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Abstract

We consider the set of join probability distributions @fbinary random variables
which can be written as a sumwf distributions in the following formp(z4, ..., zx) =
Yo aifi(zy, ..., zN), wherea; >0, > «o; = 1, and thef;(zy, ..., zx) belong to
some exponential family. For our analysis we decomposeaimpke space into portions
on which the mixture componenfscan be chosen arbitrarily. We derive lower bounds
on the number of mixture components from a given exponefarally necessary to
represent distributions with arbitrary correlations uptoertain order or to represent
any distribution. For instance, in the case whé¢rare independent distributions we
show that every distributiop on {0, 1}"V is contained in the mixture model whenever
m > 2N=1 and furthermore, that there are distributions which artecoatained in the
mixture model wheneven < 21,

1 Introduction

A probability mixture model is a set of distributions whichrcbe written as convex
combination of other distributions belonging to a familyditributions. The idea is
that the sum of parts which are individually relatively easydescribe can result in
a powerful and versatile machinery. Mixture models havergy lbistory, and there
has given many advances in their study, e.g. the identifyahfid mixture density es-
timation problems have been tackled with the familiar mdtbd moments, and the
expectation maximization algorithm. Mixture models halsmdound a wide range of
applications, e.g. in clustering and machine learning aadyhothers, see for instance
D. M. Titterington et al. (1985), B. G. Lindsay (1995). Hoveevimportant questions,
particularly about the dimension of mixture models or thepresentational power still
remain open, M. Drton et al. (2009). In this paper we focushanrepresentational
power of mixture models, i.e., we ask how large must a mixtdirgmple distributions
be in order to contain families of more complicated coredadistributions. As an ex-
ample of this kind of problems one may think of the decompasiof exchangeable

* montufar@mis.mpg.de



distributions as convex combinations of Bernoulli digttibns, P. Diaconis (1977).
Rather than using a decomposition in extremal points {digions which can only be
trivially decomposed) we use elements from convex sectajrtee boundary of the
family the mixture components belong to. There are such tharynsections of expo-
nential families, which can be identified with subsets of shenple space, as we will
explain below. This idea builds on the previous works J. Retudd. (2009); T. Kahle
(2010, 2006); Geiger et al. (2006).

In discrete mixture models a family of distributiods C P(X) is given, where
P(X) is the set of all join distributions oF random variable&X, ..., Xy) =: X with
sample spac&’ = x¥ ,[r;] for some natural numbers, [r;] beeing a set containing
elements. For straightforwardness we consider binarpbles, i.e. X = {0,1}". A
natural way to understand mixture models, M. Drton et al. 080is to assume that
there is a hidden random varialifewith state spacén|, and that for eacly € [m/|, a
mixture component is given by the conditional distributadnX givenY =y, p, € £.

If the random variabl@” has distributiory € P([m]), then the join distribution o
and X is given by
Pr(Y =y, X =2) = ay) py(z).

Since the variabl@” is assumed to be hidden, only the marginal distributioXois
visible, i.e.

Pr(X =)= a(y)p,(z).

Suppose for example that the mixture components can be rclawbdrarily from
& ={d,},. Then, the convex combinations of the form

> aly)d,(x)

Y

cover all distributions irP if there are as manyasz. This is simply a direct parametriza-
tion of a distribution in terms of its values on the differentOn the other hand, this
model ha®? — 1 = |X| — 1 parameters and it is clear that a smaller number of mix-
ture components would not suffice to represent some disiittt More generally, a
problem arises when cannot be chosen arbitrarily, but in some further model.sThi
can be the case when it comes to approximate probabilitsitalisions as marginals say
of Restricted Boltzmann Machines. We will comment on thithatend of this section.
In this paper we focus on the simpler case where the mixturghtssx can be chosen
arbitrarily and ask what happens when one allows more gemexéure components
than{d,}. How many mixture components from a certain model are reguirsuf-
ficient if we want to represent any distribution, or respesi, distributions from the
class describing correlations of a certain order?

We consider here mixtures with components from the set afpeddent distribu-
tions of V binary random variables, called the independence modealvaich consists
of all factorizable distributions. And, more generally, e@sider mixtures from some
exponential family. Very familiar examples of exponentiaiilies are multivariate
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gaussians or just the independent distributions. Therehiemarchy of exponential
families
Elc&c---ceN=pPw),

where for€* the indexk denotes the order of correlations betweensheandom vari-
ables that are covered I8}, see for instance S. Amari (1999). We will explain these
objects in more detail in the next section.

The mixture models that we study are of the following form:

ME = {Zajfj e R, > 1,Zai:1andfi Eﬁforallj} C P,

j=1
whereé* is the closure of* in RI*1.

