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Abstract

We improve recently published results about resources sfrReed Boltzmann Ma-
chines (RBM) and Deep Belief Networks (DBN) required to miem Universal Ap-
proximators. We show that any distributipron the set{0, 1}™ of binary vectors of
lengthn can be arbitrarily well approximated by an RBM with— 1 hidden units,
wherek is the minimal number of pairs of binary vectors differingdnly one entry
such that their union contains the support sep.ofn important cases this number is
half of the cardinality of the support set p{given in Le Roux & Bengio (2008)). We
construct a DBN Wit%, b ~ logn, hidden layers of widtm that is capable of
approximating any distribution of0, 1}™ arbitrarily well. This confirms a conjecture

presented in Le Roux & Bengio (2010).

1 Introduction

This work rests upon ideas presented in (Le Roux & Bengio 82@hd (Le Roux

& Bengio , 2010). We positively resolve a conjecture that wased in Le Roux &

* montufar@mis.mpg.de



Bengio (2010). Before going into the details of this conjeetwe first recall some
basic notions.

The definition of RBM’s and DBN'’s that we use is the one giverthe papers
mentioned above and references therein. For details tlteres referred to those
works. Here we give a short description: A Boltzmann Macluioesists of a collection
of binary stochastic units, where any pair of units may eter The unit set is divided
into visibleandhiddenunits. Correspondingly the state is characterized by a(pair)
wherev denotes the state of the visible andenotes the state of the hidden units. One is
usually interested in distributions on the visible stateasd would like to generate these
as marginals of distributions on the statesh). In a general Boltzmann Machine the
interaction graph is allowed to be complete. A RestrictettZBoann Machine (RBM)
is a special type of Boltzmann Machine, where the graph dssgrthe interactions is
bipartite: Only connections between visible and hiddensusppear. It is not allowed
that two visible units or two hidden units interact with eamther (see Fig. 1). The
distribution over the states of all RBM units has the formha Boltzmann distribution
p(v,h) oc exp(hTW v+ B-v+C-h), wherev is a binary vector of length equal to the
number of visible units, ankl a binary vector with length equal to the number of hidden
units. The parameters of the RBM are given by the mdtrixand the two vector®
andC. A Deep Belief Network consists of a chain of layers of un@ly units from
neighboring layers are allowed to be connected, there amnoections within each
layer. The last two layers have undirected connectionsdmtvwhem, while the other
layers have connections directed towards the first layeryisible layer. The general
idea of a DBN is to assume that all layers are of similar sigesheown in Fig. 1.

A major difficulty in the use of Boltzmann Machines always bagn the slowness
of learning. In order to overcome this problem, DBN’s haverbgroposed as an al-
ternative to classical Boltzmann Machines. An efficientiéag algorithm for DBN'’s
was given in the paper Hinton et. al. (2006).

The fundamental questions along the above-mentionedqurewvork are the fol-
lowing: Does a DBN exist that is capable of approximating disyribution on the vis-
ible states through appropriate choice of parameters? \Weefér to such a DBN as
a universal DBN approximator (similarly we will use the demination universal RBM

approximator). If universal DBN approximators exist, wisatheir minimal size?
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Figure 1: In the left side we sketched the graph of interastio an RBM, in the right
side the corresponding graph for a DBN with= 4 visible units (drawn brighter).
An arbitrary weight can be assigned to every edge. Besidectimnection weights,
every node contains an individuaifsetweight. Every node takes valuleor 1 with a
probability that depends on the weights. The RBM and DBN pé slepicted above
are examples of universal approximators of distributian$® 1}* (Le Roux & Bengio
(2008) and Le Roux & Bengio (2010) respectively). In the prapaper is shown that
the number of hidden units in the RBM can be halved, and thebenwf hidden layers
in the DBN can be roughly halved.

Since DBN'’s are more difficult to study than RBM’s, as a prétiary step, cor-
responding questions related to the representational poivBBM’s have been ad-
dressed. Theorem 2 in Le Roux & Bengio (2008) shows that astyilolition on{0, 1}"
with support of cardinality is arbitrarily well approximated (with respect to the Kull-
back Leibler divergence) by the marginal distribution of RBM containings + 1

hidden units:

Theorem 2 in Le Roux & Bengio (2008). Any distribution on{0, 1}" can be approx-
imated arbitrarily well with an RBM withls + 1 hidden units, where is the number of

input vectors whose probability does not vanish.

