e−
9

8πh

(

−b0,−9

b1,0
+ E2

)

where E2 has to be exponentially small. The next step of this procedure and a Newton polygon for
E2 (which we will not draw here) yields E2 ∈ E− 7

8π .

Thus we need to calculate elements a2,34, a3,34, a1,25, a2,25, a1,16 of the Newton polygon, and there
the following four summands in Tr G0 that contribute to these elements, namely:

µ1µ2µ3µ4τ
−1
1 τ−1

3 = e
34
8h

E2
rπ

2

√

f ′′(q1) · |f ′′(q2)| · f ′′(q3) · |f ′′(q4)|
×

×
(

1 +
Erln h

2

[
1

f ′′(q1)
+

1

|f ′′(q2)|
+

1

f ′′(q3)
+

1

|f ′′(q4)|

])

(1 +O(h) +O(Erh
0) +Oh=fix(E

2
r ));

µ2µ3τ4τ
−1
3 τ−1

1 = −e
2[f(q2)−f(q3)]

h
Erπ

√

f ′′(q3)|f ′′(q2)|

(

1 +
Erln h

2
(

1

|f ′′(q2)|
+

1

f ′′(q3)
)

)

(1+O(h)+O(Er)h
0+Oh=fix(E2

r ));

µ2µ3τ2τ
−1
3 τ−1

1 = −e
2[−f(q3)+f(q4)]

h
Erπ

√

f ′′(q3)|f ′′(q4)|
×

×
(

1 +
Erln h

2
(

1

f ′′(q3)
+

1

|f ′′(q4)|
)

)

(1 +O(h) +O(Erh
0) +Oh=fix(E2

r ));

µ3τ4τ
−1
3 =

Erπi
√

f ′′(q1)f ′′(q3)
exp

{
2[f(q1) − f(q3)]

h

}

(1 +Oh=fix(Er) +O(h)).

The notation Oh=fix(Er) means terms that contain factors of degree ≥ 1 with respect to Er, regardless
of their degree with respect to h or ln h.

We have:

a2,34 =
π2

√

f ′′(q1) · |f ′′(q2)| · f ′′(q3) · |f ′′(q4)|
(1 +O(h)) =

1

15
√

15
;
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a3,34 =
π2

p

f ′′(q1) · |f ′′(q2)| · f ′′(q3) · |f ′′(q4)|

»

1

f ′′(q1)
+

1

|f ′′(q2)|
+

1

f ′′(q3)
+

1

|f ′′(q4)|

–

ln h + O(h0)

2
=

=
1

15
√

15

»

1

6π
+

2

7.5π
+

1

10π

–

ln h + O(h0)

2
=

4

152
√

15π
ln h + O(h0);

a1,25 = − π
√

f ′′(q3)|f ′′(q2)|
− π
√

f ′′(q3)|f ′′(q4)|
+O(h) = − 2√

75
+O(h);

a2,25 =

(

− π
p

f ′′(q3)|f ′′(q2)|

„

1

f ′′(q3)
+

1

|f ′′(q2)|

«

− π
p

f ′′(q3)|f ′′(q4)|

„

1

f ′′(q3)
+

1

|f ′′(q4)|

«

)

ln h + O(h0)

2

= − 2√
75

[
1

10π
+

2

15π
]
ln h + O(h0)

2
= − 1

5
√

3
· 7

30π
ln h + O(h0) = − 7

150
√

3π
ln h + O(h0);

a1,16 =
πi

√

f ′′(q1)f ′′(q3)
+O(h) =

i√
60

+O(h).

Proceed with the calculation:

r = −a1,25

a2,34
=

1

π
(
√

f ′′(q1) · |f ′′(q4)| +
√

f ′′(q1) · |f ′′(q2)|) +O(h) = 6
√

5 +O(h).

b0,−9 = a1,16r + a2,25r
2a3,34r

3 =

=

{

− 7

150
√

3π
[6
√

5]2 +
4

152
√

15π
[6
√

5]3
}

ln h+O(h0) =
18

√
3

5π
ln h+O(h0).

