
Max-Plan
k-Institut
für Mathematik

in den Naturwissenschaften

Leipzig

Concurrence, Tangle and Fully Entangled

Fraction of Quantum Entanglement

by

Ming Li, Shao-Ming Fei, and Xianqing Li-Jost

Preprint no.: 36 2010





Concurrence, Tangle and Fully Entangled Fraction

of Quantum Entanglement

Ming Li(李明)1, Shao-Ming Fei(费少明)2, and Xianqing Li-Jost(李先清)3

1 College of Mathematics and Computational Science, China University of
Petroleum, 257061 Dongying
2 Department of Mathematics, Capital Normal University, 100037 Beijing
3 Max-Planck-Institute for Mathematics in the Sciences, 04103 Leipzig

Abstract

We show that although we can not distill a singlet from many pairs of
bound entangled states, the concurrence and tangle of two entangled
quantum states are always strictly larger than that of one, even both
entangled quantum states are bound entangled. We present a relation
between the concurrence and the fidelity of optimal teleportation. We
also give new upper and lower bounds for concurrence and tangle.
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1 Introduction

Quantum entanglement plays crucial roles in quantum information pro-

cessing [1]. Quantum entangled states have become the key ingredient in

the rapidly expanding field of quantum information science, with remarkable

prospective applications such as quantum teleportation, quantum cryptogra-

phy, quantum dense coding and parallel computing.

However, it has been shown that not all of the quantum entangled states

are useful in quantum information processing. There exist bound entangled

states from which no pure entangled states can be distilled under local opera-

tion and classical communication (LOCC) [2]. With bound entangled states
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as the entangled resource teleportation can not be performed better than

with a classical channel, even if conclusive teleportation is allowed [3]. It has

been shown that bound entangled states can enhance the fidelity of telepor-

tation for non-bound entangled states [4, 5]. However, a bound entangled

state can never enhance the teleportation fidelity of another state which is

also bound entangled [5].

An important problem in quantum information theory is the detection

of quantum entanglement. A series of excellent results have been obtained

on separability criteria and evaluation of measures of quantum entanglement

such as entanglement of formation (EOF) [6] and concurrence [7, 8].

The calculation of entanglement of formation or concurrence is compli-

cated except for 2 × 2 systems or for states with special forms. For general

quantum states with higher dimensions or multipartite case, it seems to be a

very difficult problem to obtain analytical formulas. In stead, the lower and

the upper bounds of concurrence [9, 10, 11, 12, 13] and EOF [14] have been

estimated.

In this paper we show in Section 2 that although we can not distill pure

entangled states from any bound entangled states, the concurrence and tangle

of two entangled states will be always strictly larger than that of one, even

the two entangled states are both bound entangled. We study the relation

between the fidelity of optimal teleportation and concurrence in section III.

We investigate bounds for concurrence and tangle in Section 4. New lower

and upper bounds for concurrence and tangle are derived, which can be used

not only for the estimation of entanglement, but also for the investigation of

separability. The subadditivity property of concurrence and tangle is proved

in Section 5. We give concludes and remarks in the last section.
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2 Concurrence and tangle of two entangled

quantum states

The concurrence and the tangle are two well defined entanglement mea-

sures satisfying the standard properties usually regarded as essential for a

good entanglement measure (see, for example, [15]).

Let HA (resp. HB) be an M (resp. N)-dimensional complex vector space

with |i〉, i = 1, · · · ,M (resp. |j〉, j = 1, · · · , N), as an orthonormal basis. We

assume M ≤ N for convenience. A general pure state on HA ⊗HB is of the

form

|Ψ〉 =
M∑
i=1

N∑
j=1

aij|i〉 ⊗ |j〉, (1)

where aij ∈ C satisfy the normalization
∑M

i=1

∑N
j=1 aija

∗
ij = 1.