This theorem proved the existence of a universal RBM apprator. The existence
proof of a universal DBN approximator is due to Sutskever &tdn (2008). More
precisely, Sutskever & Hinton (2008) explicitely constedca DBN with~ 3 - 2"
hidden layers of widtlw + 1 that approximates any distribution ¢, 1}". Given that
the existence problem of universal DBN approximators wastwely resolved through
this result, the efforts have been put into optimizing ttee si.e. reducing the number
of parameters. This can be done by reducing the number oéhitiyers involved in a

DBN, or by making the hidden layers narrower. In terms of $engounting arguments,
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we give a lower bound on the minimal number of hidden layeysired for the univer-
sality of a DBN with layers of size. The number of free parameters in such a DBN is
square of the width of each layer number of hidden layers number of unitswhich

for k hidden layers ig(n* + n) + n. On the other hand, the number of parameters
needed to describe all distributions o2&relements, e.g. over binary vectors of length
n, iIs2" — 1. Therefore, a lower bound on the number of hidden layers ofizeusal
DBN approximator is given b% (which yields2™ — 1 free parameters). Other-
wise the number of parameters would not be sufficient. Asgtigally, this bound is

of orderZ;. Certainly, since the architecture of DBN's makes impdrtastrictions on
the way the parameters are used, such a lower bound is nattegte be achievable.
In particular the approximation of a distribution througPBN or RBM is not unam-
biguous, i.e. for several choices of the parameters the sgtréution is produced as
marginal distribution. However, in Le Roux & Bengio (2010has been shown that a

number of hidden layers of ordén?E is sufficient:

Theorem 4 in Le Roux & Bengio (2010). If n = 2!, a DBN composed (%f} + 1 layers

of sizen is a universal approximator of distributions df, 1}".

In the paper Le Roux & Bengio (2010) the optimality of the bdgiven in this the-
orem remains an open problem. However, their proof methgdesits the sufficiency
of less hidden layers, which was conjectured in their papée proof of Theorem 4
crucially depends on the authors’ previous Theorem 2 in LexR® Bengio (2008).
Our main contribution is to sharpen Theorem 2 (see TheoremSection 2) which
allows us to even better exploit their method and therebyicoriheir conjecture (see
Theorem 3 in Section 2). We consider our refinement as péatlgunteresting because
there are reasons to believe that this already providegitimal bound for the minimal

number of hidden layers in a universal DBN approximator.

2 Results

2.1 Restricted Boltzmann Machines

The following Theorem 1 sharpens Theorem 2 in Le Roux & Ben@010). We will

use it (its Corollary 2) in the proof of our main result, Thewor 3.
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Theorem 1 (Reduced RBM'’s which are universal approximatoishy distributionp

on binary vectors of length can be approximated arbitrarily well by an RBM with
k — 1 hidden units, wheré is the minimal number of pairs of binary vectors, such that
the two vectors in each pair differ in only one entry, and stiat the support set of

is contained in the union of these pairs.

The set{0, 1}" corresponds to the vertex set of th&limensional cube. The edges
of the n-dimensional cube correspond to pairs of binary vectorsengthn» which
differ in exactly one entry. For the graph of thedimensional cube there exist perfect
matchings, i.e., collections of disjoint edges which coakvertices. Therefore we

have the following:

Corollary 2. Any distribution on{0, 1}™ can be approximated arbitrarily well by an
RBM withZ- — 1 hidden units.

The proof of Theorem 1 given below is very much in the spiritttod proof of
Theorem 2 in Le Roux & Bengio (2008). The idea there consietslmowing that
given an RBM with some marginal visible distribution, thelusion of an additional
hidden unit allows to increment the probability mass of ors#ole state vector, while
uniformly reducing the probability mass of all other visiblectors.

We show that the inclusion of an additional hidden unit irt faltlows to increase
the probabiliy mass of a pair of visible vectors, in indepamidratio, given that this
pair differs in one entry. At the same time, the probabilityath other visible states is
reduced uniformly. We also use the offset weights in theblgsiinits to further improve

the result.

