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Abstract

We consider the set of join probability distributions ofN binary random variables
which can be written as a sum ofm distributions in the following formp(x1, . . . , xN) =
∑m

i=1 αifi(x1, . . . , xN ), whereαi ≥ 0,
∑m

i=1 αi = 1, and thefi(x1, . . . , xN) belong to
some exponential family. For our analysis we decompose the sample space into portions
on which the mixture componentsfi can be chosen arbitrarily. We derive lower bounds
on the number of mixture components from a given exponentialfamily necessary to
represent distributions with arbitrary correlations up toa certain order or to represent
any distribution. For instance, in the case wherefi are independent distributions we
show that every distributionp on {0, 1}N is contained in the mixture model whenever
m ≥ 2N−1, and furthermore, that there are distributions which are not contained in the
mixture model wheneverm < 2N−1.

1 Introduction

A probability mixture model is a set of distributions which can be written as convex
combination of other distributions belonging to a family ofdistributions. The idea is
that the sum of parts which are individually relatively easyto describe can result in
a powerful and versatile machinery. Mixture models have a long history, and there
has given many advances in their study, e.g. the identifiablity and mixture density es-
timation problems have been tackled with the familiar method of moments, and the
expectation maximization algorithm. Mixture models have also found a wide range of
applications, e.g. in clustering and machine learning and many others, see for instance
D. M. Titterington et al. (1985), B. G. Lindsay (1995). However, important questions,
particularly about the dimension of mixture models or theirrepresentational power still
remain open, M. Drton et al. (2009). In this paper we focus on the representational
power of mixture models, i.e., we ask how large must a mixtureof simple distributions
be in order to contain families of more complicated correlated distributions. As an ex-
ample of this kind of problems one may think of the decomposition of exchangeable
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distributions as convex combinations of Bernoulli distributions, P. Diaconis (1977).
Rather than using a decomposition in extremal points (distributions which can only be
trivially decomposed) we use elements from convex sectionsof the boundary of the
family the mixture components belong to. There are such boundary sections of expo-
nential families, which can be identified with subsets of thesample space, as we will
explain below. This idea builds on the previous works J. Rauhet al. (2009); T. Kahle
(2010, 2006); Geiger et al. (2006).

In discrete mixture models a family of distributionsE ⊆ P(X ) is given, where
P(X ) is the set of all join distributions ofN random variables(X1, . . . , XN) =: X with
sample spaceX = ×N

i=1[ri] for some natural numbersri, [ri] beeing a set containingri

elements. For straightforwardness we consider binary variables, i.e.X = {0, 1}N . A
natural way to understand mixture models, M. Drton et al. (2009), is to assume that
there is a hidden random variableY with state space[m], and that for eachy ∈ [m], a
mixture component is given by the conditional distributionof X givenY = y, py ∈ E .
If the random variableY has distributionα ∈ P([m]), then the join distribution ofY
andX is given by

Pr(Y = y, X = x) = α(y) py(x).

Since the variableY is assumed to be hidden, only the marginal distribution ofX is
visible, i.e.

Pr(X = x) =

m
∑

y=1

α(y) py(x).

Suppose for example that the mixture components can be chosen arbitrarily from
E = {δy}y. Then, the convex combinations of the form

∑

y

α(y) δy(x)

cover all distributions inP if there are as manyy asx. This is simply a direct parametriza-
tion of a distribution in terms of its values on the differentx. On the other hand, this
model has2N − 1 = |X | − 1 parameters and it is clear that a smaller number of mix-
ture components would not suffice to represent some distributions. More generally, a
problem arises whenα cannot be chosen arbitrarily, but in some further model. This
can be the case when it comes to approximate probability distributions as marginals say
of Restricted Boltzmann Machines. We will comment on this atthe end of this section.
In this paper we focus on the simpler case where the mixture weightsα can be chosen
arbitrarily and ask what happens when one allows more general mixture components
than{δx}. How many mixture components from a certain model are required / suf-
ficient if we want to represent any distribution, or respectively, distributions from the
class describing correlations of a certain order?

We consider here mixtures with components from the set of independent distribu-
tions ofN binary random variables, called the independence model, and which consists
of all factorizable distributions. And, more generally, weconsider mixtures from some
exponential family. Very familiar examples of exponentialfamilies are multivariate
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gaussians or just the independent distributions. There is ahierarchy of exponential
families

E1 ⊂ E2 ⊂ · · · ⊂ EN = P(X ),

where forEk the indexk denotes the order of correlations between theN random vari-
ables that are covered byEk, see for instance S. Amari (1999). We will explain these
objects in more detail in the next section.

The mixture models that we study are of the following form:

Mk
m :=

{

m
∑

j=1

αjfj ∈ R
|X | : αi ≥ 1,

∑

αi = 1 andfi ∈ Ek for all j

}

⊆ P,

whereEk is the closure ofEk in R
|X |.

For any1 ≤ k ≤ N the setEk contains the atoms{δx}x∈X , and since these are the
extremal points ofP, any distribution can be represented as a mixture of|X | elements
of Ek, (when the mixture weights can be chosen arbitrarily), as explained above. In our
notation we can state:

Mk
m≥|X | = P(X ), ∀1 ≤ k ≤ N.

Now, the first question is whether a smaller number of mixturecomponentsm suf-
fices, depending onk. The second question is how small canm be when it is only
required that

Mk
m ⊇ E l.