For a bipartite pure quantum state |ψ〉 the concurrence is defined by [7]

C(|ψ〉) =
√

2(1− Trρ2
A), (2)

where ρA = TrB|ψ〉〈ψ|, while the tangle is defined by [16]

τ(|ψ〉) = C2(|ψ〉) = 2(1− Trρ2
A). (3)

The definition is extended to general mixed states ρ =
∑

i pi|ψi〉〈ψi| by the

convex roof,

C(ρ) = min
{pi,|ψi〉}

∑
i

piC(ψi); (4)

τ(ρ) = min
{pi,|ψi〉}

∑
i

piτ(ψi). (5)

Let ρ =
∑

ijkl ρij,kl|ij〉〈kl| ∈ HA⊗HB and σ =
∑

i′j′k′ l′ σi′j′ ,k′ l′ |i
′
j
′〉〈k′l′| ∈

HA′⊗HB′ . We denote ρ⊗σ =
∑

ijkl,i′j′k′ l′ ρij,klσi′j′ ,k′ l′ |ii
′〉AA′ 〈kk

′|⊗|jj ′〉BB′ 〈ll
′|

the bipartite state in the bipartite partition AA
′
and BB

′
.

Lemma 1: For pure states |ψ〉 ∈ HA ⊗ HB and |ϕ〉 ∈ HA′ ⊗ HB′ , the

inequalities

C(|ψ〉 ⊗ |ϕ〉) ≥ max{C(|ψ〉), C(|ϕ〉)} (6)
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and

τ(|ψ〉 ⊗ |ϕ〉) ≥ max{τ(|ψ〉), τ(|ϕ〉)} (7)

always hold, the equalities hold if and only if at least one of the states, |ψ〉
and |ϕ〉, is separable.

Proof: Without loss of generality we assume C(|ψ〉) ≥ C(|ϕ〉). First

note that

ρ
|ψ〉⊗|ϕ〉
AA

′ = ρ
|ψ〉
A ⊗ ρ

|ϕ〉
A
′ , (8)

where ρ
|ψ〉
A = TrB|ψ〉〈ψ|, ρ

|ϕ〉
A
′ = TrB′ |ϕ〉〈ϕ|, ρ

|ψ〉⊗|ϕ〉
AA

′ = TrBB′ (|ψ〉〈ψ|⊗|ϕ〉〈ϕ|).
Let ρ

|ψ〉
A =

∑
i λi|i〉〈i| and ρ

|ϕ〉
A′

=
∑

j πj|j〉〈j| be the spectral decomposition

of ρ
|ψ〉
A and ρ

|ϕ〉
A′

, with
∑

i λi = 1 and
∑

j πj = 1 respectively. By using (8) one

obtains that

Tr[(ρ
|ψ〉⊗|ϕ〉
AA′

)2] =
∑

λiπjλi′πj′ |ij〉〈ij|i
′
j
′〉〈i′j ′| =

∑
λ2

i π
2
j (9)

and

Tr[(ρ
|ψ〉
A )2] =

∑
i

λ2
i . (10)

From the definition of concurrence and the normalization conditions of

λi and πj one immediately gets

C(|ψ〉 ⊗ |ϕ〉) =
√

2(1− Tr[(ρ
|ψ〉⊗|ϕ〉
AA′

)2]) ≥
√

2(1− Tr[(ρ
|ψ〉
A )2]) = C(|ψ〉).

(11)

If one of the states |ψ〉 and |ϕ〉, say |ϕ〉, is separable, then the rank of

ρ
|ϕ〉
A′

must be one, which means that there is only one item in the spectral

decomposition in ρ
|ϕ〉
A′

. From the normalization condition of πj we obtain

Tr[(ρ
|ψ〉⊗|ϕ〉
AA′

)2] = Tr[(ρ
|ψ〉
A )2]. Hence the inequality (11) becomes an equality.

On the other hand, if both |ψ〉 and |ϕ〉 are not separable, there must be

at least two items in the decomposition of their reduced density matrices ρ
|ψ〉
A

and ρ
|ϕ〉
A′

, which means that Tr[(ρ
|ψ〉⊗|ϕ〉
AA′

)2] is strictly larger than Tr[(ρ
|ψ〉
A )2].

The inequality (7) also holds because for pure quantum state ρ, τ(ρ) =

C2(ρ). ¤
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By using the lemma, we have

Theorem 1: For any quantum mixed states ρ ∈ HA ⊗ HB and σ ∈
HA′ ⊗HB′ , the inequalities

C(ρ⊗ σ) ≥ max{C(ρ), C(σ)} (12)

and

τ(ρ⊗ σ) ≥ max{τ(ρ), τ(σ)} (13)

hold. They become equalities if and only if at least one of the states, ρ and

σ, is separable.