Proof of Theorem 1We stay close to the notation used in Le Roux & Bengio (2008).
1. Letp be the distribution on the states of visible and hidden upfitan RBM. Its

marginal probability distribution on can be written as

)
S SN

Denote byp,, . the distribution arising through the adding of a hidden tmihe RBM

connected with weigtha® = (wy, . .., w,) to the visible units, and with offset weight
Its marginal distribution can be written as

(1 +exp(w-v+)) 3, 2(v. h)
D w0 po(1+exp(w - 00+ ¢))z(v0, hO)

Pu.e(v) =
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2. Given any vector € {0, 1}" we writev; for the vector defined through;); =

v, Vi # j, and(v;); = 0. We also writel := (1,...,1),ande; := 1 — 1.

3. Foranyj € {1,...,n} letv be an arbitrary vector with; = 1. Define
A N 1
W = a(vj - 5]13),
_ N 1
w = a(f; - 5]13) + (A2 — A\1)ej,
C = =W -0+ A\ =—W- 05+ A,

For the weightso andc we have:

v = salln—1)= [ (5) # @)+ 0o — My

1
¢ = —§a(n — 1)+ A\,
and in the limita — oo we get:

lim 1 +exp(w-v+c) = 1, Vv#0,0;,

a—0o0

lim 1 +exp(w-0;+¢) = 1+ e,

a—00

lim 14 exp(w-04+¢) = 14 e*.

a—00

Just as in the Proof of Theorem 2 in Le Roux & Bengio (2008) stedds for the

marginal distribution on the visible states of the enlarB&M the following:

p(v)

1' w,C = ~ ~\ ) \V/ ~7 NA‘?
a0 P (v) 1+ eMip(v5) + e2p(D) v
1+ eM)p(5
lim pue(d;) = (A +f )p(vi) .
a—00 L+ eMp(;) + e*2p(0)
oy — (0
a—oo” L+ eMp(0;) + er2p(v)

This means that the probability af and ofv; can be increased independently by a
multiplicative factor, while all other probabilities areduced uniformly.

4. Now we explain how to start an induction from which the midollows. Con-
sider an RBM with no hidden units, RBM Through a choice of the offset weigths
in every visible unit, RBM produces as visible distribution any arbitrary factorieab
distribution p’(v) o< exp(B - v) o« exp(B - v + K), whereB is the vector of off-

set weights andy is a constant that we introduce for illustrative reasonsl, iasmot
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a parameter of the RBWMsince it cancels out with the normalization @t In partic-
ular, RBM’ can approximate arbitrarily well any distribution with qaut given by a
pair of vectors that differ in only one entry. To see this adasany pair of vectors
and®; that differ in the entryj. Then, the choicés = a(7; — %15) + (A2 — A1)e;
and K = —a(v; — %]15.)17 + A; yields in the limitlim,_., (similarly to the equa-
tions in item 3. above) thdim, .. p°(v) = 0 wheneverv # ¢ andv # o5, while
lim, o, p°(0)/p°(9;) = exp(A — A1) can be chosen arbitrarily by modifying and
Xo. Hence,p® can be made arbitrarily similar to any distribution with popt {, s}
Notice thatp’ remains positive for all anda < co.

By the arguments described above, every additional hiddérallows to increase
the probability of any pair of vectors which differ in one BntObviously, it is possible
to do the same for a single vector instead of a pair. Thendh,every additional hidden
unit the support set of the probabilities which can be apipnated arbitrarily well is
enlarged by an arbitrary pair of vectors which differ in omérg This is, RBMi~)
is an approximator of distributions with support contaimedny union of; pairs of

vectors which differ in exactly one entry. O

We close this passage with some remarks:

The possiblity of independent change of the probability sradwo visible vectors
is due to the usability of the following two parameters: ag Diffset input weigth in the
added hidden unit, and b) the weight of the connection betwee added hidden unit
and the visible unit where the pair of visible vectors difféee item 3. in the Proof.

The attempt to use a similar idea to increment the probglmidss of three differ-
ent vectors in independent ratios inducts a coupled chamtipeiprobability of a fourth
vector. Three vectors differ in at least 2 entries, as do ¥ectors. Since only 3 param-
eters are available (the offset of the new hidden unit anddwvmection weigths), the
dependency arises.

It is worth noting, that using exclusively a similar idea bt allow an exension of
Theorem 2 in Le Roux & Bengio (2010) to permit the flip of a certait with a certain

probability (only) given one of three input vectors.



2.2 Deep Belief Networks

In this section we implement our Theorem 1 to modify the cart$ton given in the

proof of Theorem 4 in Le Roux & Bengio (2010) and prove our nrasult, Theorem 3:

Theorem 3 (Reduced DBN'’s which are universal approximatoisgt n = %b + b,

be€ N,b > 1. ADBN containingz(z—ib) hidden layers of width is a universal

approximator of distributions o0, 1}".