Can we derive relations betweenl, k andm? How do these relations depend on the
number of random variablesN? The subject of this note is to derive such relations.
Among many others this questions are of high relevance for understanding stochastic
networks like Restricted Boltzmann Machines or Deep BeliefNetworks, see for in-
stance Montufar & Ay (2010), and for the description of correlated neural spikes, see
for instance S. Amari (2010).

The central idea of this paper is to find decompositions of thesample space such
that all distributions with support contained in the members of this decomposition are
contained in the set of distributions where the mixture components are taken from. This
allows a very simple decomposition of distributions, and furthermore, when these sup-
port sets are given and chosen disjointly, then the identification problem is automatically
solved (uniqueness of the mixture representation within the model).

To motivate our ansatz we want to review a small example: The mixtures of two
independent distributions of two binary variables. The setof mixtures of two fixed el-
ements from the independence model can be represented as a line connecting the two
elements. If the two elements are not fixed, the set of lines connecting points on the in-
dependence model forX = {0, 1}2 covers all of the probability simplex, (see Figure 1
in the next section). The situation becomes more complicated for N larger than 2, since
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the dimension of the independence model increases only as the logarithm of the dimen-
sion of the probability simplex. However, a closer inspection reveals that mixtures of
two elements lying in the intervals[δ(0,1), δ(1,1)] and[δ(1,0), δ(0,0)], which in fact belong
to E1, already suffice to cover all the probability simplex. The sets of distributions
described by these intervals have the special property thatthey comprend all possible
distributions with support sets{(0, 1), (1, 1)} and{(1, 0), (0, 0)} and that the union of
those two sets isX .

In this paper we elaborate that observation for the general setting. This reasonings
allow us to show for example that all distributions with support restricted to some spe-
cial sets are contained in the independence model and that2N/2 such sets cover all the
state space{0, 1}N for arbitraryN . This can be directly used to decompose arbitrary
distributions as mixtures of independent distributions.

The same questions posed above can be considered for the casewhen the mixture
weights belong to a certain model. Setting

nMk
m :=

{

p(x) =
m
∑

j=1

αjfj(x) : fj ∈ Ek ∀j, α = (α1, . . . , αm) ∈ En([m])

}

,

can we find sufficient / necessary conditions onn, l, m, k such that

nMk
m ⊇ E l ?

Montufar & Ay (2010) showed that in the case of mixture weights from the indepen-
dence model,α ∈ E1, a number22N−1

of mixture components from the independence
model suffices to represent any distribution on{0, 1}N , i.e.,

1M1

m=22N−1 = P({0, 1}N).

This number of mixture components is very large, but it is farfrom trivial to prove or
disprove the optimality of this result. We hope that the ideas developed in this paper
will also help to approach this kind of problems.

2 Preparations

In this section we present concepts and results needed for the proofs of our main results
in the next section.

Given a family of sets∆ ⊆ 2[N ], 2[N ] the power set of[N ] := {1, . . . , N}, and a ma-
trix (Aλ,x)λ∈∆,x∈X , we define a modelE∆ := {p(x) = exp

(
∑

λ∈∆ JλAλ,x

)

: J ∈ R
∆},

which in the literature is known as anexponential family. Here we assume that∅ ∈ ∆
andA∅,x = 1 for all x, such thatJ∅ is a constrained parameter which normalizes the
distribution. ForX = {0, 1}N the modelE∆ is a subset of the2N − 1-dimensional
simplex (the set of all distributions on binary vectors of lengthN) in R

2N

. The closure
of this set is denoted byE∆. This closure contains in particular distributions which do
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not have full support.

An exponential family defined this way is completely characterized by the row-span
of the matrix(Aλ,x) = [Ax1 , . . . , Ax|X|], whereAx = (Aλ1,x, . . . , Aλ|∆|,x)

t. An indepen-
dence modelor set of independent distributionsis described by the exponential family
for which ∆ = [N ] ∪ ∅, andAλ,x = xλ for λ 6= ∅ andA∅,x = 1. In this case we

have namely thatp(x1, . . . , xN) = exp
(

J∅ +
∑N

i=1 Jixi

)

= exp(J∅)
∏N

i=1 exp(Jixi),

with arbitrary valuesJi. This model, as a subset ofR
2N

is a manifold of dimension
N , with canonical coordinate functions{Ji}i∈[N ]. For simplicity we writeE1 for the
independence model. A distribution in the boundary ofE1 is for example the follow-
ing: p(x1, x2) = p1(x1) · p

2(x2), wherep1 assigns probability one to{x1 = 1}, andp2

assigns probabilityω to {x2 = 1}. This distribution vanishes in(x1, x2) = (0, 0).

For the description of correlated distributions we consider first the space of func-
tions of N variables{xi}

N
i=1 describing arbitrary interactions of any subset{xi}i∈Λ

with indicesΛ ∈ ∆ ⊆ 2N , see for instance T. Kahle (2006):

I∆ :=

{

g ∈ R
X : g =

∑

Λ∈∆

gΛ, wheregΛ is a function of{xi}i∈Λ

}

.

The exponential family describing distributions with correlations specified by∆ is then
the set of distributions of the formp ∝ exp(g), g ∈ I∆. Notice that the functions
{σλ(x1, . . . , xN ) := (−1)|{i∈λ:xi=1}|}λ⊆Λ, (known as characters), form a basis of the
functions of the binary variables{xi}i∈Λ for anyΛ ⊆ [N ]. Since an exponential family
as described above is characterized by the row-span ofA, the distributions with arbitrary
correlations up to orderk are given by the following family:

Ek :=

{

p(x) = exp

(

∑

λ∈∆k

JλAλ,x

)

, J ∈ R
|∆k|

}

,

whereAλ,x = (−1)|{i∈λ:xi=1}|, ∆k := {λ ∈ 2N : |λ| ≤ k}, andJ∅ normalizes the
distributions.