Proof: We assume C(ρ) ≥ C(σ) for convenience. Let ρ =
∑

i piρi

and σ =
∑

j qjσj be the optimal decompositions such that C(ρ ⊗ σ) =∑
i piqjC(ρi ⊗ σj). By using the inequality in Lemma 1 we have

C(ρ⊗ σ) =
∑
ij

piqjC(ρi ⊗ σj) ≥
∑
ij

piqjC(ρi) =
∑

i

piC(ρi) ≥ C(ρ). (14)

Case 1. If one of the states ρ and σ, say σ, is separable, i.e. σ can be

written as σ =
∑

j qjσj, where
∑

j qj = 1 and σj are the density matrices of

separable pure states. Suppose ρ =
∑

i piρi be the optimal decomposition of

ρ such that C(ρ) =
∑

i piC(ρi). Using Lemma 1 we have

C(ρ⊗ σ) ≤
∑
ij

piqjC(ρi ⊗ σj) =
∑
ij

piqjC(ρi) =
∑

i

piC(ρi) = C(ρ). (15)

Inequalities (14) and (15) show that if σ is separable, then C(ρ⊗σ) = C(ρ).

Case 2: If both ρ and σ are not separable, using Lemma 1 we have

C(ρ⊗ σ) =
∑
ij

piqjC(ρi ⊗ σj) >
∑
ij

piqjC(ρi) =
∑

i

piC(ρi) ≥ C(ρ), (16)

i.e. (12) is strictly an inequality.

The inequality (13) for tangle τ can be proved similarly. ¤
Remark : In [5] the author shew that any entangled state ρ can enhance

the teleportation power of a state σ. This holds even if the state ρ is bound
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entangled. But if ρ is bound entangled, the corresponding state σ must be

free entangled (distillable). From Theorem 1, we see that even both ρ and σ

are bound entangled states, the concurrence and tangle can be still strictly

larger than that of one state.

3 Relation between Concurrence and Fully

Entangled Fraction

Quantum entangled states are the key resources in quantum teleportation

[17, 18, 19, 20]. As shown in [21], the optimal teleportation fidelity is related

to the concurrence of a two-qubit quantum state. For high dimensional case,

the optimal fidelity of teleportation with a quantum state ρ ∈ HA ⊗HB as

an entangled resource, with dimensions M = N = d is given by [22]

F (ρ) =
d

d + 1
F(ρ) +

1

d + 1
, (17)

where F(ρ) is the fully entangled fraction of ρ defined by

F(ρ) = max
φ∈ε

〈φ|ρ|φ〉, (18)

where ε denotes the set of d× d-dimensional maximally entangled states.

Theorem 2: For any bipartite quantum state ρ ∈ HA⊗HB with dimen-

sions M = N = d, we have

C(ρ) ≥
√

2d

d− 1
[F(ρ)− 1

d
]. (19)

Proof: It is shown that for any pure state |ψ〉 ∈ HA⊗HB, the following

inequality holds [23]:

C(|ψ〉) ≥
√

2d

d− 1
(max|φ〉∈ε|〈ψ|φ〉|2 − 1

d
). (20)
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Let ρ =
∑

i pi|ψi〉〈ψi| be the optimal decomposition such that C(ρ) =∑
i piC(|ψi〉).We have

C(ρ) =
∑

i

piC(|ψi〉) ≥
∑

i

pi

√
2d

d− 1
(max|φ〉∈ε|〈ψi|φ〉|2 − 1

d
)

≥
√

2d

d− 1
(max|φ〉∈ε

∑
i

pi|〈ψi|φ〉|2 − 1

d
)

=

√
2d

d− 1
(max|φ〉∈ε〈φ|ρ|φ〉 − 1

d
) =

√
2d

d− 1
(F(ρ)− 1

d
),

which ends the proof. ¤
The inequality (19) shows a relation between the lower bound of con-

currence and the fully entangled fraction (thus the optimal teleportation

fidelity), namely the fully entangled fraction of a quantum state ρ is limited

by it’s concurrence. Moreover (19) also gives a lower bound for concurrence

which is obviously closer than that in [23].

4 Bounds of Concurrence and Tangle for bi-

partite quantum systems

In this section we derive new lower and upper bounds of concurrence and

tangle for arbitrary quantum states.