Before proving Theorem 3 we first develop some componentssobioof.

An important idea of Sutskever & Hinton (2008) is thatsbfaring by means of
which in a part of a DBN the probability of a vector is incredsehile the probability
of another vector is decreased and the probability of akotkectors remains nearly

constant. This idea is refined in Theorem 2 of Le Roux & Bend610):

Theorem 2 in Le Roux & Bengio (2010) (slightly different formulation) Consider
two layers of units indexed bye {1,...,n} andk € {1,...,n}, and denote by and

h state vectors in each layer. Denote py;x}i -1, » the connection weights and by

{ck }r=1. n the offset weights in the second layer. Given dagd j, | # j, leta be an
arbitrary vector in{0, 1} andb another vector withy;, = a; Vi # j, anda; # b;. Then,
it is possible to choose weights, ;, £ € {1,...,n}, and¢, such that the following
equations are satisfied with arbitrary accurac¥:(v; = hy|h) = 1Vh & {a, b}, while

P(v; =1lh = a) = p, and P(v; = 1|h = b) = p, with arbitrary p,, pp.

By this Theorem, a sharing step can be accomplished in ordylayer, whereas
probability mass is transferred from a chosen vector tolarotector differing in one
entry. Futhermore, it demands adaptation only of the caroreeveights and offset
weight of one single unit. Thereby, the overlay of a numbesladring steps in each
layer is possible.

The main idea in Le Roux & Bengio (2010) was to exploit thesewnstances
using a clever sequence of transactions of probabilitidse rEquirements for the re-
alizability of sharing sequences using Theorem 2 in Le RouRe&fagio (2010) can
be summarized in properties of sequences of vectors. Thepenes are described
in Theorem 3 of Le Roux & Bengio (2010), or in the items 2-3 of appropriately

modified version of that Theorem, Lemma 4 below.
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How the Theorem 2 in Le Roux & Bengio (2010) and Lemma 4 braeetmstruc-
tion of a universal DBN approximator will become clearerhie afterwards following

Lemma 5.

Lemmad. Letn = %b +b,b € N,b > 1. There exist: := 2° = 2(n — b) sequences of
binary vectorsS;, 0 < i < a — 1 composed of vectoiS; ;, 1 < k < % satisfying the

following:
1. {So,...,S.1} is apartition of {0, 1}".

2.Vi€{0,...,a—1},Vk € {1,...,2 — 1} we haveH (S, Six+1) = 1, where

H(-,-) denotes the Hamming distance.

3.Vi,j€{0,...,a—1} suchthat # j andVk € {1,..., % — 1} the bit switched
betweert; , andS; x4 and the bit switched betweehy, andS; ;. are different,
unlessH (S; i, Sj ) = 1.

Proof of Lemma 4Let G°_, be any Gray code fofn — b) bits. Such a Gray code
is a matrix of size2"~* x (n — b), where every two consecutive rows have Hamming
distance one to each other, and the collection of all row{$js}"~°. Obviously any
permutation of columns of this Gray code has the same piiepertetG’,_, be the
cyclic permutation of columnapositions to the left.
bin(7)
Now defines; := b ™A ] e, the firsth bits of the vectorS;
bin(7)
contain theb-bit binary representation af The rest of the bits contain theth row in
the Gray code&?? , for arrays of lengtm — b cyclically shifted: positions to the left.
The cyclic permutation makes that every two sequences dabres; andS;, i # j
change the same bit in the same row (in this case they also@any row) only if the
value of the first part binj and bin§) of the two sequences differs in only one entry (in
the first entry). O

Every two consecutive vectors in a sequence given in Lemméet th only one
entry and this entry can be located in almost any position. ., n}. In contrast, for the
sequences given in Theorem 3 of Le Roux & Bengio (2010) thayean be located

only in a subset of 1, ..., n} of cardinalityn /2.
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In the Lemma above, for any row, every onewef b entries is flipped by exactly two
sequences. Regard that the attempt to produdestead oR(n —b) sequences with the
properties 1-2 of the Lemma (and flips in all entries) wouldespond to the following:

St
Set| : = G, i.e., the sequences to be overlayed are portions of the Game

SQn
code. In this case it is difficult to achive that condition8satistfied, i.e., that if; and

S; flip the same bit in the same row, thén.S; x, S;x) = 1. The condition 3. however
is essential for the use of Theorem 2 of Le Roux & Bengio (201@pst common
Gray codes flip some entries more often than other entriecamdbe discarded. Oher
sequences referred to etally balanced Gray codefip all entries equally often and
exist whenever is a power o, but still a strong cyclicity condition would be required.
On account of this we say that the sequences given in Lemmlaw aptimal use of
Theorem 2 of Le Roux & Bengio (2010).