Themarginal polytopeof the modelE∆ is Q∆ := conv{Ax}x∈X . This is the convex
hull of the column vectorsAx in R

|∆|. For simplicity we writeQk for Q∆k
. A faceof

Q∆ is the intersection ofQ∆ with an hyperplane of codimension one inR
|∆| such that

all points ofQ∆ lie on one of the closed halfspaces defined through that hyperplane.
The marginal polytope contains information about the support-sets of the distributions
contained in the model, as will be explained below. See Figure 1.

Definition 1. (Facial sets)Given the modelE∆, a Q∆-facial set is a setY ⊆ X such
that conv{Ax}x∈Y is a face ofQ∆.

From Figure 1 we gather that the facial sets in the independence model forX =
{0, 1}2 are{(1, 1), (1, 0), (0, 1), (0, 0)}, as well as{(1, 1), (0, 1)}, {(1, 1), (1, 0)} and
{(0, 0), (0, 1)}, {(0, 0), (1, 0)}, and all sets of cardinality one.
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Figure 1: On the left, the probability simplex for the samplespaceX = {0, 1}2, and the
independence model. On the right, the marginal polytope of the independence model
(omitting the first coordinate, which is allways 1).

Proposition 2. (Facial Sets, J. Rauh et al. (2009))If Y ⊆ X is Q∆-facial, then there
exists onep ∈ E∆ with supp(p) = Y . Furthermore, ifp ∈ E∆ thensupp(p) is facial.

This proposition tells us in particular that a distributionin the modelE∆ can only
have supportY , if Y is Q∆- facial. This yields the following:

Proposition 3. (Support sets in the Independence Model)In the independence model
E1,we haveQ1 = conv{x̂}x∈X , wherex̂ = (1, x1, x2, . . . , xN )t, which corresponds to
theN-cube. The only sets which can occurr as support of distributions in the closure of
the independence model consist of the sets of binary vectorsof lengthN whose convex
hull is a face of theN-cube.

Proposition 2 also tells us that whenever a setY is facial, there exists a distribution
in the model which hasY as its support. This does not mean that all distributions with
supportY are contained in the model. This motivates the following definition:

Definition 4. (S-sets)Given a model, i.e. a set of probability distributions onX , we
say that a setY ⊆ X has theS-propertyor is anS-setin that model if and only if every
distribution with supportY is contained in the model.

For the independence model we have the following:

Proposition 5. (S-sets in the Independence Model)A set has theS-property in the
closure of the independence model if and only if it has cardinality one or consists of two
binary vectors which differ in exactly one entry.

The statement is a special case of Lemma 7, a characterization of S-sets as the
facial sets for which the corresponding face of the marginalpolytope is a simplex, in
view of the fact that the marginal polytope of the independence model is theN-cube,
Proposition 3. Here we present an alternative proof of theif part of Proposition 5 which
does not require concepts of marginal polytopes (similar tothe proof of Theorem 1, part
3 in Montufar & Ay (2010)).

Proof of Lemma 5, ‘if ’ part.Let ej be the vector with value one in the positionj and
zeros elsewhere, and let1 be the vector consisting of ones everywhere. For any binary
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vectorv we we writevĵ for the binary vector which is equal tov everywhere but in the
entryj is different. Regarad that any element of the independence model is of the form
f(x) ∝ exp(w ·x+ c), wherec is arbitrary. Now, for some arbitraryj ∈ [N ] let x̃ be an
arbitrary vector inX with x̃j = 1. Consider somea ∈ R, and anyλ1, λ2 ∈ R. Define
ŵ := a(x̃ĵ −

1
2
1ĵ), w̄ := ŵ + (λ2 − λ1)ej , andc̄ := −ŵ · x̃ + λ1 = −ŵ · x̃ĵ + λ1. Set

s = |suppx̃ĵ | (number of entries of̃xĵ with value one). For the parametersw̄ andc̄ we
have:

w̄ · x =
1

2
a(s − |{i : (x̃ĵ)i 6= (xĵ)i}|) + (λ2 − λ1)xj ,

c̄ = −
1

2
as + λ1.

In the limita → ∞ we getexp(w̄ ·x+ c̄) = 0 ∀x 6= x̃, x̃ĵ, andexp(w̄ ·x̃ĵ + c̄) = eλ1 , and
exp(w̄ · x̃ + c̄) = eλ2 . This isf(x) = lima→∞ exp(w̄x + c̄)/Z, (Z the normalization),
vanishes everywhere but in an arbitrary pair of vectors which differ in exactly one entry.
In this pair of vectorsf takes arbitrary values (adding to one).

We will use the following result established by T. Kahle (2010). Given an inter-
action set∆ ⊆ 2[N ], a smallest setλ ∈ 2[N ] not belonging to∆ is called a minimal
non-face of∆.

Theorem 6. (Neighborliness of marginal polytopes, Kahle 2010) Let k + 1 be the
minimal cardinality among the non-faces of∆, then every probability distributionp
with | supp p| < 2k is contained inE∆.

This theorem states that all sets of cardinality smaller than 2k are S-sets in the
modelEk. This result is optimal in the sense that there exists distributions with support
of cardinality2k, which are not contained inEk. Theorem 6 can be expressed in terms
of the marginal polytopeQk, by saying that it is(2k − 1)-neighborly. This means that
any set vertices ofQk containing at most(2k − 1) elements are the extremal points of
a face ofQk. This implies that any(2k − 1) vertices describe a face of the marginal
polytope which is a simplex. This obsevation motivates a characterization ofS-sets in
terms of faces of the marginal polytope which are simplices,what we do in Lemma 7
in the next section.

