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Abstract

The Witten Laplacian in one dimension is studied further by methods of resurgent analysis in
order to approach Fukaya’s conjectures relating WKB asymptotics and disc instantons. In this
paper more precise connection formulae are presented, which allows the calculation of a subdomi-
nant exponential term in the hyperasymptotic expansion of a low-lying eigenvalue. Calculation of
eigenfunctions corresponding to low-lying eigenvalues is presented in two examples.

1 Introduction

We are continuing the project started in [GO8], where we proposed to study the Witten Laplacian
by methods of resurgent analysis in order to prove conjectures by Fukaya [F05, §5.2] relating WKB
asymptotics and disc instantons. The reader is referred to the introductory section of [GO8] for
philosophy and motivation, as well as for a brief review of resurgent analysis.

In [GO8] we have shown, modulo standard black boxes in resurgent analysis, that for a generic
enough real trigonometric polynomial f(q) € R[sin27q, cos 2mq] with n real local minima and n real
local maxima on [0, 1), the Witten Laplacian

—h22+ () —hf", h—0+ (1)

has n exponentially small resurgent eigenvalues Fji(h) and that the corresponding eigenfunctions
ér(q, h) are resurgent with respect to h for ¢ & (f')~1(0). We have also presented a method of setting
up a quantization condition and solving it by means of an iterative procedure involving a Newton
polygon.

In this paper we perform calculations more explicitly. Firstly, we obtain asymptotic expansion
of the connection coefficients and of various formal monodromies to one more order in h, which allows
calculation of the first subdominant exponential in the hyperasymptotic expansion of eigenvalues, see
formula (27) in section 5.



Secondly, we show how our methods allow us to calculate (hyper)asymptotic expansions of
an eigenfunction of the Witten Laplacian (1) corresponding to a nonzero low-lying eigenvalue. If
q1,G2--, G2n, G2n+1 = q1 + 1, ... denote consecutive real zeros of f/(¢), note that for one and the same
eigenfunction these expansions will change discontinuously from one of the intervals (g;, gj+1) to the
next, due to the Stokes phenomenon. We calculate these hyperasymptotic expansions for two examples
of a function f(q) (sections 5 and 6). In remarks 5.2, 6.1 we put our finger on the specific algebraic
reason why methods of resurgent analysis are essential for such a calculation. This information about
asymptotic expansions of eigenfunctions is much more specific than the information about quasimodes
available through C*° methods (see, e.g., [HKNO04]).

The ability to perform explicit calculations developed in this paper will be needed in our future
work towards Fukaya’s conjecture. Remarks 5.2, 6.1 and computations leading to them may be of
independent pedagogical interest.

The structure of this paper, that is a continuation of [GO8] and uses its material freely, is
as follows. In the section 2 we recall the notation and calculate various monodromies of formal
solution of the Wittle Laplacian (2). In the section 3 we perform a more precise calculation of the
connection coefficients and of the tunneling cycle monodromies 7; than we did in [GO8]. A general
procedure of calculationg asymptotic expansions of eigenfunctions is recalled in section 4 and applied
to two examples in sections 5 and 6. In addition, for the example of 5, we have calculated the first
subdominant exponential in the hyperasymptotic expansion of the nonzero low-lying eigenvalue. The
paper concludes with an appendix containing a list of elementary formulae used in this text.

2 Formal WKB solutions and formal monodromies

2.1 Notation, cuts, signs, and branches.

Let us recall the notation of [GO8]. Let f(q) be a real polynomial in sin 27g and cos 2mwq, with n real
local minima qq, ..., q2,_1 and n real local maxima qo, .., g2, on the period, where 0 < ¢1 < g3 < ... <
Gon—1 < q2n, < 1. We require f”(g;) # 0.

In this section we will discuss formal WKB solutions of
Py = [=h*0; + (f')? = hf"]v = B, (2)

where FE is a complex number.

For E # 0 and |E| sufficiently small, the classical momentum p(q) = \/FE — (f’(¢q))? is defined
on a two sheeted cover of the complex plane of q. For E = 0, the two determinations of p(q) are
+/’(q), and one can think of the Riemann surface of p(q) as of two separate sheets having contact at
points ¢; where f'(g;) = 0.

The formulas related to formal solutions of the equation (2) can be established, for definiteness,
for £ > 0, and then analytically continued to other values of E, whenever appropriate.

In the standard terminology of the WKB method points ¢ satisfying [f'(q)]> = E are called
turning points of the equation (2).

When E > 0 and |E| is sufficiently small, the double turning points ¢; on the real axis for £ = 0
split into pairs ¢; < ¢; < q;r(< qj_+1) of simple turning points still on the real axis. The Riemann



surface of \/E — (f")? will be described as the plane with cut connecting q; to q;-r and going a little
below the real axis. To specify the determination of p(q, F) on the first sheet, we define Arg (E—(f')?)
for real values of ¢ on figure 1. As E' — 0, on the first sheet ip(q, E) — f'(q).

- + - +
q_l Arg E-(f")" =0 _ql qz. Arg E-(f') = -2n q_2
Arg E-(f')" =1 N\ S AgE(f)y = N\ i
cut cut

Figure 1: Choice of Arg E — (f')?

3 A monodromy of an elementary formal WKB solution along some path p(t) on a universal cover
C of C\{turning pts} is defined as 9(p(1))/4¥(p(0)) and will be denoted exp[27is,).

2.2 Formal solutions.

In order to find a formal WKB solution of (2), we will be looking for a series

y(h,q) = yo(q) + hy1(q) + h*y2(q) + ...

o (P—E) {exp {/q %W + y((/)dq’}} =0.

One can calculate y;’s recursively:

Yo(q) = U I
20E— (%  2E-(f)?
y (q) _ 5(f/)2(f//)2 B f/(f//)2 B (f//)2 B f/f(3) B f(3)
1 8i(E— (f)2)5/2  2(E— ()22 8i(E— (f)2)32  4(E— (f)2)32  4(E—(f)?)’

etc.

Let ¢4, ¢p_ be the formal resurgent solutons of
(=00 + '] = hf")¢ = hEyo (3)

corresponding to the first and second sheet of the Riemann surface, normalized in such a way that
$4+(qo0) = ¥—(go) = 1 and defined on the domains (complex plane with vertical cuts starting at ¢; )
shown on fig.2. The point ¢p can be an arbitrary point such that f’(q9) # 0, e.g. qo = 0,

In terms of ¢, ¢_ the transfer matrix and the quantization condition will be written, in the
same way as in [G08, section VIII].



q3 I I q2 I q4
% | 4 q, I q,
domain of ¢ domain of ¢

Figure 2: Domains of ¢4 and ¢_

2.3 Assorted Taylor series

Let g € R and f/'(qs) = 0. We will need to calculate various integrals along paths passing around or
near the point gy, and in this subsection we will set up the appropriate notation. For ¢ near ¢, the
substitution u = — f’(q) is one-to-one, and thus u can be taken as a local coordinate near gy.

Let us introduce the numbers a;(g;) (sometimes written as a; if the index ¢ is clear) by
1 1
—(a—q0) = aolqe) f'(q) + §a1(qe)(f')2 + gaz(qe)(f/)3 + o

In particular,
v £ (qe) o — FW(a) 3P (q))?
Flae)” T @l T 2 e 2P

ag = —

It follows then that

1 o0
Y :a(q)+a(q)(f)+a(q =
f (q) 0\4¢ 1\4¢ 2\q¢ Z(:)
and
f”(q) o f _ // qz Z a] gf// - // qﬁ Z aj ug f//

Introduce similarly the numbers b; = b;j(q,) by the requirement that

—f" = bo(qe) + bi(ge)u + bage)u® + ...

should hold near ¢y. In particular,

FO (q)

O (q))? = 1" (q0) f P (q0)
f"(ae)’ '

b= 2077 (a0

bo=—f"(qe); b1 =

We obtain by differentiation
V= (= fY L),
j=0
We will also use that for e small enough and A = —f’(q, — ¢),

fa) - fa—a= [ fla dq—/ Doyl =3 (1
qe—¢€ j=

Jj=

AJ-I—?