For anyl < k£ < N the setf* contains the atom&),. }.cx, and since these are the
extremal points ofP, any distribution can be represented as a mixturigtdofelements
of £k, (when the mixture weights can be chosen arbitrarily), gsaéed above. In our
notation we can state:

Mpsix = P(X), VI<k<N

Now, the first question is whether a smaller number of mixtmeponentsn suf-
fices, depending ok. The second question is how small canbe when it is only
required that

ME D EL
Can we derive relations betweénk andm? How do these relations depend on the
number of random variable§? The subject of this note is to derive such relations.
Among many others this questions are of high relevance fdergtanding stochastic
networks like Restricted Boltzmann Machines or Deep BdaNetworks, see for in-
stance Montufar & Ay (2010), and for the description of ctated neural spikes, see
for instance S. Amari (2010).

The central idea of this paper is to find decompositions ofstimaple space such
that all distributions with support contained in the mensbafrthis decomposition are
contained in the set of distributions where the mixture congmts are taken from. This
allows a very simple decomposition of distributions, andifarmore, when these sup-
port sets are given and chosen disjointly, then the ideatifio problem is automatically
solved (uniqueness of the mixture representation withémtiodel).

To motivate our ansatz we want to review a small example: Theunes of two
independent distributions of two binary variables. Theddehixtures of two fixed el-
ements from the independence model can be representedresatinecting the two
elements. If the two elements are not fixed, the set of linesecting points on the in-
dependence model fo¥ = {0, 1}* covers all of the probability simplex, (see Figure 1
in the next section). The situation becomes more complidate/V larger than 2, since
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the dimension of the independence model increases onlgdsghrithm of the dimen-
sion of the probability simplex. However, a closer inspattieveals that mixtures of
two elements lying in the interval§ 1y, d1,1y] and[d1,0), d(0,0)], Which in fact belong

to £1, already suffice to cover all the probability simplex. Théssef distributions

described by these intervals have the special propertythiegtcomprend all possible
distributions with support setq0, 1), (1,1)} and{(1,0), (0,0)} and that the union of
those two sets i&’.

In this paper we elaborate that observation for the genettihg. This reasonings
allow us to show for example that all distributions with sagpestricted to some spe-
cial sets are contained in the independence model an@thatsuch sets cover all the
state spac€0, 1} for arbitrary N. This can be directly used to decompose arbitrary
distributions as mixtures of independent distributions.

The same questions posed above can be considered for thevlvasd¢he mixture
weights belong to a certain model. Setting

"ME = {p(x) = Zajfj(x) (fj € EFVj, o = (a1, ) € 5”([m])} ,

can we find sufficient / necessary conditionson, m, k& such that
"ME D EL?

Montufar & Ay (2010) showed that in the case of mixture wegyfiom the indepen-
dence modely € €T, a number?” ™" of mixture components from the independence
model suffices to represent any distribution{on1}”, i.e.,

lMinZZQNfl = P({()? 1}N)

This number of mixture components is very large, but it isffam trivial to prove or
disprove the optimality of this result. We hope that the gldaveloped in this paper
will also help to approach this kind of problems.

2 Preparations

In this section we present concepts and results neededdfprdiofs of our main results
in the next section.

Given a family of setg\ C 2IM, 2[¥ the power set of V] := {1,..., N}, and a ma-
trix (Ax.)reacex, We define a modela := {p(z) = exp (3 ca HhArz) : J € RS,
which in the literature is known as @xponential familyHere we assume théte A
and Ay, = 1 for all =, such thatJy is a constrained parameter which normalizes the
distribution. ForX = {0,1}" the model€, is a subset of the"¥ — 1-dimensional
simplex (the set of all distributions on binary vectors afdéh N) in R2". The closure
of this set is denoted b§x. This closure contains in particular distributions whiah d
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not have full support.

An exponential family defined this way is completely chaggaized by the row-span
of the matrix(Ay ;) = [A.1, ..., Ayx], whered, = (A, ., .. .,Am‘vx)t. Anindepen-
dence modebr set of independent distributioms described by the exponential family
for which A = [NJU 0, and Ay, = z, for A # 0 and 4y, = 1. In this case we

have namely thap(x;,...,zy) = exp (J@ + Zf\il Jixz-> = exp(Jy) Hf\il exp(J;z;),

with arbitrary values/;. This model, as a subset 82" is a manifold of dimension
N, with canonical coordinate functiods/; };cyj. For simplicity we writeg! for the
independence model. A distribution in the boundar¥bfis for example the follow-
ing: p(xy, 5) = p*(x1) - p*(x2), Wherep! assigns probability one thr; = 1}, andp?
assigns probability to {z, = 1}. This distribution vanishes i, z5) = (0, 0).

For the description of correlated distributions we consiist the space of func-
tions of N variables{z;}¥, describing arbitrary interactions of any subget};cx
with indicesA € A C 2, see for instance T. Kahle (2006):

In = {g €RY:g=> g, whereg, is a function of{:):l-}l-eA} .
AeA

The exponential family describing distributions with cgations specified by is then
the set of distributions of the form « exp(g), g € In. Notice that the functions
{oz(xy,...,2y) = (—1)E==U1, | (known as characters), form a basis of the
functions of the binary variablese; };c, for any A C [N]. Since an exponential family
as described above is characterized by the row-spdntbie distributions with arbitrary
correlations up to order are given by the following family:

EF = {p(x) = exp (Z J,\AM) ,J € R'A”} ,

AEA

where A, , = (—1)ixi=l1 A, = {\ € 2V : |\ < k}, and Jy normalizes the
distributions.