3 Mixture Decompositions

The following two results represent the reasonings of this paper.

Lemma 7. (Characterization of theS-property) A setY ⊆ X has theS-property in
the exponential family defined by the matrixA, and that model contains all distributions
with support contained inY , if and only ifconv{Ax}x∈Y ′ is a face ofconv{Ax}x∈X for
all Y ′ ⊆ Y .

The lemma above says that every distribution with supportY is contained in the
exponential family described byA exactly when the vertices of the marginal polytope
corresponding toY are the extremal points of a face of the marginal polytope which is
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a simplex. The proof of Lemma 7 is in the Appendix.

The idea of the following lemma is to decompose an arbitrary distribution as a
mixture of distributions with support set given byS-sets (which by the lemma above
are directly related to special faces of the marginal polytope) and such that the union of
their support sets isX .

Lemma 8. (Mixture decompositions using a decomposition of the sample space)
Given anyp ∈ P(X ), there existfi ∈ E , andαi ≥ 0,

∑

i αi = 1, i = 1, . . . , κ such that

p(x) =

κ
∑

i=1

αifi(x),

whereκ = min{|{Yi}i| : ∀iYi is anS-set inE , and ∪i Yi = X}.

Since anyfi ∈ E is arbitrarily well approximated by an element inE , anyp ∈ P is
arbitrarily well apprixmated as mixture ofκ elements inE .

Proof of Lemma 8.The fi can be chosen arbitrarily with the only restriction that its
support is confined to anS-setYi. We can make theYi disjoint while∪iYi = X , since
any subset of anS-set is again anS-set. Settingfi(x) = p(x)/p(Yi) for x ∈ Yi, and
fi(x) = 0 for x 6∈ Yi, andαi = p(Yi) yields the result.

Mixtures from the independence model

Proposition 5 provides an easy way to decompose distributions as mixtures of elements
in the independence model:

Theorem 9. (Mixtures of independent distributions) Given any distributionp on
the binary vectors of lengthN , there exist2N−1 elements in the independence model
fi ∈ E1, and weightsαi ≥ 0,

∑

i αi = 1 such that

p(x) =

2N /2
∑

i=1

αifi(x).

This also implies that a mixture of2N−1 elements fromE1 approximates any dis-
tribution inP arbitrarily well. The special case of our Theorem 9 whereN = 2 is the
content of Theorem 2 by S. Amari (2010).

Proof of Theorem 9.Select a perfect matching of the graph of theN-cube{xi,1, xi,2}i.
This consists of2

N

2
disjoint pairs of points (edges) covering all vertices of theN-cube.

From Lemma 5 we have that to everyi, all distributions with support{xi,1, xi,2} are
contained inE1. Choose nowαi = p(xi,1)+ p(xi,2), andfi with support{xi,1, xi,2} and
fi(x

i,1) = p(xi,1)/αi andfi(x
i,2) = p(xi,2)/αi. This completes the proof.

The proof of Theorem 9 also yields the following:
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Corollary 10. Any distributionp on{0, 1}N can be written as a mixture ofK elements
of the independence model, whereK is the minimal number of pairs differing in exactly
one entry, which suffices to cover the support ofp.

We now show the optimality of Theorem 9.

Theorem 11. There exist distributions on{0, 1}N which can not be written as a mix-
ture of less than2N−1 elements from the independence modelE1. For instance the
distributions with supportZ := {x ∈ X :

∏

i∈[N ](−1)xi = 1}.

This also means that there exist distributions which cannotbe well approximated as
a mixture of less than2N−1 elements fromE1.

Proof of Theorem 11.

1. By Proposition 3, the marginal polytope of the independence model on binary
vectors of lengthN is (essentially) theN-cube.

2. The graph of theN-cube is bipartite, or equivalently, 2-colourable.

3. A set is support set of a distribution in the closure of the independence model
only if its convex hull is a face of the unitN-cube, Proposition 5.

4. DefineZ as the set of vertices of theN-cube which are assigned the same color
in a 2-coloring of the graph of theN-cube. Then,|Z| = 2N/2. Furthermore,
no subset ofZ of cardinality larger than one is facial in the independencemodel,
since otherwise some pair inZ would be an edge of theN-cube, in contradiction
to its definition.

5. Consider any probability distributionp with supp(p) = Z.

6. If p is written as a mixture of elements in the closed independence model,p =
∑

i αifi, then everyfi (for whichαi > 0) must have support contained inZ and
this support set must be facial in the independence model, Proposition 2. Hence,
|suppfi| = 1, ∀fi for which αi > 0. Therefore, the mixture must have at least
|Z| = 2N

2
components.

7. Z := {x ∈ X :
∏

i∈[N ](−1)xi = 1} defines a2-coloring of theN-cube, since for
any edge of theN-cube with vertices{x1, x2} we have thatx1 andx2 differ in
exactly one entry, and thus

∏

i(−1)x1
i = −

∏

i(−1)x2
i . Clearly,|Z| = 2N

2
.

Now we turn our attention to the decomposability of correlated distributions (say
with correlations up to orderk) as mixtures of independent distributions.