Remember that b1,0 = −a1,25 = 2√
75

+O(h).

Now, we have the first subdominant term in the spectrum. Namely,

Er = e−
9

8πh

(

−a1,25

a2,34
+ E1

)

=

= e−
9

8πh

(

−a1,25

a3,24
+ e−

9
8πh

[

−b0,−9

b1,0
+ E− 7

8π

])

=

= e−
9

8πh (6
√

5 + o(h0)) + e−
18

8πh (−27

π
ln h+O(h0)) + E− 25

8π . (27)

Remark. Calculaton of the next term in h in the above asymptotic expansions multiplying
e−

9
8πh or e−

18
8πh requires taking the integrals as in formulas (13), (14), which in our example can be

done by hand. Performing this calculation, however, did not bring the author any new insight.

5.2 Asymptotic expansion of the eigenfunction corresponding to the nonzero low-

lying eigenvalue.

We need to calculate two resurgent symbols A+ and A− that solve the equation

(F − Id)

(
A+

A−

)

= 0.

According to the equation (16), and since, when Er satisfies the quantization condition, FId is a rank
one 2 × 2 matrix, the question reduces to calculating [G0]11 − (1 + Erk)

−1 and [G0]12 in this case.
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Recall that
τ1 = τ4 ∼ e−

9
8πhEr; τ2 = τ3 ∼ e−

25
8πhEr.

Let us write down the exponential orders of the various summands in [G0]11 − (1 +Erk)
−1 and

in [G0]12. Namely,

[G0]11 − (1 + Erk)
−1 =

∼̂e−
9

8πh

︷ ︸︸ ︷

(τ4τ2τ
−1
1 τ−1

3 − (1 + Erk)
−1) +

∼̂e−
18

8πh

︷ ︸︸ ︷

τ4τ2τ
−1
3 +

∼̂e−
34

8πh

︷ ︸︸ ︷

τ4τ2τ
−1
1 +

∼̂e−
52

8πh

︷︸︸︷
τ4τ2

+ τ4τ
−1
1 τ−1

3 µ3µ2
︸ ︷︷ ︸

∼̂e
16

8πh

+ τ4τ
−1
1 µ2

︸ ︷︷ ︸

∼̂e−
9

8πh

+ τ−1
3 τ4µ3
︸ ︷︷ ︸

∼̂e
7

8πh

+ τ4
︸︷︷︸

∼̂e−
18

8πh

.

Thus, we have two main terms τ4τ
−1
1 τ−1

3 µ3µ2 and τ−1
3 τ4µ3.

Furthermore,

[G0]11 − (1 + Erk)
−1

τ−1
3 τ4µ3

= τ−1
1 µ2 + 1 +

τ4τ
−1
1 µ2 + (τ4τ2τ

−1
1 τ−1

3 − (1 + Erk)
−1)

τ−1
3 τ4µ3

+ E− 25
8π

and the third summand ∼ e−
16

8πh .

[G0]12 =

∼̂e−
9

8πh

︷ ︸︸ ︷

µ1τ
−1
1 τ2τ

−1
3 τ4 +

∼̂e−
18

8πh

︷ ︸︸ ︷

τ2τ
−1
3 τ4 +

∼̂e−
43

8πh

︷ ︸︸ ︷

µ1τ
−1
1 τ2τ4 +

∼̂e−
52

8πh

︷︸︸︷
τ2τ4

+µ1µ2µ3τ
−1
1 τ−1

3 τ4
︸ ︷︷ ︸

∼̂e
7

8πh

+µ3τ
−1
3 τ4

︸ ︷︷ ︸

e
7

8πh

+µ1µ2τ
−1
1 τ4

︸ ︷︷ ︸

∼̂e−
18

8πh

+ τ4
︸︷︷︸

∼̂e−
18

8πh

.

Main terms are µ1µ2µ3τ
−1
1 τ−1

3 τ4 and µ3τ
−1
3 τ4, and we have

[G0]12

µ3τ3τ
−1
4

= 1 + µ1µ2τ
−1
1

︸ ︷︷ ︸

∼̂e0

+
µ1τ

−1
1 τ2
µ3

︸ ︷︷ ︸

∼̂e−
16

8πh

+E− 25
8πh .

