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Abstract. We discuss the dependence of set-valued dynamical systems on
parameters. Under mild assumptions which are often satisfied for random dy-
namical systems with bounded noise and control systems, we establish the fact
that topological bifurcations of minimal invariant sets are discontinuous with
respect to the Hausdorff metric, taking the form of lower semi-continuous ex-
plosions and instantaneous appearances. We also characterise these transitions
by properties of Morse-like decompositions.

1. Introduction

Dynamical systems usually refer to time evolutions of states, where each initial
condition leads to a unique state of the system in the future. Set-valued dynamical
systems allow a multi-valued future, motivated, for instance, by impreciseness or
uncertainty. In particular, set-valued dynamical systems naturally arise in the
context of random and control systems.

The main motivation for the work in this paper is the study of random dynamical
systems represented by a mapping f : Rd → Rd with a bounded noise of size ε > 0,

xn+1 = f(xn) + ξn ,

where the sequence (ξn)n∈N is a random variable with values in Bε(0) := {x ∈ Rd :
‖x‖ ≤ ε}. The collective behavior of all future trajectories is then represented by
a set-valued mapping F : K(Rd) → K(Rd), defined by

F (M) := Bε(f(M)) for all M ∈ K(Rd) ,

where K(Rd) is the set of all nonempty compact subsets of Rd.

Under the natural assumption that the probability distribution on Bε(0) has a
non-vanishing Lebesgue density, it turns out that the supports of stationary mea-
sures of the random dynamical system are minimal invariant sets of the set-valued
mapping F [ZH07]. A minimal invariant set is a compact set M ⊂ Rd that is
invariant (i.e. F (M) = M) and contains no proper invariant subset.

In this paper, we are mainly interested in topological bifurcations of minimal
invariant sets, while considering a parameterized family of set-valued mappings
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(Fλ)λ∈Λ, where Λ is a metric space. These bifurcations involve discontinuous
changes as well as disappearances of minimal invariant sets under variation of λ.

Definition 1 (Topological bifurcation of minimal invariant sets). Let Mλ denote
the union of minimal invariant sets of Fλ, λ ∈ Λ. We say that Fλ∗

admits a
topological bifurcation of minimal invariant sets if for any neighbourhood V of λ∗,
there does not exist a family of homeomorphisms (hλ)λ∈V , hλ : Rd → Rd, depending
continuously on λ, with the property that

hλ(Mλ) = Mλ∗
for all λ ∈ V .

The main result concerns the necessity of discontinuous changes of minimal in-
variant sets at bifurcation points with two possible local scenarios.

Theorem 1.1. Suppose that the family (Fλ)λ∈Λ admits a bifurcation at λ∗. Then
a minimal invariant set changes discontinuously at λ = λ∗ in one of the following
ways:

(i) it explodes lower semi-continuously at λ∗, or
(ii) it disappears instantaneously at λ∗.

A more technical formulation of this result can be found in Theorem 5.1. In
fact, the setting of set-valued dynamical systems in this paper is slightly more
general than presented above, including also upper semi-continuous and continuous-
time systems. For a simple one-dimensional example illustrating this theorem, see
Section 7.

Another focus of this paper lies in extending Morse decomposition theory to
study bifurcation problems in our context. Recently, Morse decompositions have
been discussed for set-valued dynamical systems [BBS, Li07, McG92], and we gen-
eralize certain fundamental results for attractors and repellers to complementary
invariant sets. The second main result of this paper (Theorem 6.1) asserts that at
a bifurcation point, these complementary invariant sets must touch.

In the context of the presented motivation above, we note that the study of
random dynamical systems with bounded noise can be separated into a topological
part (involving the mapping F ) and the evolution of measures. In contrast, the
topological part is redundant in the case of unbounded noise (modelled for instance
by Brownian motions), where there is only one minimal invariant set, given by the
whole space and supporting a unique stationary measure.

Initial research on bifurcations in random dynamical systems with unbounded
noise started in the 1980s, mainly by Ludwig Arnold and co-workers [Arn98, Bax94,
ASNSH96, JKP02]. Two types of bifurcation have been distinguished so far: the
phenomenological bifurcation (P-bifurcation), concerning qualitative changes in sta-
tionary densities, and the dynamical bifurcation (D-bifurcation), concerning the
sign change of a Lyapunov exponent, cf. also [Ash99]. To a large extent, however,
bifurcations in random dynamical systems remain unexplored.

In modelling, bounded noise is often approximated by unbounded noise with
highly localized densities in order to enable the use of stochastic analysis. In this
approximation, topological tools to identify bifurcations are inaccessible, leaving
the manifestation of a topological bifurcation as a cumbersome quantitative and
qualitative change of properties of invariant measures.