2.4 Calculation of [ yo(q)dq.
J

The path o; is defined for EF > 0 as starting at g; — € on the first sheet, going under the cut between
a; and q;f, and ending at g; — € on the second sheet; the path a} is obtained from o by interchanging
the sheets, figure 3. It was shown in [GOS8] that

_omi 27is s
Zﬂzsgl — a1

(&

Figure 3: Paths 01 and o}.

Recall that Lo Y
wle) = - /
2(E = (f")?)  2i/E—(f)?

Lemma 2.1 We have

/_?JO(Q)dq = arccosh (_MJ\/JE_ED _ %i’ j odd:
fla—e) _mi
VE 27

where the branch of arccosh is chosen so as to coincide with the principal real value of of arccosh for
E >0 and q; — € on the real axis immediately to the left of qj -

/ yo(q)dg = —arccosh

J

J even,

PROOF. Let us do the case of j odd. Integrating the first summand in yg, we have

P T
[, =yt = =it (B 0P

To integrate the second summand, use a substitution u = — f'(¢) and A = —f’(q):

0o

/ —f”(q) = — 7fﬂ(q) dqg = —/ﬁ 7(—du) = —arccosh —
o 2i\/E — (f7)2 o 2/ (f)2—E A Vul-E VE'

(In the second term of this line the arithmetic square root is meant when E > 0 and when ¢ is real
immediately to the left of qj_) Subtracting the latter value from the former, obtain the statement.
The case of even j is treated similarly. O



o u=A

Figure 4:

2.5 Calculation of [ v(q)dq
J
We begin by calculation [ y1(g)dg.
Recall that

(@) = — 5(9 (M UM (f")? W 1@
Y= T im— (1252 20E— ()22 si(E— (f)2)%2 4i(E— (232 4(E— (f)2)

()

In the integral f y1(q)dq let us make a substitution v = — f/, write —f” = by + byu + byu? + ..
and put A= —f'"(q1 — 6) Then

/ yi1(q)dg = / BEp DL +u25‘;°bjuj L b
o o Si(E—u2)p2 T 2(E—u)?  Si(E — u?)3

_uzgo'io(j + 1bju/ D ieoli + 1)bj1u? du
4i(E — 2)3? 4(E —u?)

. b * o(GH+Db 10l . . . . . .
Since UE(:EZ (LQ)U + ZJ*ZEZ:ZQJ;FW is a full differential of a function univalued in u, this part of

the integrand can be dropped, and so

/ yi1(q)dg = / 75U2 2 bt _ 20 b 7 >jq Jbju! "
o1 o 8Z(E—u2)5/2 8Z(E_u2)3/2 4Z(E—u2)3/2 .

We prefer to rewrite the denominator in terms of (u? — E)l/ 2 which is positive for u real, v > V/E and
close to the beginning of the path o, and negative close for u close to the end of o:

/ (q)dg = / bu” 330 bjwd 3301+ 2)bju

Integrating by parts twice using formulae (39)-(42), obtain

5% Bt
dg = — =1=—/ 71
/U1 y1(q)dq 24(u2 — B

b w

w2 —

do

Uu.

_i@_j)bj bju~! Zaz J_l)bujz
24 (u2— 1/2 E)L/2



The first three summands give

53720 bi AT g A Y5212 = j)b ATt

12(A2 — B2 T GE(A2_R)2 T 12(A2— E)I/2

Performing the change of variables in the fourth summand, « = v/E cosht and using (37),

Z =0 J + 1 ]b]-I—Q] 1 > . i
/ = dq = E Zl(] + 1)bj+2A] + O(EO)
]:

Vu? —E
Thus,
53520 bi AT g A d5e1(2 = )by AT 1 -
— = -0 = il J 0
/U1 (q)dq = 12(A2—E)3/2+6E(A2—E)1/2+ 12(A2 — B)1/2 2;]4-1 bj2 A’ +0(E")
= *bQ-I-be—i-le AT72 4 o(EY).
6F

J_
Note that the error term o(EY) in the previous formula cannot be simply replaced by O(E'), as terms
of order F'In F can also be present.

Analogously,

_ i 2 1 = Jj—2 0
/a yi(a)dg = 5ba(az) — 2; 9)AT72 + o(EY).

/
2

2.6 Monodromy around the turning point

Let 7y (resp., ;) be a counterclockwise loop enclosing both points ¢, and q,': on the first (resp.,

: 2mis_,
second) sheet of the Riemann surface of the momentum (figure 5), and denote €™ and e 7k the
corresponding monodromies of formal WKB solutions along these loops. From [G08, Lemma V.2] we
know that

Sy, + sy = —L (6)
Proposition 2.2 We have

1 TE n mas(qr) E?
Sy = —
"oomh | (aw) 4

+o(E*| =14+ 0(h),

where

FD(q) 3 (qw)]?
2[f"(a)* 2 [f"(aw)]®

PROOF. For concreteness, we will prove the statement for £k = 1. With the notation for the
formal solution introduced in section 2.2,

mis,, = / [ VE — ()2 +yo(q") + hyi (¢) | dg’ + O(R?).

az(Qk) =

7



Figure 5: Paths 7 and 7.

We will now separately compute the integrals of the three terms involved.

Step 1: wy, = [ /E = (f')?dq = — 7 E O(E?).
Write f'(q) = f"(q1)(q¢ — @) + (¢ — q1), where (g — q1) = O ((¢ — q1)?).

So, using the formula

0, k odd
]{uk\/mclu = { o= phi )

(k+2)1 k even

obtain (under the usual substitution u = —f’, —# =>"%° s ar(—1)*u* and using that f'(¢") = VE,

SOq:qTHu:—VE’q:ql_(_)u:\/E_)
VE

E— (f/)qu = 2/ M(ao —a1u+a2u2 — )du =
7 —VE

(k — 1 1 TE  TmasE?
p (k= N = 2_F 2— F? E?) = — E?). (7
Z k—i—2 7mk 5 mTag+ 5.4 7ra2+0( ) f”(Q1) 1 0( ) ( )
k even
Step 2: A calculation showing that
f/f// f// )
yodq = j{ dq — — = —2mi
f[; a {2<E U 2B ()
is completely elementary after the substitution u = — f’(¢) in the integral.
Step 3. Let us calculate the integral of y; around ;. Make a change of variables u = — f” and
proceed analogously to section 2.5.
5u? >0 bjul > i1+ 2j)bju’
/ yi(a)dg = / 2 5/2 2 3/2 -
" o | 8(u?—E) 8(u? — E)
> 2a(2 - ] (j — Dby ?
du =
/ E)1/2
2 (J=2)(—1) (j—3)” g1 (2k — ! 0
=2 b; B = = bop B ' ——— = o(F
> 3-8 (j—2) 12Z B = = oF)
2hk=j>2 E>2
Here use the formula that ﬁy \/% —on Ek/2 (k 1) for even k.

Adding up the three integrals concludes the proof. a



In the sequel we will also need the following microfunctions 4; that will be by abuse of language
identified with their asymptotic expansions with respect to h:

pj = 1—€e, jodd; pj = 14 e 2™ j even.

Using Proposition 2.2 and performing routine simplifications, we obtain that for odd j,

_ Emi as(q;) " (q5) i
and for even j
, _ Em az(g;)[ " (g5)] _ i 2 2
il E=hE, = \f"(qj)|(1 + i hE, 2|f,,(qj)|Er)(1 + O(E?) + O(h?)). (9)

2.7 An application of the Stirling formula

The calculation in this subsection is done for fixed £ > 0.

We have calculated earlier that s,, = ;%L — 1+ B1h, where 81 = 11+ O(h) and 811 = O(E).
Since —s., has a positive real part which goes to infinity as h — 04, we can apply the Stirling formula
to I'(—s,, ) to get

V2mhn +3 V2mhm +3

D(—8y,) (_871)—5“71_% cesn - /2m - (1 — 12571 + O(h2))
A few routine steps of simplification bring us to
1
\/ﬂhs'yl‘f'g _ eXp{ 27rh (1 + O(hQ)) (10)
F(_S’yl) (_wi)*erQ —B1h (1 _ zh ) )
2 By,

where (1 is O(F) and therefore

J?h571+2 _ exp{—5} (1+ Op—si(h?) + O(h)O(Eln E)). (11)
(=s7) (~m) =t (g o)

2.8 Monodromies from ¢; — ¢ to g1 —e.

Define M;, M j’ to be the monodromies of the formal WKB solutions along the paths shown on figures
6 and 7, where M are taken on the first sheet of the Riemann surface of the classical momentum and
M; on the second. Note that in [GO8] we denoted M;, M} by Aj;, A%.