For the dimension of a mixture ofm independent distributions we have from a
simple counting argument thatdim(M1

m) ≤ mN +m−1. We know that the dimension
of Ek isdim Ek =

∑k
j=1

(

N
j

)

. This gives an easy lower bound form in order thatM1
m ⊇

Ek. Actually, due to the so called dimension defect, the dimension of the mixture model
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is smaller, but this is a hard problem. However, as can be seenfrom Theorem 11, a
number of parameters2N−1N + 2N−1 − 1 ≫ 2N − 1 = dim EN is necessary to cover
the simplex, which isEN , (althoug this does not mean that the dimension of a smaller
mixture is smaller than2N − 1). The proof of Theorem 11 reveals a way of providing
lower bounds for the necessary number of mixture componentsfrom the independence
model:

Proposition 12. A necessary condition for the mixture modelM1
m := {p =

∑m
i=1 αfi :

fi ∈ E1, αi ≥ 0,
∑

αi = 1} to contain all distributions fromEk and fromEk is that

m ≥ max
Y ,Z

{|Y| : Y ⊆ Z},

whereY is Qk-facial, andZ is the set of vertices of theN-cube with the same color in
some2-coloring.

From Theorem 6, we know that all sets of cardinality2k − 1 are S-sets inEk.
If we take a subset ofZ, (Z defined e.g. as in Theorem 11), of cardinality2k − 1,
then we have from Proposition 12 that in order to have the mixture model containing
distributions with support given by that set, we need at least 2k−1 mixture components,
i.e. m ≥ 2k − 1. This yields:

Corollary 13. A necessary condition for the mixture modelM1
m := {p =

∑m
i=1 αfi :

fi ∈ E1, αi ≥ 0,
∑

αi = 1} to contain all distributions fromEk and fromEk is that

m ≥ max

{

1

N + 1

k
∑

j=0

(

N

j

)

, 2k − 1

}

.

It is possible that there are yet other larger simplices which are faces of the marginal
polytope, (this is allways the case, see Theorem 16 below), and whose intersection with
Z is larger.

For N = 4 Q2 is a polytope of dimension10. Numerical computations show that
many facets (proper faces of maximal dimension, in this case9) are simplices (which is
not surprising regarding that herek is fairly large in relation toN). We found for exam-
ple that(0000), (0001), (1100), (1010), (0110), (1001), (0011), (1101), (1011), (1111)
is a face of dimension9, (which is a simplex), and its intersection withZ has car-
dinality 7. For N = 3 Q2 has dimension6 and we found that(000), (100), (010),
(110), (101), (011) is a face which is a simplex with intersection of cardinality4 with
Z. Summarizing:

Corollary 14.

• A necessary condition forM1
m to containE2 for X = {0, 1}4 is thatm ≥ 7.

• A necessary condition forM1
m to containE2 for X = {0, 1}3 is thatm ≥ 4.
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Mixtures from more general models

Now we turn our attention to mixture decompositions using elements from larger expo-
nential families.

In view of Lemma 7 it is necessary to determine when a face of the marginal poly-
tope is a simplex, and how many such faces suffice to cover all vertices. This problem is
related to the problem of optimal covering codes, which is very hard. For example find-
ing a minimum clique cover (partition into cliques) is a graph-theoretical NP-complete
problem, or finding perfect covering codes on{0, 1}N of general radius is still, in gen-
eral, an open problem. However, from Kahle’s theorem we havethat all sets of vertices
of a certain cardinality describe faces of the marginal polytope and furthermore that
these faces are simplices. An inmediate consequence of Lemma 8 and Theorem 6 is the
following:

Theorem 15. (Mixtures of distributions in an exponential family) Given anyp ∈

P(X ), there existfi(·) ∈ Ek(X ), andαi ≥ 0,
∑

i αi = 1, i = 1, . . . ,
⌈

2N

2k−1

⌉

such that

p(x) =

⌈

2N

2k−1

⌉

∑

i=1

αifi(x).

It is possible to derive sharper results using sets larger than 2k − 1 (which have
the S-property), which in our construction is equivalent to the problem of deriving
lower bounds on the number of partition elements beeingS-sets required to cover the
sample space. This problem is more difficult because in this case additional structural
constraints on the sets arise (in addition to the cardinality constraint). We know that
Kahle’s result is optimal forEk in the sense that there exist sets of cardinality2k which
are notS-sets.

We use the following:

Theorem 16. (Th. 14.4 in Bronsted, Arne (1983))Let P be a K-neighborlyd-
polytope. Then every faceF of P with 0 ≤ dim F ≤ 2K − 1 is a simplex, (i.e.,P
is 2K − 1-simplicial).

We know that forEk, the marginal polytopeconv{Ay}y∈X is (2k − 1)-neighborly.
This polytope has dimension|∆k| − 1 =

∑k
i=1

(

N
i

)

. We have therefore by Theorem 16
that all K := 2(2k − 1) − 1-dimensional faces ofQk are simplices. This yields that
all support sets of distributions inEk of cardinality2K, K = 2k − 1 areS-sets. If
2k − 1 >

⌊

1
2
(|∆k| − 1)

⌋

, thenQk is a simplex. It is easy to see that the later only hap-
pens whenk = N .

Since the set of facesL(P ) of any convexd-dimensional polytopeP is a graded
poset (with rank functionr(F ) = dim F + 1, F ∈ L(P )), (see Theorem 15.1.2 in M.
Henk et al. (1997)), we have for anyg ≤ d that∪F∈L(P ):dim F=gF contains all vertices
of P . This means simply that the union of the support sets of distributions inEk of
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cardinality2K is all X .

Now, for the construction of small mixture representationswe ask: Given that ad-
dimensional polytopeP is 2k − 1-neighborly, (andK-simplicial,K = 2(2k − 1) − 1),
what is the minimal number ofK-faces needed to cover all vertices ofP?