Our work contributes to the abstract theory of set-valued dynamical systems
dating back to the 1960s. Early contributions were motivated mainly by control
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theory [Rox65, Klo78], and later developments include stability and attractor theory
[Aki93, Ara00, GK01, Grü02, KMR, McG92, Rox97], Morse decompositions [BBS,
Li07, McG92] and ergodic theory [Art00, MA99].

Our results build upon initial piloting studies concerning bifurcations in random
dynamical systems with bounded noise [BHY, CGK08, CHK10, HY06, HY10, ZH07,
ZH08] and control systems [CK03, CMKS08, CW09, Gay04, Gay05]. In particular,
Theorem 1.1 unifies and generalises observations in [BHY, HY06, ZH07] to higher
dimensions and non-invertible (set-valued) systems, while the bifurcation analysis
in terms of Morse-like decompositions is a new perspective.

We finally remark that set-valued dynamical systems appear in the literature
also as closed relations, general dynamical systems, dispersive systems or families
of semi-groups.

2. Set-valued dynamical systems

Throughout this paper, we consider the phase space of our set-valued dynamical
systems to be a compact metric space (X, d). To aid the presentation, we restrict
to the setting of a compact phase space, although our results extend naturally to
noncompact complete phase spaces.

We write Bε(x0) =
{

x ∈ X : d(x, x0) < ε
}

for the ε-neighbourhood of a point
x0 ∈ X . For arbitrary nonempty sets A, B ⊂ X and x ∈ X , let dist(x, A) :=
inf

{

d(x, y) : y ∈ A
}

be the distance of x to A and dist(A, B) := sup
{

dist(x, B) :

x ∈ A
}

be the Hausdorff semi-distance of A and B. The Hausdorff distance of A

and B is then defined by h(A, B) := max
{

dist(A, B), dist(B, A)
}

.
The set of all nonempty compact subsets of X will be denoted by K(X). Equipped

with the Hausdorff distance h, K(X) is also a metric space (K(X), h). It is well-
known that if X is complete or compact, then K(X) is also complete or compact,
respectively.

Define for a sequence (Mn)n∈N of bounded subsets of X ,

lim sup
n→∞

Mn :=
{

x ∈ X : lim inf
n→∞

dist(x, Mn) = 0
}

and

lim inf
n→∞

Mn :=
{

x ∈ X : lim sup
n→∞

dist(x, Mn) = 0
}

(see [Aki93, p. 125–126] and [AF90, Definition 1.1.1]).
In this paper, a set-valued dynamical system is understood as a mapping Φ :

T × X → K(X) with time set T = N0 (discrete) or T = R+
0 (continuous), which

fulfills the following properties:

(H1) Φ(0, ξ) = {ξ} for all ξ ∈ X ,
(H2) Φ(t + τ, ξ) = Φ(t, Φ(τ, ξ)) for all t, τ ≥ 0 and ξ ∈ X ,
(H3) Φ is upper semi-continuous, i.e.

Φ(τ, ξ) ⊃ lim sup
(t,x)→(τ,ξ)

Φ(t, x) for all (τ, ξ) ∈ T × X .

(H4) t 7→ Φ(t, ξ) is continuous with respect to the Hausdorff metric for all ξ ∈ X .

Note that in (H2), the extension Φ(t, M) :=
⋃

x∈M Φ(t, x) for M ⊂ X was used.
There is a one-to-one correspondence between discrete set-valued dynamical sys-

tems and upper semi-continuous mappings f : X → K(X). On the other hand,
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continuous set-valued dynamical systems arise in the context of differential inclu-
sions, which canonically generalize ordinary differential equations to multi-valued
vector fields [AC84, Dei92].

The ε-perturbation of a discrete mapping as discussed in the Introduction yields
a set-valued dynamical system with continuous dependence on x. Our setting also
includes upper semi-continuous set-valued dynamical systems as set out in (H3),
motivated by differential equations with discontinuous right hand side and problems
from control theory [AC84].

Associated to every set-valued dynamical system is a so-called dual set-valued
dynamical system.

Definition 2 (Dual set-valued dynamical system). Let Φ : T × X → K(X) be a
set-valued dynamical system. Then the dual set-valued dynamical system is defined
by Φ∗ : T × X → K(X), where

Φ∗(t, ξ) :=
{

x ∈ X : ξ ∈ Φ(t, x)
}

for all (t, ξ) ∈ T × X .

Note that in case of an invertible (single-valued) dynamical system, Φ∗ coincides
with the system under time reversal.

To see that Φ∗ is well-defined, i.e. Φ∗(t, ξ) ∈ K(X), consider for given (t, ξ) ∈
T × X a sequence (xn)n∈N in Φ∗(t, ξ) converging to x ∈ X . This means that
ξ ∈ Φ(t, xn) for all n ∈ N, and hence, ξ ∈ lim supn→∞ Φ(t, xn) ⊂ Φ(t, x) by the
upper semi-continuity of Φ. Thus, x ∈ Φ∗(t, ξ), which proves that this set belongs
to K(X).