Themarginal polytopeof the modeE, is Qa := conv{A, }.cx. Thisis the convex
hull of the column vectors!, in R4l For simplicity we writeQ,, for Qa,. A faceof
Qx is the intersection of) » with an hyperplane of codimension oneR¥* such that
all points of QA lie on one of the closed halfspaces defined through that plges.
The marginal polytope contains information about the supgets of the distributions
contained in the model, as will be explained below. See leiqur

Definition 1. (Facial sets)Given the modef, a Q-facial set is a sefy C X such
thatconv{A,}.cy is aface ofQ.

From Figure 1 we gather that the facial sets in the indeperedarodel forX’ =
{0,1}* are{(1,1),(1,0),(0,1),(0,0)}, as well as{(1, 1), (0,1)}, {(1,1),(1,0)} and
{(0,0), (0,1)},{(0,0), (1,0)}, and all sets of cardinality one.
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Figure 1: On the left, the probability simplex for the samgpacet = {0, 1}?, and the
independence model. On the right, the marginal polytopé@findependence model
(omitting the first coordinate, which is allways 1).

Proposition 2. (Facial Sets, J. Rauh etal. (2009)) ¥ C X is Qa-facial, then there
exists one € Ex with supp(p) = ). Furthermore, ifp € Ea thensupp(p) is facial.

This proposition tells us in particular that a distributionthe model€, can only
have suppord, if ) is Q- facial. This yields the following:

Proposition 3. (Support sets in the Independence Modelh the independence model
El,we haveR, = conv{i},cx, Wherei = (1,zy,zs,...,zy)t, Which corresponds to
the V-cube. The only sets which can occurr as support of distidimstin the closure of
the independence model consist of the sets of binary veaftteagth/N whose convex
hull is a face of theV-cube.

Proposition 2 also tells us that whenever a)es facial, there exists a distribution
in the model which ha® as its support. This does not mean that all distributionk wit
support) are contained in the model. This motivates the followingrdgdin:

Definition 4. (S-sets)Given a model, i.e. a set of probability distributions ah we
say that a se)) C X has theS-propertyor is anS-setin that model if and only if every
distribution with suppor{) is contained in the model.

For the independence model we have the following:

Proposition 5. (S-sets in the Independence Modelp set has the-property in the
closure of the independence model if and only if it has cailitiynone or consists of two
binary vectors which differ in exactly one entry.

The statement is a special case of Lemma 7, a charactenzattiS-sets as the
facial sets for which the corresponding face of the margidytope is a simplex, in
view of the fact that the marginal polytope of the indeperm@emodel is theV-cube,
Proposition 3. Here we present an alternative proof offtpart of Proposition 5 which
does not require concepts of marginal polytopes (similéimégroof of Theorem 1, part
3in Montufar & Ay (2010)).

Proof of Lemma 5, ‘if’ part.Let e; be the vector with value one in the positigrand
zeros elsewhere, and letbe the vector consisting of ones everywhere. For any binary
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vectorv we we writev; for the binary vector which is equal toeverywhere but in the
entryj is different. Regarad that any element of the independerokehis of the form
f(z) o< exp(w - x 4 ¢), wherec is arbitrary. Now, for some arbitrarye [N] letz be an
arbitrary vector in¥’ with z; = 1. Consider some € R, and any\;, A, € R. Define
W = a(fj — %]lj—), W= W+ ()\2 — )\1)6]', andc .= —w -+ A\ = —w- 2?‘5 + M. Set
s = |suppZ;| (number of entries of ; with value one). For the parametersandc we
have:

Doz = %a(s i ) £ @) ) + Qo — A,

c = —= A1

c 2as + A1
In the limita — oo we getexp(w-z+¢) = 0 Yz # &, 3, andexp(w-7; +¢) = e, and
exp(w - T + ¢) = ™. Thisis f(x) = lim,_.o exp(wz + ¢)/Z, (Z the normalization),
vanishes everywhere but in an arbitrary pair of vectors wiifer in exactly one entry.
In this pair of vectorg takes arbitrary values (adding to one). O

We will use the following result established by T. Kahle (BD1Given an inter-
action setA C 2V, a smallest sek € 2" not belonging toA is called a minimal
non-face ofA.

Theorem 6. (Neighborliness of marginal polytopes, Kahle 2ID) Let £ + 1 be the
minimal cardinality among the non-faces 4f then every probability distributiop
with | supp p| < 2% is contained ir€a.