We will use the following result:

Theorem 17. (M. Develin, 2004)SupposeP is ad-dimensional polytope which is not
the simplex. Then for all0 < k < d, we can find ak-face ofP and a(d − k)-face
of P which are disjoint. Equivalently, ifP is a d-polytope for which allk-faces ofP
intersect all(d − k)-faces ofP , thenP must be the simplex.

We can improve the bound of Theorem 15:

Theorem 18. Setη = dim Qk = dim Ek =
∑k

j=1

(

N
j

)

, andK = 2k − 1.

• The minimal number of faces ofQk which are simplices and suffice to cover all
vertices is upper bounded by2

N

K
−
⌊

η
2K−1

⌋

+ 2.

• For Mk
m to contain every distribution onX = {0, 1}N it suffices that

m ≥
2N

K
−

⌊

η

2K − 1

⌋

+ 2.

This result improves Theorem 15 by a factor between 1 and 2. Especially when
N is large, since thenη is large compared toK for fixed k. Probably a more detailed
analysis allows further improvements.

Proof of Theorem 18.We show that it is possible to decompose the sampling spaceX
in the specified number ofS-sets for the modelEk. Then Lemma 8 yields the second
statement.

If Qk is theη-simplex we are done. If not, by Theorem 17Qk has a face of dimen-
sion2K −1 and one face of dimensionη− (2K −1) which are disjoint. By Theorem 6
and Theorem 16 we have that the2K − 1-face is a simplex and contains2K vertices.
If the disjoint face of complementary dimension is a simplexwe are done. If not, it
contains at leastη − (2K − 1) + 2 vertices and is itself a polytope. Any faces of this
polytope are also faces ofQk. Therefore any of its2K − 1-faces is a simplex. We use
Theorem 17 again on this polytope, and repeat this procedureuntil the dimension is
exhausted. In the worst case no face of dimension larger than2K − 1 is a simplex and
we will get

⌊

η
2K−1

⌋

disjoint faces of dimension2K − 1 which are simplices and possi-
bly one more disjoint face of smaller dimension which also isa simplex. They cover at

least
⌊

η
2K−1

⌋

2K vertices. All other vertices can be covered by at most

⌈

2N−⌊ η

2K−1⌋2K

K

⌉

disjoint faces of dimension at mostK − 1 which are simplices, since by Theorem 6
any set ofK points or less is a face of the marginal polytope and is a simplex. This
completes the proof.

12



4 Concluding Remarks

In this paper we did:

• We introduced the concept ofS-sets of a model as the regions of the sample space
such that all distributions with support therein are contained in that model, (this
concept perhaps exists in the literature with another name). We provided a charac-
terization ofS-sets of exponential families, Lemma 7, which allows to formulate
the mixture decomposition problem as a covering problem forvertices of convex
polytopes, Lemma 8. We showed that this formulation provides a meaningful
way to decompose distributions as mixtures of elements in the boundary of ex-
ponential families and allows to derive relations between the number of mixture
components and the representational power of a mixture model.

• For the important class of mixture models where the mixture components belong
to the set of independent distributions, we provided a necessary and sufficient
relation between the number of binary random variablesN and the number of
mixture componentsm to have that the model contains every probability distri-
bution, namelym = 2N−1, Theorem 9 and Theorem 11.

• We derived new lower bounds for the number of mixture components from the in-
dependence model necessary to represent correlated distributions, Proposition 12
and Corollaries.

• We derived new upper bounds for the minimal number of mixturecomponents
from general exponential families necessary to represent any distribution, Theo-
rem 15 and Theorem 18.

Some issues directly related to the work presented here are the following:

• We think the result Theorem 18 can be further improved withinour framework.
The question is: LetK = 2k − 1. How many2K − 1-faces of the marginal poly-
topeQk are necessary to cover all its vertices, given that all of them are simplices
and thatQk is K-neighborly? The following observation may be helpful (we do
not go into details here): Whenever anS-set of cardinalityL exists, then a family
of S-sets of cardinalityL exists which coversX .

• Theorem 11 indicates that in order to cover a set of distributions using mixtures
from the independence model it is required that the mixture elements haveS-
support. Can we use similar arguments to derive necessary conditions on the
number of mixture components fromEk to represent any distribution?

Some interesting observations and questions that arose while writing this paper are:

• Mixture models where the mixture weights are constrained, e.g. belong to some
model, are of great interest. We assume that the methods presented in this paper
can be used to approach those problems also.

13



• ForN ≥ 2 the graph of theN-cube has more than22N−2
perfect matchings (sets

of disjoint edges covering all vertices). The decomposition used in the proof of
Theorem 9 is therefore in general highly non unique. In contrast, the decompo-
sition of distributions with support sets contained inZ is unique,Z beeing the
set of points which are assigned the same color in a 2-coloring of theN-cube.
Distributions supported in this kind of sets seem to be especially complex. This
family of distributions can be used to test the representational power of arbitrary
models, for example mixture models with restricted mixtureweights.

• The mixture model withm independent mixture components hasNm + m − 1
parameters, while the description of all distributions on binaryN-vectors requires
exactly2N − 1 parameters. Since in order to cover all distributions the mixture
model needsm ≥ 2N

2
, we haveN 2N

2
+ 2N

2
− 1 parameters, which is larger than

2N − 1 wheneverN ≥ 2. This expresses the lost arising from the constrained
way parameters are used in the mixture model. E.g. a mixture representation is
in general non unique. However, when theS-sets of a mixture decomposition
are fixed, the number of parameters reduces and the decomposition is unique.
Obviously whenMk

m = P, thendim Mk
m = dimP. Can we make statements

about the dimension ofMk
m whenMk

m 6= P?