The dual Φ∗ was introduced already in [McG92] without formalising its proper-
ties. The following proposition shows that indeed Φ∗ defines a set-valued dynamical
system.

Proposition 2.1. Φ∗ is a set-valued dynamical system.

Proof. The conditions (H1)–(H4) will be checked in the following.
(H1) One has Φ∗(0, ξ) =

{

x ∈ X : ξ ∈ Φ(0, x)
}

=
{

x ∈ X : ξ ∈ {x}
}

= {ξ} for all
ξ ∈ X .
(H2) It follows that

Φ∗(t + τ, ξ)

=
{

x ∈ X : ξ ∈ Φ(t + τ, x)
}

=
{

x ∈ X : ξ ∈ Φ(τ, Φ(t, x))
}

=
{

x ∈ X : ∃ y ∈ Φ(t, x) : ξ ∈ Φ(τ, y)
}

=
{

x ∈ X : ∃ y ∈ Φ(t, x) : y ∈ Φ∗(τ, ξ)
}

=
{

x ∈ X : Φ(t, x) ∩ Φ∗(τ, ξ) 6= ∅
}

=
{

x ∈ X : ∃ y ∈ Φ∗(τ, ξ) : y ∈ Φ(t, x)
}

=
{

x ∈ X : ∃ y ∈ Φ∗(τ, ξ) : x ∈ Φ∗(t, y)
}

=
{

x ∈ X : x ∈ Φ∗(t, Φ∗(τ, ξ))
}

= Φ∗(t, Φ∗(τ, ξ)) .

(H3) Let (τ, ξ) ∈ T × X , and consider a sequence (tn, xn)n∈N converging to (τ, ξ)
as n → ∞. To prove upper semi-continuity, one needs to clarify that

lim sup
n→∞

Φ∗(tn, xn) = lim sup
n→∞

{

x ∈ X : xn ∈ Φ(tn, x)
}

⊂ Φ∗(τ, ξ) .

Thereto, choose y ∈ lim supn→∞

{

x ∈ X : xn ∈ Φ(tn, x)
}

. Hence, there exists a
subsequence (xnj

)j∈N of (xn)n∈N and a sequence (yj)j∈N such that limj→∞ yj = y
and xnj

∈ Φ(tnj
, yj). The upper semi-continuity of Φ then implies that ξ ∈ Φ(τ, y),

which in turn means that y ∈ Φ∗(τ, ξ). This proves upper semi-continuity of Φ∗.
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(H4) Let (τ, ξ) ∈ T×X , and consider a sequence (tn)n∈N converging to τ as n → ∞.
From (H3), it follows that

lim sup
n→∞

Φ∗(tn, ξ) ⊂ Φ∗(τ, ξ) .

The proof is thus finished if we show that

lim inf
n→∞

Φ∗(tn, ξ) ⊃ Φ∗(τ, ξ) .

Let x ∈ Φ∗(τ, ξ). Then ξ ∈ Φ(τ, x) = lim infn→∞ Φ(tn, x), i.e. there exists a
sequence (xn)n∈N with xn ∈ Φ(tn, x) and xn → ξ as n → ∞. Hence, x ∈ Φ∗(tn, xn)
for all n ∈ N, which implies that

x ∈ lim inf
n→∞

Φ∗(tn, xn) =
{

y ∈ X : lim supn→∞ dist
(

y, Φ∗(tn, xn)
)

= 0
}

⊂
{

y ∈ X : lim supn→∞ dist
(

y, Φ∗(tn, ξ)
)

= 0
}

= lim inf
n→∞

Φ∗(tn, ξ) ,

where “⊂” follows from the upper semi-continuity proved in (H3). This finishes the
proof of this proposition. �

3. Minimal invariant sets

In the following, the focus lies on the determination and bifurcation of so-called
minimal invariant sets of a set-valued dynamical system Φ. Such sets have been
discussed, e.g., in [HY06, HY10, BHY] in the continuous case of random differential
equations and in [ZH07] for random maps. In the context of control theory, minimal
invariant sets are denoted as invariant control sets (see the monograph [CK00]).

Given a set-valued dynamical system Φ : T × X → K(X). A nonempty and
compact set M ⊂ X is called Φ-invariant if

Φ(t, M) = M for all t ≥ 0 .

A Φ-invariant set is called minimal if it does not contain a proper Φ-invariant set.
Minimal Φ-invariant sets are pairwise disjoint, and under the assumption that

Φ(t, x) contains at least one ball for all t > 0 and x ∈ X , there are only finitely
many of such sets, since X is compact.

Minimal Φ-invariant sets are important, because they are exactly the supports
of stationary measures of a random dynamical system, whenever Φ describes the
topological part of the random system [HY06, ZH07]. Moreover, in case Φ de-
scribes a control system, minimal Φ-invariant sets coincide with invariant control
sets [CK00].