Lemma 2.3 We have:

M )~ fla =)l E eI dg [f"(a; — )| (g =P~ B
My = © p{ h 2h (g;—€)1 fI(Q)} ‘f QJ+1 —¢€ | QJ+1 _5 EX

ex E _ E [ (@541 —¢) _ f"(qj —¢) 2 2 2
<o 7y =9F 0 =T Mo =9 = Ata ) (HOE OO +00)

where f qj“ ) means that the integration path lies on the first sheet.



q.€

q;f/*{‘J?'El q-¢

contour for M., j odd contour for M':, jodd

Figure 6: Integration contours defining M; and M J’», j odd

q-€ 9.¢ ge > 4. E
J o ] ° e E
AN / :
-/ : o
contour for Mj ,j even contour Efor Mj , j even

Figure 7: Integration contours defining M; and M J’», J even

ProOOF. We will present the argument for M;, it will be the same for all odd j and very
analogous for even j.

We have

(g2=€)1 [
My = exp { L VE P et 4 (@) dos o<h2>} ,

q1—€)1

where [, (qz:a)l means that the path of integration is chosen within the domain of definition of ¢ and
(1—e)1 +

determinations of the square root are taken as on the first sheet of the Riemann surface of the classical
momentum. We have:

(q2—¢ Q2—c

i )1 - i
. VE=(Pda= |

(1—)r

Fa)(1~ § s )da + O(E?)

E
(f'(9))?

1—€

- (o= ra-a -5 [* o).

(g2—¢)r1 (g2—e)1
/ Yo(q)dg = /
(q1—e)r (1—e)r

the first summand yields

/(‘12—5)1 Ld B 1 E— [f/(CD - 5)]2
(

In the integral

f/fl/ B f/l dq
20E— ()  2i/E— ()2

vy 2B (DM T T E [l o

and the Ln is analytically continued in the domain with a cut located as on the first sheet.

=i O G ae) ) =5 i e )

10



and the second summand

D S L 1 B 2y _

/qlg % E_(f,)2d qls oF <1+2 >dq+O(E) —
1 f’((p—€)> E [T 2
= 7L + O(F
(f’(Q1—€) [f’(Q)] g=q1—¢ )

— llnM_ﬂ + E + O(FE?).

(=@ —e)] 2 [f’( @ -8 8[f(a—e)?
Using (5) and replacing each summand by its limit for £ — 0,

(g=q2—¢)1 =qo—¢ N2 ([ £11\2 1( £1\2 AV 1 £(3) (3)
/(“ yl(q)dq:/qq {_5(f)(f) PR UM f }dqw(E):
q

8(f1)° 20/ 8(=()?)  4A=(1)?) A=)

q=q1—¢€)1 =q1—¢
_ q=q2—¢ _(f/l)Q f(3) B f// q=q2—¢
. { (77 Ay }dqw( )= s, O
Hence

B _e[f(qz e)—flag—e) A ;iqq [—f"(qn —&)] ,JIf'(n—¢e)?—F

M= f“\/ a2 —2) \/[f'<q2—e>]2—EX

E _ E (g2 —¢) B (1 —¢) 2 2 2

X exp [8[f’(q2—8)]2 o —of  "S e -7 @ _5))4 (OB /RO FO(ER)+OR)

which completes the proof for j = 1. O
Lemma 2.4 We have:

{—[f(qj+1—€)—f<Qj—€>] B[l dq} |f/qm_€| (g — )

M, = exp X

+ =
’ h 2h (gj—€)11 f'(q) Lf'( q; — €) [f/( q]+1 —&)] E

xex [ v F
P8Pl — P S (g — o)
where f(qJ“ I means that the integration path lies within the domain of definition of ¢_, fig.2,

qj€

] (1+ O(E?/h) + O(E?) 4+ O(Eh) 4+ O(h?)).

right.
Two neat formulae easily follow from the above calculation:

Corollary 2.5 We have

MM, M, = exp @lém » fd(q)> (1+ O(E2/h) + O(E2) + O(ER) + O(h%)),

or

E, d
MM, M, | ponp, = exp (74 ,q) (14 O(E2h) + O(h?)),
2 2nd sheet f (Q)

where 9§2nd sheet €ANS that the integral is taken along a loop from some qo to qo + 1 along a loop lying
within the domain of definition of ¢_.

11



Corollary 2.6 We have

2n

_ E dq
[T 24, 0 = exp 2‘ T 7{ —_ % (14 O(E?h) + O(h?)),
. J J ‘f” 1st sheet f/(Q) ( ( ) ( ))

E=hE,

where f]st sheet Tv€ANS that the integral is taken along a loop from some qo to qo + 1 along a loop lying
within the domain of definition of ¢ .

3 Connection coefficient across the double turning point.

We will repeat here the formal calculation of the connection coefficients across the double turning
points by the exact matching method done in [G08], while pushing it further to one more order in h.

We will keep the notation the same as in [G08, section VII|, except that the connection coeffi-
cient called ¢; in [GO8, section VII] will now be denoted ¢}, consistently with the notation of [GOS,
sectin VIII]. With this minor difference, we refer to [GO8] for notation, terminology, explanations,
and literature references relevant to this calculation. We will solve the connection problem in two
representative cases — for the double turning point g; where f(q) has a local minimum, and for the
double turning point ¢o where f(¢) has a local maximum; similar results will hold for other real local
extrema of f(q).

3.1 Exact matching method around ¢.

Let us consider two formal solutions ¢4 (g, h) and ¥_(q, h) of (2) corresponding to the first and to the
second sheets of the Riemann surface of the classical momentum and normalized in such a way that
Yi(q1 —e) =1_(q1 —e) = 1, where ¢ is a small positive number.

Figure 8: Notation in the exact matching method around ¢;

For E a positive real number, the actual solution of (2) represented by 1 in R is represented
by 4 +cj_ in R”. We know that ¢} corresponds to the analytic continuation of ¢4 along a loop
o1 with base point ¢; — e around the simple turning point ¢; (£), figure 8, i.e. the Stokes phenomenon
transforms v into

7!)+(Q7E) + C,I(E)@D*(QvE) =
h571+2

[(=s4,)

12

= ¥4(0,B) + V2rg——()“(B)v- (g, E),



where ¢} is the monodromy of the formal solution along o1:

¢ = exp [/Ul dg {25((1, E) + yo(q) + hy1(q) + h*ya(q) + H :

and where we have denoted
( )Ted ) 27Th8“/1+2 /
c _—c
! ['(— 371)
For E = hE, we will obtain

hSm +3 2

¢+(Q7hET) + ﬁr( 5’71)

()" (hEy)p—(q, hEy).

E=hE,

Remark 3.1 This passage to the limit and replacing £ > 0 by hAE, has been used in two pa-
pers [DDP97] and [DP99], but ideally it would need a more solid mathematical justification. The
first issue is purely algebraic: one has to show that the coefficients in the asymptotic expansion of
(c’l)"ed with respect to h are analytic functions of E near the origin, or, equivalently, that all infinitely
many coefficients ©;, j € Z, j > —1, from (12) are analytic in E near the origin. This problem is
known in the literature as the Sato’s conjecture. For the Schrédinger equation with the harmonic
oscillator potential the similar result has been shown in [SS06], and the case of a general potential
may perhaps be proven using reduction of an arbitrary potential well to a harmonic oscillator using
methods of [AKT09] and references therein. * The other issue is analytical: we are not dealing here
simply with analytic continuation as h is not a number but a formal parameter, and the functions are
not honest analytic functions of A but equivalence classes of those modulo adding a function of h of
subexponential decay for h — 0. We hope that these technicalities will be resolved in due time.