Put

(

Z
(0)
+

Z
(0)
−

)

=




1 + µ1µ2τ

−1
1 +

µ1τ
−1
1 τ2
µ3

+ E− 25
8πh

−(τ−1
1 µ2 + 1 +

τ4τ
−1
1 µ2+(τ4τ2τ

−1
1 τ−1

3 −(1+Erk)−1)

τ−1
3 τ4µ3

+ E− 25
8π )





Before writing down the explicit expressions for Z
(j)
± , let us derive the following consequence of

the quantization condition. Using the explicit form of Tr G0, assuming Er satisfies (26), and keeping
only the largest terms in (26), we obtain

(µ2µ3τ4τ
−1
3 τ−1

1 + µ3µ4τ
−1
3 ) + µ1µ2µ3µ4τ

−1
1 τ−1

3 = E 7
8π

which, taking into account τ1 = τ4 and µ2 = µ4, simplifies to

2 + µ1µ2τ
−1
1 = E− 9

8π (28)
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Now, applying formulas (17)-(20), obtain successively:

 

Z
(1)
+

Z
(1)
−

!

=

0

@

1 − µ1 +
µ1τ

−1
1 τ2

µ3
+ E− 25

8π

−τ−1
1 µ2 + µ1µ2τ

−1
1 +

µ1τ
−1
1 τ2

µ3
− τ4τ

−1
1 µ2+(τ4τ2τ

−1
1 τ

−1
3 −(1+Erk)−1)

τ
−1
3 τ4µ3

+ E− 25
8π

1

A ,

which is convenient to rewrite as
(

Z
(1)
+

Z
(1)
−

)

=

(

1 − µ1 +
µ1τ

−1
1 τ2
µ3

+ E− 25
8π

)( 1

τ−1
1 µ2

[

−1 +
µ1τ

−1
1 τ2
µ3

]

(1 + E− 25
8π )

)

.

(

Z
(2)
+

Z
(2)
−

)

=

(

τ−1
1 Z

(1)
+ + Z

(1)
−

µ2τ
−1
1 Z

(1)
+ + Z

(1)
−

)

=

= Z
(1)
+




τ−1
1 + τ−1

1 µ2

[

−1 +
µ1τ

−1
1 τ2
µ3

]

(1 + E− 25
8π )

µ2τ
−1
1 + τ−1

1 µ2

[

−1 +
µ1τ

−1
1 τ2
µ3

]

+ E− 16
8π





= Z
(1)
+




τ−1
1 + τ−1

1 µ2

[

−1 +
µ1τ

−1
1 τ2
µ3

]

+ E− 16
8π

τ−1
1 µ2

µ1τ
−1
1 τ2
µ3

+ E− 16
8π



 .

Remark 5.2 It is interesting to note that in the calculation of Z
(2)
− the contributions from the leading

exponential orders in Z
(1)
+ and Z

(1)
− cancel and the nonzero value of Z

(2)
− is due purely to subdominant

exponentials in Z(1). Neglecting these subdominant terms would break down the rest of the calculation.
This little algebraic detail is philosophically very important: it shows that constructing asymptotic
expansions of an eigenfunction of the Witten Laplacian on all intervals (qj , qj+1) must be difficult
without methods of resurgent analysis.

(

Z
(3)
+

Z
(3)
−

)

= τ2τ
−1
1 Z

(1)
+

(

(1 + τ−1
1 µ2µ1)(1 + E− 9

8π )

τ−1
1 µ2

µ1

µ3
(1 + E− 9

8π )

)

= τ2τ
−1
1 Z

(1)
+

(

−1 + E− 9
8π

τ−1
1 µ2

µ1

µ3
+ E0

)

,

where we have used (28) in the last step

Finally, (

Z
(4)
+

Z
(4)
−

)

=

(

τ−1
3 Z

(3)
+ + Z

(3)
−

µ4τ
−1
3 Z

(3)
+ + Z

(3)
−

)

=

= τ2τ
−1
1 Z

(1)
+

(

τ−1
3 (−1 + E− 9

8π ) + τ−1
1 µ2

µ1

µ3
+ E0)

µ4τ
−1
3 (−1 + E− 9

8π ) + τ−1
1 µ2

µ1

µ3
+ E0

)

.
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Figure 13: Graph of f(q) in Example 2.