Proposition 3.1. Let Φ : T × X → K(X) be a set-valued dynamical system and
let M ⊂ X be compact with

Φ(t, M) ⊂ M for all t ≥ 0 ,

and suppose that no proper subset of M fulfills this property. Then M is Φ-
invariant.

Proof. Standard arguments lead to the fact that the ω-limit set

lim sup
t→∞

Φ(t, M) =
⋂

t≥0

⋃

s≥t

Φ(s, M)
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is a nonempty and compact Φ-invariant set [AF90]. Since lim supt→∞ Φ(t, M) ⊂ M ,
it follows that lim supt→∞ Φ(t, M) = M . �

The existence of minimal Φ-invariant sets follows from Zorn’s Lemma.

Proposition 3.2 (Existence of minimal invariant sets). Let Φ : T×X → K(X) be
a set-valued dynamical system and M ⊂ X be compact such that

Φ(t, M) ⊂ M for all t ≥ 0 .

Then there exists at least one subset of M which is minimal Φ-invariant.

Proof. Consider the collection

C :=
{

A ⊂ K(M) : Φ(t, A) ⊂ A for all t ≥ 0
}

.

C is partially ordered with respect to set inclusion, and let C′ be a totally ordered
subset of C. It is obvious that

⋂

A∈C′ A is nonempty, compact and lies in C. Thus,
Zorn’s Lemma implies that there exists at least one minimal element in C which is
a minimal Φ-invariant set. �

While minimal Φ-invariant sets always exists, they are typically non-unique.
Uniqueness directly follows for set-valued dynamical systems which are contractions
in the Hausdorff metric. Such contractions can be identified as follows.

Lemma 3.3. Consider the set-valued dynamical system Φ : T × K(X) → K(X),
defined by

Φ(1, x) := U(f(x)) for all x ∈ X ,

where f : X → X is a contraction on the compact metric space (X, d), i.e. one has

d(f(x), f(y)) ≤ Ld(x, y) for all x, y ∈ X

with some Lipschitz constant L < 1, and U : X → K(X) is a function such that
U(x) is a neighbourhood of x for all x ∈ X. Assume that U is globally Lipschitz
continuous (but not necessarily a contraction) with Lipschitz constant M > 0 such
that ML < 1. The mapping Φ(1, ·) then is a contraction in (K(X), h). The unique
fixed point of Φ(1, ·) is the unique minimal Φ-invariant set, which is also globally
attractive.

Proof. First prove that the extension U : K(X) → K(X), defined by U(A) :=
⋃

a∈A U(a), is Lipschitz continuous. Given A, B ∈ K(X), we have both

sup
x∈A

inf
y∈B

h
(

U(x), U(y)
)

≤ L sup
x∈A

inf
y∈B

d(x, y)

≤ Lh(A, B)

and

sup
x∈A

inf
y∈B

h
(

U(x), U(y)
)

≥ sup
x∈A

inf
y∈B

dist
(

U(x), U(y)
)

= sup
x∈A

inf
y∈B

sup
x̃∈U(x)

inf
ỹ∈U(y)

d(x̃, ỹ)

≥ sup
x∈A

sup
x̃∈U(x)

inf
y∈B

inf
ỹ∈U(y)

d(x̃, ỹ)

= sup
x∈U(A)

inf
y∈U(B)

d(x, y)

= dist
(

U(A), U(B)
)

.
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This means that

dist
(

U(A), U(B)
)

≤ Lh(A, B) for all A, B ∈ K(X) ,

which finally implies

h
(

U(A), U(B)
)

≤ Lh(A, B) for all A, B ∈ K(X) .

The fact that Φ(1, ·) is a contraction then follows, since it is essentially the compo-
sition of two Lipschitz continuous mappings, where the product of the respective
Lipschitz constants is less than 1. Application of the contraction mapping theorem
finishes the proof of this lemma. �

The above lemma applies in particular to the motivating example presented in
the Introduction. In this case, U(x) := Bε(x) with Lipschitz constant 1. Hence, if
f is a contraction, then the set-valued mapping F has a globally attractive unique
minimal invariant set.

4. Generalisation of attractor-repeller decomposition

The purpose of this section is to provide generalisations of attractor-repeller de-
compositions which have been introduced in [MW06, Li07] for the study of Morse
decompositions of set-valued dynamical systems. These generalisations are neces-
sary for our purpose, because we deal with invariant sets rather than attractors,
and they will be applied in Section 7 in the context of bifurcation theory.

Fundamental for the definition of Morse decompositions are domains of attrac-
tion (of attractors), because complementary repellers are then given by the com-
plements of these sets. For a given Φ-invariant set M , the domain of attraction is
defined by

A(M) =
{

x ∈ X : lim
t→∞

dist
(

Φ(t, x), M
)

= 0
}

.