We see that (12) and (13) can be regarded as lower bounds for τ and C

of a certain state that can be achieved with the help of another state. In fact

there have been many lower and upper bounds for concurrence and tangle

[9, 10, 11, 12, 13, 24, 25, 26, 27, 28]. Here we just list several important ones

that will be used in the following. In [9] a lower bound for a bipartite state

ρ ∈ HA ⊗HB, with dimensions M ≤ N , has been obtained,

C(ρ) ≥
√

2

M(M − 1)
[max(||TA(ρ)||KF , ||R(ρ)||KF )− 1]. (21)

where TA, R and || · ||KF stand for the partial transpose, realignment, and

the trace norm (sum of the singular values), respectively.

7



In [11, 24, 25], from the separability criteria related to local uncertainty re-

lation, covariance matrix and correlation matrix, the following lower bounds

for bipartite concurrence are obtained:

C(ρ) ≥ 2||C(ρ)||KF − (1− Tr{ρ2
A})− (1− Tr{ρ2

B})√
2M(M − 1)

(22)

and

C(ρ) ≥
√

8

M3N2(M − 1)
(||T (ρ)||KF −

√
MN(M − 1)(N − 1)

2
), (23)

where the entries of the matrices C and T are given by, Cij = 〈λA
i ⊗ λB

j 〉 −
〈λA

i ⊗ IN〉〈IM ⊗ λB
j 〉, Tij = MN

2
〈λA

i ⊗ λB
j 〉, λ

A/B
k stands for the normalized

generator of SU(M/N) satisfying Tr{λA/B
k λ

A/B
l } = δkl and 〈X〉 = Tr{ρX}

stands for the expection value of X. It is shown that the lower bounds (22)

and (23) are independent of (21). Besides, in [12], a lower bound for tangle

has been derived:

τ(ρ) ≥ 8

MN(M + N)
(||T (ρ)||2HS −

MN(M − 1)(N − 1)

4
), (24)

where ||X||HS =
√

Tr(XX†) denotes the Frobenius (Hilbert-Schmidt) norm.

Experimentally measurable lower and upper bounds for concurrence have

been presented in [27, 13]:

√
2(Tr[ρ2]− Tr[ρ2

A]) ≤ C(ρ) ≤
√

2(1− Tr[ρ2
A]). (25)

Since the convexity of C2(ρ), we have that τ(ρ) ≥ C2(ρ) always holds. In

[16] the authors point out that for two qubits quantum systems, tangle τ is

always equal to the square of concurrence C2, as a decomposition {pi, |ψi〉}
achieving the minimum in Eq. (4) will have the property that C(|ψi〉) =

C(|ψj〉) for all i, j. But for higher dimensional systems we do not have similar

equations. Therefore it is meaningful to derive valid upper bound for tangle

and lower bound for concurrence. In the following we derive an effective
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upper bound for tangle, which can be used to estimate the entanglement of

quantum states. We also derive new lower bound for concurrence which is

better than that in (21), (22) and (23) for certain quantum states.

Theorem 3: For any quantum state ρ ∈ HA ⊗HB, we have

τ(ρ) ≤ min{2(1− Tr(ρ2
A)), 2(1− Tr(ρ2

B))}, (26)

C(ρ) ≥
√

8

MN(M + N)
(||T (ρ)||HS −

√
MN(M − 1)(N − 1)

2
), (27)

where ρA/B are the reduced matrices of ρ, and T (ρ) is the correlation matrix

of ρ defined in (23).

Proof: We assume 1 − Tr(ρ2
A) ≤ 1 − Tr(ρ2

B) for convenience. From the

definition of τ , we have that for a pure state |ψ〉, τ(|ψ〉) = 2(1 − Tr(ρ
|ψ〉
A )2).

Let ρ =
∑

i piρi be the optimal decomposition such that τ(ρ) =
∑

i piτ(ρi).

We get

τ(ρ) =
∑

i

piτ(ρi) =
∑

i

pi2[1−Tr(ρ
|ψi〉
A )2] = 2[1−Tr

∑
i

pi(ρ
|ψi〉
A )2] ≤ 2[1−Tr(ρ2

A)].

(28)

.

To prove (27), first note that in [12] the author obtains, for pure state

|ψ〉 ∈ HA ⊗HB,

C(|ψ〉) =

√
8

MN(M + N)
(||T (|ψ〉)||2HS −

MN(M − 1)(N − 1)

4
). (29)

Using the inequality
√

a− b ≥ √
a−

√
b for any a ≥ b, we get

C(|ψ〉) ≥
√

8

MN(M + N)
(||T (|ψ〉)||HS −

√
MN(M − 1)(N − 1)

2
). (30)

Now let ρ =
∑

i piρi be the optimal decomposition such that C(ρ) =
∑

i piC(ρi).