The following Lemma 5 is a transcription of Lemma 1 in Le RouB&ngio (2010)
with replacements of indices according to our constructidhe proof is an obvious
transcription which we omit here. Denote hya state vector of the units in the hidden

layeri, and denote by" a visible state.

Lemmab5. Letp* be an arbitrary distribution or{0, 1}". Consider a DBN witf- + 1

layers and the following properties:

1. Vi € {0,...,a — 1} the top RBM betweeh™ and i3 ! assigns probability
ok p*<5i,k) to S; 1,

2.Vie{0,...,a—1},Vke{1,...,2 -1}

on
Zta k41 p*(Si )

on

> D zt)

P(hQT"—(kH) = Si7k|h27"_k =Sik) = #
Ztik p*(Sis)

P(he =0+ = S hT 7 = S;,) =

3. Vk e {1,...,% — 1} the DBN provides

P~ ®) —yhTF =u) =1, Vug U{Sis}.
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Such a DBN hag* as its marginal visible distribution.
We conclude this section with the proof of Theorem 3 and san&rks:

Proof of Th. 3. The proof is analogous to the Proof of Theorem 4 in Le Roux &-Ben
gio (2010). We just need to show the existence of a DBN withpitogerties of the
DBN described in Lemma 5. In view of Theorem 1 it is possibladbive that the top
RBM assigns arbitrary probability to the collection of vastS; ;1,7 € {0,...,a — 1},
whenever it can be arranged in pairs of neighbouring vetorsom Corollary 2, if all
vectors are equal in a set of entries). This requirementtdone; ;,: € {0,...,a—1}
of Lemma 4, (e.g. choosing a Gray code whose first eleméftis.  0) or (1,...,1)).
The subsequent layers are just like in the Proof of TheoremI4iRoux & Bengio
(2010). They are possible in consideration of the mantairaidity of Theorem 2
in Le Roux & Bengio (2010) using the sequences provided inhamM of the present
paper. The only difference is that by our definition%fi € {0,...,a — 1}, at each

layern — b bit flips (with correct probabilities) occur, instead $f O

In the paper Le Roux & Bengio (2010) the authors overlaysdquences of sharing
steps (Theorem 3 in that paper) for the construction of aareal DBN approximator.
In principle an overlay of more such sequences is possibles i§ what we exploit
in our proof, (the sequences given in Lemma 4). Apparerttly,dverlay of more se-
guences was not realized in that paper because for thdizatian of these sequences,
(property 1. in Lemma 1 in that paper), the authors use Tine@ef Le Roux & Ben-
gio (2008), which only allows to assign arbitrary probaiitio n vectors. Our result
Theorem 1 overcomes this difficulty and allows to initialiggto2(n + 1) sequences,

which we use to obtain property 1. in Lemma 5.

Conclusion

We have shown that a Deep Belief Network (DBN) wi nib), b ~ logn, hidden
layers of sizen is capable of approximating any distribution i 1}" arbitrarily well
as its marginal visible distribution. (This confirms a canige presented in Le Roux &

Bengio (2010)). The number of Iayeﬁi—b) is of orderZ-. This DBN hasﬂsznQ +
2"

3mop " + 1 parameters, which is of ordég.
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Furthermore, we have shown that a Restricted Boltzmann MadiRBM) with
% — 1 hidden units is capable of approximating any distribution{6, 1}" arbitrarily
well as its marginal visible distribution. This RBM h%n + 27 parameters, which is
of order”2-.

Our results improve all to date known bounds on the mininza ef universal DBN
and RBN approximators. Our construction already exploitedrem 2 in Le Roux &
Bengio (2010) exhaustively, and therefore a constructgingusimilar ideas will not
allow improvements. We still do not know if our results regget the minimal sufficient
size for universal DBN and RBN approximators, but we haveoga to belive that they

do. This is subject of our ongoing research, Montufar & Ay 1@p
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