If M is an attractor, that is a Φ-invariant set such that there exists an η > 0 with

lim
t→∞

dist
(

Φ(t, Bη(M)), M
)

= 0 ,

then the complementary set X \A(M) is a Φ∗-invariant set, which has the interpre-
tation of a repeller, because all points outside of this set converge to the attractor
in forward time. It is worth to note that this repeller is not necessarily Φ-invariant
(which is a difference from the classical Morse decomposition theory).

For a Φ-invariant set M which is not an attractor, the complementary set X \
A(M) is not necessarily Φ∗-invariant, but this property can be attained when A(M)
is replaced by a slightly smaller set.

Proposition 4.1. Let Φ : T × X → K(X) be a set-valued dynamical system, and
let M ⊂ X be Φ-invariant such that A(M) 6= X, i.e. M is not globally attractive.
Then the complement of the set

A−(M) := A(M) \
{

x ∈ A(M) : there exist t ≥ 0 with Φ(t, x) ∩ ∂A(M) 6= ∅ , or for

all γ > 0, one has lim sup
t→∞

dist
(

Φ(t, Bγ(x)), M
)

> 0
}

,

i.e. the set M∗ := X \ A−(M), is Φ∗-invariant.



8 JEROEN S. W. LAMB, MARTIN RASMUSSEN, AND CHRISTIAN S. RODRIGUES

The set M∗ is called the dual of M . Under the additional assumption that M
is an attractor in Proposition 4.1, i.e. A(M) is a neighbourhood of M , the pair
(M, M∗) is an attractor-repeller pair as discussed in [MW06]. This pair can be
extended to obtain Morse decompositions, see [Li07].

Before proving this proposition, we will derive an alternative characterization of
the set A−(M).

Lemma 4.2. Let Φ : T×X → K(X) be a set-valued dynamical system and M ⊂ X
be Φ-invariant. Then the set A−(M) admits the representation

A−(M) =
{

x ∈ X : for all T ≥ 0 , there exists a neighbourhood V of Φ(T, x)

with lim
t→∞

dist
(

Φ(t, V ), M
)

= 0
}

.

Proof. First, note that compact subsets K of A−(M) are attracted by M , i.e.
limt→∞ dist(Φ(t, K), M) = 0. We have to show two set inclusions.
(⊂) Let x ∈ A−(M) and T > 0. Since Φ(T, x) lies in the interior of A(M), there
exists a compact neighbourhood V of Φ(T, x) that is contained in A(M). This
proves that limt→∞ dist

(

Φ(t, V ), M
)

= 0, and hence, x is contained in the right
hand side.
(⊃) Let x ∈ X such that for all T ≥ 0, there exists a neighbourhood V of Φ(T, x)
with limt→∞ dist

(

Φ(t, V ), M
)

= 0. This implies that for all T ≥ 0, one has Φ(t, x)∩
∂A(M) = ∅, which finishes the proof of this lemma. �

The set A−(M) thus describes all trajectories in the domain of attraction which
are attracted also under perturbation.

of Proposition 4.1. It will be shown that Φ∗(t, M∗) = M∗ for all t ≥ 0.
(⊂) Assume that there exist t ≥ 0 and x ∈ Φ∗(t, M∗) \ M∗ = Φ∗(t, M∗) ∩ A(M).
This implies that Φ(t, x) ∩ M∗ 6= ∅ and x ∈ A(M), which contradicts the fact that
A(M) fulfills Φ(t,A(M)) ⊂ A(M) for all t ≥ 0.
(⊃) Assume that there exist t ≥ 0 and x ∈ M∗ \ Φ∗(t, M∗). This means that
Φ(t, x) ∩ M∗ = ∅, and hence, Φ(t, x) ⊂ A(M). We will show that this implies
that x ∈ A(M), which is a contradiction. Let T ≥ 0, and consider first the case
that T ≤ t. The fact that A(M) is open and Φ(t, x) ⊂ A(M) is compact implies

that there exists a γ > 0 such that Bγ(Φ(t, x)) ⊂ A(M). Moreover, the upper
semi-continuity of Φ and the relation Φ(t−T, Φ(T, x)) = Φ(t, x) yield the existence

of δ > 0 such that Φ
(

t − T, Bδ(Φ(T, x))
)

⊂ Bγ(Φ(t, x)) ⊂ A(M). Since compact
subsets of A(M) are attracted to M , the assertion follows. Consider now the case
T ≥ t. Since A(M) is invariant and Φ(t, x) ⊂ A(M), Φ(T, x) is a compact subset
of A(M). A(M) is open, so there exists a compact neighbourhood of Φ(T, x) which
is attracted by M . This finishes the proof of this proposition. �

5. Dependence of minimal invariant sets on parameters

The main goal of this section is to describe how minimal invariant sets depend
on parameters. We consider a family (Φλ)λ∈Λ of set-valued dynamical systems
Φλ : T × X → K(X), where (Λ, dΛ) is a metric space and

(H5) (λ, t) 7→ Φλ(t, x) is continuous in (λ, t) ∈ Λ × T uniformly in x.