6 Global expressions for the eigenfunction – Example 2.

Let f(q) be a trigonometric polynomial with two local minima and two local manima q1, q3 and two
local maxima q2, q4 on the period [0, 1], where 0 < q1 < q2 < q3 < q4 < 1. Up to shifting q by a
constant we can assume that q1 is the global minimum of f , and up to changing f(q) into f(2q1 − q),
that q2 is its global maximum. Changing further f(q) by an affine linear transformation f 7→ Af +B,
we can assume f(q1) = 0, f(q2) = 1

2 , f(q3) = b
2 , f(q4) = a

2 , where 0 ≤ b < a ≤ 1, figure 13. All these
transformations of f produce easily controllable changes in the eigenvalues and eigenfunctions of the
Witten Laplacian.

We will actually assume that the inequalities are strict:

Assume: 0 < a < b < 1, (29)

and will gradually put more restrictions on a and b more specific as we progress through this section.

In our situation

τ1∼̂Ere−
1
h ; τ2∼̂Ere−

1−b
h ; τ3∼̂Ere−

a−b
h ; τ4∼̂Ere−

a
h .

In order to find the two low-lying eigenvalues of the Witten Laplacian (one of which equals, as
we know already, to zero), we need to solve the same old quantization condition,

− 1

1 + Erk
+ Tr G0 − (1 + Erk) detG0 = 0. (30)

where Tr G0 has the same form as (25).

In the loose sense explained in the Example 1, we have now

TrG0 ∼̂ 1 +Ere
− 1

h +Ere
b−a

h +E2
r e

b−a−1
h

+Ere
1−b

h +Ere
− b

h +Ere
1−a

h +Ere
− a

h

+Ere
a
h +Ere

a−1
h +Ere

b
h +Ere

b−1
h

+E2
r e

1+a−b
h +Ere

1
h +Ere

a−b
h +1.

The Newton polygon corresponding to (30) will thus be as shown on fig.14, with the E2
r e

1+a−b
h -

term coming from the µ1µ2µ3µ4τ
−1
1 τ−1

3 summand, and the Ere
1
h term – from the µ1µ2τ

−1
1 summand.

We conclude that the nonzero low-lying eigenvalue will have the exponential type Er∼̂e
b−a

h .
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Figure 14: The Newton polygon of (30), situation of Example 2.

As G0 − (1 +Erk)
−1Id is a 2× 2 matrix of rank 1, a nonzero vector in its kernel is proportional

to ([G0 − (1 + Erk)
−1]12,−[G0 − (1 + Erk)

−1]11)
T , i.e. to ([G0]12,−[G0]11 + (1 + Erk)

−1)T .

For Er∼̂e
b−a

h , the exponential types of various summands in [G0 − (1 +Erk)
−1]11, [G0]12 are as

follows:
[G0 − (1 + Erk)

−1]11 = (τ4τ2τ
−1
1 τ−1

3 − 1)
︸ ︷︷ ︸

Eb−a

+ τ4τ2τ
−1
3

︸ ︷︷ ︸

∼̂e
−1+b−a

h

+ τ4τ2τ
−1
1

︸ ︷︷ ︸

∼̂e
2b−2a

h

+ τ4τ2
︸︷︷︸

∼̂e
−1+3b−3a

h

+

+ τ4τ
−1
1 τ−1

3 µ3µ2
︸ ︷︷ ︸

∼̂e
1−a

h

+ τ4τ
−1
1 µ2

︸ ︷︷ ︸

∼̂e
1+b−2a

h

+ τ−1
3 τ4µ3
︸ ︷︷ ︸

∼̂e−
a
h

+ τ4
︸︷︷︸

∼̂e
b−2a

h

.