Denote
- Z/ VE—(f)2dg, Ay(E) = / yr(a)da,
thus ) :
d(E) = exp {2AS(E) + Ayo(E) + hAy,(E) + O(hQ)} .
Denote further

())UE) = exp{z We;(E)} = exp{ O_1 + 6y + hO, + O(h?)}. (12)
j=—1

Recall that the Stirling formula (10) gives:

mhints 11 wy w 1 w
T A ()] e (52)
T(—sy,) P h[ 27r+271' o)l T2 T ) T

where the notation Op—y;; means that the estimate is valid for every fixed £ > 0. In the above
formula the LHS is a true function, and the RHS its hyperasymptotic expansion valid for £ > 0 and
for h in a small sectorial neighborhood of zero in the positive real direction.

+Op-ia(1?) + O(EIn EJn}.
6w71

"We thank Shingo Kamimoto for pointing out to us both of these articles. We thank professors Aoki, Kawai, and
Takei for explaining the result of [AKT09] and its significance.
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Let us now calculate ©_1, g, and O;. Begin with ©_.

O =AS+ L npy, [—ﬂ} .

27 2 2
We have
a
AS :/ iv/E — (f)2dg = 2/ V()= Eldg =
g1 q1—¢

(change of variables u = —f', u = V/E cosht, A = — f'(q1 — €); a; = a;(q1) were defined in section 2.3
)

= —22(— a]/ w/u2 — Edu = —22 Ja;/ B3+ cosh? ¢ sinh? tdt =

j=0 arccosh (A/VE)

(use (38), (4) and (36) )

= 20fa) — flan -2 +aol—o - B 2~ By BB B 24,

IR Y/ P JE  4A? T T 16 T NN

: AE  ATT2E?
+ (—l)Ja-<— —— )+0 E?,
j_§>3 N AG-2) (=)

and hence
S 2[f(q1)—f(q1—¢)]—apELn (24)+ L AQE > (1) Lpipy Lt _pa—ly

1= — —e)]— n ag— —as—FE — (= -

! I 0 KV R j 4G -2)
B o) + 25 2 ) - s oln 24+ o(E2)
2" (q1) n 16 8 n S i o

The expressions for ©p and ©; are easier using formulas from sections 2.4 and 2.5, we obtain:

A ; 1
Oy = arccosh — — m + -Ln <_ﬂ) _

JE 2 2 P
_ £ om 1 1 aaf'(@)E
= L1r12A—4142 5t [Ln(2f”( )) 1 ]—l—o(E),
and
_ T o _ 1 L f"(q1—¢) as[f" (q1)]?
O = [ mn g el = g g e )

By lemma 3.6, this o(E°) is actually O(FE).

As we pointed out in Remark 3.1, there must be a conceptual way of proving analyticity of
©;(F) near E =0 for all j > —1; for now we will prove analyticity of ©_;, 00, ©; directly in section
3.3.

14



Note that the infinite sums appearing in the expression for ©_; for specific f(q) can be evaluated
by integration:

AVITARIYLT EEEY S S i ()
;aj( Y jA B /ql ( f'(q) Of’(q))dq’ (13)
s 1 af) af(@ el
Za’ A - / [ TP P TR w4

Substituting E,.h for E in the results that we have just obtained and using

1 E,

5= "3y 3" O(h*) + O(E,h),

Syi|E=E,h +

we get:

mh*%*%W(EhHO(hz)
T(;Z—~ + 1+ O(hE,) + O(h2)

1
C/I‘E:hEr = ) exp (h@_l + @D + h@l + O(h2)>

2f”(q) E=hE,

Er 1
Srh 2 2 1
ATl ouene) (o +ofsan s o 05

Finally, we will use the well known formula

1 1 1 5 5
= = —(t+~t %)) =1+t +o(t t
i+ — w0 St +O(%)) =1+ qt +olt), as t—0,

where v = 0.5772... is the Euler-Mascheroni constant, and obtain

Proposition 3.2 For the differential equation (2) with E = hE, the connection coefficient ¢} equals

I o E,
¢y = —iV2rh 2@ (1—1—7 )X

21" (q1)
2[f(q1) — fla — €)] E, 2-f(0—2)] < Y
p{ h F )™ T A Z =P e

22 a -

_bi B 1 f//(ql _ E) f//
i )]
x (14 O(h?) 4+ O(E.hln h) + O(E2h) + O(E2 ),

where a; = a;(q1), ba = ba(q1) were defined in section 2.5.
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Figure 9: Notation in the exact matching method around ¢

3.2 Exact matching method around ¢,.

In this subsection, two formal solutions 14 (g, h) and ©_(g, h) of (2) correspond to the first and to the
second sheets of the Riemann surface of the classical momentum and are normalized in such a way
that ¥4 (g2 —€) = »_(g2 — €) = 1, where ¢ is a small positive number.

For E a positive real number, the actual solution represented by _ in R is represented by
_ 4 cop+ in R, where co1p4 corresponds to the analytic continuation of ¢_ along a contour ¢/ with
base point g — ¢ around the simple turning point ¢, (E), figure 9. Thus for £ = hE, the connection
coefficient ¢y is the limit of the formal monodromy along the path of. In other words, the Stokes
phenomenon transforms ¢_(q, F') into

S’Yé+%
(B)6 (0 ) + 0-(0.F) = Vg (D) (0. F) + V(0. D),

gt
where

Co = exp [/ dq {25(% E) +yo(q) + hy1(q) + 0(h2)}]

and where cged analytically and regularly depends on E. With the same caveat as in the previous

subsection, we will substitute £,.h for ¥ and obtain

s /'i‘l
h 2
co(hE )Y (q, hE,) + ¥_(q,hE,) = V2r

P(—S%)

AURENY1 (¢, hE,) + — (g, hE,).
E=hE,

Together with calculations of the monodromy of the formal solution along the contour o%, we
will use the following asymptotic expansion valid for a fixed F > 0 and derived from the Stirling
formula: The Stirling formula (10) together with (6) give:

I(—s

1

V2rhh T2 1wy, wy, w 1 w T
-~ falll Bt Rt 3 it N R k20 N e (B2 Eln E .

) eXp{h [27r o (%ﬂ 2" (27r> My T OE=tialh") +O(Eln )h}

Introduce ©;’s for j > —1 by formula

1
cged = eXp{E@_l 4+ Op+ hO1 + }

16



and so, similarly to the previous subsection, with A = —f'(¢g2 — ¢), a; = a;(¢2), bj = bj(g2), we have

w. w.
0. — i Edg — 2 “rer (ﬂ)
1 Z/J/p(q, )dq 2 +27r 5

2
E2 <Ea0 E2a2> ag
Ln

sz T\ 72 T

= QScm't(QQ> + Fapln (—2A> — ag 9

A2E E? E? i /1 1 A
+as —ay s oy Lo (-24) + B > a(-1y <,AJ+,AJ—2E>+O(E2);
2 16 P J 4(j - 2)
1 w.
Oy = E)dg — -L <£> -
0 /05 yo(q, E)dq sl (5
S P B T G2 N 2 a2|f//(QQ)|'E+o(E)‘
2/f"(qo)] 447 8 ’
™
O = [ waBds + 57+ o)
o! V2

2

= — — § S AT—2 a2 0
@1 b2 : bjA + O(E )

Now we are almost ready combine these formulae and calculate

/+2

CQ(hET) = mlfl(iS/)

red(hE )
E=hE,

Notice that when E, = 0, then e~/(@/" is the formal solution of (2) corresponding to the second sheet
determination of the classical momentum, and also the actual solution of (2), and therefore for E, =0
the connection coefficient ¢, must vanish. This implies that 1/I'(—s.; ) is divisible by E,. Hence, using

S”Hé sz( )+1+0(E2)+O(hE)
we can write ) . E2
s - ,
[(=sy) 21" (q2) + [2f”((p)] + O(E3) 4+ h x O(E,).