Motivated by the setting of set-valued dynamical systems in the Introduction,
we exclude single-valued dynamical systems in the following and assume
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(H6) Φλ(t, x) contains a ball of positive radius for all (t, x) ∈ T × X with t > 0
and λ ∈ Λ, and moreover, there exist T > 0 and ε > 0 such that Φλ(T, x)
contains a ball of size ε for all x ∈ X .

The union of all minimal Φλ-invariant sets in X will be denoted by Mλ. The
following theorem describes how Mλ depends on the parameter.

Theorem 5.1 (Dependence of minimal invariant sets on parameters). Given (Φλ)λ∈Λ

a family of set-valued dynamical systems satisfying (H1)–(H6), let Mλ∞
⊂ Mλ∞

be a minimal Φλ∞
-invariant set for some λ∞ ∈ Λ. Then for each sequence (λn)n∈N

converging to λ∞, there exist a subsequence (λnk
)k∈N and a δ > 0 such that exactly

one of the following statements holds.

(i) Lower semi-continuous dependence:

Mλ∞
⊂ lim inf

k→∞

(

Mλnk
∩ Bδ(Mλ∞

)
)

.

(ii) Instantaneous appearance:

∅ = lim sup
k→∞

(

Mλnk
∩ Bδ(Mλ∞

)
)

.

Proof. Let (λn)n∈N be a sequence with λn → λ∞ as n → ∞. Define the sequence
(cn)n∈N by

cn :=

{

1 : Mλn
∩ Mλ∞

6= ∅
2 : Mλn

∩ Mλ∞
= ∅ for all n ∈ N ,

and choose δ̃ > 0 such that Bδ̃(Mλ∞
) ∩Mλ∞

= Mλ∞
. Since {1, 2} is finite, there

exists a constant subsequence (cnk
)k∈N.

If cnk
≡ 2, assume to the contrary that for all k ∈ N, there exist m ≥ k and

ak ∈ Mλnm
∩ B1/k(Mλ∞

). The sequence (ak)k∈N has a convergent subsequence
with limit a∞ ∈ Mλ∞

. Now Φλ∞
(T, a∞) ⊂ Mλ∞

, and the upper semi-continuity
of Φ and (H6) imply that there exists γ > 0 such that Φλ∞

(T, x) ∩ intMλ∞
6= ∅

for all x ∈ Bγ(a∞). This is a contradiction to the definition of the sequence cnk
,

because of the continuous dependence of Φ on λ, and this proves that there exists
δ ∈ (0, δ̃) with Mλnk

∩ Bδ(Mλ∞
) = ∅ whenever 1

k < δ. Hence, (ii) holds.

If cnk
≡ 1, define δ := δ̃. Choose minimal Φλnk

-invariant sets Mλnk
⊂ Mλnk

such that Mλnk
∩ Mλ∞

6= ∅ for k ∈ N. First note that (H6) yields that the set

Φλ∞
(T, Mλnk

∩ Mλ∞
) is contained in Mλ∞

and contains an ε-ball. Having this

in mind, (H5) implies that there exists a k0 ∈ N such that for all k ≥ k0, the
set Φλnk

(T, Mλnk
∩ Mλ∞

) ⊂ Mλnk
contains an ε/2-ball which completely lies in

Mλ∞
. Let Bε/2(d1), . . . , Bε/2(dr) be finitely many ε/2-balls covering the compact

set Mλ∞
. In particular, each of the sets Mλnk

contains (at least) one of the points
d1, . . . , dr. We can thus assign the sets Mλnk

to r different categories, with the

benefit that the sets in each category intersect in at least one point (given by the
center of the balls). We show now that the asserted limit relation in (i) holds when
restricting to a subsequence corresponding to each category, from which the asser-
tion follows, since there are only finitely many categories. For simplicity, assume
now that there is only one category. It will be shown now that lim infk→∞ Mλnk

cannot be left in forward time, i.e. fulfills the conditions of Proposition 3.1. Since
this set is nonempty and intersects Mλ∞

, minimality of Mλ∞
then implies the

assertion. Assume to the contrary that there exists an x̃ ∈ lim infk→∞ Mλnk

such that Φλ∞
(τ, x̃) \ lim infk→∞ Mλnk

6= ∅ for some τ > 0, i.e. there exists a
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ξ ∈ Φλ∞
(τ, x̃) such that ξ /∈ lim infk→∞ Mλnk

. We can choose ξ to be even in

the interior intΦλ∞
(τ, x̃), which is possible, since lim infk→∞ Mλnk

is closed. In
addition, the closedness of lim infk→∞ Mλnk

and the continuous dependence of Φλ

on λ implies that there exists an k0 ∈ N and ζ > 0 such that

Bζ(ξ) ⊂ Φλnk
(τ, x̃) for all k ≥ k0 and Bζ(ξ) ⊂ Φλ∞

(τ, x̃)

and

Bζ(ξ) ∩ lim inf
k→∞

Mλnk
= ∅ . (1)

Since there exists k1 ≥ k0 such that x̃ ∈ Mλnk
for k ≥ k1, the invariance of Mλkn

implies that Bζ(ξ) ⊂ Mλnk
for all k ≥ k1. This contradicts (1) and finishes the

proof of this theorem. �

The above theorem asserts that discontinuous changes in minimal invariant sets
occur either as explosions or as instantaneous appearances. We are let to address
the question if a continuous merging process of two minimal invariant sets is possible
(note that this is not ruled out by (i) of Theorem 5.1). The following proposition
shows that the answer to this question is negative if the set-valued dynamical system
is continuous rather than only upper semi-continuous.