(The first summand should typically be ∼̂e b−a
h , but it is conceivable that its exponential type is

actually smaller for a special choice of f .)

[G0]12 = µ1τ
−1
1 τ2τ

−1
3 τ4

︸ ︷︷ ︸

∼̂e
b−a

h

+ τ2τ
−1
3 τ4

︸ ︷︷ ︸

∼̂e
−1+b−a

h

+µ1τ
−1
1 τ2τ4

︸ ︷︷ ︸

∼̂e
3b−3a

h

+ τ2τ4
︸︷︷︸

∼̂e
−1+3b−3a

h

+

+µ1µ2µ3τ
−1
1 τ−1

3 τ4
︸ ︷︷ ︸

∼̂e
1+b−2a

h

+µ3τ
−1
3 τ4

︸ ︷︷ ︸

∼̂e
2b−3a

h

+µ1µ2τ
−1
1 τ4

︸ ︷︷ ︸

∼̂e
1+2b−3a

h

+ τ4
︸︷︷︸

∼̂e
b−2a

h

.

The two largest summands in the above formulas are thus µ2µ3τ
−1
1 τ−1

3 τ4 + µ2τ
−1
1 τ4 and

µ1µ2µ3τ
−1
1 τ−1

3 τ4 + µ1µ2τ
−1
1 τ4, respectively; so it is reasonable to take

(

Z
(0)
+

Z
(0)
−

)

=
1

µ2τ
−1
1 τ−1

3 τ4(µ3 + τ3)

(
[G0]12

−[G0]11 + (1 + Erk)
−1

)

.

There are too many summands in the entries of G0 for us to be able to get an enlightening
exposition, so we will artificially impose additional assumptions on (a, b). These assumptions will
help us select the dominant exponential, the first subdominant, the second subdominant, etc, terms
in every hyperasymptotic expression we are going to write down in a moment. There might be a
combinatorial structure to various inequalities between (a, b) we are going to introduce, but we are
not ready to comment on it at the present time.
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Figure 15: Values of (a, b) satisfying, from left to right, (31), (32), (33), (34).

Under
additional assumptions: a < 2b; b > 2a− 1 (31)

(first part of the figure 15), we can write

[G0]11 − (1 + Erk)
−1

µ2τ
−1
1 τ−1

3 τ4(µ3 + τ3)
= 1 +

(τ4τ2τ
−1
1 τ−1

3 − (1 + Erk)
−1)

µ2τ
−1
1 τ4µ3τ

−1
3

+ E−1+2b−a,

[G0]12

µ2τ
−1
1 τ−1

3 τ4(µ3 + τ3)
= 1 +

τ1
µ1µ2
︸ ︷︷ ︸

∼̂e
−1+a−b

h

+
τ2
µ2µ3

− τ2τ3
µ2µ2

3

+ E−1+2b−a.

Restricting further to

additional assumptions: 2a < 3b; b > 2a− 1, (32)

see the second part of the figure 32, we can absorb the boxed term into the error E−1+2b−a.

We conclude that

(

Z
(0)
+

Z
(0)
−

)

=




µ1

(

1 + τ2
µ2µ3

− τ2τ3
µ2µ2

3
+ E−1+2b−a

)

−
(

1 +
(τ4τ2τ

−1
1 τ−1

3 −(1+Erk)−1)

µ2τ
−1
1 τ4µ3τ

−1
3

+ E−1+2b−a
)



 .

Using (17),

(

Z
(1)
+

Z
(1)
−

)

=

(

µ1

(
τ2
µ2µ3

− (τ4τ2τ
−1
1 τ−1

3 −(1+Erk)−1)

µ2τ
−1
1 τ4µ3τ

−1
3

− τ2τ3
µ2µ2

3
+ E−1+2b−a

)

−1 + µ1 + E−1+b

)

,

with the following exponential orders of the ingredients of Z(1):

τ2
µ2µ3

∼̂e−1+a
h ;

(τ4τ2τ
−1
1 τ−1

3 − (1 + Erk)
−1)

µ2τ
−1
1 τ4µ3τ

−1
3

∼̂e−1+b
h ;

τ2τ3
µ2µ2

3

∼̂e−1+b
h .