Finally, we have obtained:

Proposition 3.3 For the differential equation (2) the connection coefficient co equals

=2 ey T Er E} 3 2
= V2rh? () T3 ( i) T B + O(E?) + O(h*)O(E,)) x
xexp[Q_f((Jz) +hf((I2 -g) (1+ fﬁ;))ln f/f(g% +E. Zaj g2 —¢€))? —Ln i]x
X exp [h ( Zb (g —e)) ™2 — W +0(E0)) + O(h?)

where aj = a;(q2), by = ba(qe) were defined in section 2.3.
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3.3 A partial proof of analyticity of (¢}),eq

The purpose of this section is not to give a full justification of the methods, but rather to prove some
results confirming that our approach is consistent and makes sense.

Lemma 3.4 The quantity
O = AS+ 2 Dnyy (-
27 27

s analytic with respect to E in the neighborhood of zero.

Wryy
2

]

PROOF. We need to show that the term containing In E in AS cancels %Ln E. Indeed, we
have seen that

00 vVE 0 0
S =-2 Z(—l)kak/ uF\/u?2 — Edu = -2 Z(— kak/ B3 cosh ¢ sinh? tdt
k=0 A E—0 arccosh A/VE
o0 0 x
= -2 Z(—l)’“ak/ 2 R 22t (el 4 e R (et — e7h)2dt
k=0 arccosh A/VE

Writing the integrand as the sum of exponents and integrating, we realize that only the summand
e dt will eventually give rise to a logarithmic singularity for £ — 0. Writing reg(E) for an arbitrary
function that is analytic with respect to E near the origin, we have:

O, = reg(E) — 2 Z az; / THTREITNC — 20, + Ot
k=2j=0 arccosh A/\F
= reg(E) Z ag2” 2jEJ'H( )'(1— J )arccosh (i) =
Mol 35! j+1 vVE
= reg(F Z agj E’HLnE

k=2j=0

The singularity that comes out of S2Ln E is the same by formula (7). O
Lemma 3.5 O is analytic for E around 0.
PROOF is obvious from (36) and proposition 2.2 O
Lemma 3.6 O is analytic for E around 0
PRrROOF. The fact that ©; has no pole (i.e. %) singularity has been demonstrated in section 3.1.

Now let us check that all logarithmic singularities E*Ln E are absent in ©; as well. The question
reduced to identifying the logarithmic singularity in the integral along the contour o, fig.4:

/Z] —olJ [ Jbjralu’

VuZ —FE
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0

1 o~ .
= — Ez(j+1)[—jbj+2]/ cosh’ (t)dt =

12 ; arccosh (A/VE)

1 j S (i
reg(E) + o5 E3(j + 1)[~jbj42]27 7OV (—arccosh (4/VE))
j=2k>0
(2k + 1!

= reg(E ZEkb2k+2 1! Ln E.

)H

k:>0

The logarithmic singularity in the k' term of Ln ‘/%h S:) d comes from —GLn (—%), i.e. from

—0OLn E, where
1 I & 2k —1)1
_ - Ek‘ 17'
0= /71 pida =57 > bt o 4!

k>2

That means that EFLn E terms in ©; cancel for all k. O

3.4 Calculations of 7s

We define
foroddj: 7, = c;chMj*lMJ{,

> . . _— . , . / -
for even j: 7; = ¢;cj 4 M;(M;)

Calculation of 7. Using lemmas 2.3, 2.4 and propositions 3.2, 3.3, and inserting £ = hE,
into the corresponding formulas, obtain after routine simplification:

2f(t11);f(q2) Erﬂ' N 2f”(q1)+2f"(q2) (1 I ’}/ E, E, )

@) @) @) 2

B 2=fq—¢ : ba(q1) | a2(q)(f"(q1))?
X exp f”(Q1)ln *f”lql Zaj q1 g —e)) +h( 2121 L 2l g 1 )

E, 2 - | ) o
X exp e 1 f% Za] qz g —¢)) +h< 21(32) _ a2(<]2)[2]‘;1 (g2)] > y

(@2-9)1 g4 TiE
E, / + J
(g1—e)1 f'(q) f"(q1)

Here f o)1 " denotes the integral along a path lying within the domain of definition of ¢, fig.2.
Formulae for other 7; wih odd j are analogous.

T =

(1+ O(E?%) + O(E,.hln h) + O(h?)).

X exp

Calculation of 7. Analogously,

flag)—f By
o2 (qs)h (a2) EﬂT B (0 f”(qg)(l +q E, i E, )><

VI @) F(as) 2 /"(ga)| 2" (qs)

Ty =
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E, 2f (QZ —6 . 1 CLQ(C]2)[f”(q2)]2
X exp —f//(q2)1 er Zag 6]2 (g2 —¢)) +h<1252(q2) _ 24) o

E, —2f qs — 5 . bQ(QS) (12(Q3)(f”(q?,))2
exp f”(qg)ln \/W Za] CI3 Q3 — 8)) +h <_ 13 + 5 >

(g3—e)r dq TiE, ) )
X exp {—ET /q2 § (o) - Fa) } (1+O(E;) 4+ O(Eyhln h) + O(h?)),

and similarly for other 7; wih even j.

In a calculation of these monodromies for a specific f(g) we can use formula (13).

4 A procedure for calculating eingenfunctions

In [GO8], section VIII we have introduced a transfer matrix F'(E,) and a related matrix Gy and we
wrote the quantization condition as

1
1+ Ek

ker(Go — 1d) # {0}. (15)

In the case of f having two local minima and two local maxima on the period, the matrix Gy has the
following explicit form:

o - (T i+l Tyt 41 T2 I B B
0 1 paty b+ 1 paparyt+ 1 1 peri b+ 1 papey 41
_ (bt D A )+ sy (e ) 7y D7t 1)+ a(psty 1) (ppery 4 1)

N ( (nars '+ D2(r '+ 1) 4 (uspary ' + D) (pery ' +1) (pary '+ D7a(uary ' + 1) + (uspary ' + 1) (papary ' +1) )
(16)

Assume hE, is a low-lying resurgent eigenvalue of our Witten Laplacian.

(0))T belongs to the kernel (15). Then the vector

DY\ _ RCAREAY
pY ZO)

belongs to ker(F(E,) — Id) = 0 and thus the eigenfunction corresponding to the resurgent eigenvalue
hE, will be representable, for ¢ € (0,q1), by a hyperasymptotic expansion

Suppose a vector of resurgent symbols (ZSB), Z

D¢, +DY_,

where ¢4 and ¢_ are formal solutions of the Witten Laplacian normalized by ¢ (qo) = ¢—(qo) = 1
for some qg € C, f'(qo) # 0.
Now we will write down the expressions for the coefficients D(ﬁ), Dg), for j = 1,2, 3,4, such that

DP¢, + DY
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represents the same eigenfunction on the interval (g;, ¢j+1). These coefficients will be written in terms

of auxiliary coefficients ZJ(rj), Z(_j) and the calculation will consist in successive application of connection
matrices across the turning points g; given in [GO08], section VIII.

We have:
DELl) _ g Bo_l(c’l)_lZSrl) ) Zil) _ ZSP) + MlZ(_O) ) (17)
p® “\ osyz® )\ 2D AR/
2 -1 (2) (2) —1 (1) 1)
D+2 ,:BéM{<BOM1 /0 ,> CQZ;r : Z+2 _ 7-11Z+1—+—Zf1 :
p? 0 ByMj z® A por 2z + 2z
(18)

3 -1 1,03 3) 2 2
52 ) < (P 8 Y (9 ), () - (),
p® 0 By M M, A z® 7’2Z(+) +z®

(19)
p{Y ragrag g [ BoMiMaMs 0 AR AR 17® 4+ 723
( o ) = spgargarg (PR B ) (e ) () = par 29 1+ 29 )
(20)

Remark also that if E,. is an eigenvalue of the Witten Laplacian and if for j = 0,...,4 the

hyperasymptotic expansions D@CM(Q) + D(,j)gb,(q) define its eigenfunction 1 (q) satisfying 1 (q) =
¥(q+ 1), then we must have

My My My M)~ DY = DY (v s~ D = p@.

()

Rewriting this condition in terms of Z}’, we arrive at
79 = 1+ Ek)damy)mz?; 29 = 1+ ERZY. (21)

If Zj([j ) are calculated without algebraic mistakes, they must satisfy the formulae (21).