Proposition 5.2. Let (Φλ)λ∈Λ be a family of continuous set-valued dynamical
systems fulfilling (H1)–(H6), and let M1

λ and M2
λ be two different minimal Φλ-

invariant sets. Then for all λ∗ ∈ Λ, one has

lim inf
λ→λ∗

inf
(x,y)∈M1

λ
×M2

λ

d(x, y) > 0 ,

i.e. the sets M1
λ and M2

λ cannot collide under variation of λ.

Proof. Suppose the contrary, which means that there exist an x∗ ∈ X and a se-
quence λn → λ∗ as n → ∞ with

lim
n→∞

dist(x∗, M1
λn

) = 0 and lim
n→∞

dist(x∗, M2
λn

) = 0 .

Due to (H5) and (H6), for t > 0, the set Φλ∗(t, x∗) intersects the interior of both
M1

λn
and M2

λn
when n is large enough. This, however, contradicts the fact that

M1
λn

and M2
λn

are Φ-invariant and finishes the proof of this proposition. �

The above proposition cannot be extended to upper semi-continuous set-valued
dynamical systems as is illustrated by the following the example.

Example 1. Let X = [−4, 4] and Λ = [0, 1], and consider the discrete set-valued
dynamical systems Φλ : N0 ×X → K(X), λ ∈ Λ, generated by the time-1 mappings

Φλ(1, x) :=







[

x
2 − λ − 1, x

2 − λ
]

: x < 0
[−2, 2] : x = 0

[

x
2 + λ, x

2 + λ + 1
]

: x > 0
for all λ ∈ Λ .

Obviously, the set-valued system is not continuous, but only upper semi-continuous
at x = 0. For λ > 0, there are exactly two minimal Φλ-invariant sets, given by

M1
λ := [−2λ − 2,−2λ] and M2

λ := [2λ, 2λ + 2] .

In the limit λ → 0, these two sets collide, yielding the minimal Φ-invariant set
M0 := [−2, 2] at λ = 0 (see Figure 1). Note that the singleton {0} is Φ∗-invariant,
so this bifurcation can be seen as a collision process of Φ-invariant and Φ∗-invariant
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M1
λ

M2
λ

λ = 1
2

M0

λ = 0

Figure 1. Graph of Φλ(1, ·) with minimal invariant sets M1
λ and

M2
λ for λ = 1

2 (left), and M0 for λ = 0 (right), illustrating the
continuous merging process of the minimal invariant sets in Exam-
ple 1

sets. We will see in the next section that also in the case of discontinuous bifurca-
tions, these complementary invariant sets must touch.

The above proposition and example show that for discontinuous set-valued dy-
namical systems, one can have continuous bifurcations in the sense that minimal
invariant sets converge to each other. On the other hand, only discontinuous bifur-
cations can occur for continuous set-valued dynamical systems.

6. A necessary condition for bifurcation

Consider a family (Φλ)λ∈Λ of set-valued dynamical systems Φλ : T×X → K(X),
where (Λ, dΛ) is a metric space, and suppose that (H1)–(H6) hold. Motivated
by Proposition 5.2, we assume that Φλ is continuous rather then upper semi-
continuous.

Recall the definition of a topological bifurcation (Definition 1) and the fact that
Mλ denotes the union of all minimal Φλ-invariant sets. As a direct consequence
of Theorem 5.1 and Proposition 5.2, for continuous set-valued dynamical systems,
a topological bifurcation of Mλ is characterised by a minimal Φλ∞

-invariant set
Mλ∞

, a sequence λn → λ∞ as n → ∞ and δ > 0 such that

Mλ∞
( lim inf

n→∞

(

Mλn
∩ Bδ(Mλ∞

)
)

or ∅ = lim sup
n→∞

(

Mλn
∩ Bδ(Mλ∞

)
)

. (2)

The following theorem provides a necessary condition for a topological bifurcation
of minimal invariant sets involving the dual M∗

λ∞

of Mλ∞
as introduced in Section 4.

Theorem 6.1 (Necessary condition for bifurcation). Let (Φλ)λ∈Λ be a family
of continuous set-valued dynamical systems fulfilling (H1)–(H6), and assume that
(Φλ)λ∈Λ admits a topological bifurcation such that (2) holds for a minimal invariant
set Mλ∞

. Then M∗
λ∞

has nonempty intersection with Mλ∞
.