We get

C(ρ) =
∑

i

piC(ρi) ≥
∑

i

pi

√
8

MN(M + N)
(||T (ρi)||HS −

√
MN(M − 1)(N − 1)

2
)
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=

√
8

MN(M + N)
(
∑

i

pi||T (ρi)||HS −
√

MN(M − 1)(N − 1)

2
)

≥
√

8

MN(M + N)
(||T (ρ)||HS −

√
MN(M − 1)(N − 1)

2
),

which ends the proof. ¤

The measurable upper bound (26), together with the lower bound in

(21), (22), (23), (24) and (25) allow for better estimation of entanglement for

arbitrary quantum states. Moreover, since the upper bound is exactly the

value of tangle for pure states, the upper bound can be a good estimation

when the state is very weakly mixed, see Fig. 1. One can also easily find that

the lower bound (27) is obviously stronger than (23) when ||T ||KF ≈ ||T ||HS.
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Figure 1: We take the following 3 × 3 mixed state as an example: ρ =
1−p
9

I9 +p|ψ〉〈ψ|, where |ψ〉 is a randomly generated pure state, I9 is the 9×9
identity matrix. The upper line is the bound, the lower one is the tangle for
pure state |ψ〉. To compare the validity of the estimation of tangle, we take
p = 0.981, 0.993 and 0.998 respectively. As seen from the figures, for weakly
mixed states (with large p), the bounds provide an excellent estimation for
tangle.
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5 Subadditivity of Concurrence and Tangle

The additivity is an important property of entanglement measures, though

it is usually rather difficult to prove. The strong subadditivity of relative en-

tropy has been proved in [29]. In this section, we prove the subadditivity of

concurrence and tangle.

Theorem 6: Let ρ and σ be two mixed quantum states in HA⊗HB. We

have

C(ρ⊗ σ) ≤ C(ρ) + C(σ) and τ(ρ⊗ σ) ≤ τ(ρ) + τ(σ). (31)

Proof: We first prove the theorem for pure states. Let |ψ〉 and |φ〉 be two

pure states inHA⊗HB. Assume that ρ
|ψ〉
A =

∑
i λi|i〉〈i| and ρ

|φ〉
A =

∑
j πj|j〉〈j|

be the spectral decomposition of the reduced matrices of ρ|ψ〉 and ρ|φ〉. Then:

1

2
[C(|ψ〉) + C(|φ〉)]2 ≥ 1− Tr[(ρ

|ψ〉
A )2] + 1− Tr[(ρ

|φ〉
A )2]

= 1−
∑

i

λ2
i + 1−

∑
j

π2
j ≥ 1−

∑
ij

λ2
i π

2
j =

1

2
C2(|ψ〉 ⊗ |φ〉). (32)

Namely, C(|ψ〉⊗ |φ〉) ≤ C(|ψ〉)+C(|φ〉). For tangle τ , the following inequal-

ity can be obtained similarly by changing the first inequality in (32) to be

equality, τ(|ψ〉 ⊗ |φ〉) ≤ τ(|ψ〉) + τ(|φ〉).
Now let ρ =

∑
i piρi and σ =

∑
j qjσj be two mixed states at optimal

decomposition such that C(ρ) =
∑

i piC(ρi) and C(σ) =
∑

j qjC(σj). We

have

C(ρ)+C(σ) =
∑
ij

piqj[C(ρi)+C(σj)] ≥
∑
ij

piqjC(ρi⊗σj) ≥ C(ρ⊗σ). (33)

The inequality for τ can be derived similarly. ¤

6 Conclusions and Remarks

We have investigated the concurrence and tangle of quantum states. It

has been shown that although one can not distill singlets from many bound
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entangled states, the concurrence (and tangle) C(ρ⊗σ) (and τ(ρ⊗σ)) is al-

ways larger than max{C(ρ), C(σ)} (max{τ(ρ), τ(σ)}) respectively. We have

derived a relation between concurrence and the optimal fidelity of telepor-

tation, which shows that the optimal fidelity of teleportation is limited by

the concurrence. We have also presented new upper and lower bounds for

concurrence and tangle, which give rise to better estimation for entanglement

of quantum states. At last we have proved the subadditivity of concurrence

and tangle.