5 Quantization condition with subdominant terms — Example 1.

Notation. For a resurgent symbol ¢ we will write ¢p<eh if —a is the location of the left-most nonzero
microfunction in the decomposition of ¢, or, informally, if eh is the leading exponential in ¢. We will
denote by £% the set of resurgent symbols or corresponding resurgent functions of exponential type
< a in h, i.e. of those whose majors have no singularities left of the vertical line Re £ = —a.

In order to solve the quantization condition

1y 1

for the rescaled energy FEi, it is important to understand the determinant and the trace of the matrix
Go.
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q, q, qS/,f’ q3 M Ay

Figure 10: Contours defining 7s for £ > 0.

Take as the superpotential

f= % [sin 27(q + 1) + cosdm(q + ;)] ; (23)

8
, 1 . 1
' =cos2m(q+ §) — 2sindn(q + §)

The critical points of f are all real in this case:

@ =3 fla1) =0 f"(q1) = 6,
go = % - % arcsini flg2) = 1277 f"(q2) = —7.5m,

a3 =3 flgz) =—= f"(g3) = 10m,
g1 = % + 5 arcsin 1 fla) == f"(q1) = —75m.

Now we are going to exploit the symmetry of the superpotential (23).

Lemma 5.1 Suppose f has two local minima q1, q3 and two local mazima g2, q4 and satisfies f(q) =

f(2g3 — q). Then
TL=T4, T2 =T3, [H2= [4.

PROOF. Observe that for F real, the equation Py = FE has two real solutions, i.e. those
satisfying
¥(q) = ¥(q), (24)

therefore the same equality must be satisfied by any solution of this equation. Observe, furher, that
reflecting a contour ¢ on the Riemann surface of the classical momentum with respect to the real line

while keeping it on the same sheet of the Riemann surface changes the monodromy of a formal solution

satisfying (24) by a complex conjugation. (the monodromy changes from E EO%% to L0 3L) _ (6(1)

where 6(0) and 6(1) are the endpoint of 4.

$(5(0)  ¥(5(0)’

When f is a real trigonometric polynomial, £ > 0, h > 0, then 7;’s are also real, and so flipping
the contours (see fig. 10) defining them with respect to the real axis will give rise to the same formal
mondromies.

Now if we reflect an integration contour ¢ with respect to the point g3, we obtain an integration
path that we will denote 2¢3 — . Notice that if 1(q) is a formal WKB solution of Py = E1, then so
is 1(2¢3 — q), and both solutions correspond to the same sheet of the Riemann surface of the classical
momentum (because both are either exponentially growing or exponentially decreasing in the direction
away from g3 along the real line). Therefore, if we reflect a contour § with respect to g3 while keeping
it on the same sheet, the formal monodromies along that contour will remain the same.
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The lemma follows from the fact that the contour defining 73 can be obtained from that defining
79 by reflecting it with respect to g3 and then reflecting it with respect to the real axis. Analogously
for 7 and 74.

Similarly, s,, = s, and hence po = pq if f(q) = f(2¢3 —q). O
Recall that
Gy = ( ma(rs P 1) (st + 1) ) < ol P+ 1) To(pry A1) >
paty '+ 1 papaty pory t+1 pipor !

and
TrGoy = i inTt dnnrt Ammrt 4mn
+/~L2N3T473_171_1 +M3T4Tg_1 +/~LQT471_1 +74
+M1M47273_17‘1_1 —I—M4T273_1 +u17271_1 +79
FpnpopspaTy Ty dpipeTyt Apspaty | +1.

Using the formulae for 7y,
. 9 . 25
Tl = T4r~~€ 8wh ET‘a Tg = T3~E 8mh ET‘7

and therefore we can write, loosely,

TrGy ~ 1 —&-Ere_% —|—Ere_% —|-E36_%
+E,eiah  +E,esnn +E, +E.e wn
+E, 5 VYE, +Ee s +E.e wn
VEZein  +Eesth 4 Eeieh +1,

by which we mean that, e.g., the exponential type of the summand 74775 1'is the same as the expo-

nentialgtype of Eref% and that, therefore, this summand contributes to the points corresponding to
Efe~sm, k > 1, in the Newton polygon of the quantization conditon (26).

5.1 Solving the quantization condition with subdominant terms

Since f has only two local minima and two local maxima on its period, the Witten Laplacian will have
only two resurgent exponentially small eigenvalues, one of them 0 and the other one will be denoted
hE, .. In this subsection we are going to calculate the beginning of the hyperasymptotic expansion of
E, . using methods of [GO8].

Rewrite the quantization condition (22) as

1

—m + Tr Gg — (1 + ET/'C) detGyg = 0. (26)

Represent the 1.h.s. of (26) as a sum of powers of E, and e%, namely,

—m + TI‘ GO - (1 + Erk) det GO == jzwawage&rh,
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Figure 11: Terms in the quantizaton condition (26) for the Example 1.

and draw the Newton polygon of (26) on figure 11 as explained in [G08]. For the calculation that
we are going to carry out, only terms of exponential order > g%h will be important; in particular
contributions from the first and the third term on the Lh.s. of (26) are of exponential order < 0 and
therefore need not be considered in detail.

In [GO8] we explained that the leading exponential summand of (the hyperasymptotic expansion
of) E, . is obtained by looking the the north-west edges of the Newton polygon, in our case that means
— by solving

25 o 34
a1725E,,e 8rh - a2734Er687rh = 0.
. . _9 . .
Thus, up to subdominant exponentials, F;. . ~ —Z;%e 8=k . To find exponentially subdominant
corrections, make a substitution

ai 25 9

E,r, = <— + El e 8rh
a2,34

in the quantization condition and solve it for E; under additional requirement that F; should be
exponentially small.

We re-express the quantization condition in terms of Ejy,
16

g b: Elessh = e sk g a;,Elesh
]7w 1 - ]7“) T
Jw Jw

and plot the summands on the figure 12, where:

bip = —ai25, b2o=az3z4,
a1,2501,16 ai25. 9 ai25.3
bo,—9g = ————— + az25(——)* — agzs(——)".
’ 42,34 U ag 34 T ag 34
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Figure 12: Newton polygon for Fj.

From the Newton polygon on fig.12 we infer

Ey = e75m (—bo 9+E2)
b1,0

where F5 has to be exponentially small. The next step of this procedure and a Newton polygon for
E5 (which we will not draw here) yields Fy € £~ 5.

Thus we need to calculate elements as 34, a3 34, a1,25, a2,25, a1,16 of the Newton polygon, and there
the following four summands in Tr G that contribute to these elements, namely:

34 E?WQ

N ) @ ) ]

—-1_-1
[i1flopi3paT] T3 = esh

E,In h 1 1 1 1 . | -
X(” 2 [f”(cn)+f”(qz)l+f”(q3)+If”(q4)!]>(1+0(h)+o(E’"h)JFOh:f“(ET))’

1= —eM E.x ( E,In h( 1 N 1

b F (42| (q2)] 2 (el " (gs)
2[—£(g3)+F(g0)] E.m
2 _— X
f"(a3)f" (q4)]

E.In h 1 1 0 ‘ .
2 <1+ 9 (f”(Q3) + f”(Q4))> (1+O(h)+O(ET’h )+Oh:f1:c(Er))7
__Em exp { 2[f(q1) —
f"(q1) " (g3) h

The notation Op— i (E,) means terms that contain factors of degree > 1 with respect to E,., regardless
of their degree with respect to h or In h.

We have:

>) (A+O()+O(E, )h+Op_ 1ia (E2)):

—1
M2 43 T4 T3

—-1_-1
Mo 3 T2Tyg Ty = —e

-1
H3T4T3 =

f(g3)] } (1 4+ On=tiz(E;) + O(h)).

w2 1

a om) = — .
2= P @ P e O™ = 5
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2

S TR P @] @) @] L @) @] e )] 5
1 (12 1 ]mAtor) ) o
T 1515 {67r+7.57r 107'r:| 2 = 152\/ﬁ7r1 h+O(h™);
2
M = i~ e+ O(h) = e+ O(h);

VI @) (q2)] /" (3)] 7 (qa)] V75

S w ( 1o, 1 )7 7 ( 1,1 )1nh+0(h°)
’ VI (@) (g2)] \f"(g3)  [f"(g2)] VI @s) [ f(qa)] \f"(as) ~ [f"(qa)l 2

_ 212 mhtO() _ 1 T o T N
a \/%[107r+157r} 2 T 53 30, h+ O = 150\/§ﬂ_1nh+0(h );
e i
a116 = —=—————=+0(h) = + O(h).
f"(a1) 1" (g3) V60

Proceed with the calculation:

a 1
T:_ﬁ - ;(\/f”(m)'\f”(%)lJr\/f”(m)'lf”(qQ)l)JrO(h) = 6V5+0(h).
bo,—9 = a1,167 + azo572az 31’ =
7 4 18v/3
= —6\/52+6\/53}1 h+ 0% = 2X21n h+ O(hY).
{150@?[ P e OV e 000) = 2 n 4 om0
Remember that bjg = —a125 = \/% + O(h).