Proof. Consider the sequence λn → λ∞ as defined before the statement of the
theorem. Assume to the contrary that there exists a γ > 0 such that Bγ(Mλ∞

) ⊂
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(i)
fα,0(x) + ε
fα,0(x) − ε

A1(α) R(α)

A2(α)

α > α∗

x

(ii)
fα,0(x) + ε

R(α)

fα,0(x) − ε

A1(α)

A2(α)

α = α∗

x

(iii)
fα,0(x) + ε
fα,0(x) − ε

A(α)

α < α∗

x

Figure 2. Graphs of the extremal functions fα,0 ± ε, (i) before
the bifurcation, (ii) at the bifurcation point, and (iii) after the
bifurcation.

A−(Mλ∞
). Then for each δ > 0, there exists a compact absorbing set B such that

Mλ∞
⊂ B ⊂ Bδ(Mλ∞

), that is, Φλ∞
(t, B) ⊂ intB for t > 0 [Aki93, Theorem 3,

p. 43]. Due to continuous dependence on λ, there exists an n0 ∈ N such that
Φλn

(t, B) ⊂ intB for all n ≥ n0 and t > 0. This means that there exists a minimal
Φλn

-invariant set in B for all n ≥ n0. Note that n0 depends on δ, and in the
limit δ → 0, this minimal invariant set converges to Mλ∞

, because of Theorem 5.1.
Hence, there is no bifurcation, which shows that X \ A−(Mλ∞

) ∩ Mλ∞
6= ∅. �

7. A one-dimensional illustration

This section is devoted to the illustration of bifurcations characterised by dis-
continuous explosions and instantaneous appearances of minimal invariant sets in
the one-dimensional example

Fα,β(x) := Bε(fα,β(x)) ,

where

fα,β(x) :=
αx

1 + |x| + β
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and α, β are real parameters. Although similar examples have been discussed
already in the literature, see e.g. [HY06], we judge this context best suited to
explain the essence of our main theorems.

(i)
fα,β(x) + ε
fα,β(x) − ε

A1(β)

β < β∗

x

(ii)
fα,β(x) + ε
fα,β(x) − ε

A1(β)

A2(β)R(β)

β = β∗

x

(iii)
fα,β(x) + ε
fα,β(x) − ε

A1(β)

A2(β)

β > β∗

x

R(β)

Figure 3. Graphs of the extremal functions fα,0 ± ε, (i) before
the bifurcation, (ii) at the bifurcation point, and (iii) after the
bifurcation.

The set-valued map Fα,0 admits a discontinuous explosion at α∗ := 1 + ε + 2
√

ε.
When α > α∗, the mapping Fα,0 admits two minimal invariant sets, given by the
attractors A1(α) and A2(α) (see Figure 2 (i)). These attractors are bounded by
fixed points of the extremal maps fα,0−ε and fα,0 +ε. Between the two attractors,
we identify a unique minimal F ∗

α,0-invariant set R(α) = [r−(α), r+(α)]. This set is
the intersection of the two complementary F ∗

α,0-invariant sets A∗
1(α) = [r−(α),∞)

and A∗
2(α) = (−∞, r+(α)] (note that due to noncompactness of the phase space,

these sets are only closed rather than compact). When decreasing α, the two
attractors approach each other until they collide with R(α) at the bifurcation point
α∗ (see Figure 2 (ii)). At α = α∗, the two separate attractors still exist, but they
explode lower semi-continuously to form a unique minimal invariant set A(α) as
soon as α < α∗ (see Figure 2 (iii)). This scenario illustrates both Theorem 1.1 (i)
(cf. Theorem 5.1) and Theorem 6.1. Note that the simultaneous collision of R(α)
with A1(α) and A2(α) is due to a symmetry of the set-valued mapping Fα,β .
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Next we show that this mapping also admits an instantaneous appearance of a
minimal invariant set. Fix α > α∗. For β < β∗ := −(α + 1− 2

√
α)+ ε, there exists

exactly one minimal invariant set, given by the attractor A1(β) (see Figure 3 (i)).
At β = β∗, a new minimal invariant set A2(β) appears, and alongside also a minimal
F ∗

α,β-invariant set R(β) (see Figure 3 (ii)). As before, R(β) is the intersection of

the complementary F ∗
α,β-invariant sets A∗

1(β) and A∗
2(β), detaching from A2(β) as

soon as β > β∗ (see Figure 3 (iii)). This scenario illustrates both Theorem 1.1 (ii)
(cf. Theorem 5.1) and Theorem 6.1.
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[Aki93] E. Akin, The General Topology of Dynamical Systems, Graduate Studies in Mathe-
matics, no. 1, American Mathematical Society, Providence, Rhode Island, 1993.
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