This theorem states that all sets of cardinality smallen téfaare S-sets in the
modelEF. This result is optimal in the sense that there exists tistions with support
of cardinality2*, which are not contained ii*. Theorem 6 can be expressed in terms
of the marginal polytop€);, by saying that it ig2* — 1)-neighborly. This means that
any set vertices af),, containing at most2* — 1) elements are the extremal points of
a face ofQ,. This implies that any2* — 1) vertices describe a face of the marginal
polytope which is a simplex. This obsevation motivates aattarization ofS-sets in
terms of faces of the marginal polytope which are simpliedsgt we do in Lemma 7
in the next section.

3 Mixture Decompositions

The following two results represent the reasonings of thsap.

Lemma 7. (Characterization of the S-property) A set)y C X has theS-property in
the exponential family defined by the matdixand that model contains all distributions
with support contained iy, if and only ifconv{ A, }.cy is a face okonv{ A, },cr for
ally’ C .

The lemma above says that every distribution with suppbi$ contained in the
exponential family described hy exactly when the vertices of the marginal polytope
corresponding tQ) are the extremal points of a face of the marginal polytopectvis
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a simplex. The proof of Lemma 7 is in the Appendix.

The idea of the following lemma is to decompose an arbitrasyribution as a
mixture of distributions with support set given Bysets (which by the lemma above
are directly related to special faces of the marginal p@gj@and such that the union of
their support sets i&’.

Lemma 8. (Mixture decompositions using a decomposition ofne sample space)
Given anyp € P(X), there existf; € £, anda; > 0, . a; = 1,7 =1,..., s such that

p(x) = Z a; fi(z),

wherex = min{|{);};| : Vi ); is anS-setin&, and U; V; = X'}.

Since anyf; ¢ £ is arbitrarily well approximated by an elementdnanyp € P is
arbitrarily well apprixmated as mixture afelements irt.

Proof of Lemma 8The f; can be chosen arbitrarily with the only restriction that its
support is confined to afi-set);. We can make thg; disjoint whileU;); = X, since
any subset of av-set is again ar$-set. Settingf;(z) = p(x)/p();) for z € ), and
fi(x) = 0for x ¢ V;, anda; = p();) yields the result. O

Mixtures from the independence model

Proposition 5 provides an easy way to decompose distrisiag mixtures of elements
in the independence model:

Theorem 9. (Mixtures of independent distributions) Given any distributiorp on
the binary vectors of lengttV, there exisV~! elements in the independence model
fi € €', and weightsy; > 0, > . a; = 1 such that

2N /2

p(z) = Z a; fi(x).

1=1

This also implies that a mixture @f'~! elements from€! approximates any dis-
tribution in P arbitrarily well. The special case of our Theorem 9 whare= 2 is the
content of Theorem 2 by S. Amari (2010).

Proof of Theorem 9Select a perfect matching of the graph of fliecube{z"*, 2*2},.
This consists O%N disjoint pairs of points (edges) covering all vertices a t-cube.
From Lemma 5 we have that to eveiyall distributions with suppor{z®!, 22} are
contained ir€!. Choose nowy; = p(z"!) + p(x*?), andf; with support{z*!, z*?} and
fi(x®Y) = p(a®') /a; and fi(2?) = p(2>?) /a;. This completes the proof. O

The proof of Theorem 9 also yields the following:



Corollary 10. Any distributionp on {0, 1}V can be written as a mixture df elements
of the independence model, whéfas the minimal number of pairs differing in exactly
one entry, which suffices to cover the suppor.of

We now show the optimality of Theorem 9.

Theorem 11. There exist distributions ofi0, 1} which can not be written as a mix-
ture of less thar2¥—! elements from the independence maglel For instance the
distributions with supporf := {x € X': [[;c;y(—1)" = 1}.

This also means that there exist distributions which cabeatell approximated as
a mixture of less thap¥ ! elements front*.

Proof of Theorem 11.

1. By Proposition 3, the marginal polytope of the indepemgemodel on binary
vectors of lengthV is (essentially) thév-cube.

2. The graph of théV-cube is bipartite, or equivalently, 2-colourable.

3. A set is support set of a distribution in the closure of th@éependence model
only if its convex hull is a face of the uniY-cube, Proposition 5.

4. DefineZ as the set of vertices of th€-cube which are assigned the same color
in a 2-coloring of the graph of théV-cube. Then)Z| = 2V /2. Furthermore,
no subset of/ of cardinality larger than one is facial in the independemcelel,
since otherwise some pair mwould be an edge of th&'-cube, in contradiction
to its definition.

5. Consider any probability distributignwith supp(p) = Z.

6. If p is written as a mixture of elements in the closed indeperelemadel,p =
>, a; fi, then everyf; (for which «; > 0) must have support contained fhand
this support set must be facial in the independence modgbadBition 2. Hence,
|suppf;| = 1,V f; for which «; > 0. Therefore, the mixture must have at least
|Z| = % components.