Now, we have the first subdominant term in the spectrum. Namely,

9 a 9 by — 7
— o TR <_1’25 + e~ 5 [_0’ 9 —|—6_87T:|> -
a3,24 b1,0

2
= e (6VE + o(h0)) + e B (— n b+ O(h)) + £,
s

. Remallrgt. Calculaton of the next term in h in the above asymptotic expansions multiplying

e sh or e s requires taking the integrals as in formulas (13), (14), which in our example can be

done by hand. Performing this calculation, however, did not bring the author any new insight.

5.2 Asymptotic expansion of the eigenfunction corresponding to the nonzero low-

lying eigenvalue.

We need to calculate two resurgent symbols A4 and A_ that solve the equation

(FId)(fl+ > = 0.

According to the equation (16), and since, when E, satisfies the quantization condition, Frd is a rank

one 2 x 2 matrix, the question reduces to calculating [Gol11 — (1 + E-k)~! and [Go]12 in this case.
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Recall that

__9_ _ 25
TlL = T4 ~ € STrhEr; Tg = T3~ € 87ThE,,,‘

Let us write down the exponential orders of the various summands in [Gol11 — (1 + E-k)~! and
in [Gol12. Namely,

. YemEBR Ae ok 52

e T ~e T ~e r Lo B

— -1 _ -1 71_ —1 —1 —1 e
[Goli1 — (L + E k)" = (umer 74 (1+ E k) ) +mamery - +Tamor]  + TuTo

—-1_—1 —1 —1
T YTy T3 M3M2 +T4T) p2 + Ty Tap3z+ T4
—_— Y Y

16 9

7 . 18
Re8rh Re  8mh Re8mh ~e 8mh

. —1,_—1 —1
Thus, we have two main terms 747 75 g2 and 75 T4u3.

Furthermore,
G — (14 E, k)~ 1! Tt s + (raror it — (1 4+ E k)L 25
[0]11_(1 rk) P I UL (42;3 A+EkRT) oz
T3 T4H3 Ty T4[3
and the third summand ~ efslfriﬁh.
9 18 _ 43
Re  8mh Re 8mh Re 8mh . _ 52
A A ~e 8w
(Golie = mm 'y i+ nm it mrn e+ BN

+ papiopaTy by M b paTy T pper i
—_—— — — ~—~

7 7 18 . 18
~Re8rmh e8mh

e 8mh ~e 8w

Main terms are M1M2M3T1_1T3_17'4 and u37'3_17'4, and we have

G _ lir _ 25
e
H3T3Ty —— K3
el
&5_8;76}1
Put
-1 25
Zsro) 1+M1u271’1+‘“27372+5*m
= —1 —-1_-1 —
7" G R e R
7'3 T

Before writing down the explicit expressions for Zj(tj ), let us derive the following consequence of

the quantization condition. Using the explicit form of Tr Gy, assuming E, satisfies (26), and keeping
only the largest terms in (26), we obtain

7

(HopaTamy 't 4 papaty V) + papopspary 'yt = Esx

which, taking into account 7 = 74 and pe = g4, simplifies to

2—|—,u1,u27'fl 25_8% (28)
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Now, applying formulas (17)-(20), obtain successively:

-1
L e
A B N R T e e B i L R A

- 1
K3 Ty T4p3

which is convenient to rewrite as

1) ) 1
Z pUiTy T2 _25>
= (1l—-p+——=+& 5= - T AR
( AL > ( = 13 1 e [—1 + & s 2] (1+¢& gi)

z2N _ | 2P+ 29\
AR por 20 4+ Z
-1 -1 pary —25
b |1 L] (14 £
pary 4T e [—1 + —“”ﬁ; TQ} L&

1
70 b s {—1 -z 72} +E
+

—1
17 T2 — =2
Tl luLQ ® 1 + 5 877

Remark 5.2 It is interesting to note that in the calculation of Z(_2) the contributions from the leading
exponential orders in ZJ(rl) and Z(,l) cancel and the nonzero value of Z(f)
exponentials in Z(M). Neglecting these subdominant terms would break down the rest of the calculation.
This little algebraic detail is philosophically very important: it shows that constructing asymptotic
expansions of an eigenfunction of the Witten Laplacian on all intervals (g, ¢j+1) must be difficult

without methods of resurgent analysis.

3 -1 _9
< Z-(‘r-) ) — 727'1_1Z(+1) ( (1"'71 prap) (1 +5 5 ) )

is due purely to subdominant

’uzﬁ(l + E™ 8‘”)
N S T
=TT 2 ( 0 > )
H2£ +&
where we have used (28) in the last step
zZ0\ (2P 4z®
Z(:l) /,L4’7’712(3) + Z(j”)

HaTs ( 1+& sﬂ)_|_7-1 M2“1+50

Finally,
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Figure 13: Graph of f(q) in Example 2.

6 Global expressions for the eigenfunction — Example 2.

Let f(q) be a trigonometric polynomial with two local minima and two local manima ¢, g3 and two
local maxima g2,q4 on the period [0,1], where 0 < q1 < ¢2 < g3 < g4 < 1. Up to shifting ¢ by a
constant we can assume that ¢; is the global minimum of f, and up to changing f(q) into f(2¢1 — q),
that go is its global maximum. Changing further f(g) by an affine linear transformation f — Af + B,
we can assume f(q1) =0, f(q2) = %, flgs) = g, f(q1) = §, where 0 < b < a <1, figure 13. All these
transformations of f produce easily controllable changes in the eigenvalues and eigenfunctions of the
Witten Laplacian.

We will actually assume that the inequalities are strict:
Assume: 0 < a < b< 1, (29)

and will gradually put more restrictions on a and b more specific as we progress through this section.

In our situation

_1 ~ _1-b ~ _a=b ~ _a
Ti~Ee hy mAaEeT h o mA~Ee b my~Eee k.

In order to find the two low-lying eigenvalues of the Witten Laplacian (one of which equals, as
we know already, to zero), we need to solve the same old quantization condition,

where Tr Gy has the same form as (25).
In the loose sense explained in the Example 1, we have now

b—a—1

TrGy ~ 1 4Een +Ee 5 +E2e
b _

T

Q

+FE.e R —i—ETe_% —i—ETelTa +FE,.e"n
VYEer +Ee"T  +Eer  +Een

o lfa=b a—b
+FEse h +FE,e +FE.en +1.

=

1+a—>b

The Newton polygon corresponding to (30) will thus be as shown on fig.14, with the E2e™ r -

term coming from the piqpopspat; 17'3_ ! summand, and the Ere% term — from the p1pom ! summand.
b—a

We conclude that the nonzero low-lying eigenvalue will have the exponential type E,.~e & .
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Figure 14: The Newton polygon of (30), situation of Example 2.

As Go— (14 E.k)~'Id is a 2 x 2 matrix of rank 1, a nonzero vector in its kernel is proportional
to ([Go — (1 + Erk)fl]m, —[GO — (1 + Erk')fl]u)T, i.e. to ([Go]u, —[Go]u + (1 + Erk)fl)T.