We have
Z

(1)
−

τ−1
1 Z

(1)
+

= −τ1µ2µ3

τ2µ1
︸ ︷︷ ︸

∼̂e−
a
h

+Eb−2a,
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hence by (18)

(

Z
(2)
+

Z
(2)
−

)

=
µ1

τ1

(
τ2
µ2µ3

− (τ4τ2τ
−1
1 τ−1

3 − (1 + Erk)
−1)

µ2τ
−1
1 τ4µ3τ

−1
3

− τ2τ3
µ2µ2

3

+ E−1+2b−a

)(
1 + E−a

µ2 − τ1µ2µ3

τ2µ1
+ Eb−2a

)

where the coefficient in front of this vector nothing but τ−1
1 Z

(1)
+ .

The formula (19) gives
 

Z
(3)
+

Z
(3)
−

!

=
µ1

τ1

„

τ2

µ2µ3
− (τ4τ2τ

−1
1 τ−1

3 − (1 + Erk)−1)

µ2τ
−1
1 τ4µ3τ

−1
3

− τ2τ3

µ2µ2
3

+ E−1+2b−a

«

 

τ2 + E−1+2b−2a + µ3

h

µ2 − τ1µ2µ3
τ2µ1

i

+ E2b−3a

τ2 + E−1+2b−2a + µ2 − τ1µ2µ3
τ2µ1

+ Eb−2a

!

.

Under
additional assumption: b+ a < 1, 2a < 3b (33)

we have τ2 ∈ Eb−2a and therefore
 

Z
(3)
+

Z
(3)
−

!

=
µ1

τ1

„

τ2

µ2µ3
− (τ4τ2τ

−1
1 τ−1

3 − (1 + Erk)−1)

µ2τ
−1
1 τ4µ3τ

−1
3

− τ2τ3

µ2µ2
3

+ E−1+2b−a

«

 

τ2 + µ3

h

µ2 − τ1µ2µ3
τ2µ1

i

+ E2b−3a

µ2 − τ1µ2µ3
τ2µ1

+ Eb−2a

!

.

Finally, use (20) to obtain:
 

Z
(4)
+

Z
(4)
−

!

=
µ1

τ1

„

τ2

µ2µ3
− (τ4τ2τ

−1
1 τ−1

3 − (1 + Erk)−1)

µ2τ
−1
1 τ4µ3τ

−1
3

− τ2τ3

µ2µ2
3

+ E−1+2b−a

«

×

×
 

τ−1
3 (µ2µ3 + Eb−2a) + µ2 + E−a

µ4τ
−1
3 (τ2 + µ3

h

µ2 − τ1µ2µ3
τ2µ1

i

+ E2b−3a) + µ2 − τ1µ2µ3
τ2µ1

+ Eb−2a

!

.

Under one more

additional assumption: a <
1

2
; 2a < 3b, (34)

we have µ4τ
−1
3 τ2∼̂e

b−1
h ∈ Eb−2a, and the expression simplifies:

 

Z
(4)
+

Z
(4)
−

!

=
µ1

τ1

„

τ2

µ2µ3
− (τ4τ2τ

−1
1 τ−1

3 − (1 + Erk)−1)

µ2τ
−1
1 τ4µ3τ

−1
3

− τ2τ3

µ2µ2
3

+ E−1+2b−a

«

 

τ−1
3 µ2µ3 + µ2 + E−b

ˆ

µ4τ
−1
3 µ3 + 1

˜

·
h

µ2 − τ1µ2µ3
τ2µ1

i

+ Eb−2a

!

.