Acknowledgement:The author wishes to express his gratitude to Nihat Ay.

Appendix

Here we provide the proof of Lemma 7.

Here the matrixA = (Aλ,x)λ∈2[N],x∈X is defined byAλ,x = (−1)|{i∈λ:xi=1}|. We
write A(Λ,Y) for the submatrix ofA consisting of the elements(Aλ,y)λ∈Λ,y∈Y , and
A(:, x) for A(2[N ], x). The rows (columns) ofA build an orthonormal basis ofR2N

(A
is a Hadammard matrix). The modelE∆ is described byA(∆,X ). We writeker A for
the right kernel of the matrixA, andrk A for its rank. In addition we writtesuppp for
the set ofx for which p(x) 6= 0. ∆c denotes the complement of∆ in 2[N ], andYc the
complement ofY in X = {0, 1}N . We write〈·, ·〉 for the usual inner product of vectors.

We will use the following description of exponential families, a slightly extension
of a result of Geiger et al. (2006) presented by J. Rauh et al. (2009).

Theorem 19. (Geiger et al., 2006, Rauh et al., 2009)A distributionp is an element of
E∆ iff p fulfills the equations

pm+

− pm−

= 0 ∀m ∈ ker A(∆,X ),

wherem = m+ − m−, m±(x) := max{0,±m(x)} andpm :=
∏

x∈X (p(x))m(x).

We also use the following lemma:
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Lemma 20. (Characterization of Facial Sets, Rauh et al. 2009) Y is facial inE∆ iff
for anym ∈ ker A(∆,X ) the following holds:suppm+ ⊆ Y ⇔ suppm− ⊆ Y .

And our last ingredient is the following lemma:

Lemma 21. Consider any∆ ⊆ 2[N ] and anyY ⊆ X . The matrixA(∆,Y) has full rank
min{|Y|, |∆|} iff A(∆c,Yc) has full rankmin{|Yc|, |∆c|}.

In particular,rk A(∆c,Yc) = |∆c| ⇔ rk A(∆,Y) = |Y|.

Proof of Lemma 21.Consider first the case|Y| = |∆|. It suffices to show one direction,
since one may define∆′ = ∆c,Y ′ = Yc.

Since we assume thatA(∆,Y) has full rank|∆|, to everyz ∈ Yc there exists a
vector

ṽz = A(:, z) +
∑

x∈Y

αxA(:, x) ∈ span {{A(:, x)}x∈Y , A(:, z)} ,

for which ṽz(∆) = (0, . . . , 0) and ṽz(∆
c) = vz with somevz ∈ R

|∆c|. Notice that
2N = 〈A(:, z), A(:, z)〉 = 〈ṽz, A(:, z)〉 = 〈vz, A(∆c, z)〉, sinceA(:, z)⊥A(:, x) ∀z 6= x.

For ally ∈ Yc \ {z} we have thatA(:, y)⊥ span{{A(:, x)}x∈Y , A(:, z)}, and there-
fore

A(∆c, y)⊥vz ∀z 6= y, z, y ∈ Yc.

Summarizing, there exists a set of vectors{vz}z∈Yc s.t.

〈A(∆c, y), vz〉 = 2Nδy,z ∀y, z ∈ Yc.

This can be written as a matrix multiplication:

[

vz1 , . . . , vz|Yc|

]⊤

· A(∆c,Yc) = 2N diag(1).

We have|Yc| = |∆c|, so thatA(∆c,Yc) is square. Fromdet(A ·B) = det(A) · det(B),
det A(∆c,Yc) 6= 0 so that it has full rank.

Now consider aY for which |Y| 6= |∆|. W.l.o.g. |Y| ≤ |∆|, otherwise useY ′ = Yc

and∆′ = ∆c.
The starting point isrk A(∆,Y) = |Y|. Note thatA(∆,X ) has full rank|∆|. There-

fore, a setỸ exists s.t.X ⊇ Ỹ ⊇ Y , |Ỹ| = |∆| andrk A(∆, Ỹ) = |∆|. From the first
part of the proof we have that this is equivalent tork A(∆c, Ỹc) = |∆c|. But this implies
rk A(∆c,Yc) = |∆c|, sinceYc ⊇ Ỹc. For the other direction:rk A(∆c,Yc) = |∆c| im-
plies the existence of somẽYc ⊆ Yc, |Ỹc| = |∆c| andrk A(∆c, Ỹc) = |∆c|. From the
first part again, this isrk(∆, Ỹ) = |∆| = |Ỹ|. This again impliesrk A(∆,Y) = |Y|,
sinceY ⊆ Ỹ .

Now we come to the proof of Lemma 7:

Proof of Lemma 7.Let ∆ ⊆ 2[N ] andY ⊆ X . We show that the following statements
are equivalent:
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(i) Everyp ∈ P(X ) with supp(p) = Y is contained inE∆.

(ii) Everyp ∈ P(X ) with supp(p) ⊆ Y is contained inE∆.

(iii) supp(m+) ∩ Yc 6= ∅ andsupp(m−) ∩ Yc 6= ∅ ∀m ∈ ker A(∆,X ).

(iv) Y is facial andsupp(m+) ∩ Yc 6= ∅ ∀m ∈ ker A(∆,X ).

(v) Y is facial andsupp(m−) ∩ Yc 6= ∅ ∀m ∈ ker A(∆,X ).

(vi) rk A(∆c,Yc) = |∆c|, andY is facial.