For Er&e%, the exponential types of various summands in [Go — (1 + E.k) Y11, [Go]12 are as
follows:
[Go— (1 + Ek) Ny = (e it = D)4 mrg b +mmer '+ mum +
—_———  ~—— ~—~—~

b—a —1+b—a 2b—2a . —1+43b—3a
€ N h e  h h

~e ~e ~e

“1_-1 -1 1
+ 74Ty T3 p3p2 +T4Ty M2 + T3 T4z + T4
—_— Y Y ~

b—2a
e h

 1l-a 1+b—2a
~e h e h

B

e

(The first summand should typically be r@eb_Ta, but it is conceivable that its exponential type is
actually smaller for a special choice of f.)

[Golie = pury '7o73 'Ta+ oty T4 T Mmt+ TTs +
—_—————— —— N—— ~~

b—a —1+b—a 3b—3a . —143b—3a
~e h Re  h Re h ~e R

+M1M2M3Tf17'§17'4+MST§174+M1M27'{17'4+ T4
—— N—— ~~

1+b—2a 2b—3a 1+2b—3a . b=2a
e h e h e h

The two largest summands in the above formulas are thus pous7 17’5 ey + H2T Iz, and
A2 3T 173_ L+ Moty L7,, respectively; so it is reasonable to take

z0\ _ 1 ( [Gola >
A pomy 'y 'l +75) \ —[Golu + (1+ Erk)~!

There are too many summands in the entries of Gy for us to be able to get an enlightening
exposition, so we will artificially impose additional assumptions on (a,b). These assumptions will
help us select the dominant exponential, the first subdominant, the second subdominant, etc, terms
in every hyperasymptotic expression we are going to write down in a moment. There might be a
combinatorial structure to various inequalities between (a,b) we are going to introduce, but we are
not ready to comment on it at the present time.
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Figure 15: Values of (a,b) satisfying, from left to right, (31), (32), (33), (34).

Under
additional assumptions: a < 2b; b > 2a — 1
(first part of the figure 15), we can write

[GO}H — (1 + Erk)_l - (7’47‘2T1_1T3_1 — (1 + Erk)_l)

—1+4+2b—
—1_—1 =1+ — — + & @
poTy Ty Ta(H3 + T3) M2Ty ~T4p3T3
— [_G10]12 =14 T1 i T2 _ T2T32 _}_5—1+2b—a.
pamy Ty Ta(pis + 73) papz | pops pop3
——
—1+a—b
e h

Restricting further to

additional assumptions: 2a < 3b; b > 2a — 1,

see the second part of the figure 32, we can absorb the boxed term into the error £~ 1+20—¢,
We conclude that
0 Ty T2T3 —142b—a
(Zi)> _ u1(1+“2#3 u2u§+g )
_ (1

Z(O) n (rarory 'y ' —(1+Erk)~ 1) + 5—1+2b—a>

—1 —T
2T T4p3Ty

(1) T2 (7'47'27'1717'371_(1"‘Erk)71) _ ToT3 71+2b7a)
Z+ _ M1 (,U«ZHS M27f174ﬂ373:1 I~‘2N§ + 8 :
—1 4 +EHFP

with the following exponential orders of the ingredients of Z(1):

T fp=hEe. (7‘47‘27{17'?:1 - (14 ETk')_l)&e%H). ToT3 Lo =it
H2H3 7 piomy rapsTy T
We have
z" _ TIH2M3 | ob—2a
S0 T o O
T 4 T2 1

a

e h
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hence by (18)

zP9\ _ m ( n (e = (4 ERT) 51+2ba) < 1+ & )
= — - — — — T b—2a
z® T \H2/3 paTy TapisTs t2p3 pg — SE2EE + €

(1)

where the coefficient in front of this vector nothing but 7, 1z .

The formula (19) gives

Zf) _ M ( T2 (T4T2Tf173:1 —(1+Ek)™Y _ TeT3 _~_571+2b—a) T+ £ 4y, [,uz - 77—},_';?:3] + £20—3a
A i\ H2i3 poTy ‘TapsTs ! BT T2 £ 4y — Tilalls 4 gbm2a
Under
additional assumption: b+a <1, 2a < 3b (33)

we have 19 € £72¢ and therefore

< A ) _m ( T2 (ramertryt — (14 Ek)™Y) | T2T3 _’_g,prgb,a) < To + 13 [uz - %} 4 g3 )

+
A T1 \ M2 43 ,ugrflmugrgl W2 pe3 o — % 4 Eb2e

Finally, use (20) to obtain:

( Z_<~_4) ) o ( T (ramery'ry ' — (1 4+ Ek)™Y) mars +g—l+2b7a> %

T1

JIPyIE poty trapsy ! H2p3

y 75 Hpaps FEVT2) F s+ E7°
N4T§1(7'2 + 3 [#2 _ Tww.a] +52b73a) + pp — T1M2/43 +5b72a

T2H1 T2H1
Under one more

1
additional assumption: a < 3 2a < 3b, (34)

1. b= _ . . .
we have fi475 LryRe n € P20 and the expression simplifies:

20\ _m ( r _(mnrl'n' - (4 ER)T) o +g—1+2m) 7 papis + iz + €7
A T\ pi2pis praTy “TapisTy ! Iy [pary tpus +1] - [uz - %] 4 Eb2e

We will see now that the bracket [pa7s Y413 4 1] in the expression for 7% s not et as would
appear from the first glance, but is of a smaller exponential type. Indeed, the quantization condition

(30) and the explicit form (25) of Tr G¢ imply
(a3 + Dparary '+ pupery (1 + papary ') = €

or

T ~ b
(1+ papary ') = —(usmy ' + 1);4 +ETIHATE e,
1

Remark 6.1 Here we observe again the cancelation of the leading exponential terms and stress again
the importance of subdominant exponentials for the calculation of the asymptotics of eigenfunctions
on all intervals (g;, gj+1)-
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Remark 6.2 2 There exist trigonometric polynomials f satisfying assumptions of figure 15, i.e. having
two local minima and two local maxima satisfying inequalities (31), or (32), or (33), or (34). Indeed,
one should take any Morse C'*° function fy with two local minima and two local maxima satisfying
the inequalities, say,

Jo(ar) < fo(gs) < folaa) < fola2); 2[fo(qa) — folqr)] < 3[fo(gs) — folar)]; 2[fo(qs) — fo(qr)] < folq2) — fo((fh)),
35

that are, up to shift and rescaling, correspond to the conjunction of (34) and (29). Then the Fourier
series of fo will converge to fo uniformly together with all derivatives, and an n-th partial sum f,, of
that Fourier series for sufficiently large n will have critical points and critical values arbitrarily close
to those of f. Since our conditions (35) are open, f, will satisfy them for n large enough. With a
little more work one can produce a trigonometric polynomial with exactly prescribed critical points
and critical values. Alternatively, one can generate examples of trigonometric polynomials satisfying
(34) and (29) using a computer algebra system.

A  Useful formulae

For A >0 and F > 0 and E — 0+ we have the following asymptotics of various integrals:

1 E
arccosh (A/VE) =Ln 24 — §Ln E — Ve + o(E) (36)
—arccosh (A/VE) ifk=0
0 . + +Ep—§arccosh (A/VE) + o(E) if k=2
/ cosh” tdt = 25 VE 0 .
arccosh () —ipr — IE —|— o+ — 2arccosh (A/ ) + o(E ) ) ) ifk=4
1 -3 1—7 —= 2k .
—EA’“E - D - D 2+o0(E*2) ifk=130r>5
(37)
0 2E—i— +16A2+ Larccosh (A/VE) + o(E) itk=0
/ ) sinh? t cosh® tdt = 4/}92 + 4~ — & + Larccosh (A4/VE) +o(E®)  ifk=2
arccosh (ﬁ) E~ 1—* <_f?::22 + A;kE + A]Ek2g)2 + o(E )) ifk=1or>3
(38)

The following formulae are simple integration by parts used in section 2.5.

/ du 1 . / udu L 1 (39)
(u? — E)3/2 o EVui2_E' (u? — E)S/Q o W2 — E

ukdu M uk—2

/du ol e 1w /udu I T
w2—E): E*VuW2—-FE E’3u2-E)2’ (u2 — E)? 3(u2 — E)3

2The material contained in this remark was explained to the author by Prof. A.Gabrielov.
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k k—1 1 k—2
/“lus:— LA / Y du, k>2 (42)
(u?> — E)z 3(u? — E)2 3 (u? — E)z
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