7. Z:={x € X: [[igy(—1)"" = 1} defines a-coloring of theN-cube, since for
any edge of theV-cube with verticegz!, 22} we have that:' andz? differ in
exactly one entry, and thyg,(—1)* = —[[,(—1)%. Clearly,|Z| = %

O

Now we turn our attention to the decomposability of cormiatlistributions (say
with correlations up to ordef) as mixtures of independent distributions.

For the dimension of a mixture of:. independent distributions we have from a
simple counting argument thdtm (M., ) < mN +m— 1. We know that the dimension
of E¥isdim £F = Ele (J]V) This gives an easy lower bound farin order thatM! D
E*. Actually, due to the so called dimension defect, the dirimansf the mixture model

9



is smaller, but this is a hard problem. However, as can be §eenTheorem 11, a
number of parametesY !N + 2V — 1 > 2V — 1 = dim &Y is necessary to cover
the simplex, which i€V, (althoug this does not mean that the dimension of a smaller
mixture is smaller thar"¥ — 1). The proof of Theorem 11 reveals a way of providing
lower bounds for the necessary number of mixture comporiemtsthe independence
model:

Proposition 12. A necessary condition for the mixture modé}, := {p =>""" of; :
fie &l o >0, 3" a; = 1} to contain all distributions frong* and from&* is that

m > rg’aZX{WI : Y C 7},

where) is (Q,-facial, andZ is the set of vertices of th&¥-cube with the same color in
some2-coloring.

From Theorem 6, we know that all sets of cardinalify— 1 are S-sets in&*,
If we take a subset of/, (7 defined e.g. as in Theorem 11), of cardinafify— 1,
then we have from Proposition 12 that in order to have theum&imodel containing
distributions with support given by that set, we need attl2as 1 mixture components,
i.e.m > 2% — 1. This yields:

Corollary 13. A necessary condition for the mixture modé}, := {p = > af; :
fi € T, a; > 0,5 a; = 1} to contain all distributions fron£* and from&* is that

k
1 N
> 75 ok 1%,
m_maX{N+1 (j)’ }

J=0

Itis possible that there are yet other larger simplices Wwhie faces of the marginal
polytope, (this is allways the case, see Theorem 16 belowl)wdnose intersection with
Z is larger.

For N = 4 (), is a polytope of dimensioh0. Numerical computations show that
many facets (proper faces of maximal dimension, in this 6aaee simplices (which is
not surprising regarding that hekas fairly large in relation taV). We found for exam-
ple that(0000), (0001), (1100), (1010), (0110), (1001), (0011), (1101), (1011), (1111)
is a face of dimensiol, (which is a simplex), and its intersection with has car-
dinality 7. For N = 3 @ has dimensior6 and we found that000), (100), (010),
(110), (101), (011) is a face which is a simplex with intersection of cardinalityith
Z. Summarizing:

Corollary 14.
e A necessary condition fok1}, to contain€? for X = {0, 1}* is thatm > 7.

e A necessary condition fok1!, to contain? for X = {0, 1}? is thatm > 4.
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Mixtures from more general models

Now we turn our attention to mixture decompositions usirggrednts from larger expo-
nential families.

In view of Lemma 7 it is necessary to determine when a faceefthrginal poly-
tope is a simplex, and how many such faces suffice to coveedltes. This problem is
related to the problem of optimal covering codes, which iy W&ard. For example find-
ing a minimum clique cover (partition into cliques) is a gnapeoretical NP-complete
problem, or finding perfect covering codes {ih 1}V of general radius is still, in gen-
eral, an open problem. However, from Kahle’s theorem we Itaaeall sets of vertices
of a certain cardinality describe faces of the marginal fmdg and furthermore that
these faces are simplices. An inmediate consequence of be8vand Theorem 6 is the
following:

Theorem 15. (Mixtures of distributions in an exponential family) Given anyp €
P(X), there existf;(-) € EF(X),ando; > 0,> . a; =1,i=1,..., [ 2N W such that

2F—1
2N
btJ

p(x) = Z a; fi(z).

1=1

It is possible to derive sharper results using sets largam 26 — 1 (which have
the S-property), which in our construction is equivalent to thelgem of deriving
lower bounds on the number of partition elements beéirsgts required to cover the
sample space. This problem is more difficult because in @sg @dditional structural
constraints on the sets arise (in addition to the cardiyabinstraint). We know that
Kahle’s result is optimal fo€* in the sense that there exist sets of cardinafityhich
are notS-sets.

We use the following:

Theorem 16. (Th. 14.4 in Bronsted, Arne (1983))Let P be a K-neighborly d-
polytope. Then every fadé of P with 0 < dim F' < 2K — 1 is a simplex, (i.e.P
iIs2K — 1-simplicial).

We know that for€¥, the marginal polytopeonv{A,},cx is (2* — 1)-neighborly.
This polytope has dimensidi\, | — 1 = Zle (]ZV) We have therefore by Theorem 16
that all K := 2(2¥ — 1) — 1-dimensional faces of), are simplices. This yields that
all support sets of distributions ifi* of cardinality2K, K = 2F — 1 are S-sets. If
2k — 1 > | 1(|Ak| — 1)], then@y, is a simplex. It is easy to see that the later only hap-

pens wherk = N.