(vii) rk A(∆,Y) = |Y|, andY is facial.

(viii) EveryY ′ ⊆ Y is facial. I.e.,Y corresponds to a face of the marginal polytope
which is a simplex.

Item (i) resembles the definition of theS-property for the setY .

The equivalence of items (iv) and (v) follows inmediatly from Lemma 20. Items
(iv) and (v) are both equivalent to item (iii), since by Lemma20Yc ∩ supp(m+) 6= ∅
⇔ Yc ∩ supp(m−) 6= ∅.

The equivalence of items (i) and (ii) reveals that ifY ⊆ X has theS property, then
everyY ′ ⊆ Y does also. This follows trivially from item (iii), since wheneverYc is
enlarged, the propertiessupp(m+) ∩ Yc 6= ∅ andsupp(m−) ∩ Yc 6= ∅ required there
are preserved.

For (ii) if and only if (iii): The claim if follows directly from Th.19. For the impli-
cationonly if we have to show that ifsuppm+ ∩ Yc = ∅ for somem ∈ ker A(∆,X ),
then a vectorp with supportY exists which does not satisfypn+

− pn−
= 0 for some

n ∈ ker A(∆,X ).

Assumesupp(m+) ⊆ Y . If there exists any distribution with supportY , thenY
is facial, and by Lemma 20, fromsuppm+ ⊆ Y we also have thatsuppm− ⊆ Y .
Obviouslysupp(m+) ∩ supp(m−) = ∅. Assume that somẽp is contained inE∆ and
has supportY (if none exists we are done). For the entries wherem 6= 0 we write
(p̃i){i:mi 6=0} = (ξ̃, η̃) for some(ξ̃, η̃) ∈ R

|supp(m)|
+ . If m 6= ~0, then|supp(m+)| > 0 and

|supp(m−)| > 0, since0 = 〈A(∅,X ), m〉 =
∑

i mi. We can assume that‖ξ̃‖ < ‖η̃‖,
where‖ · ‖ is the sum of the entries of a positive vector, (if not, again we are done).
Necessarily we havẽξm+

− η̃m−
= 0.

Now consider a vectorp which is equal tõp in the entries wherem = 0, and for
which ξ = 2ξ̃, andη = (1 − ‖ξ̃‖/‖η̃‖)η̃. We have‖ξ‖ + ‖η‖ = ‖ξ̃‖ + ‖η̃‖, such thatp
also describes a distribution. For this we have

ξm+

− ηm−

=

(

2〈1,m+〉 −
(

1 − ‖ξ̃‖/‖η̃‖
)〈1,m−〉

)

ξ̃m+

.
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Observe that〈1, m+〉 > 0, and〈1, m−〉 > 0, w.l.o.g. they are both larger than one,
since for anyc ∈ R andm ∈ ker A(∆,X ) we havec ·m ∈ ker A(∆,X ). We have also
that0 < ‖ξ̃‖/‖η̃‖ < 1, andξ0 is greater than0 in every entry. Hence, we have the claim.

For (vi) if and only if (iv): The statementYc ∩ supp(m) 6= ∅ coincides with
Yc ∩ supp(m+) 6= ∅ or Yc ∩ supp(m−) 6= ∅. From Lemma 20 we have that it
suffices to show: For a facialY it is rk A(∆c,Yc) = |∆c| if and only ifYc∩supp(m) 6=
∅ ∀m ∈ ker A(∆,X ).

Observe that anym ∈ ker A(∆,X ) can be written as

m =
∑

λ∈∆c

αλA(λ,X ),

which can also be written asm(x) = 〈α, A(2[N ], x)〉, whereα ∈ R
2N

satisfiessupp(α) ⊆
∆c. We have for anyx ∈ X that

m(x) = 〈α, A(2[N ], x)〉 = 0 ⇔ α⊥A(2[N ], x).

Hence,Yc ∩ supp(m) = ∅, (which is equivalent tom(x) = 0 ∀x ∈ Yc), is equivalent
to the existence of someα ∈ R

2N

such that

α⊥A(2[N ], x) ∀x ∈ Yc. (1)

That noα 6= (0, . . . , 0) with supp(α) ⊆ ∆c can fulfill eqs. 1 is exactly the case
whenspan {A(∆c, x)}x∈Yc = R

|∆c|, which is equivalent tork A(∆c,Yc) = |∆c|.

Item (vii) is by Lemma 21 equivalent to item (vi).

For (viii) if and only if (vii): rk A(∆,Y) = |Y| is equivalent to{A(∆, y)}y∈Y

being linearly independent, from which follows thatconv{A(∆, y)}y∈Y is a simplex.
Therefore, ifY is assumed to be facial,all setsY ′ ⊆ Y are facial.

Now assume thatconv{A(∆, y)}y∈Y is a face ofQ∆ which is a simplex. Then,
{A(∆, y)}y∈Y are affine independent. This means that for anyy0 ∈ Y the vectors
{A(∆, y) − A(∆, y0)}y∈Y\{y0} are linearly independent, i.e. the equation

∑

y∈Y\{y0}

βy(A(∆, y) − A(∆, y0)) = 0 (2)

has the unique solutionβy = 0 ∀y ∈ Y \ {y0}. The equation
∑

y∈Y βyA(∅, y) = 0
has only solutions of the formβy0 =

∑

y∈Y\{y0}
βy, sinceA(∅, x) = 1 ∀x. Hence, the

solution set of
∑

y∈Y βyA(∆, y) = 0 can be obtained from the solution set of eq. 2.
From this the linear independence follows.
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