We will see now that the bracket [µ4τ
−1
3 µ3 + 1] in the expression for Z

(4)
− is not ∼̂e 0

h as would
appear from the first glance, but is of a smaller exponential type. Indeed, the quantization condition
(30) and the explicit form (25) of Tr G0 imply

(µ3τ
−1
3 + 1)µ2τ4τ

−1
1 + µ1µ2τ

−1
1 (1 + µ3µ4τ

−1
3 ) = Ea,

or
(1 + µ3µ4τ

−1
3 ) = −(µ3τ

−1
3 + 1)

τ4
µ1

+ E−1+2a−b ∼̂e− b
h .

Remark 6.1 Here we observe again the cancelation of the leading exponential terms and stress again
the importance of subdominant exponentials for the calculation of the asymptotics of eigenfunctions
on all intervals (qj , qj+1).
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Remark 6.2 2 There exist trigonometric polynomials f satisfying assumptions of figure 15, i.e. having
two local minima and two local maxima satisfying inequalities (31), or (32), or (33), or (34). Indeed,
one should take any Morse C∞ function f0 with two local minima and two local maxima satisfying
the inequalities, say,

f0(q1) < f0(q3) < f0(q4) < f0(q2); 2[f0(q4)− f0(q1)] < 3[f0(q3)− f0(q1)]; 2[f0(q4)− f0(q1)] < f0(q2)− f0(q1),
(35)

that are, up to shift and rescaling, correspond to the conjunction of (34) and (29). Then the Fourier
series of f0 will converge to f0 uniformly together with all derivatives, and an n-th partial sum fn of
that Fourier series for sufficiently large n will have critical points and critical values arbitrarily close
to those of f . Since our conditions (35) are open, fn will satisfy them for n large enough. With a
little more work one can produce a trigonometric polynomial with exactly prescribed critical points
and critical values. Alternatively, one can generate examples of trigonometric polynomials satisfying
(34) and (29) using a computer algebra system.

A Useful formulae

For A > 0 and E > 0 and E → 0+ we have the following asymptotics of various integrals:

arccosh (A/
√
E) = Ln 2A− 1

2
Ln E − E

4A2
+ o(E) (36)

∫ 0

arccosh ( A√
E

)
coshk tdt =







−arccosh (A/
√
E) if k = 0

−A2

2E + 1
4 + 1

16
E
A2 − 1

2arccosh (A/
√
E) + o(E) if k = 2

− A4

4E2 − A2

4E + 7
32 − 3

8arccosh (A/
√
E) + o(E0) if k = 4

− 1
kA

kE− k
2 − 1

2(k−2)A
k−2E1− k

2 − 3
8(k−4)A

k−4E2− k
2 + o(E2− k

2 ) if k = 1, 3 or ≥ 5

(37)

∫ 0

arccosh ( A√
E

)
sinh2 t coshk tdt =







−A2

2E + 1
4 + E

16A2 + 1
2arccosh (A/

√
E) + o(E) if k = 0

− A4

4E2 + A2

4E − 1
32 + 1

8arccosh (A/
√
E) + o(E0) if k = 2

E−1− k
2

(

−Ak+2

k+2 + AkE
2k + Ak−2E2

8(k−2) + o(E2)
)

if k = 1 or ≥ 3

(38)

The following formulae are simple integration by parts used in section 2.5.
∫

du

(u2 − E)3/2
= − 1

E

u√
u2 − E

;

∫
udu

(u2 − E)3/2
= − 1√

u2 − E
(39)

∫
ukdu

(u2 − E)3/2
= − uk−1

√
u2 − E

+ (k − 1)

∫
uk−2

√
u2 − E

du, k ≥ 2 (40)

∫
du

(u2 − E)
5
2

=
1

E2

u√
u2 − E

− 1

E2

u3

3(u2 − E)
3
2

;

∫
udu

(u2 − E)
5
2

= − 1

3(u2 − E)
3
2

(41)

2The material contained in this remark was explained to the author by Prof. A.Gabrielov.
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∫
ukdu

(u2 − E)
5
2

= − uk−1

3(u2 − E)
3
2

+
k − 1

3

∫
uk−2

(u2 − E)
3
2

du, k ≥ 2 (42)
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