Since the set of face5(P) of any convexd-dimensional polytope is a graded
poset (with rank functiom(F) = dim F' + 1, F' € L(P)), (see Theorem 15.1.2 in M.
Henk et al. (1997)), we have for any< d thatUpcr(p).aim r—F' cONtains all vertices
of P. This means simply that the union of the support sets ofibligions inE* of
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cardinality2 K is all X.

Now, for the construction of small mixture representatia@sask: Given that d-
dimensional polytopé is 2* — 1-neighborly, (andkx-simplicial, K = 2(2* — 1) — 1),
what is the minimal number ok -faces needed to cover all verticesr?

We will use the following result:

Theorem 17. (M. Develin, 2004B5uppose” is a d-dimensional polytope which is not
the simplex. Then for all < k£ < d, we can find a&-face of P and a(d — k)-face
of P which are disjoint. Equivalently, iP is a d-polytope for which alk-faces ofP
intersect all(d — k)-faces ofP, then P must be the simplex.

We can improve the bound of Theorem 15:
Theorem 18. Sety) = dim Q;, = dim & = Z?Zl (]]V) andK = 2F — 1.

e The minimal number of faces ¢f, which are simplices and suffice to cover all

vertices is upper bounded B% — LQK”_J + 2.

e For M* to contain every distribution o&” = {0, 1}* it suffices that

This result improves Theorem 15 by a factor between 1 and pedtally when
N is large, since then is large compared t& for fixed k. Probably a more detailed
analysis allows further improvements.

Proof of Theorem 18We show that it is possible to decompose the sampling sface
in the specified number f-sets for the modef*. Then Lemma 8 yields the second
statement.

If Q. is then-simplex we are done. If not, by Theorem @7 has a face of dimen-
sion2K — 1 and one face of dimension— (2K — 1) which are disjoint. By Theorem 6
and Theorem 16 we have that th& — 1-face is a simplex and contaigg vertices.

If the disjoint face of complementary dimension is a simplex are done. If not, it
contains at leasy — (2K — 1) + 2 vertices and is itself a polytope. Any faces of this
polytope are also faces @f,. Therefore any of it K — 1-faces is a simplex. We use
Theorem 17 again on this polytope, and repeat this proceadhiiethe dimension is
exhausted. In the worst case no face of dimension larger2Ra#s 1 is a simplex and
we will get L 1 J disjoint faces of dimension/K — 1 which are simplices and possi-

2K—-1
bly one more disjoint face of smaller dimension which alsa gmplex. They cover at

. . N_|_1_|9K
least| ;- | 2K vertices. All other vertices can be covered by at ezst%

disjoint faces of dimension at mosf — 1 which are simplices, since by Theorem 6
any set of K points or less is a face of the marginal polytope and is a grprlhis
completes the proof. O
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4 Concluding Remarks

In this paper we did:

¢ We introduced the concept §fsets of a model as the regions of the sample space

such that all distributions with support therein are camgdiin that model, (this
concept perhaps exists in the literature with another nawe)provided a charac-
terization ofS-sets of exponential families, Lemma 7, which allows to falate

the mixture decompaosition problem as a covering problenvéotices of convex
polytopes, Lemma 8. We showed that this formulation pravideneaningful
way to decompose distributions as mixtures of elementsarbtiundary of ex-
ponential families and allows to derive relations betwdenrtumber of mixture
components and the representational power of a mixture inode

e For the important class of mixture models where the mixtoramgonents belong
to the set of independent distributions, we provided a rszsgsand sufficient
relation between the number of binary random variatbVeand the number of
mixture components: to have that the model contains every probability distri-
bution, namelym = 2¥-!, Theorem 9 and Theorem 11.

¢ We derived new lower bounds for the number of mixture comptsiom the in-
dependence model necessary to represent correlatethuligns, Proposition 12
and Corollaries.

e We derived new upper bounds for the minimal number of mixttoeponents
from general exponential families necessary to represgntlietribution, Theo-
rem 15 and Theorem 18.

Some issues directly related to the work presented herdarfeltowing:

e We think the result Theorem 18 can be further improved within framework.
The questionis: Lell = 2¥ — 1. How many2K — 1-faces of the marginal poly-
tope@ are necessary to cover all its vertices, given that all aftlaee simplices
and that(),, is K-neighborly? The following observation may be helpful (we d
not go into details here): Whenever drset of cardinalityl. exists, then a family
of S-sets of cardinality. exists which covers’.

e Theorem 11 indicates that in order to cover a set of distidbgtusing mixtures
from the independence model it is required that the mixtleenents haves-
support. Can we use similar arguments to derive necessagjitmms on the
number of mixture components froéit to represent any distribution?

Some interesting observations and questions that arose wtiiing this paper are:

e Mixture models where the mixture weights are constraineyl, lzelong to some
model, are of great interest. We assume that the methodsnbeekin this paper
can be used to approach those problems also.