Acknowledgments This work is supported by the NSFC 10675086, NSFC

10875081, NSFC 10871227, KZ200810028013 and NKBRPC (2004CB318000).

References

[1] Nielsen M A, Chuang I L 2000 Quantum Computation and Quantum

Information. Cambridge: Cambridge University Press

[2] M. Horodecki, P. Horodecki, and R. Horodecki 1998 Phys. Rev. Lett.

80 5239

[3] M. Horodecki, P. Horodecki, and R. Horodecki 1999 Phys. Rev. A 60

1888

[4] P. Horodecki, M. Horodecki, and R. Horodecki 1999 Phys. Rev. Lett.

82 1056

[5] L. Masanes 2006 Phys. Rev. Lett. 96 150501

[6] C. H. Bennett, D. P. DiVincenzo and J. A. Smolin, et al 1996 Phys.

Rev. A 54 3824

[7] A. Uhlmann 2000 Phys. Rev. A 62 032307;

P. Rungta, V. Buz̈ek, and C. M. Caves, et al 2001 Phys. Rev. A 64

042315;

12



S. Albeverio and S. M. Fei 2001 J. Opt. B: Quantum Semiclass. Opt. 3

223

[8] L. Aolita and F. Mintert 2006 Phys. Rev. Lett. 97 050501;

A. R. R. Carvalho, F. Mintert, and A. Buchleitner 2004 Phys. Rev. Lett.

93 230501

[9] K. Chen, S. Albeverio, and S. M. Fei 2005 Phys. Rev. Lett. 95 040504

[10] X. H. Gao, S. M. Fei and K. Wu 2007 Phys. Rev. A 74 050303(R)

[11] J. I. de Vicente 2007 Phys. Rev. A 75 052320

[12] J. I. de Vicente 2008 J. Phys. A: Math. Theor 41 065309

[13] C. J. Zhang, Y. X. Gong, Y. S. Zhang, and G. C. Guo 2008 Phys. Rev.

A 78 042308

[14] K. Chen, S. Albeverio and S.M. Fei 2005 Phys. Rev. Lett. 95 210501

[15] G. Vidal, D. Jonathan, and M. A. Nielsen 2000 Phys. Rev. A 62 012304

[16] V. Coffman, J. Kundu, and W. K. Wootters 2000 Phys. Rev. A 61

052306;

Tobias J. Osborne 2005 Phys. Rev. A 72 022309;

P. Rungta and C. M. Caves 2003 Phys. Rev. A 67 012307

[17] C.H. Bennett, G. Brassard, C. Crepeau, R.Jozsa, A. Peres, W.K. Woot-

ers 1993 Phys. Rev. Lett 70 1895.

[18] Chen Kai, Pan Jian-Wei, Peng Cheng-Zhi, Ren Ji-Gang, Yang Bin, Yi

Zhen-Huan and Zhou Fei 2009 Chin. Phys. B 18 3605

[19] Ai L Y, Du G, Zhu S L and Zhang Z M 2009 Chin. Phys. Lett. 24 014210

[20] Sun Y, Man Z X and Xia Y J 2009 Chin. Phys. Lett. 26 020306

13



[21] J. Grondalski and D. M. Etlinger, D. F. V. James 2002 Phys. Lett. A

300 573

[22] M. Horodecki, P. Horodecki, and R. Horodecki 1999 Phys. Rev. A, 60

1888;

S. Albeverio, S. M. Fei, and W. L. Yang 2002 Phys. Rev. A, 66 012301

[23] C. S. Yu, X. X. Yi, and H. S. Song 2008 Phys. Rev. A 78 062330

[24] C. J. Zhang, Y. S. Zhang, S. Zhang, and G. C. Guo 2007 Phys. Rev. A

76 012334

[25] M. Li, S. M. Fei, and Z. X. Wang 2008 J. Phys. A(FTC) 41 202002

[26] J. M. Cai, Z. W. Zhou, S. Zhang, and G. C. Guo 2007 Phys. Rev. A 75

052324

[27] F. Mintert and A. Buchleitner 2007 Phys. Rev. Lett. 98 140505

[28] L. Aolita, A. Buchleitner, and F. Mintert 2008 Phys. Rev. A 78 022308

[29] M.B. Ruskai 2007 Rep. Math. Phys. 60 1 ;

M. Nielsen and D. Petz 2005 Quantum Inf. Comput. 5 507

14