13



e For N > 2 the graph of theV-cube has more tha?" ~ perfect matchings (sets
of disjoint edges covering all vertices). The decompositised in the proof of
Theorem 9 is therefore in general highly non unique. In @stirthe decompo-
sition of distributions with support sets contained4ns unique,Z beeing the
set of points which are assigned the same color in a 2-cgafirthe N-cube.
Distributions supported in this kind of sets seem to be a@affgcomplex. This
family of distributions can be used to test the represesmatipower of arbitrary
models, for example mixture models with restricted mixtwesghts.

e The mixture model withn independent mixture components h&s: + m — 1
parameters, while the description of all distributions oraby N-vectors requires
exactly2” — 1 parameters. Since in order to cover all distributions thetune
model needsn > 2°, we haveN %' + 2% — 1 parameters, which is larger than
2N — 1 wheneverN > 2. This expresses the lost arising from the constrained
way parameters are used in the mixture model. E.g. a mixgmesentation is
in general non unique. However, when thesets of a mixture decomposition
are fixed, the number of parameters reduces and the decdiapasiunique.
Obviously whenM% = P, thendim M* = dimP. Can we make statements
about the dimension of1* whenM*, = P?

Acknowledgement: The author wishes to express his gratitude to Nihat Ay.

Appendix
Here we provide the proof of Lemma 7.

Here the matrixd = (A);)ycom e is defined by, , = (—1)li==1 we
write A(A,Y) for the submatrix ofA consisting of the elementsA, ;) e ey, and
A(:,z) for A(2V z). The rows (columns) ofl build an orthonormal basis &2 (A
is a Hadammard matrix). The modgl is described byd(A, X'). We writeker A for
the right kernel of the matrixl, andrk A for its rank. In addition we writteuppp for
the set ofr for which p(z) # 0. A° denotes the complement df in 2], and ) the
complement o)) in X = {0, 1}". We write(-, -) for the usual inner product of vectors.

We will use the following description of exponential faresi, a slightly extension
of a result of Geiger et al. (2006) presented by J. Rauh et24109).

Theorem 19. (Geiger et al., 2006, Rauh et al., 2008)distributionp is an element of
Ea iff p fulfills the equations

P =P =0 Vmeker A(A,X),

wherem = m*™ —m~, m*(z) := max{0, +m(z)} andp™ =[], (p(2))

We also use the following lemma:
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Lemma 20. (Characterization of Facial Sets, Rauh et al. 2009 is facial in &, iff
for anym € ker A(A, X) the following holdssuppm™* C Y < suppm™ C ).

And our last ingredient is the following lemma:

Lemma 21. Consider any\ C 2V and any) C X. The matrixA(A, Y) has full rank
min{|Y|, |A|} iff A(A°, Y°) has full rankmin{|Y¢|, |A€|}.

In particular,rk A(A°, V) = |A°| & 1k A(A,Y) =Y.

Proof of Lemma 21 Consider first the cag®’| = |A|. It suffices to show one direction,
since one may defind’ = A°, )" = Y-,

Since we assume that(A, ) has full rank|A|, to everyz € Y° there exists a

vector
,2) + > g Al x) € span {{A(, 2) baey, A(:, 2)}
ze)y
for which ©,(A) = (0,...,0) and?,(A°) = v, with somev, € RI4°l. Notice that
2N = (A(:,2), A(:, 2)) = (vz,A(:,z)> (v, A(AS 2)), sinceA(:, z) LA(:,x) Vz # x.

Forally € Y°\ {z} we have thatA(:, y) L span{{A(:, z) }.cy, A(:, 2) }, and there-
fore
A(A% y)Llv, Vz#vy, z,y€ V.

Summarizing, there exists a set of vectors}.cy. S.t.
(A(ASy),v,) =2N6,. Vy,z€ V-
This can be written as a matrix multiplication:
T N 1
[vzl, v | AN V) = 2V diag(1).

We havelY¢| = |A¢|, so thatA(A¢, Y°) is square. Fromet(A- B) = det(A) - det(B),
det A(A°, Y°) # 0 so that it has full rank.

= )¢
andA’ = A€,

The starting pointisk A(A,Y) = [)|. Note thatA(A, X) has full rank A|. There-
fore, asefy exists s.t.X DY DV, || = |A| andrk A(A, Y) = |A|. From the first
part of the proof we have that this is equivalentltod (A¢, Y°) = |A¢|. But this implies
rk A(A®, Y¢) = |A°], since) 2 Ve For the other directionk A(A¢, V¢) = [A°] im-
plies the existence of sonjéc C V¢, |Y¢| = |A° andrk A(A¢, Y°) = |A°|. From the
first part again, this isk(A,Y) = |A| = |Y|. This again impliesk A(A,Y) = |V,
since) C ). O

Now we come to the proof of Lemma 7:

Proof of Lemma 7Let A C 2™ andy C X. We show that the following statements
are equivalent:
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(i) Everyp € P(X) with supp(p) = Y is contained irf .

(i) Everyp € P(X) with supp(p) C Y is contained irfx.
(iii) supp(m™) N Y° # 0 andsupp(m=)NY° £ Vm € ker A(A, X).
(iv) Yisfacial andsupp(m™) N Y # 0 Vm € ker A(A, X).
(v) Yisfacial andsupp(m=) N Y # 0 Vm € ker A(A, X).
(vi) tk A(A°, Y°) = |A°|, and) is facial.
(vii) rk A(A,Y) = |Y|, and) is facial.

(viii) Every)’ C Y is facial. l.e.,)) corresponds to a face of the marginal polytope
which is a simplex.

Item (i) resembles the definition of tlieproperty for the sel .

The equivalence of items (iv) and (v) follows inmediatlyrftrdc.emma 20. Items
(iv) and (v) are both equivalent to item (iii), since by Lem&®@)° N supp(m™) # 0
< YeNsupp(m™) # 0.

The equivalence of items (i) and (i) reveals tha}ifC X" has theS property, then
every)’ C Y does also. This follows trivially from item (iii), since whever)“ is
enlarged, the propertiesipp(m™) N Y # ) andsupp(m~) N Y° # 0 required there
are preserved.

For (i) if and only if(iii): The claimif follows directly from Th.19. For the impli-
cationonly if we have to show that fuppm™ N Y = () for somem € ker A(A, X),
then a vectop with support) exists which does not satisfy* " — p" = 0 for some
n € ker A(A, X).

Assumesupp(m™) C Y. If there exists any distribution with supp@#t, then)
is facial, and by Lemma 20, fromuppm™*™ C ) we also have thatuppm~ C ).
Obviouslysupp(m™*) N supp(m~) = (. Assume that somg is contained i€, and
has supporf) (if none exists we are done). For the entries where£ 0 we write
(Bi) iz, 0y = (€, 77) for some(€, 7) € RE™™™I1f m +£ 0, then|supp(m™)| > 0 and
lsupp(m~)| > 0, since0 = (A(B, X),m) = 3. m;. We can assume that|| < |7,
where|| - || is the sum of the entries of a positive vector, (if not, agagare done).
Necessarily we have”" — i = 0.

Now consider a vectop which is equal tg in the entries where: = 0, and for

which¢ = 2¢, andn = (1 — ||€]|/[17]])7. We havel|¢]| + [|n]| = [|€]| + [|7]l, such thap
also describes a distribution. For this we have

+ - + ~ SN LmTYN L
e = = (200 = (1= pénnan) ") e
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Observe thatl, m*) > 0, and(1,m~) > 0, w.l.o.g. they are both larger than one,
since for any: € R andm € ker A(A, X') we havec - m € ker A(A, X'). We have also
that0 < [[£]|/]I7]] < 1, and(, is greater thaf in every entry. Hence, we have the claim.

For (vi) if and only if (iv): The statemenfy® N supp(m) # () coincides with
Yensupp(m®) # 0 or Y Nsupp(m~) # 0. From Lemma 20 we have that it
suffices to show: For a facid! itis rk A(A¢, V) = |A°| if and only if Y*Nsupp(m) #

0 Ym e€ker A(AX).

Observe that any: € ker A(A, X') can be written as

m= Y amA\X),

AEAC

which can also be written as(z) = (a, A(2V, z)), wheren € R2" satisfiesupp(a) C
Ac°. We have for any € X that

m(z) = (a, AM )y =0 < alA@2™ ).

Hence,)* N supp(m) = 0, (which is equivalent ton(z) = 0Vz € Y°), is equivalent
to the existence of some e R?" such that

al AW z) V& e Ye (1)

That noa # (0,...,0) with supp(a) C A€ can fulfill egs. 1 is exactly the case
whenspan {A(A¢, z)} . = RI*°l which is equivalent tak A(A°, Y°) = |A9).

reye

Item (vii) is by Lemma 21 equivalent to item (vi).

For (viii) if and only if (vii): rk A(A,Y) = |Y| is equivalent to{ A(A,y)}ey
being linearly independent, from which follows thainv{A(A, y)},cy is a simplex.
Therefore, if) is assumed to be faciall sets)’ C ) are facial.

Now assume thatonv{A(A,y)},cy is a face ofQa which is a simplex. Then,
{A(A,y)},ey are affine independent. This means that for gnyc ) the vectors
{A(A, y) — A(A, yo) }yey\(yo) are linearly independent, i.e. the equation

> By(A(Ay) — A(A, %)) =0 2

yeV\{yo}

has the unique solutiod, = 0Vy € Y\ {y}. The equatiord_ ., 3,A(0,y) = 0
has only solutions of the formd,, = > y\(,.) 3y, SinceA(d, z) = 1Vz. Hence, the
solution set ofy _ _,, 3,A(A,y) = 0 can be obtained from the solution set of eq. 2.
From this the linear independence follows. 0J
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